
Testing Equivalence of Polynomials under Shifts

Zeev Dvir∗ Rafael Oliveira† Amir Shpilka‡

Abstract

Two polynomials f, g ∈ F[x1, . . . , xn] are called shift-equivalent if there exists a vector
(a1, . . . , an) ∈ Fn such that the polynomial identity f(x1 +a1, . . . , xn +an) ≡ g(x1, . . . , xn)
holds. Our main result is a new randomized algorithm that tests whether two given poly-
nomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of
the polynomials, to which it is given black box access. This complements a previous work
of Grigoriev [Gri97] who gave a deterministic algorithm running in time nO(d) for degree d
polynomials.

Our algorithm uses randomness only to solve instances of the Polynomial Identity Test-
ing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in
complexity) a de-randomization of our algorithm would follow. This establishes an equiv-
alence between de-randomizing shift-equivalence testing and de-randomizing PIT (both in
the black-box and the white-box setting). For certain restricted models, such as Read
Once Branching Programs, we already obtain a deterministic algorithm using existing PIT
results.

∗Department of Computer Science and Department of Mathematics, Princeton University. Email:
zeev.dvir@gmail.com. Research supported by NSF grants CCF-1217416 and CCF-0832797.
†Department of Computer Science, Princeton University. Email: rmo@cs.princeton.edu.
‡Department of Computer Science, Technion — Israel Institute of Technology, Haifa, Israel,

shpilka@cs.technion.ac.il. The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 3 (2014)

1 Introduction

In this paper we address the following problem, which we call Shift Equivalence Testing (SET).
Given two polynomials f, g ∈ F[x] (we use boldface letters to denote vectors), decide whether
there exists a shift a ∈ Fn such that f(x + a) ≡ g(x) and output one if it exist. The symbol
≡ is used to denote polynomial identity (the polynomials should have the same coefficients).
We will focus mainly on the case where F is a field of characteristic zero (such as the rational
numbers) or has a sufficiently large positive characteristic.

Observe that f is shift-equivalent to the zero polynomial if and only if f itself is the zero
polynomial. Hence, SET is a natural generalization of the well-known Polynomial Identity
Testing problem (PIT) in which we need to test whether f(x) ≡ 0 given access to a succinct
representation of f (say, as a circuit). A classical randomized algorithm by Schwartz-Zippel-
DeMillo-Lipton [Sch80, Zip79, DL78] is known for PIT: evaluate f on a random input (from a
large enough domain) and test if f evaluates to zero on that point. If f is non-zero, then it is
not zero on a random point with very high probability. In contrast, it is not clear at all how to
devise a randomized algorithm for SET. Unlike PIT, which is a ‘co-NP’ type problem (there is
short proof that a polynomial is not zero), the SET problem is an ‘RPNP’ type problem (there
is a short witness (the shift itself) that polynomials are shift equivalent, and verifying that
witness is in RP).

The problem of equivalence of polynomials under shifts of the input first appeared in the
works of Grigoriev, Lakshman, Saunders and Karpinski [GK93, GL95, LS94] (see also references
therein), in the context of finding sparse shifts of a polynomial. That is, they were interested in
finding a shift that will make a given polynomial sparse, if such a shift indeed exists. The main
motivation for this question comes from considering polynomials in their sum-of-monomials
representation (also called dense representation or depth-2 circuit complexity), and the goal
is to find a shift that will make the representation more succinct. Later, in [Gri97], Grigoriev
asked the following question: given two polynomials f, g ∈ F[x], is there an efficient algorithm
that can find whether there exists a shift a ∈ Fn such that f(x + a) ≡ g(x)? In the same
paper, Grigoriev gave algorithms for three versions of this problem: one deterministic for
characteristic zero, one randomized for large enough characteristic 0 < p and one quantum
for characteristic 2. The running time of Grigoriev’s algorithms was polynomial in the dense
representation. That is, for polynomials of degree d in n variables, the running time was
nO(d) (which is an upper bound on the number of coefficients). In this paper, we address
the same question as Grigoriev, but assume that the polynomials are given in some succinct
representation (say, as arithmetic circuits). In this representation, one can hope for running
time which is polynomial in the size of the given circuits (which can be exponentially small
relative to the dense representation). For example the determinant polynomial has n2 variables
and degree n but can be given as a circuit of size nO(1) in the succinct representation.

Our main result is a new randomized (two-sided error) algorithm for SET. The algorithm
runs in time polynomial in the circuit size of the given polynomials. In fact, we only require
black-box access to the polynomials f and g and a bound on their degree and circuit size. Our
algorithm is obtained as a reduction to the PIT problem. Hence, if we were able to perform
deterministic PIT, we could also perform deterministic SET. For certain interesting restricted

1

models of arithmetic computation, this already gives deterministic SET. For general circuits,
our results show that it is equivalently hard to de-randomize PIT and SET, which is somewhat
surprising as by the explanation above it seems as if SET is a much harder problem than PIT.

Below, we will state our results in the most general way, assuming f and g belong to some
circuit classes closed under certain operations. The reason for doing this is that, in this way,
one can see exactly what conditions are required to de-randomize the algorithm. That is, what
kind of deterministic PIT is required to derive deterministic SET (in general we require PIT
for a slightly larger class). Before giving a formal description of our results we take a moment
to set up some necessary background on PIT and hitting sets.

1.1 PIT and Hitting Sets

We start by formally defining arithmetic circuits. For more background on arithmetic compu-
tation and arithmetic complexity we refer the reader to the survey [SY10].

Definition 1.1 (Arithmetic circuit). An arithmetic circuit C is a directed acyclic labeled graph
in which the vertices are called ‘gates’. The gates of C with in-degree 0 are called inputs and
are labeled by either a variable from {x1, . . . , xn} or by field element from F. Every other gate
of C is labeled by either ‘×’ or ‘+’ and has in-degree 2. There is one gate with out-degree 0,
which we call the output gate. Each gate in C computes a polynomial in F[x] in the natural
way. We call the polynomial computed at the output gate ‘the polynomial computed by C’. An
arithmetic circuit is called a formula if its underlying graph is a tree.

The PIT problem is defined as follows: we are given an arithmetic circuit C computing
a polynomial f ∈ F[x], and we have to determine whether the polynomial f is the zero
polynomial or not. PIT is a central problem in algebraic complexity. Deterministically solving
PIT is known to imply lower bounds for arithmetic circuits [HS80, Agr05, KI04, DSY09]. PIT
also has some algorithmic implications. The famous AKS primality test [AKS04] is based on
solving PIT for a specific polynomial. Randomized algorithms for finding a perfect matching
in a given graph reduce the problem to PIT of certain determinants with variables as entries
[Lov79, KUW86, MVV87].

In recent years, there has been considerable progress on the problem of obtaining deter-
ministic PIT algorithms for restricted classes of circuits. The study of restricted models began
with the class of sparse polynomials, which are also referred to as depth 2 circuits (of the
form ΣΠ). A long line of work, culminating in the algorithm of Klivans and Spielman [KS01]
gives deterministic PIT for sparse polynomials. In the past decade a series of algorithms
[DS06, KS07, KS11, SS11, KS09b, SS10, ASSS12] were devised to solve PIT for circuits of
depth 3 with bounded fan-in, which are denoted as ΣΠΣ(k) circuits. A more recent line of
work, to which we will go back later in the paper, deals with read once branching programs
and low rank tensors [FS12, FS13, FSS13].

There are two variants of the PIT problem: in the white-box model the PIT algorithm is
given as input an actual arithmetic circuit computing f ∈ F[x] and has to determine if f ≡ 0,
possibly by inspecting the structure of the circuit. In the (harder) black-box model, we can
only access the polynomial f by querying its value at points a ∈ Fn of our choice (we are still

2

assuming f has some small circuit). It is not hard to see that any deterministic black-box PIT
algorithm works by evaluating f on some fixed set of points and outputs f ≡ 0 iff all of these
evaluations result in zero. Such a set of evaluation points is called a Hitting Set for the class of
circuits to which f is assumed to belong. It is clear that solving PIT in the black-box model is
at least as hard as solving it in the white-box model and indeed, in some cases we have better
algorithms in the white-box model than in the black-box model (compare e.g. [RS05] to [FS13]
and [FSS13]).

More formally, to deterministically solve black-box PIT for a class of circuits M, we need
to be able to generate a hitting set H such that for each non-zero polynomial f computed by
a circuit in M, there exists a point a ∈ H such that f(a) 6= 0. If this is the case, we say that
the set H hits the class M, and that the point a hits f .

The following folklore result shows that there exists a small hitting set for the class of
poly-size circuits (see Theorem 4.3 of [SY10] for a proof).

Theorem 1.2 (Non-constructive hitting sets). For every n, d, s and a field F of size |F| ≥
max(d2, s), there exists a set H ⊆ Fn of size |H| = poly(d, s) that is a hitting set for all circuits
of size at most s and degree at most d. Furthermore, a random set H of the appropriate size
is such a hitting set with high probability.

We remark that the theorem above requires that the field size is at least polynomially
larger than some of the parameters. This is necessary for constructing hitting sets since two
non-identical polynomials might evaluate to the same value on all inputs from a sufficiently
small sub-field (e.g., x = xp in Fp). For simplicity, we will assume that we work over sufficiently
large finite fields (so that they contain a hitting set), if necessary by going to an extension field.
When working over characteristic zero we will implicitly assume that all constants involved
in the hitting sets or in the computation have polynomially long bit representation so we do
not have to keep track of that measure as well. This is quite reasonable given that explicit
constructions of hitting sets have this property and that we can achieve this with randomized
constructions as well.

