
List and Unique Coding for Interactive Communication in the

Presence of Adversarial Noise

Mark Braverman∗and Klim Efremenko†

Abstract

In this paper we extend the notion of list decoding to the setting of interactive communication
and study its limits. In particular, we show that any protocol can be encoded, with a constant
rate, into a list-decodable protocol which is resilient to a noise rate of up to 1/2 − ε, and that
this is tight.

Using our list-decodable construction, we study a more nuanced model of noise where the
adversary can corrupt up-to α fraction of Alice’s communication and up-to β fraction of Bob’s
communication. We use list-decoding in order to fully characterize the region RU of pairs
(α, β) for which unique decoding with constant rate is possible. The region RU turns out to
be quite unusual in its shape. In particular, it is bounded by a piecewise-differentiable curve
with infinitely many pieces. We show that outside this region the rate must be exponential.
This suggests that in some error regimes list-decoding is necessary for optimal unique decoding.
We also consider the question what if only one party of the communication must to output
the correct answer. We precisely characterize the region of all pairs (α, β) for which one-sided
unique decoding is possible in a way that Alice will output the correct answer.

1 Introduction

We consider the problem of interactive computation in the presence of adversarial errors. In this
setting Alice and Bob want to perform a computation over a channel utilizing an alphabet Σ
which is affected by an adversarial noise of rate η. In other words, if the total number of symbols
transmitted by Alice and Bob is N (which is known a-priori to all the participants), then the
adversary is allowed to corrupt at most ηN symbols of the transmission. The goal is to provide a
scheme that can simulate any communication protocol in an error-resilient way.

The non-interactive version of the problem is the well-studied problem of encoding a message
M ∈ ΣN with an error-correcting code C : ΣN → ΣN ′

2 resilient to adversarial errors. To be resilient
to errors of rate η we need the Hamming distance between each two codewords C(M1) and C(M2)
to be sufficiently well-spaced, so that corrupt versions of these words can be recovered correctly.
Specifically, we need dH(C(M1), C(M2)) > 2ηN ′ for all M1,M2 ∈ ΣN . A code C is said to be good
if it has a constant rate: N ′ = O(N) and log |Σ2| = O(log |Σ|); in other words, a good code stretches

∗Department of Computer Science, Princeton University. Research supported in part by an Alfred P. Sloan
Fellowship, an NSF CAREER award (CCF-1149888), NSF CCF-0832797, a Turing Centenary Fellowship, and a
Packard Fellowship in Science and Engineering.
†Department of Computer Science, University of Chicago. Research supported by a Simons Fellowship in Theo-

retical Computer Science. Part of this work was done while KE was a member of the Institute for Advanced Studies
and funded by NSF CCF-0832797 and DMS-0835373.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 7 (2014)

the input only by a constant factor. The most interesting case studied is when |Σ| = O(1). For
any η = 1/2− ε < 1/2, a simple probabilistic argument shows that there exist good codes against
adversarial errors of rate η. There are several well-known constructions of good codes.

Once the error rate η exceeds 1/2, there is no hope of recovering from a η-fraction of errors, since
for any M1,M2 there is a message M̃ such that dH(C(M1), M̃) ≤ ηN ′ and dH(C(M2), M̃) ≤ ηN ′,
which means that M̃ could be a ηN ′-corrupted encoding of either M1 and M2. Nonetheless, using
list-decoding, it is possible to recover from error rates exceeding 1/2. A code is said to be η-
list-decodable with list of size L if for every word M̃ ∈ ΣN ′

2 , the number of codewords within
relative distance η from that word is at most L. The notion of list-decoding dates back to works
by Elias [Eli57] and Wozencraft [Woz58] in the 1950s. Once again, good list-decodable codes for
any η = 1 − ε < 1 can be shown to exist probabilistically. Moreover, efficient constructions of
list-decodable codes exist, and have numerous applications [Gur04].

In the interactive setting, it is not at all obvious that good error-correction is possible against
adversarial substitution errors of any rate. Note that any attempt to apply standard error-correcting
codes round-by-round are bound to fail, since all the adversary has to do to derail the execution
of the protocol is to completely corrupt a single round. Therefore, a sub-constant error rate
of 1/r suffices to foil an r-round protocol protected with a round-by-round code. In a striking
work, Schulman [Sch96] showed that there exist good error-correcting codes against errors of rate
η < 1/240. This work introduced the tree code primitive, variations on which have been used
in follow-up works, including the present one. Informally, the tree code combines two desirable
properties: (1) it is an “online” code: the i-th symbol of the encoding can be computed from the
first i symbols of the original word, thus allowing the encoding of the conversation to be computed
as it progresses; (2) its error correction properties are such that two messages are encoded to a two
codewords which are far from each other. Where how far a way these two codewords depends on
the first place where two messages are different.

Interest in interactive error correction has been renewed recently, with Braverman and Rao
[BR11] showing that the error rate that can be tolerated can be improved to η < 1/4. The
constructions of both [Sch96] and [BR11] are not computationally efficient. A series of recent
works made significant progress towards making interactive error correction computationally effi-
cient [GMS11, Bra12, BK12, FGOS12, BN13], in some cases by restricting the error parameter or
augmenting or restricting the model. In particular, the work of Brakerski and Kalai [BK12] shows
how to implement interactive error correction efficiently for η < 1/16 with a beautiful scheme which
uses private (non-shared) randomness.

As with previous works, in this paper we will only consider robust protocols: protocols in which
at all times, whose turn to speak is known to both Alice and Bob, regardless of the amount of errors
introduced into the communication so far (even if this amount exceeds the adversary’s budget). It is
not hard to see [BR11] that robustness is equivalent to the property that the identity of the speaker
at round i at any execution of the protocol depends only on i. Non-robust protocols have recently
received some attention. In particular, very recently, [AGS13] and [GHS13] considered non-robust
models and concluded that indeed non-adaptive protocols can withstand a higher error rate. It
would be interesting to combine these results, particularly from [GHS13] with ours to calculate the
tight error-rate region for the non-robust case.

In this work we investigate the limits of error rates which can be corrected in the interactive
setting. Further, we develop the notion of interactive list decoding, which is the list-analogue of
interactive error-correction. Its definition is quite straightforward: after the execution of a protocol,

2

each party will output a constant-size list of possible original conversations. If the fraction of errors
has not exceeded η, each list will contain the intended conversation. We show that constant-rate
interactive list decodable coding is possible for all error rates η < 1/2, which we show to be the
best error tolerance one can hope for.

Moreover, interactive list decoding turns out to be the right tool for giving tight bounds on the
error rates one can tolerate in the unique decoding setting. In the interactive setting it is natural to
consider pairs (α, β) of error rates, with α representing the fraction of Alice’s communication that
may be corrupted and β representing the fraction of Bob’s communication that may be corrupted.
Using our list decoding results we are able to give a precise characterization of the region RU of
pairs (α, β) of error rates for which constant-rate unique decoding is possible. Previously, by the
construction of Braverman and Rao [BR11] unique decoding has been known to be possible when
α+β < 1/2. At the same time, it is easy to see that unique decoding is impossible when α ≥ 1/2 or
β ≥ 1/2. The region RU turns out to be quite unusual in its shape. In particular, it is bounded by
a piecewise-differentiable curve with infinitely many pieces. When Alice and Bob are affected by an
equal amount of error, the intersection of RU with the line α = β is the region {(α, α) : α < 1/3}.
Thus we can handle error of up to 1/3− ε affecting each of Alice and Bob. Previously, only a lower
bound of 1/4− ε and an upper bound of 1/2 were known [BR11].

The notion of list-decodable interactive codes has been independently developed by Ghaffari,
Haeupler, and Sudan [GHS13, GH13]. While the key definitions are, as expected, similar, there are
some differences between the two lines of work. All the codes we consider in our work are constant
rate, i.e. an n-symbol interactive protocol is always encoded into an O(n)-symbol protocol. The
codes in [GHS13] convert n symbols into n2 symbols, while the improved [GH13] converts n symbols
into n · 2O(log∗ n·log log∗ n. Our analysis is more detailed in terms of the error region (we analyze the
pairs of error-rates that we can tolerate, and not only their sum). On the other hand, our scheme
is not computationally efficient, while the scheme of [GH13] is. More excitingly, it appears that by
combining [GH13] with the present paper one obtains efficient, constant rate, schemes with optimal
error dependence1. The question of finding the optimal-rate interactive error correcting schemes
remains wide open.

Main results

List decoding. Our first set of results deals with list-decoding interactive protocols. We say
that protocol can handle (α, β) adversarial noise if adversary can corrupt up-to α fraction of Alice’s
messages and up-to β fraction of Bob’s messages. For formal definition see Section 3.

Theorem 1. For each ε > 0 and for every protocol π there exists another protocol π′, with CC(π′) =
Oε(CC(π)) which is resilient (α, β) adversarial noise for all α + β < 1 − ε. The protocol π′(x, y)
outputs a list of size Oε(1) of transcripts such that π(x, y) is on the list.

On the other hand, we show that for each pair (α, β) with α+β ≥ 1, list decoding is impossible.

Theorem 2. For every α, β such that α + β ≥ 1. Let π be a protocol which is resilient to (α, β)
adversarial noise and which solves list decoding problem of Pointer Jumping Problem of depth T
with list of size exp(o(T)). Then CC(π) = exp(Ω(T)).

1Haeupler, personal communication.

3

Note that the special case of Theorem 2 where (α, β) = (1, 0) is trivial, since in this case no
useful communication is transmitted by Alice.

We can give an even tighter result by considering a slightly generalized error notion in Theo-
rem 1. Let us only consider standard protocols π′ where Alice and Bob send one message at a time
in an alternating fashion. We can partition such a π′ into blocks of two symbols, the first one being
sent by Alice and the second by Bob. We say that a block is corrupted if the transmission of either
symbol in the block is corrupted. Let η be the fraction of blocks the adversary corrupts. Note
that it is always the case that max(α, β) ≤ η ≤ α + β. We show that we can handle η-symmetric
noise(for exact definition of symmetric noise see Section 3) up to 1− ε, matching the one-way list
decoding bounds.

Theorem 3. For each η < 1 and for every protocol π there exists another protocol π′, with CC(π′) =
Oη(CC(π)) which is resilient η-symmetric noise. The protocol π′(x, y) outputs a list of size O(1

η)
of transcripts such that π(x, y) is in the list.

