
On r-Simple k-Path

Hasan Abasi Nader H. Bshouty Ariel Gabizon∗ Elad Haramaty†

Department of Computer Science
Technion, Haifa

November 30, 2013

Abstract

An r-simple k-path is a path in the graph of length k that passes through each vertex at most
r times. The r-SIMPLE k-PATH problem, given a graph G as input, asks whether there exists an
r-simple k-path in G. We first show that this problem is NP-Complete. We then show that there is
a graph G that contains an r-simple k-path and no simple path of length greater than 4 log k/ log r.
So this, in a sense, motivates this problem especially when one’s goal is to find a short path that
visits many vertices in the graph while bounding the number of visits at each vertex.

We then give a randomized algorithm that runs in time

poly(n) · 2O(k·log r/r)

that solves the r-SIMPLE k-PATH on a graph with n vertices with one-sided error. We also show
that a randomized algorithm with running time poly(n) · 2(c/2)k/r with c < 1 gives a randomized
algorithm with running time poly(n) · 2cn for the Hamiltonian path problem in a directed graph - an
outstanding open problem. So in a sense our algorithm is optimal up to an O(log r) factor.

1 Introduction

Let G be a directed graph on n vertices. A path ρ is called simple if all the vertices in the path are
distinct. The SIMPLE k-PATH problem, given G as input, asks whether there exists a simple path
in G of length k. This is a generalization of the well known HAMILTONIAN-PATH problem that
asks whether there is a simple path passing through all vertices, i.e., a simple path of length n in
G. As HAMILTONIAN-PATH is NP-complete, we do not expect to find polynomial time algorithms

∗The research leading to these results has received funding from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement number 257575.
†This research was partially supported by the Israel Science Foundation (grant number 339/10)

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 4 (2014)

for SIMPLE k-PATH for general k. Moreover, we do not even expect to find good approximation
algorithms for the corresponding optimization problem: the longest path problem, where we ask what
is the length of the longest simple path in G. This is because Björklund et al. [6] showed that the
longest path problem cannot be approximated in polynomial time to within a multiplicative factor of
n1−ε, for any constant ε > 0, unless P=NP. This motivated finding algorithms for SIMPLE k-PATH
with running time whose dependence on k is as small as possible. The first result in this venue by
Monien [16] achieved a running time of k! · poly(n). Since then, there has been extensive research on
constructing algorithms for SIMPLE k-PATH running in time f(k) ·poly(n), for a function f(k) as small
as possible [5, 2, 15, 10, 13]. The current state of the art is 2k · poly(n) by Williams [18] for directed
graphs and O(1.657k) · poly(n) by Björklund [7] for undirected graphs.

1.1 Our results

In this paper we look at a further generalization of SIMPLE k-PATH which we call r-SIMPLE k-PATH.
In this problem instead of insisting on ρ being a simple path, we allow ρ to visit any vertex a fixed
number of times. We now formally define the problem r-SIMPLE k-PATH.

Definition 1. Fix integers r ≤ k. Let G be a directed graph.

• We say a path ρ in G is r-simple, if each vertex of G appears in ρ at most r times. Obviously, ρ
is a simple path if and only if it is a 1-simple path.

• The r-SIMPLE k-PATH problem, given G as input, asks whether there exists an r-simple path in
G of length k.

At first, one may wonder whether for some fixed r > 1, r-SIMPLE k-PATH always has a polynomial
time algorithm. We show this is unlikely by showing that for any r, for some k r-SIMPLE k-PATH is
NP-complete. See Theorem 4 in Section 3 for a formal statement and proof of this. Thus, as in the case
of SIMPLE k-PATH, one may ask what is the best dependency of the running time on r and k that can
be obtained in an algorithm for r-SIMPLE k-PATH.

Our main result is

Theorem 2. Fix any integers r, k with 2 ≤ r ≤ k. There is a randomized algorithm running in time

poly(n) ·O
(
r

2k
r
+O(1)

)
= poly(n) · 2O(k·log r/r)

solving r-SIMPLE k-PATH on a graph with n vertices with one-sided error.

One may ask how far from optimal is the dependency on k and r in Theorem 2. Theorem 4 implies that
a running time of poly(n) ·2o(k/r) would give an algorithm with running time 2o(n) for HAMILTONIAN-
PATH. Moreover, even a running time of poly(n) · 2c·k/r, for a small enough constant c < 1/2, would

2

imply a better algorithm for HAMILTONIAN-PATH than those of [18, 7] which are the best currently
known. So, in a sense our algorithm is optimal up to an O(log r) factor. We find closing this O(log r)
gap, e.g. by a better reduction to HAMILTONIAN-PATH, or a better algorithm for r-SIMPLE k-PATH,
to be an interesting open problem.

1.2 Finding a path with many distinct vertices

We give more motivation for the r-SIMPLE k-PATH problem. Suppose we are in a situation where we
wish to find a relatively short path passing through many distinct vertices. Note that an r-simple path
of length k must path through at least k/r distinct vertices. Thus, in case, for example, a 2-simple path
of length k exists, our algorithm for 2-SIMPLE k-PATH can be used to find a path of length k with at
least k/2 distinct vertices in time poly(n) · 2k/2. One may ask how this would compare to the number
of distinct vertices returned by the algorithms for SIMPLE k-PATH. We show there can be a large gap.
Specifically, for any given k , we show there is a graph G where all simple paths are of length less than
4 · log k, but G contains a 2-simple path of length k. See Theorem 7 for a precise statement.