Now, if what we want is to hit only a specific nonzero polynomial, then we do not need the
full power of a hitting set. As we mentioned before, the randomized algorithm by Schwartz-
Zippel-DeMillo-Lipton [Sch80, Zip79, DL78] gives us a point that hits a given nonzero polyno-
mial with high probability. More formally we have:

Lemma 1.3 ([Sch80, Zip79, DL78]). Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a nonzero polynomial
of degree at most d, and let T ⊆ F be a finite set. If we choose a = (a1, . . . , an) ∈ Tn uniformly
at random, then Pr[f(a) = 0] ≤ d/|T |.

Notice that, to achieve error at most ε with this lemma, we should pick a set T of size
|T | ≥ d/ε. Generating such a uniformly random element a from Tn requires n · dlog(d/ε)e
random bits.

3

1.2 Formal statement of our results

Our results rely on closure properties of the underlying circuit classes.

Definition 1.4. Given a class of arithmetic circuits M we will say that M is closed under
an operator A : F[x] 7→ F[x] if the following property holds. Let f be an n-variate polynomial
of total degree d that is computed by a circuit of size s from M. Then we require that A(f) is
computed by a circuit of size poly(n, d, s) from M.

For instance, one operator that is very common and under which all of the most studied
circuit classes are closed is the restriction operator, namely, the operator that substitutes some
of the variables of f(x) by field elements. It is easy to see that by substituting some variables
by field elements, the new polynomial will also be computed by a circuit of size less than s,
and in general the new polynomial will also belong to the same class as f .

In addition, we will need to discuss closure under three different operators:

• Directional partial derivatives: The partial derivatives ∂f
∂xi

of a polynomial f are
defined in the usual sense (over finite fields we use the formal definition for polynomials).
We define the first order partial derivative of f in direction a ∈ Fn to be

f (1)(a,x) ,
n∑

t=1

at ·
∂f

∂xt
(x)

(see Definition 3.1). Apart from the class of general circuits (and formulas) that are
closed under taking first order derivatives [BS83], the class of sparse polynomials (depth
2 circuits) is also closed under directional partial derivatives. Note, however, that depth-
3 circuits with at most k multiplication gates, also known as ΣΠΣ(k) circuits, are not
closed under directional partial derivatives as these might increase the top fanin.

• Homogeneous components: If f ∈ F[x] is a polynomial of degree d, we will denote
the homogeneous component of degree k of f by Hk(f(x)). General circuits and formulas
are close under taking homogeneous components, and the same also holds for the class
of sparse polynomials (see e.g the proof of Lemma 2.1).

• Shifts: Here we require that a class will be closed under the operation f(x) 7→ f(x + a)
for some a ∈ Fn. Again, circuits and formulas as closed to shifts, however, the class of
sparse polynomials is not.

We now describe our main result that solves the SET problem given a PIT algorithm.

Theorem 1.5 (Main theorem). Let F be a field of characteristic zero. Let M1 and M2 be
two circuit classes such that

1. M1 is closed under taking homogeneous components and closed under (first-order) direc-
tional derivatives.

2. M2 is closed under taking shifts.

4

3. We have a (white-box) black-box PIT algorithm P for polynomials in M1,M2 and for
polynomials of the form f − g, where f ∈M1 and g ∈M2.

Then, there exists an algorithm S that, given (white-box) black-box access to polynomials f ∈
M1, g ∈ M2 and a bound d on the their degree, returns a ∈ Fn so that g(x + a) ≡ f(x), if
such a shift exists, or returns FAIL, if none exist.

Furthermore:

• The running time of S is polynomial in the running time of P and in the other parameters
(n, d).

• If the PIT algorithm P is deterministic then so is S.

• All of the above holds also for the case when F is a finite field with characteristic greater
than d.

Combining Theorem 1.5 with Lemma 1.3 we obtain a randomized SET algorithm for any
pair of polynomials.

Theorem 1.6 (Randomized SET for pairs of polynomials). Let F be a field of characteristic
zero or of characteristic larger than d. There exists a randomized algorithm that, given black
box access to f, g ∈ F[x] of degree at most d, returns a ∈ Fn such that g(x + a) ≡ f(x), if
such a shift exists, or FAIL otherwise. The algorithm runs in time poly(n, d, log(1/ε)), where
ε is the probability or returning a wrong answer (i.e., FAIL if a shift exists or a shift if none
exists).

Remark 1.7. An interesting fact about Theorem 1.6 is that the algorithm we obtain has a
two sided error (this can be seen from the proof). This fact is in contrast to the fact that most
randomized algorithms in the algebraic setting have one-sided error.

Theorem 1.5 already leads to deterministic algorithms for certain restricted models. For
instance, in the recent works of Forbes and Shpilka [FS12, FS13] and of Forbes, Saptharishi
and Shpilka [FSS13], the authors obtain a quasi-polynomial deterministic PIT algorithm for
read-once oblivious algebraic branching programs (ROABPs). Their result, together with our
algorithm, imply that we can find out whether two ROABPs are shift-equivalent in determin-
istic quasi-polynomial time. Since this class also captures tensors,1 an application of our result
is that we can find out whether two tensors are shift-equivalent in quasi-polynomial time (we
refer the reader to [FS13, FSS13] for definitions of ROABPs and tensors).

Corollary 1.8. There is a deterministic quasi-polynomial time algorithm that given black-
box access to two polynomials f and g computed by read-once oblivious algebraic branching
programs, decides whether there exists a ∈ Fn such that f(x + a) ≡ g(x) and in case that such
a shift exists, the algorithm outputs one.

As the class of sparse polynomials is closed under taking homogeneous components and

1We note that the work [ASS13] also gives a black-box PIT algorithm for tensors.

5

under first order directional derivatives (a directional derivative blows up the size of the circuit
by at most a factor of n) we obtain the following corollary.

Corollary 1.9. Let M2 be any circuit class so that

1. M2 is close under shifts.

2. There is a deterministic PIT algorithm testing if f − g is zero for sparse f and g ∈M2.

Then, we can test whether f and g are shift-equivalent deterministically in time poly(n, s)

As an application of our main theorem in the white-box model, we note that Saha et
al. gave a polynomial time algorithm for testing whether a given sparse polynomial equals a
ΣΠΣ(k) circuit [SSS13]. Since their algorithm works in the white-box model, we can utilize
it in the variant of our main theorem in the white-box model to find whether a given sparse
polynomial and a polynomial in ΣΠΣ(k) are shift-equivalent. We also note that we can make
their algorithm work in the black-box case as well. Using the reconstruction algorithms of
[Shp09, KS09a] we can first reconstruct the ΣΠΣ(k) circuit in quasi-polynomial time. We
can also interpolate the sparse polynomial in polynomial time (for interpolation of sparse
polynomials see e.g. [KS01]) and then apply our methods together with the PIT algorithm of
Saha et al. to solve the shift-equivalence problem.2

1.3 Overview of the algorithm

In this section we give a short overview our algorithm and its analysis. Assume we are given
f(x) and g(x) and we have to find a ∈ Fn such that f(x + a) = g(x). Let us assume w.l.o.g.
that deg(f) = deg(g) = d. Let us also denote f(x) =

∑d
i=0H

i(f(x)) where each H i(f) is

homogeneous of degree i and similarly, g(x) =
∑d

i=0H
i(g(x)).

Now, let us compute the homogeneous components of f(x + a). Denote with H i(f(x + a))
the homogeneous part of degree i of f(x + a). We have that

Hd(f(x + a)) = Hd(f(x)).

Thus, our first step of the algorithm is to verify that

Hd(g(x)) = Hd(f(x)).

Next we move to degree d− 1. A quick calculation gives

Hd−1(g(x)) = Hd−1(f(x + a)) = Hd−1(f(x)) +

n∑
k=1

ak ·
∂Hd(f(x))

∂xk
. (1)

Observe that this is a linear equation in the entries of a. It turns out that if our circuit class

is closed under directional derivatives, that is, if the polynomial
∑n

k=1 ak ·
∂Hd(f(x))

∂xk
belongs to

2Note that the reconstruction algorithm of [Shp09, KS09a] returns so-called generalized ΣΠΣ(k) circuits.
Nevertheless, one can observe that the algorithm of Saha et al. works for such circuits as well.

6

the same circuit class as f(x) (or a slightly larger class), and if we have a hitting set for the

class of polynomials of the form
∑n

k=1 ak ·
∂Hd(f(x))

∂xk
, for every a ∈ Fn, then we can solve this

system of equations and find some solution b such that

Hd−1(g(x)) = Hd−1(f(x + b)) = Hd−1(f(x)) +

n∑
k=1

bk ·
∂Hd(f(x))

∂xk
.

As we will see in section 2.3, if we allow randomness then we can also solve this system of
equations without having a hitting set.

Note that at this point we might have b 6= a. Hence, we have found a shift b that makes the
homogeneous parts of degree d and d− 1 in f and g equal. We now consider the homogeneous
component of degree d− 2. Here we have the system of equations

Hd−2(g(x)) = Hd−2(f(x + a)) = Hd−2(f(x)) +
n∑

k=1

ak ·
∂Hd−1(f(x))

∂xk
+

n∑
`,k=1

a`ak
∂2Hd(f(x))

∂x`∂xk
.