Note that since η ≤ α+ β, Theorem 3 implies Theorem 1.

Unique decoding. Next, we turn our attention to the problem of unique decoding. In the unique
decoding setting, at the end of the execution of π′ Alice and Bob need to be able to correctly recover
the original protocol transcript π. In Section 12 we also consider the asymmetric case where only
Alice needs to recover π uniquely.

We study the set RU of pairs (α, β) for which unique decoding is possible. The set RU is rather
peculiar, and is defined as follows. Let

L2(α) :=
1

2

(
1− 1

(1 + { 1
α}) · 2

b 1
α
c−1 − 1

)
,

where {x} := x− bxc is the fractional part of x. Then the unique decoding region is defined by

RU :=

{
(α, β) : (α ≤ 1

3
and β < L2(α)) or (β ≤ 1

3
and α < L2(β))

}
. (1)

It is plotted on Figure 1. Note that L2 is continuous and piecewise-differentiable with infinitely
many pieces. Also, L2(1

3) = 1
3 , with (1

3 ,
1
3) being the intersection point between the boundary ∂RU

and the line (α, α).

Theorem 4. For each (α, β) ∈ RU and for every protocol π there exists another protocol π′,
with CC(π′) = Oα,β(CC(π)) which is resilient (α, β) adversarial noise. Such that π′(x, y) outputs
transcript of π(x, y).

Theorem 4 is stronger than the main upper bound of [BR11], which only shows how to deal
with (α, β) in the sub-region α+β < 1/2. More importantly, Theorem 4 turns out to be essentially
tight, as shown in the following theorem. Let RU be the closure of RU , i.e. the union of RU and its
boundary. The Pointer Jumping Problem can be viewed as the generic communication complexity
problem and is formally defined in Section 2.

Theorem 5. For every (α, β) /∈ RU and for every T the following holds. Let π′ be a protocol
resilient to (α, β) adversarial noise which solves the Pointer Jumping Problem of depth T . Then
CC(π′) = 2Ωα,β(T).

4

We note that in noiseless regime one can solve Pointer Jumping Problem of depth T with
communication complexity T . Therefore outside of RU one cannot perform unique decoding with
constant stretch in communication.

Remark 6. The lower bound statement of Theorem 5 is the best we can hope for in the following
sense: as long as α < 1/2 and β < 1/2, Alice and Bob can achieve unique-decodable communication
with exponential stretch. Alice can use a (non-interactive) good code to send Bob her messages on
all potential protocol transcripts, and Bob can do the same. This guarantees correct execution, but
causes an exponential stretch in communication.

While Theorem 4 shows that unique decoding is possible in the interior of RU , and Theorem 5
shows that it is impossible in the interior of its complement, unlike the list decoding case we do not
establish whether unique decoding is possible for error rates on the boundary ∂RU . We conjecture
that similarly to the list-decoding case, the boundary belongs to the region where decoding is not
possible.

Main techniques and discussion

We start with a discussion of the proof of the positive results on interactive list decoding. The
overall strategy is similar to that of other recent works: “make progress as long as the error is not
too high”. From the viewpoint of, say, Bob, this means the following: at each step, Bob will try to
decode from Alice’s messages he received so far what her (noiseless) messages have been, and sends
a response that makes progress on the overall protocol. Thus we make progress as long as Bob
decodes Alice’s messages correctly. It turns out that if Alice and Bob encode their messages using

5

tree codes, this strategy works as long as α + β < 1/2 − ε [BR11]: in other words, in sufficiently
many rounds, Alice and Bob will correctly reconstruct each others’ transmissions so far.

What goes wrong when 1/2 < α + β < 1? In this case, for example if α > 1/2, as in the case
of one-way communication, there is no hope for Bob to be able to ever unambiguously reconstruct
Alice’s message. As in the case of one-way list decoding, Bob can still hope to be able to recover
a constant size list L of potential Alice’s communications so far. To make progress, Bob will send
|L| responses to simultaneously make progress on all of these communications. Therefore, list size
of size ` causes an `-fold explosion in communication, and ` needs to be kept constant at (almost)
all times. A substantial amount of technical work is required to keep the rate of the code constant
in the case of a constant-size alphabet.

The analogue of tree codes that allows us to carry out the above plan is a new primitive we
call a list tree code. The actual definition is somewhat technical, but informally, a list tree code is
a prefix code such that for any received word w, for a significant number of rounds, there are at
most ` proper codewords that are (1− ε)-close to w. With correctly selected parameters, a random
prefix code is a list tree code except with an exponentially small probability. This contrasts with
the case of ordinary tree codes, for which a random prefix code is unlikely to be a tree code. List
tree codes have resemblance to potent tree codes of Gelles, Moitra and Sahai [GMS11], which can
informally be viewed as “list tree codes” with list size ` = 1 + ε.

Next we turn our attention to the unique decoding regime. It appears that understanding (and
being able to carry out) interactive list decoding is needed to achieve optimal unique decoding.
To illustrate this point, consider an attempt to break the (1

4 ,
1
4)-barrier from previous (non-list

decoding) works. To be specific, let (α, β) = (1
4 ,

1
4). The adversary can corrupt half of Alice’s

messages in the first half of the protocol, and half of Bob’s messages in the second half of the
protocol. It is easy to see that in the first half of the execution, unique decoding by Bob is not
possible, since there is 1

2 -error on Alice’s messages. Therefore, if the parties wait until they can
decode uniquely, they will not make any progress in the first half of the protocol. Similarly, they
will also not make progress in the second half. On the other hand, with list decoding, in this
scenario, we can achieve that by the end of the first part of the protocol Alice has decoded the
transcript π, and Bob has at most two candidate transcripts π1 and π2. He can then use the second
(non-corrupt) part of Alice’s transmission to decide whether to output π1 or π2.

By just using the list-decodable interactive scheme, and having each party output the answer
closest to the received transcript, we can already overcome the α + β < 1/2 barrier, and get an
error-correcting scheme that works for (α, β) in the region:

R2 := {(α, β) : α+ 2β < 1 and 2α+ β < 1} .

In particular, R2 covers all (α, α) for α < 1/3.
In our main list-decodable scheme, Alice and Bob speak at the same rate throughout the protocol

(i.e. by the time Alice communicates a p-fraction of her messages, Bob communicates a p-fraction
of his messages). It turns out that for some values of (α, β) outside of R2, we can still achieve
unique decoding by having Alice and Bob alter the relative rates at which they speak throughout
the execution of the scheme. Note that our scheme is still robust, and therefore these rates will be
predetermined by (α, β). For example, if we consider the point (1

4 ,
3
7 − ε) ∈ RU \ R2, the unique

decodable protocol will look as follows: by the time Alice communicates 1
4 of her messages, Bob

will communicate approximately 1
7 of his; after that, for the next 3

4 of Alice’s messages, Bob will
send the remaining 6

7 of his communication in a uniform fashion. The most striking feature of this

6

general regime is the complicated shape of the unique decoding region RU , which is the result of
the complicated way in which altering relative transmission rates achieves decodability.

Finally, we discuss our matching lower bounds. Going back to the list decoding setting, consider
the case when α+β ≥ 1. If Alice and Bob speak at the same rate, the adversary can erase the first
α-fraction of Alice’s communication, and the last β fraction of Bob’s communication. This way
there is no overlap between the part where Alice speaks and the part where Bob speaks. Therefore
the encoded protocol is equivalent to a two-round protocol between Alice and Bob. There are
communication problems which require more than two rounds to execute efficiently (even with a
small success probability). By starting with such a problem, we see that a list decodable encoding
that can withstand (α, β)-error must result in a significant communication blowup. The argument
above fails if Alice and Bob speak at different rates throughout the protocol. For example, if most
of Alice’s communication is concentrated early in the execution and most of Bob’s communication
is concentrated late. Using a slightly more complicated argument, we can show that any protocol
resilient to (α, β)-noise with α+β ≥ 1 can be simulated by a 3-round protocol, leading to a similar
contradiction. The argument for the tightness of the region RU is more involved but follows a
similar methodology.

Acknowledgments

We thank Ran Gelles for for the many insightful comments on an earlier draft of this paper.

2 Communication protocols, pointer jumping and errors

For sake of completeness we put here section from [BR11].
Given inputs x, y from some domain, a deterministic protocol with alphabet Σ is a rooted tree

where every internal vertex has |Σ| children, each corresponding to an element of the alphabet.
Every non-leaf vertex in the tree v is associated with a function fv(x) (or fv(y)) that maps one of
the inputs to an element of Σ. The outcome of the protocol on inputs x, y is the unique leaf that
is reached by first evaluating the function associated with the root, then evaluating the function
associated with the child obtained by the first evaluation, and so on. The depth of the tree, T is
called the communication complexity of the protocol. Two parties who each have access to just
one of the inputs can compute the outcome of the protocol by communicating at most T symbols
to each other, in the obvious way.

In this paper, we only consider deterministic communication protocols, since our results easily
extend to the case of randomized protocols by viewing a randomized protocol as a distribution over
deterministic protocols.

Let T be a rooted s-ary tree of depth T . Let X denote the set of edges leaving vertices at even
depth, and Y denote the set of edges leaving vertices at odd depth. Given any set A of edges in the
tree, we say that A is consistent if A contains at most one edge leaving every vertex of the tree.
We write v(A) to denote the unique vertex of maximal depth that is reachable from the root using
the edges of A and e(A) will be the last edge in this path.

Let X ⊂ X , Y ⊂ Y be consistent subsets. Then observe that X ∪ Y is also consistent. In
the pointer jumping problem, the two parties are given such sets X,Y and the goal is compute
v(X ∪ Y). Since every communication protocol with communication complexity t bits can be

7

reduced to solving pointer jumping on a tree of depth 2t, it will suffice for us to find a protocol
that can compute v(X ∪ Y) even if there are transmission errors.

In this paper, we define communication protocols that are resilient to transmission errors. In
our protocols, every vertex at odd depth will be labeled by a function of the first party’s input,
and every vertex at even depth will be labeled by a function of the second party’s input. Given
such a protocol, each party runs it as above, using her transmissions and the messages she receives
to determine her current position in the protocol tree. In general, each party will conclude the
protocol at a different leaf. We are going to consider in this paper 3 problems: First is just pointer
jumping problem where both Alice and Bob have to compute v(X ∪Y). Second is one-way pointer
jumping problem where at the end of the protocol only Alice has to know v(X ∪ Y) and the last
one is list decodable pointer jumping problem is where at the end of the protocol both Alice and
Bob has to output small list of nodes such that v(X ∪ Y) is in the list.