2 Overview of the proof of Theorem 2

We give an informal sketch of Theorem 2. We are given a directed graph G on n vertices, and integers
r ≤ k. We wish to decide if G contains an r-simple path of length k. There are two main stages in our
algorithm. The first is to reduce the task to another one concerning multivariate polynomials. This
part, described below, is very similar to [1].

Reduction to a question about polynomials We want to associate our graph G with a certain
multivariate polynomial pG.

We associate with the i’th vertex a variable xi. The monomials of the polynomial will correspond to
the paths of length k in G. So we have

pG(x) =
∑

i1→i2→···→ik∈G
xi1 · · ·xik ,

where i1 → i2 → · · · → ik ∈ G means that i1, i2, · · · , ik is a directed path in G. An important issue
is over what field F is pG defined? A central part of the algorithm is indeed choosing the appropriate
field to work over. Another issue is how efficiently pG can be evaluated? (Note that it potentially
contains nk different monomials.) Williams shows in [18] that using the adjacency matrix of G it can
be computed in poly(n)-time. See Section 5. For now, think of pG as defined over Q, i.e., having integer
coefficients. It is easy to see that G contains an r-simple path of length k if and only if pG contains a
monomial such that the individual degrees of all variables are at most r. Let us call such a monomial

3

an r-monomial. Thus our task is reduced to checking whether a homogenous polynomial of degree k
contains an r-monomial.

Checking whether pG contains an r-monomial Let us assume in this overview for simplicity that
p = r + 1 is prime. Let us view pG as a polynomial over Fp. One problem with doing this is that if we
have p directed paths of length k passing through the same vertices in different order, this translates
in pG to p copies of the same monomial summing up to 0. To avoid this we need to look at a variant
of pG that contains auxiliary variables that prevent this cancelation. For details on this issue see [1]
and Section 5. For this overview let us assume this does not happen. Recall that we have the equality
ap = a for any a ∈ Fp. Let us look at a monomial that is not an r-monomial, say xr+1

1 ·x2 = xp1 ·x2. The
equality mentioned implies this monomial is equivalent as a function from Fnp to Fp to the monomial
x1 · x2. By the same argument, any monomial that is not an r-monomial will be ‘equivalent’ to one
of smaller degree. More generally, pG that is homogenous of degree k over Q will be equivalent to a
polynomial of degree smaller than k as a function from Fnp to Fp if and only if it does not contain an
r-monomial. Thus, we have reduced our task to the problem of low-degree testing. In this context, this
problem is as follows: Given black-box access to a function f : Fnp → Fp of degree at most k, determine
whether it has degree exactly k or less than k, using few queries to the function. Here, for a function
f : Fnp → Fp, by its degree we mean the total degree of the lowest-degree polynomial p ∈ Fp[x1, . . . , xn]
representing it. Haramati, Shpilka and Sudan [12] gave an optimal solution (in terms of the number of
queries) to this problem for prime fields. A little work is required to determine the exact running time
of the test of [12] (in addition to the bound on the number of queries to f). See Section 6 for details.
For details on dealing with the case that r + 1 is not prime, see Section 7.

3 Definitions and Preliminary Results

In this section we give some definitions and preliminary results that will be used throughout this paper.

Let G(V,E) be a directed graph where V is the set of vertices and E ⊆ V × V the set of edges. We
denote by n = |V | the number of vertices in the graph and by m = |E| the number of edges in the
graph. A k-path or a path of length k is a sequence ρ = v1, . . . , vk such that (vi, vi+1) is an edge in G
for all i = 1, . . . , k − 1. A path is a k-path for some integer k > 0. A path ρ is called simple if all the
vertices in the path are distinct. We say that a path ρ in G is r-simple, if each vertex of G appears in
ρ at most r times. Obviously, a simple path is a 1-simple path.

Given as input a directed graph G on n vertices, the r-SIMPLE k-PATH problem asks for a given G
whether it contains an r-simple path of length k. When r = 1 then the problem is called SIMPLE k-
PATH. The r-SIMPLE PATH problem asks for a given G and integer k whether G contains an r-simple
k-path of length k. The problem SIMPLE PATH is 1-SIMPLE PATH.

In this paper we will study the above problems.

4

The following result gives a reduction from r-SIMPLE k-PATH to SIMPLE k-PATH.

Lemma 3. If r-SIMPLE k-PATH can be solved in time T (r, k, n,m) then sr-SIMPLE k-PATH can be
solved in time T (r, k, sn, s2m). In particular, If SIMPLE k-PATH can be solved in time T (k, n,m) then
r-SIMPLE k-PATH can be solved in time T (k, rn, r2m).

Proof. Let G be a directed graph. Define the graph G′ = G � Is where each vertex v in G is replaced
with an independent set Is of size s in G′ with the vertices v(1), . . . , v(s). Each edge (u, v) in G is
replaced by the edges (u(i), v(j)), 1 ≤ i, j ≤ s.
It is easy to see that there is a rs-simple k-path in G if and only if there is a r-simple k-path in G′.