(2)
And now we seem to be in trouble as this is a system of quadratic equations in the entries of
a. Here comes our crucial observation. Recall that we have found b such that

Hd−1(g(x)) = Hd−1(f(x)) +

n∑
k=1

bk ·
∂Hd(f(x))

∂xk
.

We also have that

Hd−1(g(x)) = Hd−1(f(x + a)) = Hd−1(f(x)) +
n∑

k=1

ak ·
∂Hd(f(x))

∂xk
.

Hence,
n∑

k=1

(ak − bk) · ∂H
d(f(x))

∂xk
= 0.

This means that the directional derivative of Hd(f(x)) in direction a − b is zero. Or, in
other words, that the polynomial Hd(f(x)) is fixed along that direction. This means that no
matter how many derivatives we take along direction a−b we always get the zero polynomial.
Therefore, if we take a second derivative in direction c or in direction c + (a− b) we will get
the same answer, no matter what c is. In particular, this gives

n∑
`,k=1

a`ak
∂2Hd(f(x))

∂x`∂xk
=

n∑
`,k=1

b`bk
∂2Hd(f(x))

∂x`∂xk
,

as both sides compute the second directional derivatives in directions a and b, respectively.
Going back we now have that system (2) is equivalent to the system

Hd−2(g(x)) = Hd−2(f(x + a)) = Hd−2(f(x)) +

n∑
k=1

ak ·
∂Hd−1(f(x))

∂xk
+

n∑
`,k=1

b`bk
∂2Hd(f(x))

∂x`∂xk
.

(3)

7

Since we already computed b, we can look for a solution to both systems of equations (2) and
(3) (as linear systems in the coefficients of a). Once we find such a solution, say c, we can use
it to set up a new system of equations involving the homogeneous components of degree d− 3
and so on.

Thus, our algorithm works in iterations. We start by solving a system of linear equations.
We then use the solution that we found to set up another system and then we find a common
solution to both systems. We use the solution that we have found to construct a third system
of equations and then solve all three systems together etc. At the end we have a solution for
all systems, and at this point it is not difficult to verify, that if such a shift a exists, then the
solution that we found is indeed a valid shift. This can be verified by running one PIT for
checking whether the shift of f that we have found and g are equivalent.

All the steps above can be completed using randomness, including solving the black-box
system of equations, or using PIT for the relevant circuit classes.

1.4 Related work

The works of Grigoriev, Lakshman, Saunders and Karpinski [GK93, GL95, LS94], try to solve
the problem of finding sparse shifts of given polynomials, in order to make their representation
more succinct. In [GK93], Grigoriev and Karpinski studied the problem of finding sparse affine-
shifts of multivariate polynomials f(x), that is, transformations of the form x 7→ Ax+b where
A is full-rank, which make the input polynomial f(Ax + b) sparse. In [LS94], the authors
consider the problem of finding sparse shifts of univariate polynomials, and of determining
uniqueness of a sparse shift. Given an input polynomial f(x), they use a criterion based on
the vanishing of the Wronskian of some carefully designed polynomials, which depend on the
derivatives f (i)(x), in order to obtain an efficient algorithm for the univariate case.

Later, in [Gri97], Grigoriev gave three algorithms for the SET problem, which were poly-
nomial in the size of the dense representation of the input polynomials. His algorithms were
based on a structural result about the set of shifts that stabilize the polynomial, that is, the
set of points a ∈ Fn for which f(x + a) ≡ f(x). We denote this stabilizer by Sf . He noticed
that Sf is a subspace of Fn and that the set of shifts that are solutions to the SET problem
with input polynomials f, g, which we denote Sf,g, is a coset of Sf . After this observation,
Grigoriev established the following recursive relations between Sf,g and S ∂f

∂xi
, ∂g
∂xi

, for each xi:

Sf,g =

n⋂
i=1

S ∂f
∂xi

, ∂g
∂xi

∩ {a ∈ Fn : f(a) = g(0)}.

From these relations, Grigoriev devised a recursive algorithm that finds Sf,g by finding the sub-
spaces corresponding to S ∂f

∂xi
, ∂g
∂xi

. Because this recursive procedure will find all the subspaces

S ∂f
∂m

, ∂g
∂m

for every monomial m of degree less than or equal to d = max(df , dg), the running

time of his algorithm is bounded by nO(d). Our approach is different from Grigoriev’s in the
sense that we avoid the recursive relations and find a shift by iteratively constructing a shift
which makes f and g agree on their homogeneous parts of up to a certain degree, starting from

8

the homogeneous parts of highest degree down to the homogeneous parts of lowest degree (i.e.,
the constant term).

The study of equivalences of general polynomials under affine transformations, which we
refer to as affine-equivalence, was started by Kayal in [Kay12] (note that this generalizes
the problem studied in [GK93]). We say that f and g are affine-equivalent if there exists a
matrix A and a shift b such that f(x) = g(Ax + b). In this work, Kayal analyzes whether
a given polynomial f can be obtained by an affine transformation of a given polynomial g,
where g is usually taken to be a “complete” polynomial in some arithmetic circuit class, such
as the Determinant or Permanent polynomials. In his paper, Kayal establishes NP-hardness
of the general problem of determining affine-equivalence between two arbitrary polynomials.
Moreover, he provides randomized algorithms for the affine-equivalence problem when one of
the polynomials is the Permanent or the Determinant and the affine transformations x 7→
Ax + b are of a special form (in the case of Determinant and Permanent, the matrix A must
be invertible). Kayal provides randomized algorithms for some other classes of homogeneous
polynomials, and for more details we refer the reader to the paper [Kay12]. Our work is
different from Kayal’s work since in our setting we are only interested in shift-equivalences,
and in this feature we are less general than Kayal’s work, but we also consider larger classes
of polynomials, in which case we are more general than Kayal’s work.

Following the initial publication of this manuscript, an anonymous reader pointed out an
alternative way to solve the SET problem using a randomized algorithm. This approach uses
a lemma due to Carlini [Car06] (see also [Kay12, Lemma 17]) and an argument implicit in
Kayal’s work [Kay12, Section 7.3]. We now discuss and compare this alternative approach to
ours.

In his lemma, Carlini uses a linear transformation on the variables in order to get rid
of “redundant variables,” that is, variables xi for which (after a suitable change of basis)
the derivative ∂f

∂xi
of the polynomial is zero. The idea is to use this lemma to eliminate the

“redundant variables” and work only with the “essential variables.” Once we find such a linear
transformation, one can solve Equation (1) (there will be at most one solution, since there
are no more redundant variables). Then, we reduce the original problem to another SET
problem on lower degree polynomials by subtracting the homogeneous part of largest degree.
We give the details (which do not appear elsewhere in the literature) in Appendix A. In a
sense, this approach is almost identical to ours. In the first step of our algorithm we solve
Equation (1) and get an affine subspace as solution. This affine subspace can be thought of as
being composed of the space of all assignments to the “non-essential” variables shifted by the
unique solution. Then, in the next step, we prune this space further according to the essential
variables of the degree d − 1 part etc. The advantages of our approach come in when trying
to de-randomize SET using deterministic PIT for restricted classes. When following Carlini’s
lemma and reducing the number of variables, one needs to solve PIT for the composition of the
original circuits with a linear transformation. This is not necessary in our approach, which has
weaker PIT requirements. While some circuit classes are closed under linear transformations,
this is not the case in general. For example, the class of sparse polynomials is not closed under
linear transformations. Thus, one will not be able to deduce polynomial time algorithms to
certain instances of SET like those that follow from our approach (see Corollary 1.9 and the

9

discussion following it).

Another issue with the algorithm obtained from Carlini’s lemma is that in each step of
the recursion we need to subtract an affine shift of the homogeneous component of maximal
degree from each of the polynomials. Thus, we need PIT for classes that are closed under
linear combinations of polynomials from the class. However, some restricted circuit classes do
not satisfy such closure properties. For example, when executing this algorithm on depth-3
circuits with bounded top fan-in, we may get, at some step of the algorithm, a depth-3 circuit
with unbounded top fan-in and so we will not be able to use current deterministic algorithms.

Another line of works that has some resemblance to our results is the study of black-box
groups. The well-known algorithm of Sims (see the book [Ser03]) finds a small set of generators
for a permutation group given by black-box access. Our algorithm can be seen as finding a
basis for the affine space of all shifts from f to g so in that sense it also finds generators for a
black-box group where we do not have direct access to the group but rather to the objects it
acts upon. An interesting point is that while Sims’ algorithm works by constructing the group
in a “bottom to top” fashion, namely starting with the identity element and slowly finding
more generators, we on the other hand find a sequence of affine spaces, each contained in the
proceeding ones until we reach the final space.

1.5 Organization

The rest of the paper is organized as follows: in section 2 we introduce some useful lemmas that
one obtains from having PIT for a class of circuits. In section 3 we introduce some properties
of homogeneous components of shifts of polynomials. In section 4 we define the space of shifts
of a polynomial that do not change the polynomial at all (i.e. the stabilizer) and describe some
of its properties. In section 5 we formally state and prove the main theorem of this paper,
describing and analyzing the algorithms for testing shift-equivalence.