Notation 7. We will denote by PJP (T, s) the pointer jumping problem of depth T and alphabet
size s.

Theorem 8. [[NW93]] For every k < T there exists a function f(x, y) which is solvable in T com-
munication complexity, but every k round protocol π(x, y) which computes f(x, y) with probability

at least 2
3 has communication complexity at least Ω(

exp(Ω(T
k

))

k2
).

Proof. Set T = O(logn
k) and use Theorems 2.3, 2.6 from [NW93].

Corollary 9. For every ε, k, if protocol π solves one way PJP (2T, 2) in k−4 rounds with probability
ε then the communication complexity of π is at least Ω(ε · exp(Ωk(T)))

Proof. Let us assume that we have protocol π which solves one way PJP (2T, 2) in k − 4 rounds
with probability ε. Let us show that we can solve PJP (2T, 2) in k rounds with probability 2

3 and

with communication complexity O(CC(π)+T
ε). Alice and Bob can execute protocol π in parallel

t = 10
ε times. Let us assume that vA1, vA2 . . . vAt be a leafs that Alice got on these executions and

vB1, vB2 . . . vBt be a leafs that Bob got on these executions. Then with probability at least 0.9 one
of these leafs is the correct answer. If one of the vi is the correct answer we can find it in 4 rounds
and with O(Tε) communication. It is easy to see that if v consistent with Alice’s input and vBi
consistent with Bob’s input then v is the correct output. Then Alice and Bob will send all his leafs
consistent with his input and out of these leafs they will see which one is the correct answer and
tell it to an other party.

Since PJP (2T, 2) is complete for communication complexity our protocol can compute function

f(x, y) in k rounds with probability 2
3 . Therefore from Theorem 8 it follows that O(CC(π)+T

ε) ≥
Ω(

exp(Ω(T
k

))

k2
). Therefore, CC(π) ≥ Ω(ε exp(Ωk(T))).

3 Definition of Adversarial Error Protocol

Let us denote by D(Σ) to be the set of probability distributions over Σ. In this paper we will
consider the scenario when adversary can corrupt fraction of symbol i.e., each party sends symbol,
but may receive a distribution over symbols. The amount of error if was send symabol a and
received distribution b is: Prob(a 6= b). For simplicity of notation We will identify Σ with probability
distributions supported on single symbol. For x, y ∈ D(Σ)m we can define d(x, y) =

∑m
i=1 Pr(x[i] 6=

8

y[i]) we will also denote by agr(x, y) = m−d(x, y). Note that if x, y ∈ Σn then d is exactly hamming
distance between x, y.

Definition 10. We say that a protocol π′ list decodes π with list of size L, if for every input x, y
both parties of the protocol of π′(x, y) output list of size at most L with π(x, y) in the list.

Definition 11. We say that a protocol π one sided protocol if its correctness depends only on the
output of one party.

In this paper we will assume that all our protocols are oblivious i.e., who is speaking at round i
depends only on i and not on randomness or input of the protocol x, y. Alphabet of our protocols
will be Σout. We will say that communication complexity of the protocol is the maximal over all
inputs of bits send by our protocol. We will also have alphabet Σout over which our protocol is
executed. Alice(Bob) communication complexity nA(nB) is the maximal number of symbols(from
Σout) sent by Alice(Bob).

In this section we would like to discuss several variants of definitions of protocols resilient to
adversarial error. We will assume in this paper that all our protocols are are deterministic.

Informally Communication Protocol Resilient to (α, β) noise is protocol which output correct
answer when adversary can change α fraction of symbols sent by Alice and β fraction of symbols
sent by Bob.

Definition 12 (Communication Protocols Resilient to (α, β) noise). Assume that we have de-
terministic protocol π(x, y). For wA ∈ ΣnB

out let πA(x)(wA) be a messages sent by Alice when she
received wA from Bob. We say that protocol computing f(x, y) is resilient to (α, β) noise if for
every input x, y and for every wA ∈ D(Σout)

nB , wB ∈ D(Σout)
nA such that

d(πA(x)(wA), wB) ≤ αnA,

i.e.,at most α fraction of bits sent by Alice is corrupted. And the same for Bob:

d(πB(y)(wB), wA) ≤ βnB .

It holds that both Alice and Bob perform task T .

In case that we allow more than 1
2 noise of total communication we have a problem since Eve

can corrupt all the communication of one of the parties. Therefore we will limit Eve’s power to
prevent this scenario. We will divide our communication to blocks of two so that in each block
both both Alice and Bob exchange messages. We will say that some block is corrupted if message
of one of the parties is corrupted. That is in this case if Eve decides to corrupt the communication
of Alice in some block she can corrupt all the communication of Bob in this block at the same cost.
Let us first give formal definitions:

Definition 13 (Communication Protocols Resilinet to (α)-symmetric noise). In this definition we
will consider only protocols where at each even round Alice speak and at odd rounds Bob speaks.
The protocol runs for 2n rounds.

We say that protocol performing task f(x, y) is resilient to α- symmetric noise if for every input
x, y and for every wA ∈ D(Σout)

n, wB ∈ D(Σout)
n, let us define cA = πA(x)(wA) be an output of

Alice on input wA and cB = πB(y)(wB) be an output of Bob.

9

n∑
i=1

max(d(wB[i], cA[i]), d(wA[i], cB[i])) ≤ αn ,

Then Alice and Bob will correctly perform task f(x, y).

Part I

List Decoding

4 List Tree Codes

Definition 14. A prefix code C : Σn
in → Σn

out is a code such that C(x)i depends only on x[1..i]. By
abuse of notation we will also write for i < n, x ∈ Σi

in, C(x) ∈ Σi
out.

Definition 15. The suffix distance between two strings x, y ∈ D(Σ)m is defined as

δs(x, y) = max
i=1..m

d(x[i..m], y[i..m])/(m− i+ 1).

In other words suffix distance is the largest relative distance between corresponding suffixes of
two words.

Now we will define analogue of the list in one-way communication.

Definition 16. For every w ∈ D(Σout)
n the i-th level ε-list of w under C is given by

Listi(w,C, ε) := {x ∈ Σi
in : δs(C(x), w[1..i]) ≤ 1− ε}.

The ε-list of w under C is given by

List(w,C, ε) :=

|w|⋃
i=1

Listi(w,C, ε).

We also define

PrefixList(w,C, ε) := {y ∈ Σ∗in : y = x[1..k] for some k and some x ∈ List(w,C, ε)}.

We will identify words x ∈ Σ∗in with nodes in a tree, where x ∈ Σi
in will be a father of x◦c ∈ Σi+1.

The tree PrefixList is the rooted subtree that spans all the nodes in List. In the Figure 1 we
give an example of PrefixList. Note that in this example although | ∪ Listi| = 5. The size of
PrefixList is 9.

For any rooted subtree PL of full Σin-ary tree we will denote by w(PL) the tree where we write
w[i] on all nodes at depth i and C(PL) just a restriction of C to PL. We will always consider trees
in this paper as one-way graphs directed from root downwards. If we have some tree PL and two
different labelings of edges w(PL), C(PL) than d(w(PL), c(PL)) =

∑
e∈PL d(w(e), C(e)).

The following lemma is a good excise on above definitions.

10

hell

hello

o

l

l

e

hi

i

h

by

bye

e

y

b

Figure 1: PrefixTree with List2 = {”hi”, ”by”}, List3 = ”bye”, List4 = ”hell”, List5 = ”hello”

Lemma 17. Let v be a leaf in the the PrefixList(w,C, ε) then for every path P ending at v we
have d(C(P), w(P)) ≤ (1− ε)|P |

Proof. By definition of PrefixList all its leafs v are in List(w,C, ε). Thus for some i,
v ∈ Listi(w,C, ε). By definition of Listi we have δs(C(v), w) ≤ 1 − ε. If |P | = k then also
by definition C(P) = C(v)[i− k − 1, i]. Thus from definition of δs the lemma follows.

We will define the size of the tree to be number of its vertexes. Now we are ready to define the
main object of this paper.

Definition 18. An (ε, L)-list tree code C : Σn
in → Σn

out with average list size L and decoding
distance 1−ε is a prefix code such that for all w ∈ D(Σout)

n let PL(w) = PrefixList(w,C, ε) then

1. |PL(w)| ≤ L · n.

2. agr(C(PL), w(PL)) ≤ εLn

As we will see from the next lemma first property is included in the second property. We stated
here first property since we are going to use mainly this property of the code. The only reason why
we require w to be string of distribution rather than just string of symbols is because this way we
can perform soft decoding.

Lemma 19. Let PL , PrefixList(w,C, ε) , then d(C(PL), w(PL)) ≤ (1− ε)|PL|.

Proof. We will prove this by induction on number of leafs. If PL has only one leaf v Then PL is
a path from root to v and the claim follows from the Lemma 17. For an induction step let PL be
a branch of v(i.e. path from w to v where w is a first predecessor of v which has more than one
child.) Then PL\P has one leaf less than PL. Thus from induction we get that

d(C(PL\P), w(PL\P)) ≤ (1− ε)(|PL| − |P |).

11

From Lemma 17 we know that d(C(P), w(P)) ≤ (1− ε)|P |. Thus

d(C(PL), w(PL)) = d(C(PL\P), w(PL\P)) + d(C(P), w(P)) ≤ (1− ε)|PL| .

Theorem 20. For all ε > 0 Σin, let |Σout| > (2Σin)
3
ε2 . Then a random prefix code C : Σn

in → Σn
out

is a (ε, L) list-tree code with L = 1
ε + 1 with probability at least 1− 2−n.

Before proving this we will need the following lemma.

Lemma 21. Let PL be full d-ary tree then there exists at most (d+ 1)2s rooted subtrees of PL of
size s.

Proof. First we will write our tree as a path where each symbol says to what child to go and d+ 1
symbol will say to go up. Next note if we make DFS on subtree of size s then we will pass on every
edge twice once when we go down and once when we go up. Thus we can write every subtree of
size s by 2s− 2 symbols.

Proof of Theorem 20. First let us note that from Lemma 19 it follows that agr(C(PL), w(PL)) ≥
ε|PL| thus second property of the list tree codes imply the first property.