We now show that r-SIMPLE PATH is NP-complete.

Theorem 4. For any r the decision problem r-SIMPLE PATH is NP-complete.

Proof. We will reduce deciding HAMILTONIAN-PATH on a graph of n vertices, to deciding r-SIMPLE
(2rn− n+ 2)-PATH on a graph of 2 · n vertices.
Given an input graph G = (V,E) to HAMILTONIAN-PATH, we define a new graph G′ = (V ′, E′) as
follows. We let V ′ = V

⋃
V̄ , where V̄ = {v̄1, v̄2, ..., v̄n} and E′ = E

⋃
Ē where

Ē = {(v̄i, vi), (vi, v̄i)|i ∈ [n]}.

For j ∈ [n], it will be convenient to denote by ρj , the path of length 2r− 1 that begins at vj , goes back
and forth from vj to v̄j and ends in vj , i.e., ρj , (vj , v̄j , . . . , vj , v̄j , vj).

We make 2 observations.

1. If a vertex v̄j ∈ V̄ appears r times in an r-simple path ρ then it must be the start or end vertex
of ρ: To see this, note that by construction of G′, if v̄j is not the start or end vertex of ρ, visiting
it r times requires visiting vj r + 1 times.

2. Suppose ρ is an r-simple path that begins and ends in a vertex of V . If ρ visits a vertex v̄j ∈ V̄
r− 1 times, then it must contain ρj as a subpath: To see this, note that as ρ does not start in v̄j ,
any visit to v̄j must have a visit to vj before and after. The only way this would sum up to at
most r visits in vj is if these visits where continuous. In other words, only if ρ contains ρj .

We want to show that G contains a Hamiltonian path if and only if G′ contains an r-simple path of
length 2rn − n + 2. Assume first that G contains a Hamiltonian path vi1 · vi2 · · · vin . Define the path
ρ = v̄i1 · ρi1 · ρi2 · · · ρin · v̄in . It is of length

n · (2r − 1) + 2 = 2rn− n+ 2,

5

and it is r-simple.
Now assume that we have an r-simple path ρ in G′ of length 2nr − n + 2. We first claim that ρ must
start and end with a vertex from V̄ : Otherwise, using the first observation above, ρ contains at most
n+ 1 vertices appearing r times, and thus has length at most

(n+ 1) · r + (n− 1) · (r − 1) = 2rn− n+ 1.

Let ρ′ be the path ρ with the first and last vertex deleted. So ρ′ has length 2rn−n and begins and ends
in a vertex of V . Note that by the first observation ρ′ visits all vertices of V̄ at most r−1 times. We now
claim that for every j ∈ [n], ρ′ must contain ρj as a subpath. Otherwise, by the second observation, ρ′

visits some vertex of V̄ less than r−1 times. In this case it has length less than n·r+n·(r−1) = 2nr−n.
A contradiction. Thus ρ′ contains every ρj as a subpath. It cannot contain anything else ‘between’ the
ρj ’s, as then it would visit some vertex of V more than r times. So

ρ′ = ρi1 · · · ρin ,

for some ordering i1, . . . , in of [n]. It follows that vi1 · · · vin is a Hamiltonian path in G.

The above result implies

Corollary 5. If r-SIMPLE k-PATH can be solved in T (r, k, n,m) time then HAMILTONIAN-PATH
can be solved in T (r, 2rn− n+ 2, 2n,m+ 2n).

In particular, if there is an algorithm for r-SIMPLE k-PATH that runs in time poly(n) · 2(c/2)(k/r) then
there is an algorithm for HAMILTONIAN-PATH that runs in time poly(n) · 2cn.

4 Gap

In this section we show that the gap between the longest simple path and the longest r-simple path can
be exponentially large even for r = 2.

We first give the following lower bound for the gap

Theorem 6. If G contains an r-simple path of length k then G contains a simple path of length d log klog r e.

Proof. Let t = b log k−1log r c. Let ρ be an r-simple path whose first vertex is v0. We will use ρ to construct

a simple path ρ̄ of length b logklogr c. We denote ρ0 = ρ. As v0 appears at most r times in ρ0, there must
be a subpath ρ1 of ρ0 of length at least (k − r)/r where v0 does not appear. Let v1 be the first vertex
of ρ1. Similarly, for 1 < i ≤ t, we define the subpath ρi of ρi−1 to be a subpath of length at least

(k − r − . . .− ri)/ri ≥ (k − ri+1)/ri,

6

where v1, . . . , vi−1 do not appear, and define vi to be the first vertex of ρi. Note that we can always
assume there is an edge from vi−1 to vi as we can start ρi just after an appearance of vi−1 in ρi−1. Note
that for 1 ≤ i ≤ t, such a vi as defined indeed exists as (k − ri+1)/ri ≥ 1 when

k ≥ 2 · ri+1 ↔ i+ 1 ≤ (log k − 1)/ log r

Thus, v0 · · · vt−1 is a simple path of the desired length.

Before we give the upper bound we give the following definition. A full r-tree is a tree where each vertex
has r children and all the leaves of the tree are in the same level. The root is on level 1.

Theorem 7. There is a graph G that contains an r-simple path of length k and no simple path of length
greater than 4 log k/ log r.