2 Preliminaries

In this section, we establish some notation that will be used throughout the paper and introduce
some useful lemmas about simulation of circuits in the black-box setting. In addition, we state
and prove a lemma on how to solve a linear system of polynomial equations in the black-
box (or white-box) setting, given that one has a black-box (or white-box) PIT algorithm for
linear combinations of the polynomials in question. In section 2.2, we show that if we are
given white-box access to the input polynomials, then white-box PIT for linear combinations
of these polynomials is enough to solve linear system of equations with these polynomials. On
the other hand, in section 2.3, if we are given black-box access to the input polynomials, then
we show that having a hitting set is enough. Notice that although the result in section 2.3
seems to be stronger than the result in section 2.2, the two results are actually not comparable,
since in section 2.3 we are assuming that we have a hitting set, which is a stronger assumption
than only having a white-box PIT algorithm, which is the assumption in section 2.2.

From this point on, we will use boldface for vectors, and regular font for scalars. Thus, we

10

will denote the vector (x1, . . . , xn) by x and if we want to multiply the vector x by a scalar z
we will denote this product by zx.

We will also assume that the ground field F either has characteristic zero or that its char-
acteristic is larger than the degree of any polynomial that we will be working with. This
assumption will be crucially used throughout sections 3 and 4. In addition, we denote the
characteristic of F by char(F).

2.1 Interpolation in the Black-Box setting

For many problems in algebraic computation, it is useful to work with the homogeneous compo-
nents of a polynomial, instead of directly working with the entire polynomial. In the black-box
setting, we do not have direct black-box access to the homogeneous components of the given
polynomial f . However, the next lemma shows that from black-box access to f we can obtain
black-box access to its homogeneous components H0(f), . . . ,Hd(f).

Lemma 2.1. If we are given black-box access to a circuit C(x) that computes a polynomial
f(x) ∈ F[x] of degree d, then we can obtain black-box access to the homogeneous components
of f .

Proof. We know that f(x) =
d∑

i=0

H i(f(x)). Hence, we have that f(zx) =
d∑

i=0

ziH i(f(x)). If

we let {αi}0≤i≤d be d+1 distinct elements of F (or of an extension field of F) and if we evaluate
C on the points αix we obtain the following equality:

1 α0 α2
0 . . . αd

0

1 α1 α2
1 . . . αd

1

1 α2 α2
2 . . . αd

2
...

...
...

...
...

1 αd α2
d . . . αd

d

 ·

H0(f(x))
H1(f(x))
H2(f(x))

...
Hd(f(x))

 =

f(α0x)
f(α1x)
f(α2x)

...
f(αdx)

The matrix on the left side is a Vandermonde matrix, which is known to be invertible.

Hence, by left-multiplying by its inverse we obtain:

1 α0 α2

0 . . . αd
0

1 α1 α2
1 . . . αd

1

1 α2 α2
2 . . . αd

2
...

...
...

...
...

1 αd α2
d . . . αd

d

−1

·

f(α0x)
f(α1x)
f(α2x)

...
f(αdx)

 =

H0(f(x))
H1(f(x))
H2(f(x))

...
Hd(f(x))

Since we have black-box access to the values f(αix) through the circuit C, we also have

black-box access to the homogeneous components of f through this construction.

11

2.2 Finding linear dependencies among polynomials in the White-Box Set-
ting

Suppose we have explicit access to the circuits computing the polynomials g, h1, h2, . . . , hk ∈
F[x]. Then, how can we decide whether g is in the linear span of h1, h2, . . . , hk? That is,
does there exist an a ∈ Fk such that g(x) ≡

∑k
i=1 aihi(x)? Notice that we cannot try to

solve a linear system for each possible monomial of g, since this process might lead us to an
exponential number of equations.

In this subsection we answer the question above, assuming that we have a white-box PIT
algorithm that hits the F-span of the polynomials g, h1, . . . , hk, that is, polynomials of the
form a0g(x) +

∑k
i=1 aihi(x), where ai ∈ F, 0 ≤ i ≤ k. Moreover, we can find such a linear

combination, if it exists.

Lemma 2.2 (Decision to search reduction for white-box PIT). Given an arithmetic circuit C
computing a non-zero n-variate polynomial f of degree d, and a white-box deterministic PIT
algorithm that runs in polynomial time, we can find, in deterministic polynomial time, a point
a ∈ Fn such that f(a) 6= 0.

Proof. Let S = {a0, . . . , ad} be a set of d+ 1 distinct values from F. Notice that we can check,
using the PIT algorithm, whether the restriction x1 = ai ∈ S makes f vanish. Since the degree
of f is d and f 6≡ 0, there exists a value of ai ∈ S such that f(ai, x2, . . . , xn) 6≡ 0. Hence, by
a linear scan over S we can find such an index 0 ≤ i ≤ d such that f(ai, x2, . . . , xn) 6≡ 0. Fix
x1 = ai and repeat this procedure with the other variables {x2, . . . , xn}. The running time is
clearly bounded by nd times the running time of the PIT algorithm.

Lemma 2.3. Suppose we are given circuits computing the polynomials g, h1, h2, . . . , hk ∈ F[x].
Assume further that we have a deterministic white-box PIT algorithm for linear combinations
of g, h1, h2, . . . , hk. Then, there exists a deterministic algorithm, with running time polyno-
mial in the sizes of the circuits and k, which decides whether there exists a ∈ Fk such that∑k

i=1 aihi(x) ≡ g(x). Moreover, the algorithm will output such an a, if there exists one.

Proof. We will be relying on the decision-to-search reduction of Lemma 2.2 and we will use it
implicitly throughout in the proof.

As a first step, find a point a1 such that h1(a1) 6= 0. Next, find a point a2 such that
h1(a2)h2(a1) − h1(a1)h2(a2) 6= 0. If no such point a2 exists then we can discard h2, since in
this case h2 will be in the span of h1. If h1(x)h2(a1)−h1(a1)h2(x) 6≡ 0, then by Lemma 2.2 we
can find such a2. That is why we can discard h2 in case we are not able to find such a point.
Proceed in this manner until we have scanned through all h1, . . . , hk. More accurately, assume
(wlog) that the polynomials h1, . . . , hc, for some c < `, are linearly independent and their span
contains the polynomials h1, . . . , h`−1. At the `th step we consider the c+ 1× c+ 1 matrix M`

that is defined as follows: M`[i, j] =

{
hi(aj), if j ≤ c
hi(x), if j = c+ 1

. We find a point a` for which the

determinant of M` is non-zero. Notice that this determinant is merely a linear combination of

12

the polynomials h1, . . . , h`, hence we have PIT for this polynomial and we can find such point
a`, if one exists.

W.l.o.g., we can assume that h1, . . . , hr form a basis for the space defined by the F-span
of the polynomials h1, . . . , hk. Hence, by our linear scan through the hi’s, we have found
a1, . . . ,ar such that the r× r matrix H having in its (i, j)th entry the value hi(aj) is full rank.

We now evaluate the polynomial g on all those r points and find the unique linear combi-
nation yielding

∑r
i=1 bihi(aj) = g(aj) for 1 ≤ j ≤ r. Notice that we can find b ∈ Fr by solving

a system of linear equations over F. This vector b will be unique since H is full rank. Notice
that, by uniqueness of b and by the fact that h1, . . . , hr form a basis for the linear span of the
hi’s, we have that g is a linear combination of the hi’s if, and only if,

∑r
i=1 bihi(x) ≡ g(x).

Hence, all we need to do is to check whether
∑r

i=1 bihi(x) ≡ g(x). We can test this polynomial
equality by running our PIT algorithm on the polynomial g(x)−

∑r
i=1 bihi(x). If the PIT algo-

rithm returns that this polynomial is the zero polynomial, then we found a linear combination.
Otherwise, the algorithm returns that there exists no linear combination.

2.3 Finding linear dependencies among polynomials in the Black-Box Set-
ting

Here we assume that we only have black-box access to polynomials g, h1, h2, . . . , hk ∈ F[x] and
we wish to solve the same question as the one posed in the previous subsection, assuming a
black-box PIT. We first note that the proof of Lemma 2.3 also works in the black-box case,
but since we have a stronger assumption, namely, a hitting set rather than a white-box PIT
algorithm, we have a more direct solution: We shall find a set of points S for which the equation
g(x) ≡

∑k
i=1 aihi(x) is true if, and only if, g(c) ≡

∑k
i=1 aihi(c) for every c ∈ S.

It turns out that if we have a hitting set H that hits the F-span of the polynomials
g, h1, . . . , hk, then the points of H give the required set S.

The following lemma states formally the answer to the question above:

Lemma 2.4. Suppose we have black-box access to polynomials g, h1, h2, . . . , hk ∈ F[x] and that
we have a hitting set H that hits the F-span of the polynomials g, h1, h2, . . . , hk. Then, there
exists a deterministic algorithm, with running time polynomial in |H| and k, which decides
whether there exists a ∈ Fk such that g(x) ≡

∑k
i=1 aihi(x). Moreover, the algorithm will

output such an a, if one exists.

Proof. Let s = |H| and let c1, c2, . . . , cs be an arbitrary ordering of the elements of H. For
a polynomial f ∈ F[x], define the vector vf ∈ Fs as follows: vf = (f(c1), f(c2), . . . , f(cs))

T .

Then, it is enough to prove the following equivalence: g(x) ≡
∑k

i=1 aihi(x) if, and only if,

vg =
∑k

i=1 aivhi
. This implies the lemma, since given the polynomials g, h1, . . . , hk and H,

we can construct the vectors vg,vh1 , . . . ,vhk
and just solve the system of linear equations

vg =
∑k

i=1 aivhi
, where the ai’s are the unknowns.