Lemma 19 also imply that if PL is a PrefixList that violates the conditions of the theorem then
agr(C(PL), w(PL)) ≥ εmax{|PL|, Ln}. Now we are going to prove that w.h.p. agr(C(PL), w(PL)) <
εmax{|PL|, Ln} for every subtree PL and for every w. We can assume w.l.g. |PL| ≥ Ln. Let
us first fix some subtree PL of complete Σin-ary tree of size s ≥ Ln and w ∈ Σn

out then the next
claim together with Lemma 19 gives us bound on probability that the conditions of the list tree
code broken for this specific w and PL.

Claim 22. For every w ∈ Σn
out and tree PL of size at most s it holds that

P [agr(C(PL), w(PL)) ≥ εs] ≤ |Σout|−εs
(
s

εs

)
≤ |Σout|−εs2s,

where randomness is taken over the random choice of code C.

Proof. The first inequality follows from union bound where we take union over all possible locations
where C(PL), w(PL) have an agreement. The second inequality follows from the fact that

2s = (1 + 1)s ≥
(
s

εs

)
.

Thus using union bound over all possible trees and words w we get that probability that C is
not list tree code is bounded by

∞∑
s=Ln

|Σout|−εs2s#{rooted subtrees of size s}|Σout|n

From Lemma 21 it follows that probability that C is not tree code is bounded by

12

∞∑
s=Ln

|Σout|−εs2s(|Σin|+ 1)2s|Σout|n

Since |Σout| > (2|Σin|)
3
ε2 above quantity is bounded by:

(2|Σin|)
3n
ε2

∞∑
s=Ln

(2|Σin|)−
3s
ε 2s(|Σin|+ 1)2s ≤ 2(2|Σin|)

3n
ε2 (2|Σin|)−

3Ln
ε 2Ln(|Σin|+ 1)2Ln

Recalling that L = 1+ε
ε we can bound above as:

2(2|Σin|)−
3
ε
n2

1+ε
ε
n(|Σin|+ 1)

2+2ε
ε

n ≤ 2−n/ε ≤ 2−n .

To see that the theorem holds for all w ∈ D(Σout)
n rather than w ∈ Σn

out observe that for every
subtree PL and for every code C(PL) the closest codeword w ∈ D(Σout)

n to C(PL) is w, where
w[i] is the most frequent symbol of C(PL) at level i, thus it is in Σn

out.

5 Communication transcript

During our protocol Alice and Bob are going to send edges from the tree T of the original protocol.
In order to describe some specific edge from T it may take O(T) bits. Also as in Braverman
Rao [BR11] we will need one additional level of encoding that will compress our communication.
First idea of the compression is that we are not sending a random edges, we never send any edge
before we send his grandparent. Therefore we can describe an edge by a link to grandparent and
a path from grandparent to an edge. This will solve us the problem for the case that we have
alphabet polynomial in the length of our communication since in this case we do not care of the
length of the links. In case of constant size alphabet the size of the link is important and therefore
we sometimes instead of sending link to grandparent we will send link to cousin who may be much
closer to the edge we are sending.

Each entry of our transcript will correspond to some edge in T . Every entry ai = (ri, bi, si) of
the transcript will consist of integer ri ∈ N which will be a pointer to another edge that appeared
ri entries earlier in our transcript. bi ∈ {0, 1} bit will indicate whether the reference edge is
grandparent or cousin2 and si ∈ Σ≤2

T which will indicate path from grandparent to the edge. We
will assume that an integer k takes at most 2 log k + 2 bits to encode.

Procedure of decoding E(A): Now let us describe formally how we will decode our transcript
for i = 1, . . . k, we will do the following to decode ei from ai = (ri, bi, si):

1. if ri = 0 set ei to be an edge at depth at most 2 specified by bits si.

2. if ri ≥ i return error.

3. if bi = 0 set pi = ei−ri

4. if bi = 1 set pi to be grandparent of ei−ri

5. set ei be the edge specified by starting at the child vertex of the edge pi and then taking (at
most) two steps in the tree using the bits si.

2In fact we will need cousins only for a small alphabet

13

Procedure Encoding Add(A, e): Now assume that we want to add an edge ei to our transcript
a1, a2, . . . ai−1. If ei is at depth at most two we will set ri = 0 and si to correspond to path from
root to ei. Else we will decode edges e1, . . . ei−1 from a1, . . . ai−1. Next we are going to find maximal
index j such that ej is a cousin or grandparent of ei and then we are going to set ri = j− i and we
will set bi = 0 if ej is grandparent of ei and bi = 1 if ej is cousin of ei. We will set si to correspond
to path from grandparent of ei to ei. For the purposes of this procedure, an edge is its own cousin.

Thus for A = (a1, a2, . . . ak) we have procedure E(A) which returns edges encoded by A and
Add(A, e) which adds edge e to transcript A.

We think of the transcript as a stream of bits and we will also have the following functions:

• Procedure size(A): which will return the size of the transcript.

• Procedure End− round(A, i): which will set the size of the transcript to be maximum
between log Σi

in and size(A) and padding if necessary transcript to this size by adding some
0(which will represent no edge).

6 Recovering from errors using a polynomial size alphabet

The goal of this section is to prove the following theorem:

Theorem 23. For every ε, c > 0 there exists a protocol π is resilient to 1 − ε-symmetric noise
and which solves the problem of list decoding of PJP (T, T c) with list of size O(1

ε). Moreover the
protocol π runs O(Tε) rounds and in each round sends Oε,c(log T) bits.

Let ε′ = c1ε for some small constant 0 < c1 < 1 to be defined later. Define also L = 1
ε′ + 1.

During the protocol we are going to send O(T) edges and encode them with the transcript defined
in previous section. The links in the transcript will be of size at most O(T) therefore every entry of
transcript takes at most O(log T) bits. Let us set Σin to be large enough to hold Ent = L

ε′ = O(1
ε2

)

entries of the transcript. Thus log |Σin| = Oε,c(log T). Let n = T
ε′ = O(Tε) be the number of rounds

of the protocol. By Theorem 20 there exist C : Σn
in → Σn

out which is (L, ε′) = (O(1
ε), O(ε)) list tree

code with log |Σout| = Oε(log |Σin|) = Oε,c(log T).

Remark 24. Note that we have here three alphabets:
First is the alphabet of the original protocol ΣT of size T c.
Second is Σin which corresponds to a non-encoded single message that we are going to send

during each round.
The third one is Σout which corresponds to an alphabet which we are going to send over noisy

channel.

Let C be encoding and for w ∈ Σi
out, D(w) will return Listi(w,C, ε). At every round i Alice will

decode received codeword w ∈ D(Σout)
i and will get list of possible transcripts of Bob B1, B2, . . . Bk

(Bob will similarly decode Alice’s message). For every such transcript Alice will calculate E(Bi)
edges that Bob sent and send next edge from X ⊂ X by first adding this edge to transcript and
then encoding transcript with list-tree code.

The protocols of Alice and Bob will be symmetric so we will introduce only protocol for Alice.
We will denote by wA, wB received codewords by Alice and Bob correspondently. Alice will maintain
transcript A which will be initialized by empty set. Formally at block i Alice will,

14

Input: wA ∈ D(Σout)
i

1. Calculate Decode(wA) = Listi(wA, C, ε) = {B1, B2, . . . , Bk}

2. For j = 1, . . . ,min{k,Ent} do

(a) If E(Bj) ∪ X has unique path from root and let e be a last edge on this path then
Add(A, e)

3. End− round(A, i+ 1).

4. Send C(A)[i+ 1] to Bob.

We will run the protocol n blocks. At the end Alice will construct PrefixList(wA, C, ε).

Definition 25. For a node v ∈ PrefixList(wA, C, ε) we will call it output node if E(v) ∪X has
unique path from root and this path ends at a leaf ` and none of predecessors of v has this property.
The output of the output node is the leaf `.

In other words, the output node v is the node at which corresponds to some possible output.
Let v, vs ∈ PrefixList(wA, C, ε) such that vs is a successor of v Let v be node at depth i and vs at
depth j and let s ∈ Σj−i+1

out to be string corresponding to path from v to vs. Then agr(v → vs, w) ,
agr(s, w[i, . . . , j]). For output Alice will do the following:

1. Construct PrefixList(wA, C, ε).

2. For every output node v ∈ PrefixList(wA, C, ε)

3. If exists successor of v, vs ∈ PrefixList(wA, C, ε) such that agr(v → vs, w) > T then output
v.

In other words Alice will output all answers which corresponds to communication and has at
least T places of agreement with w after output node.

Lemma 26. The protocol above solves the task of list decoding pointer jumping problem with list
size O(1

ε)

The rest of the section will prove this lemma. Let us denote by PLA = PrefixList(wA, C, ε)
and by PLB = PrefixList(wB, C, ε)

Claim 27. Output list size of the protocol is at most O(1
ε).

Proof. By definition of list tree codes agreement between C(PLA) and wA is less than ε′Ln. In
order for some node v to be in the output list we require that there will be an agreement of at least
T = ε′n, which are appears after we reached output node. Note that by definition output nodes
can not be successors of each other. Thus each different node from the output list corresponds to
a disjoint agreement of at least T between C(PLA) and wA. Thus the size of the output list can
not be larger than ε′Ln

T = L = O(1
ε).

Now the rest of the section we will prove that if there is at most 1 − ε error then the correct
answer is in the list.

15

Definition 28. Let P be the unique path from the root in X ∪ Y . We say that we advance in the
block i if at this block Alice or Bob adds a new edge from P to his transcript.

Definition 29. We say that the block i is good if:

1. At block i both Alice and Bob decoded correctly each other’s messages i.e., B[1,...i−1] ∈ Listi−1(wA, C, ε)
and A[1,...i−1] ∈ Listi−1(wB, C, ε).

2. The list size of both Alice and Bob at block i was less than Ent.

Claim 30. At every good block we advance.

Proof. By definition at the good block both Alice has transcript B of Bob and Bob has transcript
A of Alice. Moreover, the list in this block is small, and thus Alice will add last edge from E(B)∪X
and Bob will add E(A) ∪ Y . Let e be a first edge from P which does not appear in E(A) ∪ E(B).
Let us assume w.l.o.g. that e ∈ X. Then e is a last edge from E(B) ∪X. Thus we will advance in
this block.

Thus now we will need to prove that there are many good blocks. We first we will note that
there are not too many blocks which do not satisfy the second condition and then we will prove
that there are many blocks which do satisfy the first condition.