Proof. We first give the proof for r ≥ 3. Consider a full (r−1)-tree of depth dlog n/ log(r−1)e. Remove
vertices from the lowest level (leaves) so the number of vertices in the graph is n. Obviously there is
an r-simple path of length k ≥ n. Any simple tour in this tree must change level at each step and if
it changes from level ` to level ` + 1 it cannot go back in the following step to level `. So the longest
possible simple path is 2dlog n/ log(r − 1)e − 2 ≤ 3.17(log k/ log r).

For r = 2 we take a full binary tree (2-tree) and add an edge between every two children of the same
vertex. The 2-simple path starts from the root v, recursively makes a tour in the left tree of v then
moves to the root of the right tree of v (via the edge that we added) then recursively makes a tour in
the right tree of v and then visit v again. Obviously this is a 2-simple path of length k > n. A simple
tour in this graph can stay in the same level only twice, can move to a higher level or can move to a
lower level. Again here if it moves from level ` to `+ 1 it cannot go back in the following step to level
`. Therefore the longest simple path is of length at most 4 log n ≤ 4 log k.

5 From r-Simple k-Path to Multivariate Polynomial

The purpose of this section is to reduce the question of whether a graph G contains an r-simple k-path,
to that of whether a certain multivariate polynomial contains an r-monomial, as defined below.

Definition 8 (r-monomial). Fix a field F. Fix a monomial M = M(z) = zi11 · · · z
it
t .

• We say M is an r-monomial if no variable appears with degree larger than r in M . That is, for
all 1 ≤ j ≤ t, ij ≤ r.

• Let f(z) be a multivariate polynomial over F. We say f contains an r-monomial, if there is an
r-monomial M(z) appearing with a nonzero coefficient c ∈ F in f .

7

We now describe this reduction.

Let G(V,E) be a directed graph where V = {1, 2, . . . , n}. Let A be the adjacency matrix and B be
the n× n matrix such that Bi,j = xi · Ai,j where xi, i = 1, . . . , n are indeterminates. Let 1 be the row
n-vector of 1s and x = (x1, . . . , xn)T . Consider the polynomial pG(x) = 1 ·Bk−1 · x. It is easy to see

pG(x) =
∑

i1→i2→···→ik∈G
xi1 · · ·xik

where i1 → i2 → · · · → ik ∈ G means that i1, i2, · · · , ik is a directed path in G.

Obviously, for field of characteristic zero there is an r-simple k-path if and only if pG(x) contains an
r-monomial. For other fields the later statement is not true. For example, in undirected graph, k = 2,
and r = 1 if (1, 2) ∈ E and the field is of characteristic 2 then the monomial x1x2 occurs twice and will
vanish in pG(x). We solve the problem as follows.

Let B(m) be an n × n matrices, m = 2, . . . , k, such that B
(m)
i,j = xi · ym,i · Ai,j where xi and ym,i are

indeterminates. Let, y = (y1, . . . ,yk) and ym = (ym,1, . . . , ym,n). Let x � y = (x1y1,1, . . . , xny1,n).
Consider the polynomial PG(x,y) = 1B(k)B(k−1) · · ·B(2)(x � y). It is easy to see that

PG(x,y) =
∑

i1→i2→···→ik∈G
xi1 · · ·xiky1,i1 · · · yk,ik

Obviously, no two paths have the same monomial in PG. Note that as PG contains only {0, 1} coefficients,
we can define it over any field F. It will actually be convenient to view it as a polynomial PG(x) whose
coefficients are in the field of rational functions F(y). Therefore, for any field, there is an r-simple
k-path if and only if PG(x,y) contains an r-monomial in x. We record this fact in the lemma below.

Lemma 9. Fix any field F. The graph G contains an r-simple k-path if and only if the polynomial PG,
defined over F(y), contains an r-monomial M(x).

6 Low Degree Tester

In this section we present a tester that determines whether a function f : Fnp → Fp of degree at most d
has, in fact, degree less than d. The important point is that the tester will be able to do this using few
black-box queries to f . The results of this section essentially follow from the work of Haramaty, Sudan
and Shpilka [12].

First, let us say precisely what we mean by the degree of a function f : Fnp → Fp. We define this to be
the degree of the lowest degree polynomial f ′ ∈ Fp[x] that agrees with f as a function from Fnp to Fp. It
is known from the theory of finite fields that there is a unique such f ′, and that the individual degrees
of all variables in f ′ are smaller than p. Moreover, given any polynomial g ∈ Fp[x] agreeing with f as

8

a function from Fnp to Fp, f ′ can be derived from g by replacing, for any 1 ≤ i ≤ n, occurrences of xti

with xti mod xpi − xi (i.e., x
((t−1) mod (p−1))+1
i when t 6= 0). We do not prove these basic facts formally

here. They essentially follow from the fact that ap = a for a ∈ Fp.

This motivates the following definition.

Definition 10. Fix positive integers n, d and a prime p. Let f ∈ Fp[x] = Fp[x1, . . . , xn]. We define
degp(f) to be the degree of the polynomial f when replacing, for 1 ≤ i ≤ n, xti by (xti mod xpi − xi).
More formally, degp(f) , deg(f ′) where

f ′(x1, . . . , xn) , f(x1, . . . , xn) mod xp1 − x1, . . . , mod xpn − xn.