Here is the proof of the equivalence above: g(x) ≡
∑k

i=1 aihi(x) implies that g(cr) =∑k
i=1 aihi(cr) for all r ∈ [s], which implies that vg =

∑k
i=1 aivhi

. On the other hand, if vg =

13

∑k
i=1 aivhi

, then we have vg −
∑k

i=1 aivhi
= 0, which implies that g(cr)−

∑k
i=1 aihi(cr) = 0,

for all r ∈ [s]. Since H hits linear combinations of g, h1, . . . , hk, the last set of equalities implies
that the polynomial g(x)−

∑k
i=1 aihi(x) vanishes on all points of H, and therefore it must be

the zero polynomial. This implies that g(x) ≡
∑k

i=1 aihi(x) and proves the lemma.

Now, what if we do not have such a hitting set H, but we are allowed randomness? Then,
we can still answer the question above in the positive, with high probability, and find such a
linear combination if one exists. More formally, we have:

Lemma 2.5. Suppose we have black-box access to polynomials g, h1, h2, . . . , hk ∈ F[x] and an
upper bound d on their degrees. Let 0 < ε < 1. Then, there exists a randomized algorithm, with
running time poly(d, log(1/ε), k), which decides correctly with probability at least 1− ε whether
there exists a ∈ Fk such that g(x) ≡

∑k
i=1 aihi(x). Moreover, with the same error probability

the algorithm will output such an a, if one exists.

Proof. The proof of this lemma is similar to the proof of the white-box case, the difference
being in the fact that we will choose our evaluation points according to Lemma 1.3. Let S be
a set of size |S| = b2dkε c.

As a first step, pick a point a1 at random from Sn. By Lemma 1.3, if h1 6≡ 0 then h1(a1) = 0
with probability ≤ ε/2k. If h1(a1) = 0 but h1 6≡ 0, then we will just assume that h1 ≡ 0 and
we will discard it (and in this part that our algorithm may make a mistake). Next, pick a
point a2 at random from Sn. Again, by Lemma 1.3, if h1(a1)h2(x) − h1(x)h2(a1) 6≡ 0 then
h1(a2)h2(a1)− h1(a1)h2(a2) = 0 with probability ≤ ε/2k. If h1(a2)h2(a1)− h1(a1)h2(a2) = 0
we will always assume that h2 is in the span of h1 and thereby we will discard h2 (in this
part our algorithm may again make a mistake). We thus proceed in this manner, following the
footsteps of the proof of Lemma 2.3.

As before we assume (wlog) that h1, . . . , hr form a basis for the space defined by the F-
span of the polynomials h1, . . . , hk. Hence, by our linear scan through the hi’s, we have found
a1, . . . ,ar such that the r× r matrix H having in its (i, j)th entry the value hi(aj) is full rank.
The probability that we made a mistake until this point will be ≤ rε/2k ≤ ε/2, by the union
bound.

We continue as in the proof of Lemma 2.3. Assuming that we made no mistake so far,
we can find (by solving linear equations over F) the unique point b such that g is a linear
combination of the hi’s if, and only if,

∑r
i=1 bihi(x) ≡ g(x). Hence, all we need to do is

to check whether
∑r

i=1 bihi(x) ≡ g(x). We can test this polynomial equality by applying
Lemma 1.3 on the polynomial g(x) −

∑r
i=1 bihi(x), again drawing the point at random from

Sn. If the PIT algorithm returns that this polynomial is the zero polynomial, then we found a
linear combination. Otherwise, the algorithm returns that there exists no linear combination.
The probability of the PIT making a mistake at this step is ≤ ε/2k ≤ ε/2. Hence, the total
error of the entire algorithm is bounded by ε/2 + ε/2 = ε, as claimed.

14

3 Homogeneous Components of Shifts of a Polynomial

In this section we describe some properties of the homogeneous components of a shift of a
polynomial. Throughout this section, let f(x) ∈ F[x] be a polynomial of degree d, a ∈ Fn be
a point and f(x + a) be a shift of f . In general, when the field F is such that char(F) = 0 or
char(F) > d, the homogeneous components of f(x+a) can be expressed as a linear combination
of the appropriate (formal) directional derivatives of the homogeneous components of f on
the direction a. Before we state these properties more formally, we will need the following
definitions:

Definition 3.1 (Directional Derivatives). The (formal) directional derivative of f(x) ∈ F[x]
of order 1 on the direction a is given by the following formula:

f (1)(a,x) ,
n∑

t=1

at ·
∂f

∂xt
(x). (4)

More, generally, The (formal) directional derivative of f(x) ∈ F[x] of order r on the direction
a is given by the following formula:

f (r)(a,x) ,
∑

e∈[n]r

(
r∏

k=1

aek

)
· ∂rf

∂xe1 . . . ∂xer
(x) (5)

where we define f (0)(a,x) , f(x). If f is not homogeneous, for each homogeneous component
H`(f) of f we define:

f
(r)
` (a,x) ,

∑
e∈[n]r

(
r∏

k=1

aek

)
· ∂rH`(f)

∂xe1 . . . ∂xer
(x). (6)

Note that equation (5) in definition 3.1 agrees with the usual notion of directional deriva-

tives in the continuous setting. We define f
(r)
` (a,x) to simplify the statement of Lemma 3.5.

From this definition, and by using the fact that the degree of f is smaller than char(F), it is
easy to see the following observations:

Observation 3.2. f
(1)
i (a,x) = H(i−1)(fi(x+a)). Thus, f (1)(a,x) =

∑deg(f)
i=1 H(i−1)(fi(x+a)).

Observation 3.3. The polynomials f (r)(a,x) have the following recursive structure:

f (r+1)(a,x) ≡
n∑

j=1

aj ·
∂(f (r)(a,x))

∂xj
. (7)

This recursive structure implies that the directional derivatives of lower order exhibit a
“domino effect,” which can be captured in the following observation:

Observation 3.4. If f (1)(a,x) ≡ f (1)(b,x) then f (r)(a,x) ≡ f (r)(b,x), for all r ≥ 1.

15

Proof. We will prove this observation by induction on r. We know that the claim is true for
r = 1. Now, given that the claim is true for all values 1 ≤ t ≤ r, we have:

f (r+1)(a,x) ≡
n∑

j=1

aj ·
∂(f (r)(a,x))

∂xj
(by observation 3.3)

≡
n∑

j=1

aj ·
∂(f (r)(b,x))

∂xj
(by induction hypothesis on r)

≡
n∑

j=1

aj ·
∂

∂xj

 ∑
e∈[n]r

(
r∏

k=1

bek

)
· ∂rf

∂xe1 . . . ∂xer
(x)

 (by definition 3.1)

≡
∑

e∈[n]r

(
r∏

k=1

bek

)
· ∂r

∂xe1 . . . ∂xer

 n∑
j=1

aj ·
∂f

∂xj
(x)

 (by rearranging the sum)

≡
∑

e∈[n]r

(
r∏

k=1

bek

)
· ∂r

∂xe1 . . . ∂xer

(
f (1)(a,x)

)
(by definition 3.1)

≡
∑

e∈[n]r

(
r∏

k=1

bek

)
· ∂r

∂xe1 . . . ∂xer

(
f (1)(b,x)

)
(by induction hypothesis)

≡
∑

e∈[n]r

(
r∏

k=1

bek

)
· ∂r

∂xe1 . . . ∂xer

 n∑
j=1

bj ·
∂f

∂xj
(x)

 (by definition 3.1)

≡
∑

e∈[n]r+1

(
r+1∏
k=1

bek

)
· ∂r+1f

∂xe1 . . . ∂xer+1

(x) (by rearranging the sum)

≡ f (r+1)(b,x) (by definition 3.1)

and this concludes the inductive proof.

Observation 3.4 tells us that if the first order directional derivatives are equal for two
different directions a and b, then all of the higher-order directional derivatives will also be
equal. This observation will be crucial in the design of our algorithm.

Now that we defined directional derivatives, we can state the main lemma of this section,
which gives us relations between the homogeneous components of f(x) and f(x + a):

16

Lemma 3.5 (Taylor Expansion Lemma). Let a ∈ Fn and let f ∈ F[x] be such that deg(f) =
d < char(F) Then, the following relations hold for all 0 ≤ i ≤ d:

H i(f(x + a)) ≡
d∑

j=i

1

(j − i)!
· f (j−i)j (a,x) (8)

Proof. Notice that it is enough to show this lemma for the case where f is a single monomial,
since the general case follows by additivity of partial derivatives.

If f(x) =
∏n

j=1 x
dj
j , we have that

f(x + a) =

n∏
k=1

(xk + ak)dk

which implies

H i(f(x + a)) =
∑

j1+j2+...+jn=i
jk≥0, k∈[n]

n∏
k=1

(
dk
jk

)
adk−jkk xjkk

=
∑

j1+j2+...+jn=i
jk≥0, k∈[n]

(
n∏

k=1

1

(dk − jk)!
adk−jkk

)
·

(
n∏

k=1

dk!

jk!
xjkk

)

=
∑

j1+j2+...+jn=i
jk≥0, k∈[n]

(
n∏

k=1

1

(dk − jk)!
adk−jkk

)
· ∂d−if∏

k∈[n](∂xk)dk−jk
(x)

=(∗) 1

(d− i)!
·
∑

e∈[n]d−i

(
d−i∏
k=1

aek

)
· ∂d−if

∂xe1 . . . ∂xed−i

(x)

=
1

(d− i)!
· f (d−i)(a,x),

where equality (∗) follows as each term
∏n

k=1 a
dk−jk
k is counted

(
d−i

d1−j1,...,dn−jn
)

many times

when in the sum
∑

e∈[n]d−i

(∏d−i
k=1 aek

)
.