Claim 31. There are at most O(ε′n) blocks which do not satisfy the second condition of being good.

Proof. Note that by definition of PrefixList,
∑n

i=1 Listi(wA, C, ε) ≤ PrefixList(wA, C, ε). Since
at every bad block we have that Listi(wA, C, ε) ≥ Ent = L

ε′ (or same for Bob.) We have at most

(|PLA|+ |PLB|)
Ent

≤ 2Ln

Ent
= 2ε′n ≤ O(ε′n)

such blocks.

Lemma 32. Let cA = C(A), cB = C(B) be a messages that Alice (Bob) has sent and wA, wB is
what they received. Let us assume that:

n∑
i=1

max(d(wB[i], cA[i]), d(wA[i], cB[i])) ≤ (1− ε)n ,

then there are at least (ε− ε′)n blocks i at which first condition of being good is satisfied.

The lemma will follow for the following claim.

Claim 33. Let w ∈ D(Σ)n, c ∈ Σn d(w, c) < (1− β)n. Define the set

Sα(n) , {i ≤ n : δs(w[1, . . . , i], c[1, . . . , i]) ≤ 1− α}

Then |Sα(n)| ≥ (β − α)n.

16

Proof of Lemma 32. Recall that by definition of Listi we have that B[1, . . . i] in the Listi(wA, C, ε)
if

δs(wA[1, . . . i], cB[1, . . . i]) ≤ 1− ε′ ,

and the same for Bob. For each i let us define w[i], c[i] to be either wB[i], cA[i] or wA[i], cB[i]
such that d(w[i], c[i]) = max(d(wB[i], cA[i]), d(wA[i], cB[i])). Then we are given that d(w, c) ≤
(1 − ε)n. Then using Claim 33 we will get that there are at least (ε − ε′)n indexes i such that
δs(w[1,...,i], c[1,...,i]) ≤ 1 − ε′. For every such i the first condition holds since by definition of w, c it
holds that

δs(wA[1, . . . i], cB[1, . . . i]) ≤ δs(w[1, . . . , i], c[1, . . . , i]) ≤ 1− ε′,

And the same for Bob, i.e.,

δs(wB[1, . . . i], cA[1, . . . i]) ≤ δs(w[1, . . . , i], c[1, . . . , i]) ≤ 1− ε′

Proof of Claim 33. We will prove the claim by induction. For n = 1 the claim trivially follows
since in this case if β > α, d(w, c) < 1− β < 1− α.

If we know claim for all strings up-to n − 1 then we separate in two cases if n ∈ Sα then We
have that |Sα(n)| = |Sα(n− 1)|+ 1, by induction on w[1,...,n−1], c[1,...,n−1] we know that

d(w[1,...,n−1], c[1,...,n−1]) ≤ (1− β)n = (1− βn− 1

n− 1
)(n− 1)

Thus |Sα(n− 1)| ≥ βn− 1− α(n− 1) ≥ (β − α)n− 1. Therefore Sα(n) ≥ (β − α)n.
If n /∈ Sα then by definition there exists an n′ such that d(c[n′,...,n], w[n′,...n]) > (n−n′+1)(1−α)

thus
d(w[1,...n′−1], c[1,n′−1]) < (1− β)n− (n− n′ + 1)(1− α) =

= (n′ − 1)− (α(n′ − 1) + (β − α)n).

By induction on n′ − 1 we get that

|Sα(n)| ≥ |Sα(n′ − 1)| ≥ α(n′ − 1) + (β − α)n− α(n′ − 1) = (β − α)n

Be Claim 31 and Lemma 32 we get:

Corollary 34. If our protocol corrupted in at most (1−ε)n blocks then there are at least εn−O(ε′n)
good blocks.

Now we are ready to prove that v(X ∪ Y) is in the list.

Claim 35. v(X ∪ Y) is in the list.

Proof. Let P ⊂ PLA be a path in PrefixList that corresponds to the correct path(i.e. it is actually
the message that Bob has sent). Let e1 be a length of P . Then in order to prove that the correct
output is in the list we have to show there exists output node on P at some place e0 and that
agreement of P and wA between e0 and e1 is at least T .

17

If c1 <
1
2 then εn − T − ε′n > 0. Let i0 be a place such that we have agreement εn − T − ε′n

before i0 and agreement T + ε′n after i0 i.e.,

i0∑
i=1

max(d(wB[i], cA[i]), d(wA[i], cB[i])) = i0 − εn+ T + ε′n ,

There are at least εn− T − ε′n−O(ε′n) = T
c1
−O(T) good blocks before i0. By definition of i0

there is at least T + ε′n agreement after i0.
Thus by taking c1 small enough we will get at least T good blocks before i0. Since at every

good block we advance we will get to output node after T good blocks in particular output node
with correct answer is before i0.

Let us show that there exists i1 such that δs(wA[1, . . . i1], cB[1, . . . i1]) ≤ 1 − ε′ and such that
agreement before i1 is at least εn− ε′n. If δs(wA[1, . . . n], cB[1, . . . n]) ≤ 1− ε′ then take i1 = n and
we are done. Else by definition of δs there exists an i such that

d(wA[i, . . . n], cB[i, . . . n]) > (1− ε′)(n− i+ 1)

Let us take i1 = i2 − 1 where i2 6= 1 is a minimal value i satisfying equation above. We claim that
δs(wA[1, . . . i1], cB[1, . . . i1]) ≤ 1− ε′ else there exists i3 < i2 such that

d(wA[i3, . . . i2 − 1], cB[i3, . . . i2 − 1]) > (1− ε′)(i2 − i3)

Therefore

d(wA[i3, . . . n], cB[i3, . . . n]) =

d(wA[i3, . . . i2 − 1], cB[i3, . . . i2 − 1]) + d(wA[i2, . . . n], cB[i2, . . . n]) >

(1− ε′)(i2 − i3 + n− i2 + 1) = (1− ε′)(n− i3 + 1)

Contradiction to minimality of i2. Note also that by definition of i1 agreement from i1 to n is at
most ε′n. Thus agreement between i0 which is after output node and i1 point in PrefixList is at
least T . In other words agr(wA[i0, . . . i1], cB[i0, . . . , i1]) ≥ T and as just proved cA[1, . . . i1] is in
PrefixList(wA, C, ε). Thus the correct codeword should be in the list.

7 Constant Alphabet

The goal of this section is to prove the following theorem:

Theorem 36. For every ε, c > 0 there exists a protocol π is resilient to 1− ε-symmetric noise and
which solves the problem of list decoding of PJP (T, 2) with list of size O(1

ε). Moreover the protocol
π runs in O(Tε) rounds and in each round sends Oε(1) bits.

We start by observing that Theorem 3 is a corollary of this theorem.

Proof of Theorem 3. Since Pointer Jumping Problem is complete for communication complexity
any protocol π with CC(π) = T can be converted to Pointer Jumping Problem of depth 2T .
Then from Theorem 36 it follows that there exists a protocol π′ which solves list decoding Pointer
Jumping Problem and resilient to η < 1 noise with CC(π′) = Oη(T) and with list size O(1

1−η).

18

As in previous section define ε′ = c1ε for some small constant c1 to be defined later. Define also
L = 1

ε′ + 1.
In case of constant alphabet we will have Σin to be large enough to contain Ent = L

ε′ transcript

entries with link of size MLSize = L2

ε′2 = O(1
ε4

). Note that the size of Σin is a constant depending
on ε. By Theorem 20 there exist C : Σn

in → Σn
out which is (L, ε′) = (O(1

ε), O(ε)) list tree code with
log |Σout| = Oε(log |Σin|) = Oε(1).

Let n = T
ε′ = O(Tε) be the number of rounds of the protocol.

In case we will send the link of size larger than MLSize we will say that we send a long link.
In general it may happen that we will need to send a long link which will not fit in the space we
dedicated for it. In this case we will send it anyway at cost of not sending other edges we wanted
to send in this and maybe several next rounds (up to logn rounds). We are going to modify our
protocol a little bit in order to be able to prove that the sum of all links in our protocol is at most
the size of PrefixList < Ln. At last we going to conclude that there are at most O(ε′n) blocks at
which we are sending a long link and thus those links will not disturb our protocol too much.

Note that in list decoding regime adversary can corrupt up-to 1− ε fraction of communication
therefore we need to be very careful when we are sending a long links since most of the time we
will respond to an adversary communication. We are going to do the following adjustment to our
protocol. Note that in Section 6 every edge Alice (or Bob) sent was a response on the decoding
of some transcript which on his side corresponds to some node in PrefixList(wA, C, ε). In this
protocol we are going to remember for every edge in our transcript for which node in PrefixList
it corresponds and we will allow only to send edge e at node v ∈ PrefixList only in case that
grandparent of e was sent at predecessor of v. As we will see later this way we will prevent from Alice
to send too many long links. As we will see the sum of all links send in this way will approximately
the size of the PrefixList. It may happen that some node v has many successors which are far a
way who are trying to send link to his grandfather at node v. In order that the sum of links will
be not too large we need a cousin trick3.

Now we let us write pseudo-code for Alice’s communication on the i’th block. Alice will main-
tain her PrefixList tree PLA and for some nodes of the tree she will associate edges from her set
of edges X.

input: wA ∈ D(Σout)
i

1. Calculate Decode(wA) = Listi(wA, C, ε) = {B1, B2, . . . , Bk}

2. Update tree PLA from B1, . . . Bk .

3. For j = 1 . . .min{k,Ent} do:

(a) If Size(A) > (i+ 1) log Σin then Send C(A)[i+1] to Bob and continue to next round.

(b) Set v ∈ PLA to be node corresponding to Bj .

(c) Let u ∈ PLA be the last predecessor (i.e. closest to v) of v associated with some edge
egrandparent ∈ T .

(d) If E(Bj) contains exactly one son of egrandparent(let us call it efather) then:

i. Let eson ∈ X to be son of efather.

3Recall that we send a link to the closest either grandfather or cousin

19

ii. Add(A, eson).

iii. Associate eson with v.