Moreover, for a function g : V → Fp where V ⊆ Fnp is a subspace of dimension k, we define degp(g) =
minf degp(f) where f ∈ Fp[x1, ..., xn] and f |V = g. Here g can be regarded as a function in Fp[x1, . . . , xk].

We note that this notion of degree is affine invariant, i.e does change after affine transformations. In
addition it has the property that for any affine subspace V , degp(f |V) ≤ degp(f).

We now present the main result of this section.

Lemma 11. There is a randomized algorithm A running in time poly(n) · p
⌈

d
p−1

⌉
+1

that determines
with constant one-sided error whether a function f of degree at most d has degree less than d. More
precisely, given black-box access to a function f : Fnp → Fp with degp(f) ≤ d,

• If degp(f) = d, A accepts with probability at least 99/100.

• If degp(f) < d, A rejects with probability one.

The result essentially follows from the work of Haramaty, Shpilka and Sudan [12]. A technicality is to
analyze the precise running time, and not just the query complexity as in [12]

Before proving Lemma 11, we state some required preliminary lemmas.

Lemma 12. Suppose we have black-box access to a function f : Ftp → Fp. Then we can determine in
deterministic time O(pt) whether degp(f) ≥ (p− 1) · t.

Proof. Consider the algorithm that yields a positive answer if and only if
∑

a∈Ftp f(a) = 0 . It is clear

that the running time is indeed O(pt). Let us now show correctness. As in Definition 10, define

f ′(x1, . . . , xn) , f(x1, . . . , xn) mod xp1 − x1, . . . , mod xpn − xn,

so that degp(f) = deg(f ′). We show that

9

1. The only monomial of degree ≥ t(p− 1) in f ′ is Mmax ,
∏t
i=1 x

p−1
i and

2. the coefficient of Mmax in f ′, is (−1)t ·
∑

a∈Ftp f(a).

From these two items, it is clear that indeed degp(f) = deg(f ′) ≥ t·(p−1) if and only if
∑

a∈Ftp f(a) 6= 0.

The first item is obvious, as the individual degrees in f ′ are at most p− 1.

For the second item, let us calculate the coefficient of Mmax in f ′. For every a ∈ Ftp, consider the function

ga : Ftp → Fp that is one on a and zero elsewhere. One can verify that ga(x) =
∏t
i=1

∏
α∈Fp\{ai}

(xi−α)∏
β∈Fp\{0} β

.

Clearly, the coefficient of Mmax in ga is (
∏
β∈Fp\{0} β)−t = (−1)t. Note that in ga, all individual degrees

are smaller than p. Hence, f ′ =
∑

a∈Ftp f(a)·ga and the coefficient of Mmax in f ′ is (−1)t·
∑

a∈Ftp f(a).

The algorithm for Lemma 11 checks the degree of the function only on a small subspace. The key for
its correctness is to show that when you restrict the function to a subspace (even for n− 1 dimensional
subspace) the degree does not decrease with high probability. The Lemma appeared in [12]. We give a
proof sketch here for completeness

Lemma 13 (Theorem 1.5 in [12]). Let Fp be a field of prime size p and f : Fnp → Fp be a function with
degp(f) = t(p− 1). The number of hyperplanes H such that degp(f |H) < t(p− 1) is at most pt+1

Proof sketch. We will assume w.l.o.g that f has the monomial
∏t
i=1 x

p−1
i . One can show that for

any degree t(p − 1) polynomial f there is linear transformation A such that f(Ax) has the monomial∏t
i=1 x

p−1
i . So it will be enough to prove the lemma for the suitable transformation of f .

We will assume for simplicity that all the hyperplanes are of the form of Hα = {x | x1 =
∑n

i=2 αixi+α0}
for some α2, . . . , αn. Indeed, there are few more hyperplanes that does not depend on the first coordinate,
but they don’t contribute much to the upper bound.

To prove the lemma we will show that for any of the pt possible values for α2, . . . , αt, α0 there are
< p possibilities for αt+1, . . . , αn such that deg(f |Hα) < t(p − 1). Fix α2, . . . , αt, α0. For simplicity we
assume they are all zero, but the same bound goes for any α2, . . . , αt, α0 (one can reduce the general
case to the zero case by some affine transformation).

Now consider all the monomials M in f with the following properties: (1) M divides
∏t
i=2 x

p−1
i and (2)

deg(M) = t(p − 1). We can write the sum of all those monomials as
∏t
i=2 x

p−1
i g(x1, xt+1, . . . , xn). By

definition, g is homogenous polynomial of degree p− 1. Because
∏t
i=1 x

p−1
i is a monomial of f , xp−11 is

a monomial of g.

Because the hyperplanes does not depend on the variables x2, . . . , xt (recall, we assumed α2 = · · · =
αt = 0) the degree of f can decrease on Hα only if the degree of g decrees on Hα. Because g is
homogenous of degree p− 1 and we consider only linear hyperplanes of the form x1 = L(xt+1, . . . , xn),

10

then g|x1=L is still homogenous of degree p − 1, so if the degree deg(g|x1=L) < p − 1 then g|x1=L ≡ 0.
Now consider g as an univariate polynomial in x1 over the field of rational functions in xt+1, . . . , xn. In
this view our question is: how many field elements L ∈ Fp(xt+1, . . . , xn) are there such that g(L) = 0.
From the fundamental theorem of the algebra the answer is p− 1 and we are done.