The equations above and additivity of partial derivatives imply that the lemma is true
when f is a homogeneous polynomial. The proof of the general case is as follows:

H i(f(x + a)) = H i

 d∑
j=i

Hj(f)(x + a)

 =

d∑
j=i

H i
(
Hj(f)(x + a)

)
=

d∑
j=i

1

(j − i)!
· f (j−i)j (a,x)

Where the last equality is true because the lemma is true for homogeneous polynomials, and
each Hj(f) is a homogeneous polynomial of degree j.

17

Lemma 3.5 can be seen as the multivariate Taylor expansion of the polynomial f(x) around
the point a ∈ Fn.

In order to use Lemma 3.5, we need to have access to the polynomials f
(r)
k (a,x) defined in

the lemma. The following observations allow us to have the type of accesses we need.

Observation 3.6. The polynomials f
(r)
k (a,x) are a constant multiple of the homogeneous

components of degree k − r of Hk(f)(x + a).

This observation is important because given black-box access to f , we can obtain black-box

access to the polynomials f
(r)
k (a,x) by interpolation of the polynomials Hk(f)(x + a), as we

do in Lemma 2.1.

Notice that if we are only concerned with a bound on the size of a circuit computing the
homogeneous components of a polynomial f , then by a result of Strassen in [Str73] we have
the following theorem:

Theorem 3.7. If f can be computed by an arithmetic circuit of size s, then for every k ∈ N,
there is a homogeneous circuit of size at most O(r2s) computing all of the polynomials Hk(f),
where 0 ≤ k ≤ r. Moreover, given access to the circuit computing f , we can construct the
homogeneous circuit computing the homogeneous components of f .

A straightforward consequence of this theorem and of observation 3.6 is stated below:

Corollary 3.8. If f has degree d and can be computed by an arithmetic circuit of size s, then
for every shift a ∈ Fn, there is a homogeneous circuit of size at most O(d4s) computing all of

the polynomials f
(r)
k (a,x), where 0 ≤ k, r ≤ d. Moreover, given access to the circuit computing

f , we can construct the homogeneous circuit computing all the polynomials f
(r)
k (a,x).

4 Kernel of Shifts of a Polynomial

As observed by Grigoriev in [Gri97], the set of points a ∈ Fn such that f(x + a) ≡ f(x),
which we call the kernel of f , forms a linear subspace of Fn. In this section, we describe some
properties of the kernel and introduce some lemmas which describe the relationship between
points a in the kernel and the directional derivatives of f on the direction a.

We begin with the following definitions:

Definition 4.1. Let f(x) ∈ F[x] be a polynomial of degree d. We define the kernel of f as the
set

Sf = {a ∈ Fn | f(x + a) ≡ f(x)},

that is, Sf is the set of all points a ∈ Fn such that if we shift the input of f(x) by a we obtain
the same formal polynomial. Here x is regarded as a formal set of variables and a is a point
in Fn.

We can observe the following properties of the kernel Sf :

18

Observation 4.2. Let f ∈ F[x] be a polynomial of degree d, where d < char(F) if char(F) 6= 0.
Then the kernel Sf is a subspace of Fn.

Proof. We need to check three conditions:

(i) 0 ∈ Sf

(ii) a,b ∈ Sf ⇒ a + b ∈ Sf

(iii) a ∈ Sf ⇒ ta ∈ Sf , for all t ∈ F

Conditions (i) and (ii) are trivial to check. Hence, we only need to show that condition (iii)
holds. By repeatedly applying (ii), we have a ∈ Sf ⇒ ka ∈ Sf , for any k ∈ N. In particular,
since the degree of f is less then the characteristic of F, we have that ka ∈ Sf for 0 ≤ k ≤ d,
which are all distinct values. Hence, the polynomial f(x + ta)− f(x) ∈ F(x)[t] has degree ≤ d
in t and has at least d+ 1 distinct roots. This implies that f(x + ta)− f(x) must vanish as a
polynomial in t, which implies that f(x + ta) − f(x) ≡ 0 for all t ∈ F. This proves condition
(iii) and therefore Sf is a subspace of Fn.

More generally, we can define the set of shift-equivalences between two polynomials f, g ∈
F[x]:

Definition 4.3. Given two polynomials f, g ∈ F[x], we define the set of shift-equivalences of
f and g as

Sf,g = {a ∈ Fn | f(x + a) ≡ g(x)},

that is, Sf,g is the set of all points a ∈ Fn such that if we shift the input of f(x) by a we obtain
the formal polynomial g(x).

Note that the set Sf,g is intrinsically related to Sf , since if we have any two elements a and
b of Sf,g, we must have that a − b ∈ Sf . In other words, Sf,g is a coset of Sf . Furthermore,
it must hold that Sf = Sg.

Lemma 4.4. Let f, g ∈ F[x] such that there exists a ∈ Fn for which f(x + a) = g(x). Then
Sf = Sg. Furthermore, for any such a we have Sf,g = Sf + a.

Proof. Let b ∈ Sg. Then f(x + b) = f((x − a + b) + a) = g(x − a + b) = g(x − a) = f(x).
Hence, Sg ⊆ Sf . The other direction is similar.

Given a and b in Sf,g we have f(x− a + b) = g(x− a) = f(x). Hence b− a ∈ Sf . Thus,
Sf,g ⊆ Sf + a. It is also straightforward to verify that Sf + a ⊆ Sf,g.

Another interesting property which relates the kernel to directional derivatives is captured
by the following lemma, which states that a shift a ∈ Fn is in the kernel of shifts Sf if, and
only if, the first order directional derivative of f in the direction a is zero.

Lemma 4.5. Let f ∈ F[x] be a polynomial of degree d, where d < char(F) if char(F) 6= 0.
Then, a ∈ Sf if, and only if, f (1)(a,x) ≡ 0.

19

Proof. After a suitable change of basis that maps a to e1, we need to prove that e1 ∈ Sf
if, and only if, f (1)(e1,y) ≡ 0, where y is the image of x under this change of basis. Since

f (1)(e1,y) =
∂f

∂y1
(y), we must show that e1 ∈ Sf if, and only if,

∂f

∂y1
(y) ≡ 0.

To see the first direction, note that if
∂f

∂y1
(y) ≡ 0 and d < char(F) then f ∈ F[y2, . . . , yn]

which implies f(y + e1) ≡ f(y). Hence, e1 ∈ Sf .

On the other hand, let us write f(y) =
d∑

i=0

yi1 ·fi(y2, . . . , yn). Let k be the highest index for

which fk(y2, . . . , yn) 6= 0. If
∂f

∂y1
(y) 6≡ 0, then k > 0. Let c ∈ Fn be such that fk(c2, . . . , cn) 6= 0

and c1 = 0. Then, if we define bi = fi(c2, . . . , cn), for 0 ≤ i ≤ k, we have f(c) = b0 and

f(c + te1) = bkt
k +

k−1∑
i=1

bit
i, where bk 6= 0. This implies f(c + te1) − f(c) = bkt

k +

k−1∑
i=1

bit
i.

Hence, there exists t ∈ F such that bkt
k +

k−1∑
i=1

bit
i 6= 0 ⇒ f(c + te1) − f(c) 6= 0. Thus,

f(y + te1)− f(y) 6≡ 0 and so e1 6∈ Sf .

An easy corollary of Lemma 4.5 and of observation 3.4 is the following:

Corollary 4.6. If a ∈ Sf then f (r)(a,x) ≡ 0, for all r ≥ 1.

Another property that easily follows from linearity of f (1)(a,x) (in a) and from Lemma 4.4
is captured by the following lemma:

Lemma 4.7. If a ∈ Sf,g and b ∈ Fn then b ∈ Sf,g if, and only if, f (1)(a,x) ≡ f (1)(b,x).

Thus, b ∈ Sf,g if, and only if, f
(1)
i (b,x) ≡ f (1)i (a,x) for all 0 ≤ i ≤ d.

Proof. f (1)(a,x) ≡ f (1)(b,x) if, and only if, f (1)(b−a,x) ≡ 0. By Lemma 4.5 this is equivalent
to b− a ∈ Sf and hence to b ∈ Sf + a. This is equivalent, by Lemma 4.4, to having b ∈ Sf,g
as desired.

The second part of the lemma is immediate.

5 Proof of Equivalence Under Shifts

In this section we give intuition and an overview of our algorithm in subsection 5.1, followed
by a formal description of the algorithm and its analysis in subsection 5.2.

20

5.1 Overview of the Algorithm

In this section, we will describe an overview of the steps in our algorithm. The high level idea
of the algorithm was given in section 1.3. For the sake of clarity, we will leave the explanations
of the preprocessing stage for the analysis of the algorithm and we will assume that the input
given is already preprocessed accordingly.

In the highest level, our algorithm will produce a candidate shift a such that f(x+a) ≡ g(x)
and then use PIT on the polynomial f(x) − g(x − a), to check that the solution a is indeed
a good shift. We need to perform the PIT on the polynomial f(x)− g(x− a) because M2 is
closed under shifts. We proceed in this way because this approach allows us to assume from
the beginning on that Sf,g 6= ∅. For this section, we can assume that Sf,g 6= ∅, that c ∈ Sf,g
and that df = dg = d.