4. End− round(A, i+ 1)

5. Send C(A)[i+ 1] to Bob and continue to next round.

Also as with case of large alphabet we will run the protocol n = T
ε′ = O(nε) rounds. Output will

be the same

1. Construct PrefixList(wA, C, ε).

2. For every output node v ∈ PrefixList(wA, C, ε)

3. If exists successor of v, vs ∈ PrefixList(wA, C, ε) such that agr(v → vs, w) > T then output
v.

8 Analysis

The goal of this section is to prove

Theorem 37. The protocol from Section 7 is resilient (1 − ε)-symmetric noise and it solves the
task of list decoding Pointer Jumping Problem of depth T with list size O(1

ε). The communication
complexity of this protocol is Oε(T).

The analysis in this section is similar to the one we had for large alphabet. The bound on the
list size is exactly the same. If some node v from PLA or PLB has an edge associated to it we will
say that we speak at node v. We will have here several differences. First we say that we advance
at block i if Alice or Bob spoke at node associated with a correct transcript. Let PA ⊂ PLA
and PB ⊂ PLB be the paths from the root which corresponds to transcripts of Bob and Alice,
respectively.

Remark 38. Note that we have here three trees T , PLA, PLB as well three ”correct” paths P ⊂
T , PA ⊂ PLA, PB ⊂ PLB.

Then we are saying that we advance at block i if PA[i] or PB[i] is associated with an edge in
other words its mean that at round i either Alice or Bob got the correct transcript in his list and
send an edge as a respond to this transcript. Let Xi be a set of edges associated with PA[1, . . . i]
and Yi be the set of edges associated with PB[1, . . . i]. As we will see Xi∪Yi is a rooted sub-path of
P thus if we advanced T times then we will reach the end of P thus if we will advance T times the
correct codeword will be in the list. The following lemma is essentially says that if we will look on
the ”correct paths” of Alice and Bob then we will see that at this path the correct communication.

Lemma 39. The set Xi ∪ Yi is a rooted sub-path of P .

Proof. Informally the claim follows since Alice can send a new edge at node v only after she will
receive a respond from the last edge she sent. Now let us try to write it more formally. Let us
prove this by induction. At round 0 the statement trivially follows. If at round i nobody spoke at
nodes PA[i], PB[i] then Xi = Xi−1, Yi = Yi−1 and again it trivially follows. If at block i Alice spoke
at PA[i](or the same proof for Bob PB[i]), let j < i be last time that Alice spoke at PA[j] let ej ∈ T

20

be the corresponding edge associated with this node. Then according to our protocol ej will be set
to be egrandparent. Note that by definition of PA[i] it corresponds to the correct transcript. Thus
E(PA[i]) ⊂ Y therefore efather ∈ Y . By induction we assume that ej is the last node of Xj ∪Yj and
it is on the path P . Therefore efather next node on P and eson is the node after it.

Note that if the following three conditions are satisfied, we advance at block i.

1. At block i both Alice and Bob decoded correctly each other’s messages i.e., B[1, . . . i − 1] ∈
Listi−1(wA, C, ε) and A[1, . . . i− 1] ∈ Listi−1(wB, C, ε).

2. The list size at block i was less than Ent.

3. We did not send long link at block i and we did not send long link at previous blocks which
we have not finished sending by block i.

From Lemma 32 it follows that there are at least εn−O(ε′n) blocks that satisfy the first condition.
As in case with large alphabet we know that there are at most O(ε′n) blocks which do not satisfy
second condition. All that is left for us is to bound the number of blocks that do not satisfy the
third condition.

The following lemma takes care of the third issue.

Lemma 40. The number of blocks at which long links where being sent is at most O(ε′n).

We will dedicate the rest of the section to proving this lemma.
Every edge that Alice has sent is associated with some node from PLA. For every node v ∈ PLA

for which we associated an edge we let link(v) be a offset in transcript of this edge.

Definition 41. Let us assume that the i-th edge ei in the transcript was sent at node v and that
it was sent at round j. Suppose ei in the transcript has a link to ei−t. Let us assume that ei−t was
sent at round k; then we define length of the link by j − k. We denote it by |link(v)|.

Note that the length of the link is not much different than the link itself.

Claim 42. link(v) ≤ Ent · (|link(v)|+ 1).

We denote by PLA(v) to be a subtree of PLA rooted at v.

Claim 43. Let v ∈ PLA be a node at which we have sent an edge then∑
u∈PLA(v)\{v}

|link(u)| ≤ |PLA(v)|.

Proof. We are going to prove the lemma by induction. For leafs it is trivially true. Denote by

S(v) =
∑

u∈PLA(v)\{v}

|link(u)|.

Next assume that at node v we have sent an edge e ∈ M . Let us consider all nodes in PLA(v):
u1, u2, . . . uk ∈ PLA(v) at which we have sent grandchildren of e. First note that according to

21

our protocol on the nodes between v and ui we did not sent any edges. Therefore using this and
induction assumption we get

S(v) =

k∑
i=1

|link(ui)|+
k∑
i=1

S(ui) =

k∑
i=1

|link(ui)|+
k∑
i=1

|PLA(ui)|.

Let us also assume ui are sorted according the the order they appear in the transcript. Then u1

will send a link to v (or maybe somebody later, and set that this is his grandparent), u2 will send
a link to u1, . . . uk will send the link to uk−1 (or maybe somebody later) and all these nodes have
links to their cousins. Thus

k∑
i=1

|link(ui)| ≤ distPLA(v, uk).

Therefore

S(v) ≤
k∑
i=1

|PLA(ui)|+ distPLA(v, uk).

Note that since none of ui’s are predecessor of another uj PLA(ui) are disjoint subtrees of PLA(v).
Also note that path from v to any ui does not belong to any of these trees thus we get that

k∑
i=1

|PLA(ui)|+ distPLA(v, uk) ≤ |PLA(v)| .

And the claim follows.

Now we are ready to prove lemma Lemma 40.

Proof of Lemma 40. Recall that we assume that every link l takes 2 log l+ 2 space of storage. The
number of blocks at which long link of size l > MLSize is sent is at most log l+2

logMLSize+2 < l
MLSize+3.

From Claims 42, 43 it follows that:∑
u∈PLA

link(u) ≤ Ent · |PLA| ≤
L2

ε′
n .

And the same for PLB. Therefore the number of long links is bounded by: LL = 2L2

ε′MLSizen =
O(ε′n).

The number of blocks at which long links where sent is bounded by∑
u∈PLA

link(u)

MLSize
+

∑
u∈PLB ,

link(u)

MLSize
+ 3LL ≤ O(

L2

ε′MLSize
n) +O(ε′n) = O(ε′n)

We will use the following theorem for unique decoding:

22

Theorem 44. If some integer i0 ≤ n it holds that

i0∑
i=1

min(agr(wB[i], cA[i]), agr(wA[i], cB[i])) ≥ T +O(ε′n) = O(εn),

Then there exists output node on both paths PA, PB
4 and this node is located before level i0.

Proof. To prove this theorem it is enough to show that there are at least T rounds before time i0
at which we advance. This follows from Lemma 32, Lemma 40 and Claim 31.

We are going to use the following corollary of this theorem:

Corollary 45. If output communication point on PA or PB is located after s then

d(wB[1, . . . s], cA[1, . . . , s]) + d(wA[1, . . . , s], cB[1, . . . , s]) ≥ s−O(εn) .

Claim 46. v(X ∪ Y) is in the list.

Proof. The proof here is almost the same as in Claim 35. First find i0 such that we have agreement
εn− T − ε′n before i0 and agreement T + ε′n after i0. From Theorem 44 it holds that by taking c0

small enough we will reach output communication node before i0. Next proceed the proof exactly
as in Claim 35.

Proof of Theorem 3. We are already know that the protocol from Section 7 solves correctly the
task of list decoding pointer jumping problem. Since pointer jumping problem is complete for
communication protocols we In order to prove the theorem we will execute the protocol above.
Note that number of rounds is Oε(T). Also note that Σin is of constant size (depending on ε, but
not on T), thus Σout by Theorem 20 is also of constant size.

9 Optimality of Our Results for List Decoding

In this section we are going to show that for any α, β with α + β ≥ 1 there exists protocol such
that any list decoding protocol resilient to (α, β) noise with linear communication complexity must
have exponential list size.

We will show this by showing that if one can perform some task with (α, β) noise than one can
perform the same noiseless task in 3 rounds.

Theorem 47. Let α, β ∈ [0, 1] such that α + β ≥ 1. Let us assume that there exists a protocol
performing task T which is resilient to (α, β) noise. Then there exists a 3-round noiseless protocol
with the same communication complexity performing task T .

Proof. Let us assume that during the protocol Alice sent nA messages and Bob sent nB messages.
Let us also define A(i), B(i) be number of messages sent by Alice and by Bob before round i.

Consider f(i) = A(i)
nA
− B(i)

nB
, let imax be a point at which this function is maximal. If nA −

A(imax) ≤ αnA and B(imax) ≤ βnB then Eve can destroy communication of Bob before imax and
communication of Alice after imax and thus we will get protocol equivalent to a two round protocol

4Recall that this are the “correct” paths

23

where Alice send all her information in rounds 1, . . . , imax and Bob sends all his information in
rounds imax, . . . , n.

Now assume that B(imax) > βnB. Let i0 be a point such that B(i0) = B(imax)− βnB. In this
case Eve will corrupt the communication of Alice in the interval [0, . . . i0], the communication of
Bob in the interval [i0, . . . , imax], and the communication of Alice in the interval [imax, . . . , nA+nB].
This way we will obtain protocol which is equivalent to a 3 round protocol. By definition of i0 in
the interval [i0, imax] there are exactly β fraction of Bob’s communication. By definition of imax
we have that

A(imax)

nA
− B(imax)

nB
≥ A(i0)

nA
− B(i0)

nB
.

Rearranging this inequality we will get

A(imax)−A(i0)

nA
≥ B(imax)−B(i0)

nB
= β

Thus Alice communication in the intervals everywhere except in [i0, imax] is at most 1− β ≤ α.
Now let us assume that nA − A(imax) > αnA. Let i1 be such that A(i1)− A(imax) = αnA. In

this case we will destroy communication of Alice in the interval [imax, i1] and the communication
of Bob everywhere else. In this case from definition of imax we will get

α =
A(i1)−A(imax)

nA
≤ B(i1)−B(imax)

nB

Thus communication of Bob in the interval [imax, i1] is at least α therefore his communication on
other two intervals will be at most 1− α ≤ β.

Now we are ready to prove Theorem 2.

Theorem 48 (Theorem 2). For every α, β such that α+β ≥ 1. Let π be a protocol which is resilient
to (α, β) adversarial noise and which solves list decoding problem of Pointer Jumping Problem of
depth T with list of size L = exp(o(T)). Then CC(π) = exp(Ω(T)).