From Lemma 13 we get the following corollary.

Corollary 14. Let n > t and f : Fnp → Fp be a polynomial such that degp(f) = t(p − 1). Then

PrV
[
degp(f |V) = t(p− 1)

]
≥ 1

p+1

∏n−t−1
k=1

(
1− p−k

)
= Ω(1p), where V is a random t-dimensional affine

subspace.

Proof. We proceed by induction on n. Consider first the base case, where n = t + 1. In this case the

number of t-dimensional affine subspaces V ⊆ Ft+1
p is pt+2−1

p−1 > pt+1 + pt. By Lemma 13 on at most

pt+1 of them deg(f |V) < t(p− 1) so the probability that deg(f |V) = t(p− 1) is 1
p+1 as required.

Now assume the claim is true for n−1, and consider the following way of choosing a random t-dimensional
affine subspace V . First choose a random hyperplane H ⊆ Fnp and then choose a random t-dimensional
affine subspace V ⊆ H. There are more than pn hyperplanes H ⊆ Fnp , so by Lemma 13 the probability
that degp(f |H) = t(p− 1) is at least 1− pt+1−n. Moreover, in the event that degp(f |H) = t(p− 1), we
can apply the induction hypothesis to f |H . Hence,

Pr
[
degp(f |V) = t(p− 1)

]
= Pr

[
degp((f |H)|V) = t(p− 1) | degp(f |H) = t(p− 1)

]
·Pr

[
degp(f |H) = t(p− 1)

]
≤ 1

p+ 1

(n−1)−t−1∏
k=1

(
1− p−k

)
· (1− pt+1−n) =

1

p+ 1

n−t−1∏
k=1

(
1− p−k

)

We are now ready to prove Lemma 11.

Proof of Lemma 11. Let t =
⌈

d
p−1

⌉
. We assume without lost of generality that d = t(p−1): Otherwise,

let a = t(p− 1)− d and consider the function f ′(x0, x1,, xn) , xa0 · f(x1, ..., xn). It is easily checked
that degp(f

′) ≤ t(p− 1). Also degp(f
′) = t(p− 1) if and only if degp(f) = d.

We will present an algorithm for the problem with one sided error probability 1 − Ω
(
1
p

)
that runs in

time poly(n) ·O(pt). By repeating it O(p) times, we can get down to error probability 1/100 in running
time poly(n) ·O(pt+1) as required.

Consider the following algorithm. Choose a random t-dimensional affine subspace V . Accept if and
only if the degp(f |V) < t(p− 1). Assume first that degp(f) < t(p− 1). Then for any affine subspace V ,

11

degp(f |V) ≤ degp(f) < t(p − 1). On the other hand, if degp(f |V) = t(p − 1), Corollary 14 implies we

will accept with probability at least Ω(1p).

We conclude by analyzing the running time. Choosing V can be done in poly(n)-time. For checking
whether degp(f |V) = t(p− 1), Lemma 12 gives running O(pt) assuming black-box access to f |V . Given
black-box access to f , we can compute f |V (a) for a ∈ Ftp in poly(n)-time. The claimed running time of
poly(n) ·O(pt) follows.

7 Testing if PG contains an r-monomial

In this section we present a method for testing whether the polynomial PG, described in Section 5,
contains an r-monomial. This is done using the low-degree tester from the previous section.

As stated in Lemma 9, this is precisely equivalent to whether G contains an r-simple k-path. Recall we
viewed PG as a polynomial over a field of rational functions Fp(y). To obtain efficient algorithms, we
first reduce the question to checking whether a different polynomial defined over Fp rather than Fp(y)
contains an r-monomial. It is important in the next Lemma that we are able to do this reduction for
any p, in particular a ‘small’ one.

Lemma 15. Fix any integers r, k, with r ≤ k. Let p be any prime and t = dlogp 10ke. Let G be
a directed graph on n vertices. Given an adjacency matrix AG for G, we can return in poly(n)-time
poly(n)-size circuits computing polynomials f1G, . . . , f

t
G : Fnp → Fp on inputs in Fnp such that

• For 1 ≤ i ≤ t, f iG is (either the zero polynomial or) homogenous of degree k.

• If G contains an r-simple k-path then with probability at least 9/10, for some 1 ≤ i ≤ t, f iG
contains an r-monomial.

• If G does not contain an r-simple k-path, for all 1 ≤ i ≤ t, f iG does not contain an r-monomial.

Proof. Note that the discussion in Section 5 implies we can compute PG in poly(n)-time over inputs in
F2n
p . We choose random b ∈ Fnpt and let

fG(x) , PG(x,b).

Suppose PG, as a polynomial over F(y), contains an r-monomial M ′(x). The coefficient cM ′(y) of
M ′ in PG is a nonzero polynomial of degree k. So, by the Schwartz-Zippel Lemma, cM ′(b) = 0 with
probability at most k/pt ≤ 1/10. In the event that cM ′(b) 6= 0, fG(x) is a homogenous polynomial
of degree k in Fpt [x] containing an r-monomial. Let us assume from now on, we chose a b such that

indeed aM ′ , cM ′(b) 6= 0. We now discuss how to end up with polynomials having coefficients in Fp
rather than Fpt .