By our Taylor Expansion Lemma (Lemma 3.5), to find a good shift c ∈ Sf,g we need to
solve the system of polynomial equations (in the variables a) given by the set of equations (8) in
the Lemma. We cannot hope to solve these equations directly, since that would involve solving
non-linear systems of equations. However, Lemma 4.7 tells us that in order to find a good

shift, we only need to obtain black-box access to the polynomials f
(1)
k (c,x), where c ∈ Sf,g. If

we succeed in obtaining black-box access to these polynomials, finding a good shift will only
involve solving a linear system of polynomial equations in the black-box setting, which we can
do by any of the lemmas: Lemma 2.3, Lemma 2.4 or Lemma 2.5, depending on which case we
are in. Hence, our approach to solve the original set of equations is to obtain black-box access

to the polynomials f
(1)
k (c,x).

Note that we cannot obtain direct access to f
(1)
k (c,x) (through interpolation) from neither

f nor g, for a general k. However, from f and g we have black-box access to f
(1)
d (c,x), since

f
(1)
d (c,x) = Hd−1(g(x))−Hd−1(f(x)). It turns out that this initial information is enough for

the algorithm to find a good shift. To find the shift we will iteratively find candidate solutions

ar, such that f
(1)
k (c,x) ≡ f

(1)
k (ar,x) for all d − r ≤ k ≤ d. Then, by the domino effect from

Observation 3.4 we have that f
(t)
k (c,x) ≡ f (t)k (ar,x), for all t ≥ 1. Hence, once we find ak the

domino effect and Lemma 3.5 imply that we can find ar+1 simply by solving linear equations.

In the end, if the algorithm does not fail, we will obtain ad such that f
(1)
k (c,x) ≡ f

(1)
k (ad,x)

for all 0 ≤ k ≤ d, and thus by Lemma 4.7 we must have ad ∈ Sf,g. This domino effect lies at
the crux of the proof of correctness of our algorithm.

21

5.2 Formal Description and Proof of Correctness

For simplicity, we will describe the algorithm receiving the input already preprocessed.

Algorithm 1: Main Algorithm

Input: black-boxes (or white-boxes) for polynomials f ∈M1, g ∈M2, and degree of f ,
which we denote by d.

Output: a non-zero shift in Sf,g, if one exists, or FAIL, if Sf,g = ∅.
By interpolation, obtain black-box access to the homogeneous components
H0(f), H1(f), . . . ,Hd(f) and H0(g), H1(g), . . . ,Hd(g).
Set a0 ← 0.
for k = 1, . . . , d do

Solve, via any appropriate lemma from subsections 2.2 or 2.3a, the linear system
given by the following equations, where in these equations the variables are the
entries of b and we have one equation for each i such that d− k ≤ i ≤ d.

H i(g(x)) = H i(f(x)) + f
(1)
i+1(b,x) +

d∑
j=i+2

1

(j − i)!
· f (j−i)j (ak−1,x) (9)

If system of equations (9) has no solution, return FAIL
Else, ak ← b.

end
Perform PIT on f(x)− g(x− ad).
If f(x)− g(x− ad) ≡ 0, return ad

Else, return FAIL

aIf we are in the white-box setting, we will use Lemma 2.3, if we are in the black-box setting and we have a
hitting set, then we will use Lemma 2.4, or if we are in the black-box setting and are allowed randomness we
will use Lemma 2.5.

Preprocessing Stage: In case Sf,g = ∅, our algorithm might do meaningless computations,
but because we will verify our candidate solution, our algorithm is sure to return that no shift
exists in the end. Notice that if we have df 6= dg, even the interpolation step that we perform
in the beginning will err when computing homogeneous components of g (because we will not
interpolate with the proper degree). However, this is ok because we have the PIT step in
the end, which will prevent us from returning any wrong answers that may arise from the
meaningless computations.

Hence, from now on we can, and will, assume that Sf,g 6= ∅. In particular, this implies
that we can assume that there exists c ∈ Sf,g and that df = dg = d. Thus, our algorithm will
assume that the input is given by two polynomials f, g ∈ F[x] of degree upper bounded by the
degree of f , which we will denote by d. Notice that we can also assume that d is the exact
degree of f , since from the upper bound on the degree we can interpolate f and perform PIT
on each homogeneous components of f (recallM1 is closed under homogeneous components).
Then, the degree of f will be the value of the highest non vanishing homogeneous component.

22

Thus, we will assume that d is the exact degree of f , as opposed to an upper bound.

Analysis of the Algorithm in the Black-Box case, with a Hitting Set:

Proof. Notice that if Sf,g = ∅, then even if the algorithm finishes the for loop, it will return
FAIL, since PIT on f(x) − g(x − ad) will return that the polynomial is non-zero. Therefore,
we never err in this case. Hence, for the rest of the analysis, let us assume that Sf,g 6= ∅.
This implies that there exists a shift c ∈ Sf,g. Since g(x) ≡ f(x + c) it holds that H i(g(x)) ≡
H i(f(x + c)). From Lemma 3.5, we have

H i(f(x + c)) ≡
d∑

j=i

1

(j − i)!
· f (j−i)j (c,x) ≡ H i(f(x)) + f

(1)
i+1(c,x) +

d∑
j=i+2

1

(j − i)!
· f (j−i)j (c,x).

Hence,

H i(g(x))−H i(f(x))−
d∑

j=i+2

1

(j − i)!
· f (j−i)j (c,x) ≡ f (1)i+1(c,x) (10)

for all 0 ≤ i ≤ d.

Recall, that by Lemma 4.7, to find a shift in Sf,g it is enough to find a shift b such that

f
(1)
i (b,x) ≡ f (1)i (c,x) for all 0 ≤ i ≤ d.

Observation 3.4 implies that if f
(1)
i (b,x) ≡ f (1)i (c,x) for some 0 ≤ i ≤ d, then f

(r)
i (b,x) ≡

f
(r)
i (c,x) for all r ≥ 1, for this particular i. Therefore, if we show that our algorithm maintains

the invariant
f
(1)
i (ak,x) ≡ f (1)i (c,x), for all i s.t. d− k + 1 ≤ i ≤ d (11)

at every iteration of the loop, then at the end of the loop we will have f
(1)
i (ad,x) ≡ f (1)i (c,x)

for all 0 ≤ i ≤ d, which by Lemma 4.7 implies that ad ∈ Sf,g. Thus, it is enough to show that
our algorithm preserves invariant (11).

For k = 1, we need to solve equationsHd−1(g(x)) ≡ Hd−1(f(x))+f
(1)
d (b,x) andHd(g(x)) ≡

Hd(f(x)). Notice that equation Hd(g(x)) ≡ Hd(f(x)) is always true, due to the assump-
tions we are making about our input after preprocessing. Therefore, we will not mention
this equation anymore and the only relevant polynomial equation to solve in this case is

Hd−1(g(x)) ≡ Hd−1(f(x)) + f
(1)
d (b,x).

By identity (10) we have that Hd−1(g(x))−Hd−1(f(x)) ≡ f (1)d (c,x), which is a directional
derivative of f and therefore is an element of M1. Notice that, for each a ∈ Fn,

n∑
j=1

aj ·
∂Hd(f(x))

∂xj
≡ f (1)d (a,x) ∈M1

which implies that we have PIT for linear combinations of the partial derivatives of Hd(f(x)).

Thus, by solving the polynomial equation Hd−1(g(x))−Hd−1(f(x)) ≡ f
(1)
d (b,x) on the vari-

ables b, using Lemma 2.4, we get a solution a1 such that Hd−1(g(x)) ≡ Hd−1(f(x))+f
(1)
d (a1,x)

23

(since we know Sf,g 6= ∅). Notice that we can use Lemma 2.4 because we have black-box access
to all polynomials in the equation. Hence, we have a solution a1 such that

f
(1)
d (a1,x) ≡ Hd−1(g(x))−Hd−1(f(x)) ≡ f (1)d (c,x)

and hence, our invariant (11) holds true in the first case.

Now, assume that our invariant is true for ak−1, k ≥ 2. At the kth iteration, equations (9)
are equivalent to

H i(g(x)) = H i(f(x)) + f
(1)
i+1(b,x) +

d∑
j=i+2

1

(j − i)!
· f (j−i)j (ak−1,x)

≡ H i(f(x)) + f
(1)
i+1(b,x) +

d∑
j=i+2

1

(j − i)!
· f (j−i)j (c,x) ∀d− k ≤ i ≤ d.

Where in the last equality we used the fact that our invariant holds for ak−1 together with
Observation 3.4. These equations, together with equation (10) imply:

f
(1)
i+1(b,x) ≡ H i(g(x))−H i(f(x))−

d∑
j=i+2

1

(j − i)!
· f (j−i)j (ak−1,x)

≡ f (1)i+1(c,x), for all d− k ≤ i ≤ d

In other words, for all d− k ≤ i ≤ d
n∑

`=1

b` ·
∂fi+1

∂x`
(x) = f

(1)
i+1(b,x) ≡ f (1)i+1(c,x)

Notice that both sides of each of the equations above belong to the circuit class M1, as
both sides are first-order directional derivatives of H i+1(f(x)). Since we have black-box access
to both sides of the equations above, Lemma 2.4 and PIT forM1 imply that we can solve the
system of polynomial equations (9).

Thus, since the invariant is maintained until the end, we must have that ad is such that

f
(1)
i (ad,x) ≡ f (1)i (c,x), for all 0 ≤ i ≤ d, for some c ∈ Sf,g. By Lemma 4.7 we must have that

ad ∈ Sf,g.