Proof. If protocol π is resilient to (α, β) noise with α + β ≥ 1 then by Theorem 47 we know
that there exists a three round protocol which solves list decoding of Pointer Jumping Problem.
Consider a protocol which at the end outputs a random codeword from the list. Then this protocol
solves the Pointer Jumping Problem with probability at least 1

L . From Corollary 9 it follows that
this protocol must have exp(Ω(T)) communication complexity.

24

Part II

Unique Decoding

In this part we are going to consider the following question: assume that Alice and Bob want to
perform an interactive communication protocol π and assume that Eve can adversary corrupt up-to
α fraction of messages sent by Alice and β fraction of coordinates sent by Bob. We want to find
a region at which we still can perform interactive communication in the unique decoding regime.
The answer to this question is not obvious and quite surprising.

10 Unique Decoding up-to α + 2β < 1.

In this section we are going to show how to perform unique decoding up-to α + 2β < 1 and
2α + β < 1. Although, as we will see from the next sections, this is not optimal. The algorithm
described here gives essential ideas for the next sections.

Let us assume that β < 1
2(1 − α) we are going to show that in this case Alice will output the

correct answer. Let ε = 1− 2β − α. Note that ε > 0. Let ε′ = cε for some small constant c to
be defined later. The protocol is very simple we will perform list decoding protocol from previous
section which is resilient to (1− ε′) noise, but instead of outputting a list at the end we will output
the closest answer i.e., we will find coutput ∈ C such that

d(coutput, wA) = min{d(c, wA) : c ∈ C} .

Here C is the set of all codewords. We will calculate E(coutput) and output v(X ∪ E(coutput)).
Now let us show why this will be the correct answer. First we will need the following lemma

about (ε′, 1
ε′ + 1) list decodable tree codes:

Lemma 49. Let C be (ε′, 1
ε′ + 1) list decodable tree code . For every x, y ∈ Σn

in let s be first index
where x[s] 6= y[s]. Then d(C(x), C(y)) ≥ n− s− 2ε′n.

Proof. Let us take w to be C(x) on the first n − ε′ locations and to be C(y) at the last ε′n
locations. Then δs(w,C(y)) ≤ 1− ε′ and also δs(w[1, . . . n− ε′n], C(x)[1, . . . , n− ε′n]) = 0 ≤ 1− ε′.
By definition of list tree code we know that agreement between w and PrefixList is at most ε′Ln =
(1 + ε′)n. Note that agreement between w and C(x) on the first n− ε′n locations is n− ε′n. Note
also that starting level s, C(x) and C(y) represent different branches in the PrefixList. Agreement
between w and C(y) starting level s is at least the agreement between C(x)[i,...,n] and C(y)[s, . . . , n].
Thus

n− ε′n+ agr(C(y)[s, . . . , n], C(x)[s, . . . , n]) ≤ ε′Ln = n+ ε′n

Thus agr(C(y)[s, . . . , n], C(x)[s, . . . , n]) ≤ 2ε′n

Let us assume by contradiction that protocol outputs wrong answer. Let us assume that Alice
outputs the wrong answer. Let cB ∈ Σn

out be a codeword which was sent by Bob. Let us assume
that wA was the codeword received by Alice. Assume assume that coutput is the closest codeword
to wA. There are two important points on cB one is a “split” point s to be a first place where
coutput[s] 6= cB[s] and an other is eend output communication point (we will show soon that exists
one on the ”correct” path cB). Observe that if output node is located before split point s then
we output the correct answer. Thus by contradiction assumption s < eend. The proof now follows

25

from Lemma 49 which will give lower bounds on s and from Corollary 45 which will give upper
bounds on eend and thus also on s.

Let us define B1 = d(cA[1, . . . s], wB[1, . . . s]) and B2 = d(cA[s + 1, . . . n], wB[s + 1, . . . n]) note
that B1 +B2 ≤ βn. From the Lemma 49 we know that d(coutput, cB) ≥ n− s−O(ε′n); thus, since
wA is closer to coutput than to cB we have that the number of errors in Bob’s messages in last n− s
rounds was at least n−s−O(ε′n)

2 . Thus we have that

B2 ≥
n− s−O(ε′n)

2

Rewriting thus we get
s ≥ n− 2B2 −O(ε′n) (2)

On other hand from Corollary 45 it follows that

B1 + αn ≥ d(wB[1, . . . s], cA[1, . . . , s]) + d(wA[1, . . . , s], cB[1, . . . , s]) ≥ s−O(ε′n) .

Thus we got that
B1 + αn ≥ n− 2B2 −O(ε′n)

Rewrite this and we will get that

2βn+ αn ≥ B1 + 2B2 + αn ≥ n−O(ε′n) .

Thus we have got that 2β+α > 1−O(ε′) thus by taking c small enough we will get that 2β+α > 1−ε
contradiction to the definition of ε.

11 Repetition Power of the Protocol

In order to construct a protocol which can handle optimal fraction of errors we need to define
the repetition power of a protocol. In the case of one way communication repetition power k just
means that we will repeat each symbol k times. In case of interactive protocol with n rounds. Let
a : [n]→ N; we will do the same: we will just send the symbol of the ith round a(i) times. Unlike
one-way communication here we need to explain how Alice (Bob) acts when at round i she receives
a(i − 1) symbols. Since these are all these are soft symbols (i.e., elements from D(Σ)) Alice will
just calculate the average of all received distributions. It will be more convenient for us to give a
definition with a(i), b(i) where a(i) is the number of symbols which Alice send at her i’th round
and b(i) the number of symbols Bob sent at his i-th round.

Let π be a protocol with 2n alternating rounds of Alice and Bob over alphabet Σout. Let as
assume that Alice talks at rounds 2i − 1 and Bob talks at rounds 2i for i ∈ [n]. At every round i
of the protocol π Alice or Bob receives symbol from D(Σout) and outputs symbol in Σout.

Definition 50. Let a : [n] → N, b : [n] → N be any functions. The repetition power πa,b of the
protocol π. Is the following protocol: In the protocol πa,b Alice will receive at round 2i− 1 b(i− 1)

symbols w1, . . . wb(i−1) ∈ D(Σout) calculate average w = 1
b(i−1)

∑b(i−1)
i=1 wi. Run protocol π with input

symbol w. Get output cA[i] and send a(i) copies of cA[i] to Bob. Bob at round 2i will receive a(i)
symbols from D(Σout) run π on their average and sent b(i) copies of output of the protocol π.

First note the simple connection between communication costs of π and πa,b

26

Lemma 51. Let π be a protocol with 2n alternating rounds of Alice and Bob over alphabet Σout.
Then communication cost of πa,b is

∑n
i=1 a(i) + b(i).

Proof. Follows from the definition.

The following lemma makes a connection between amount of noise in protocol π and protocol
πa,b.

Lemma 52. Let us assume that c′A, c
′
B what Alice and Bob sent in the protocol πa,b. Let w′A, w

′
B

is what they have received in protocol πa,b. Let cA, cB, wA, wB be a corresponding values on which
the protocol π was simulated the the following holds

d(c′A, w
′
B) =

n∑
i=1

a(i)d(cA[i], wB[i]) ,

And the same for Bob i.e.,

d(c′B, w
′
A) =

n∑
i=1

b(i)d(cB[i], wA[i]) .

This lemma essentially shows that using repetition we can give different weight to the symbols
of our protocol.

Proof. Let us consider c′A, w
′
B as matrix vectors with c′A[i, j] for 1 ≤ i ≤ n, 1 ≤ j ≤ a(i). Then

c′A[i, j] = cA[i] for every j. It also holds that wB[i] = 1
a(i)

∑a(i)
j=1w

′
B[i, j](note here we are summing

up probability distributions). Next note that for every σ ∈ Σ and k distributions σ1, . . . , σk it holds
that d(σ, 1

k

∑
σi) = 1

k

∑
d(σ, σi). Therefore for every i it holds that

a(i)∑
j=1

d(c′A[i, j], w′B[i, j]) =

a(i)∑
j=1

d(cA[i], w′B[i, j]) = a(i)d(cA[i],
1

a(i)

a(i)∑
j=1

w′B[i, j]) = a(i)d(cA[i], wB[i]) .

By summing over all i we will get the first equation of the theorem. The proof of the second
equation is the same when Alice is replaced by Bob.

12 Decoding of One Sided Protocols

In this section we will consider an easier task, we will require that only Alice will output the correct
answer. Recall the analysis of the algorithm from the Section 10. Note that essentially it means
that in order for Eve to corrupt output of Alice she needs to pick some i ∈ [1, n] and corrupt at
least α1, β1 fraction of communication of Alice and Bob before i, such that α1 + β1 > 1 − O(ε)
and at n − i last rounds Eve needs to corrupt 1/2 − O(ε) fraction of the communication sent by
Bob. In the scenario when Alice and Bob speak at the same speed it always optimal for Eve to
corrupt Alice’s communication before i and half of the communication of Bob after i. Now let us
change protocol such that at the beginning Alice speaks more and at the end Bob speaks more. In
this case Eve will need spent more error to corrupt Alice’s communication at the beginning and
more error to corrupt Bob’s communication at the end. Essentially we are going to carefully choose
functions a, b and our protocol in this section will be πa,b where π is the list decodable protocol

27

from earlier in the paper. Let us consider the following example: let α = 1
3 . Let us now divide our

communication into three parts where in each part we will have n
3 of blocks of communication. Let

us consider the following functions a(i) = 1 for every i ∈ n, b(i) = 1 for i = 1 . . . n3 , b(i) = 2 for
i = n

3 , . . .
2n
3 and b(i) = 4 for i = 2n

3 , . . . , n. Then in the first part of the communication block of
communication will be one Bob’s and one Alice’s message. In the second part in each block Bob
will send twice his (the same) message and Alice will send one message; in the last part in each
block Bob will send his message four times and Alice will send one message. So in total Alice will
send n messages and Bob will send 7n messages.