12

Let T1, . . . , Tt : Fpt → Fp be independent Fp-linear maps. Suppose fG =
∑

M aM ·M(x). For 1 ≤ i ≤ t,
define a polynomial f iG ∈ Fp[x] by

f iG(x) ,
∑
M

Ti(aM) ·M(x).

Note that for all 1 ≤ i ≤ t, f iG is the zero polynomial or homogenous of degree k. As aM ′ 6= 0, for some
i, Ti(aM ′) 6= 0. For this i, f iG is homogenous of degree k and contains an r-monomial, specifically, the
r-monomial aM ′ ·M ′(x). We claim that for all 1 ≤ i ≤ t, f iG can be computed by a poly(n)-size circuit
on inputs a ∈ Fnp . This is because fG and Ti are efficiently computable, and because for a ∈ Fnp ,

Ti(fG(a)) = Ti

(∑
M

aM ·M(a)

)
=
∑
M

Ti(aM) ·M(a) = f iG(a),

where the second equality is due to the Fp-linearity of Ti.

The above lemma implies

Corollary 16. Fix any prime p. Suppose that given black-box access to a polynomial g ∈ Fp[x] that is
homogenous of degree k, we can determine in time poly(n) · S if it contains an r-monomial. Then we
can also determine in time poly(n) ·S whether PG as a polynomial over Fp(y) contains an r monomial.

Our reduction to low-degree testing is based on the following simple observation that, for the right p and
for homogenous polynomials, containing an r-monomial is equivalent to having a certain degp-degree.

Lemma 17. Suppose g ∈ Fp[x] is a homogenous polynomial of degree k. Suppose r = p − 1. Then
degp(g) = k if and only if g contains an r-monomial.

Proof. If g contains an r-monomial M then, as r < p, degp(M) = k, which implies that degp(g) = k.
If g does not contain an r-monomial, then for every monomial M in g there is an i ∈ [n] such that the
degree of xi in M is at least r+ 1 = p. So replacing xpi by xi will reduce the degree of M and therefore
degp(M) < k. Since this happens for all monomials of g, degp(g) < k.

We introduce another element on notation that will be convenient in the rest of this section.

Definition 18. Fix integers n, d and prime p. Let f ∈ Fp[x] be an n-variate polynomial of degree at
most d. We define LDT (f, n, d, p) to be 1 if degp(f) = d, and 0 otherwise.

Before proceeding, we note that the results of Section 6 imply that given n, d, p and black-box access to
f , LDT (f, n, d, p) can be computed in time poly(n) ·O(pdd/(p−1)e+1). In particular, if given a ∈ Fnp , we

can compute f(a) in poly(n)-time, then we can compute LDT (f, n, d, p) in time poly(n)·O(pdd/(p−1)e+1).
The following lemma is an easy corollary of Lemma 17.

13

Lemma 19. Fix integers r, k with r ≤ k. Suppose p = r + 1 is prime. Let g ∈ Fp[x] be homogenous of
degree k and computable in poly(n)-time. There is a randomized algorithm running in time

poly(n) ·O((r + 1)d
k
r e+1)

determining whether g contains an r-monomial.

Proof. The algorithm simply returns LDT (g, n, d = k, p = r + 1). The running time follows from the
discussion above. The correctness follows from Lemma 17.

We wish to have a similar result when r + 1 is not a prime.

Lemma 20. Fix integers r, k with r ≤ k. Let p be the smallest prime such that p−1
r ∈ Z. Let g ∈ Fp[x]

be homogenous of degree k and computable by a poly(n)-size circuit. There is a randomized algorithm

running in time poly(n) ·O(pd
k
r e+1) determining whether g contains an r-monomial.

Proof. Denote l , p−1
r and define

h(x1, x2, . . . , xn) := g(xl1, x
l
2, . . . , x

l
n).

The algorithm returns LDT (h, n, d = k · l, p).
Note that h is homogenous of degree k · l. Note also that h contains an r · l-monomial if and only if g
contains an r-monomial. As r · l + 1 = p correctness now follows from Lemma 17.

The best known bound for the smallest prime number p that satisfies r|p−1 is r5.5 due to Heath-Brown
[17]. This gives a randomized algorithm running in time

poly(n) ·O(r
5.5k
r

+O(1)).

Schinzel, Sierpinski, and Kanold have conjectured the value to be 2 [17]. In the following Theorem we
give a better bound. We first give the following

Lemma 21. Fix integers r, k with r ≤ k. Let p be the smallest prime such that there is an l ∈ Z for
which r · l ≤ p− 1 and (r+ 1) · l > p− 1. Let g ∈ Fp[x] be homogenous of degree k and computable by a
poly(n)-size circuit. There is a randomized algorithm running in time

poly(n) ·O
(
p

⌈
l·k
p−1

⌉
+1
)

determining whether g contains an r-monomial.

14

Proof. As in the proof of Lemma 20, we define h(x1, x2, ..., xn) , g(xl1, x
l
2, ..., x

l
n). The algorithm returns

LDT (h, n, d = k · l, p). As in the proof of Lemma 20, h is homogenous of degree k · l and contains an
(r · l)-monomial if and only if g contains an r-monomial. Furthermore, as r · l ≤ p− 1 and (r+ 1) · l ≥ p,
h contains a (p − 1)-monomial if and only if g contains an r-monomial. Correctness now follows from
Lemma 17.