Runtime Analysis: Notice that we iterate through the loop d times and at each iteration
we solve a linear system of at most d · |H1| equations in n variables, where H1 ⊂ F is a
hitting set for the circuit class M1. After exiting the loop, we only need to perform PIT on
f(x)− g(x−ad), which we assumed it takes polynomial time, for we have PIT for polynomials
of the form f − g, where f ∈M1 and g ∈M2. Hence, the total running time is polynomial in
the size of the input.

24

Analysis in the Randomized Case: The randomized case is analogous to the determin-
istic black-box case. Whenever we need to perform PIT in our main algorithm, we will use
Lemma 1.3. Whenever we need to solve a system of polynomial equations given black box ac-
cess to the polynomials in question, we will use Lemma 2.5 (when we are allowed randomness),
instead of Lemma 2.4 (which handles the case when we have a hitting set).

We need to solve d systems of polynomial equations and we perform the PIT algorithm
as in Lemma 1.3 O(d) times. Hence, by setting the error parameter each time as ε/d2 and
by a union bound, our algorithm will err with probability at most ε. Since the amount of
randomness that we need to solve a polynomial system or to perform PIT is polynomial in
the logarithm of the error parameter, this gives us the desired running time as claimed in
Theorem 1.6.

Analysis in the White-Box Case: Notice that by Theorem 3.7 and Corollary 3.8, given
access to circuits computing f, g implies that we also have access to circuits computing the

polynomials f
(r)
` (a,x) and H`(g). Thus, we also have white-box access to linear combinations

of m = max(n, d) of these polynomials.

After the step above, the white-box case is analogous to the deterministic case. Whenever
we need to perform PIT in our main algorithm, we will use the appropriate PIT algorithm
for the white box class that we are considering. For instance, whenever the algorithm above
uses PIT for the classM1, we will use the white-box algorithm, and the same happens for the
other classes. In addition, whenever we need to solve a linear system of polynomial equations,
we will use the method in section 2.2 to solve our system. Thus, the same argument as the one
given above for the deterministic black-box case will go through, even for the preprocessing
stage, and therefore we are done.

6 Conclusion and Open Questions

In this paper, we reduced the problem of shift-equivalence to the problem of solving PIT, and
as a consequence of this reduction we obtained a polynomial-time randomized algorithm for
the shift-equivalence problem, over characteristic zero or when the characteristic of the base
field is larger than the degrees of the polynomials.

We gave some examples for classes of circuits where this can be performed deterministically
in quasi-polynomial time. One example where we “almost” have such a result is when testing
whether a given sparse polynomial is equivalent to a shift of another sparse polynomial. Note
that while the class of sparse polynomials is closed under partial derivatives and homogeneous
components, it is not closed under shifts and so we cannot use our approach. Nevertheless, it
is quite likely that this simple case can be solved using other techniques.

25

Acknowledgment

The authors would like to thank an anonymous reader for the remark on the usage of Carlini’s
lemma and of Kayal’s implicit approach to give the alternative solution to the SET problem
in the randomized case.

The third author would like to thank Michael Forbes, Ankit Gupta, Elad Haramaty, Swastik
Kopparty, Ramprasad Saptharishi and Shubhangi Saraf for helpful discussions on related prob-
lems.

References

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings
of the 25th FSTTCS, volume 3821 of LNCS, pages 92–105, 2005.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics,
160(2):781–793, 2004.

[ASS13] M. Agrawal, C. Saha, and N. Saxena. Quasi-polynomial hitting-set for set-depth-d
formulas. In STOC, pages 321–330, 2013.

[ASSS12] M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: hitting-
sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k
circuits. In STOC, pages 599–614, 2012.

[BS83] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Com-
puter Science, 22(3):317 – 330, 1983.

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic
geometry and geometric modeling, pages 237–247. Springer Berlin Heidelberg, 2006.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

[DS06] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2006.

[DSY09] Z. Dvir, A. Shpilka, and A. Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. on Computing, 39(4):1279–1293, 2009.

[FS12] M. A. Forbes and A. Shpilka. On identity testing of tensors, low-rank recovery and
compressed sensing. In Proceedings of the 44th annual STOC, pages 163–172, 2012.

[FS13] M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In Proceedings
of the 54th Annual FOCS, 2013.

26

[FSS13] M. A. Forbes, R. Saptharishi, and A. Shpilka. Pseudorandomness for multilinear
read-once algebraic branching programs, in any order. Electronic Colloquium on
Computational Complexity (ECCC), 20:132, 2013.

[GK93] D. Grigoriev and M. Karpinski. A zero-test and an interpolation algorithm for the
shifted sparse polynomials. In Grard Cohen, Teo Mora, and Oscar Moreno, editors,
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 673 of
Lecture Notes in Computer Science, pages 162–169. Springer Berlin Heidelberg,
1993.

[GL95] D. Grigoriev and Y. N. Lakshman. Algorithms for computing sparse shifts for
multivariate polynomials. In Proceedings of the 1995 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’95, pages 96–103, New York, NY,
USA, 1995. ACM.

[Gri97] D. Grigoriev. Testing shift-equivalence of polynomials by deterministic, probabilistic
and quantum machines. Theoretical Computer Science, 180(12):217 – 228, 1997.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (ex-
tended abstract). In Proceedings of the 12th annual STOC, pages 262–272, 1980.

[Kay12] N. Kayal. Affine projections of polynomials: extended abstract. In Proceedings of
the 44th symposium on Theory of Computing, STOC ’12, pages 643–662, New York,
NY, USA, 2012. ACM.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the 33rd Annual STOC, pages 216–223, 2001.

[KS07] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Compu-
tational Complexity, 16(2):115–138, 2007.

[KS09a] Z. S. Karnin and A. Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Proceedings of the 24th Annual CCC, pages
274–285, 2009.

[KS09b] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In
Proceedings of the 50th Annual FOCS, pages 198–207, 2009.

[KS11] Z. S. Karnin and A. Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333–364,
2011.

[KUW86] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random
nc. Combinatorica, 6:35–48, 1 1986.

27

[Lov79] L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach,
editor, Fundamentals of Computing Theory. Akademia-Verlag, 1979.

[LS94] Y. N. Lakshman and B. D. Saunders. On computing sparse shifts for univariate poly-
nomials. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC ’94, pages 108–113, New York, NY, USA, 1994. ACM.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non-
commutative models. Computational Complexity, 14(1):1–19, 2005.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

[Ser03] Á. Seress. Permutation group algorithms, volume 152. Cambridge University Press,
2003.

[Shp09] A. Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication
gates. SIAM J. on Computing, 38(6):2130–2161, 2009.

[SS10] N. Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to Rank Bounds:
Improved Black-Box Identity Test for Deph-3 Circuits. In Proceedings of the 51st
Annual FOCS, pages 21–30, 2010.

[SS11] N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities.
SIAM J. Comput., 40(1):200–224, 2011.

[SSS13] C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse
factorization and duality. Computational Complexity, pages 1–31, 2013.

[Str73] V. Strassen. Vermeidung von divisionen. J. of Reine Angew. Math., 264:182–202,
1973.

[SY10] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3–
4):207–388, 2010.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages
216–226, 1979.

A Alternative Randomized Algorithm for SET

In this section we give the alternative algorithm using Carlini’s lemma and Kayal’s approach
in subsection A.1. In addition, we state Carlini’s theorem (as in [Kay12, Lemma 17]) for
completeness.

28

Lemma A.1. Given a polynomial f(x) ∈ F[x] with m essential variables, we can compute in
randomized polynomial time an invertible linear transformation A : F(n×n)∗ such that f(Ax)
depends on the first m variables only.

A.1 Formal Description

For simplicity, we will describe the algorithm receiving the input already preprocessed, where
preprocessing is done in the same way as in algorithm 1. Since the proof of correctness is
analogous to the one in section 5, we will not write the proof here.

Algorithm 2: Alternative Algorithm

Input: black-boxes (or white-boxes) for polynomials f ∈M1, g ∈M2, and degree of f ,
which we denote by d.

Output: a non-zero shift in Sf,g, if one exists, or FAIL, if Sf,g = ∅.
By interpolation, obtain black-box access to the homogeneous components
Hd−1(f), Hd(f) and Hd−1(g), Hd(g).
Find, via lemma A.1, an invertible n× n matrix A such that Hd(f(Ax)) depends only
on its essential variables (w.l.o.g., suppose that they are x1, . . . , xm). Then, using
Lemma 2.5, solve the following system of equations, where in these equations the
variables are the entries of b:

Hd(g(Ax)) = Hd(f(Ax))

Hd−1(g(Ax)) = Hd−1(f(Ax)) +
n∑

k=1

bk ·
∂Hd(f(Ax))

∂xk

bk = 0, ∀k > m.

If the system of equations above has no solution, return FAIL
Else, proceed as follows:
f1(x)← f(Ax + b)−Hd(f(Ax + b)),
g1(x)← g(Ax)−Hd(f(Ax + b)),
Recurse on this algorithm with input polynomials f1(x) and g1(x), and degree d− 1.
If the recursion returns FAIL, then return FAIL.
Else, if recursion returns a shift c such that (c1, . . . , cm) 6= (0, . . . , 0), return FAIL.
Else, take the shift c and set bk = ck for all k > m.
Perform randomized PIT on f(Ax + b)− g(Ax).
If f(Ax + b)− g(Ax) ≡ 0, return A−1b
Else, return FAIL

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