The main result of this section contains two results. The first is unconditional. The second is true if
Cramer’s conjecture is true. Cramer’s conjecture states that the gap between two consecutive primes
pn+1 − pn = O(log2 pn), [9].

Theorem 22. (Unconditional Result) Fix any integers r, k with 2 ≤ r ≤ k. Let g ∈ Fp[x] be homogenous
of degree k and computable by a poly(n)-size circuit. There is a randomized algorithm running in time

poly(n) ·O
(
r

2k
r
+O(1)

)
determining whether g contains an r-monomial.

(Conditional Result) If Cramer’s Conjecture is true then the time complexity of the algorithm is

poly(n) ·O
(
r
k
r
+o(kr)

)
.

Proof. We will find p and l as required in Lemma 21. Fix a prime p such that r2+r+1 < p < 2r2+2r ≤
3r2 . (This can be done as for any positive integer t > 3, there is always a prime between t and 2t.)

Define l , bp−1r c. We have

r · l = r · bp− 1

r
c ≤ p− 1

(r + 1) · l ≥ (r + 1) · (p− 1

r
− 1)

= (p− 1) +
p− 1

r
− r − 1 > (p− 1)

The first claim now follows from Lemma 21 and Corollary 16.

If Cramer’s conjecture is true then there is a constant c such that for every integer x there is a prime
number in [x, x + c log2(x)] . Then there is a prime number p in the interval [2cr log2 r, 2cr log2 r +
c log2(2cr log2 r)] and we can choose l = 2c log2 r. Then the time complexity will be

poly(n) ·O
(
r
k
r
+o(kr)

)
.

15

The following table summarizes the result for r ≤ 11. See Lemma 21.

r Result Field and l

1 2k [18] F2 , l = 1

2 1.73k F3 , l = 1

3 1.912k F7 , l = 2

4 1.495k F5 , l = 1

5 1.615k F11 , l = 2

6 1.383k F7 , l = 1

7 1.533k F23 , l = 3

8 1.424k F17 , l = 2

9 1.387k F19 , l = 2

10 1.27k F11 , l = 1

11 1.329k F23 , l = 2

References

[1] H. Abasi and N. H. Bshouty. A simple algorithm for undirected hamiltonicity. Electronic Colloquium
on Computational Complexity (ECCC), 20:12, 2013.

[2] Alon, N., Yuster, R., and Zwick, U. 1995. Color-Coding. J. ACM 42, 4 (Jul. 1995), 844-856.

[3] R. Bellman. Dynamic programming treatment of the travelling salesman problem, J. Assoc. Comput.
Mach. 9, pp. 61-63, 1962

[4] R. Bellman. Combinatorial processes and dynamic programming, Combinatorial Analysis (R. Bell-
man, M. Hall. Eds.), Proceedings of Symposia in Applied Mathematics 10, American Mathematical
Society, pp. 217-249, 1960.

[5] H. L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithm. 14(1):1-23, 1993.

[6] A. Björklund, T. Husfeldt, S. Khanna. Approximating Longest Directed Paths and Cycles. ICALP
2004: 222–233

[7] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto. Narrow sieves for parameterized paths and pack-
ings. CoRR abs/1007.1161 (2010).

[8] R. C. Baker, G. Harman and J. Pintz. The Difference between Consecutive Primes, II. Proc. London
Math. Soc. (3) 83 pp. 532–562. (2001).

[9] H. Cramer. On the order of magnitude of the difference between consecutive prime numbers, Acta
Arithmetica 2, pp. 23-46, (1936)

16

[10] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for path, matching, and pack-
ing problems, in Proc. 18th Annual ACMSIAM Symposium on Discrete Algorithms, SODA 2007
(Philadelphia, PA, USA, 2007), pp. 298-307.

[11] H. N. Gabow, S. Nie. Finding Long Paths, Cycles and Circuits. ISAAC 2008, pp. 752–763.

[12] E. Haramaty, A. Shpilka, M. Sudan. Optimal Testing of Multivariate Polynomials over Small Prime
Fields. SIAM J. Comput. 42(2): 536–562 (2013)

[13] I. Koutis, Faster algebraic algorithms for path and packing problems, in Proc. 35th International
Colloquium on Automata, Languages and Programming, ICALP (Reykjavik, Iceland, July 711,
2008), Springer LNCS 5125, pp. 575-586, 2008.

[14] D. R. Karger, R. Motwani, G. D. S. Ramkumar. On Approximating the Longest Path in a Graph.
Algorithmica 18(1): 82–98 (1997).

[15] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Divide-and-color, in Proc. 32nd International
Workshop on Graph-Theoretic Concepts in Computer Science, WG (Bergen, Norway, June 2224,
2006), Springer LNCS 4271, pp. 58-67, 2006.

[16] B. Monien, How to find long paths efficiently, Annals of Discrete Mathematics 25 (1985), 239-254.

[17] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996.

[18] R. Williams, Finding paths of length k in O∗(2k), Inform. Process Lett. 109(6):301-338, 2009.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