In this scenario suppose we want to pick some i and corrupt almost all (up to O(εn)) blocks
before i and half of the messages of Bob in rounds after i. If we want to corrupt the minimum
amount of communication of Bob, we will corrupt his messages in the first i− n

3 rounds then Alice’s
messages in next n

3 rounds and half of Bob’s messages in the last n − i rounds. It is easy to see
that in this case we will corrupt 3n Bob’s messages. Thus we can decode up-to β < 3

7 .
Now let us analyze such protocols for different functions a(i). For every integrable function

f : [0, 1] → R+ with
∫ 1

0 f(t)dt = 1. The function f(t) will denote the number of messages Bob
sends at round tn per every Alice’s message. Let us now define for every f :

L1(α, f) = inf{
∫ s

0
f(t)g(t)dt+

1

2

∫ 1

s
f(t)dt : s ∈ [α, 1], 0 ≤ g(t) ≤ 1,

∫ s

0
g(t)dt ≥ s− α}

Remark 53. We want to mention that once we have picked s, the functions g which minimizes
an expression above is 1 on set S, µ(S) = s− α. Here S is the set of form {x < s : f(x) < t} ∪At,
where At ⊂ {x : f(x) = t} for some t.

That is, s in the expression above is exactly where correct and non correct codewords are split
and g(t) corresponds to the fraction of communication of Bob corrupted at round tn for t ≤ s.

Now let us define non explicitly the function which will be the boundary till which we can
perform one sided unique decoding. In the next subsection we will give an explicit formula to this
function. Let us set

L1(α) = sup
f

(L1(α, f) :

∫ 1

0
f(t)dt = 1, f(t) ≥ 0)

Thus L1(α) is the maximal amount of error Bob can handle when Alice has α error and we want
Alice to output the correct answer.

The following theorem says that we can to decode with one sided answer if β < L1(α) and that
if β > L1(α) we cannot decode. We do not know what happens on the line β = L1(α).

Theorem 54. For every (α, β) such that β < L1(α). There exists a protocol which is resilient to
(α, β) noise and solves the one way pointer jumping problem. The protocol uses Oα,β(T) commu-
nication.

Proof. Let us set f be a function such that L1(α) = L1(α, f) (the next section shows such an f
actually exists). Let ε = O(L1(α)− β) be a small constant.

For any given function f(t) and for any integer n let us define a function

b(i) , bn
ε

∫ (i+1)/n

i/n
f(t)dtc .

28

Let a(i) = 1
ε for every i. Let π be a list decoding protocol from previous section with code C which

is (ε, 1
ε +1) list decodable and with n rounds. Our protocol will be πa,b. Let us define c′A, c

′
B, w

′
A, w

′
B

to be messages sent by Alice and Bob and messages received by them. Let cA, cB, wA, wB be a
corresponding messages on which list decoding protocol π was simulated.

We will see in the next section that supremum of L1 is achieved at the functions with sup f(x) <
∞, inf f(x) > 0. Let us assume that ε < inf f(x). Let R = sup f(x). Then every round Bob send
at least one and at most (constant) R messages. Note also that from Lemma 51 it follows that in
protocol πa,b Alice sends n

ε messages and Bob sends n
ε − t where t < n messages. For the sake of

simplicity let us assume that Bob sends n
ε messages. (say by sending dummy messages at the end.)

Let coutput be the closest codeword to wA, where here we give to symbol i weight b(i) i.e.,
coutput ∈ C we choose minimizes the expression

n∑
i=1

b(i)d(c[i], wA[i]) .

Let us assume that first place where cB and coutput are different is s · n. Let us assume by contra-
diction that Alice outputs a wrong answer then output node is located after s · n.

Then by Lemma 49 we know that d(cB[s · n, . . . , n], coutput[s · n, . . . , n]) ≥ (n − s · n) − O(εn).
Therefore

n∑
i=s·n

b(i)d(coutput[i], cB[i]) ≥
n∑

i=s·n
b(i)−R ·O(εn) =

n∑
i=s·n

b(i)−O(εn)

Therefore

n∑
i=s·n

b(i)d(wA[i], cB[i]) ≥ 1

2

n∑
i=s·n

b(i)−O(εn) ≥ n

ε

1

2

∫ 1

s
f(t)dt−O(εn) .

On other hand from Corollary 45 it follows that

d(wB[1, . . . s · n], cA[1, . . . , s · n]) + d(wA[1, . . . , s · n], cB[1, . . . , s · n]) ≥ s · n−O(ε′n) . (3)

Note that since a(i) = 1
ε is constant from Lemma 52 it follows that

d(wB[1, . . . , s · n], cA[1, . . . , s · n]) = εd(w′B[1, . . . ,
s · n
ε

], c′A[1, . . . ,
s · n
ε

]) . (4)

We are assuming that at most α fraction of Alice’s communication was corrupted thus

d(w′B[1, . . . ,
s · n
ε

], c′A[1, . . . ,
s · n
ε

]) ≤ αn
ε
. (5)

Therefore from Equations (3), (4), (5) it follows that,

d(wA[1, . . . , s · n], cB[1, . . . , s · n]) ≥ s · n− αn−O(εn) . (6)

Let s′ · n =
∑s·n

i=1 b(i) then from Lemma 52 it follows that

d(w′A[1, . . . , s′ · n], c′B[1, . . . , s′ · n]) =
s·n∑
i=1

b(i)d(wA[i], cB[i]).

29

Let us define g(t) = d(wA[btnc], cB[btnc]). Then we have

d(w′A[1, . . . , s′ · n], c′B[1, . . . , s′ · n]) ≥ n

ε
(

∫ s

0
g(t)f(t)dt−O(ε)) .

Thus we have that

d(w′A, c
′
B) =

n∑
i=1

b(i)d(wA[i], cB[i]) ≥ n

ε

(∫ s

0
g(t)f(t)dt+

1

2

∫ 1

s
f(t)dt−O(ε)

)
.

Note that from Equation (6) it follows that∫ s

0
g(t) ≥ s− α−O(ε) .

Therefore since f is bounded it follows that:

d(w′A, c
′
B) ≥ L1(α, f)−O(ε) .

By taking ε small enough we will get a contradiction.

We also claim that the opposite direction is true:

Theorem 55. For every α, β with β > L1(α), if a protocol π is resilient to (α, β)-noise, then there
exists a constant O(1

β−L1(α)) rounds protocol with the same communication complexity in which
Alice solves the same task.

Proof. Let us consider the protocol π. Assume that during the protocol Alice sent nA symbols
and Bob sent nB symbols. Let ε > 0 be a small constant to be chosen later. Let T (1) be
the time when Alice sent her εnA’s symbol, and T (i) be the time when Alice sent her iεnA’s
symbol. Let n1 = T (1) − εnA be number of messages Bob sent by time Alice send εnA of her
messages. Let ni = T (i) − inε be number of messages Bob sent in the time Alice sent iεnA of
her communication. Let us set f(x) to be equal ni−ni−1

εnB
in the interval [(i − 1)ε, iε]. Note that∫ 1

0 f(t)dt = 1 in other words f(x) is an approximation of the rate at which Bob speaks. Thus by
definition of L1(α) there exists s ∈ [0, 1] and 0 ≤ g(t) ≤ 1 such that

∫ s
0 g(t) ≥ s − α such that∫ s

0 f(t)g(t)dt+ 1
2

∫ 1
s f(t)dt ≤ L1(α) < β.

Let t = b s−αε c Note that from Remark 53 it follows that we can assume w.l.o.g. that g = 1S
where S is union of t of intervals of form [(i− 1)ε, iε] plus a part of such an interval. Let us define

S = ∪tk=1[(ik − 1)ε, ikε] ∪ J ⊂ ∪t+1
k=1[(ik − 1)ε, ikε] ,

where J ⊂ [(it+1 − 1)ε, it+1ε]. The minimum value is achieved when we take the intervals with
minimal values of f(x). Since

∫ 1
0 f(t)dt = 1 value of f on [(it+1− 1)ε, it+1ε] is at most 1

α−ε . Let us

define S′ = ∪t+1
k=1[(ik − 1)ε, ikε]. Then for small enough ε it holds that∫ s

0
f(t)1S′dt+

1

2

∫ 1

s
f(t)dt ≤

∫ s

0
f(t)1Sdt+

1

2

∫ 1

s
f(t)dt+O(ε) ≤ L1(α) +O(ε) < β

30

Let us now assume that Eve has erased communication of Bob on the intervals [T (ik−1), . . . , T (ik)]
(from the representation of the set S above), and the communication of Alice in all the rest intervals
before s. Note that since µ(S′) ≥ s − α we have erased at most α fraction of the communication
of Alice and at exactly

∫ s
0 f(t)1S′ fraction of communication of Bob. Note that after time s Bob

communicates
∫ 1
s f(t) communication thus after time s Eve can corrupt at least 1

2 of communication

of Bob, since β −
∫ s

0 f(t)1S′dt ≥ 1
2

∫ 1
s f(t)dt

We claim that by time s Alice knows the answer. Therefore we are done since then we have
2
ε round protocol in which Alice solves the task. Assume by contradiction that there exists two
inputs to Bob which are consistent with what Alice has saw by time s i.e., there exists two values
y1, y2 such that for every non corrupted round j it holds that:

πB(x, y1)(wB[1, . . . , s · n])[j] = πB(x, y2)(wB[1, . . . , s · n])[j]

Where wB is the corrupted codeword sent by Alice. Since Eve can corrupt 1
2 of the communication

after round s, Eve will construct a soft codeword which with probability 1
2 takes value sent by

πB(x, y1) and with probability 1
2 takes value sent by πB(x, y2). Therefore we got codeword wA

which Alice could receive for both Bob’s inputs y1, y2. Therefore, since we assume that Alice
output on x, y1 is different from output on input x, y2, on one of these inputs Alice outputs the
wrong answer.

13 Calculating the functions L1

In this section for every α we want to calculate supf L1(α, f). At almost no more cost we can
calculate more general function which we will need in the next section. For α < γ ≤ 1 let us define

L1(α, γ, C) = {supL1(α, f) :

∫ γ

0
f(t)dt ≥ C,

∫ 1

0
f(t)dt = 1}.

Note that L1(α) = L1(α, 1, 1).

Theorem 56. Let us assume that function f satisfies the following properties: Let F (s) =
∫ s

0 f(t)dt.

1. f ≥ 0, F (1) = 1.

2. F (γ) = C

3. Denote by l = b γαc. The function f is constant on the interval [(l − 1)α, lα].

4. The function T (s) = 1
2(1− F (s)) + F (s− α) is constant in the interval [α, γ] and L1(α, f) =

T (α).

Then L1(α, β, C) = L1(α, f).

Proof. Let us now assume by contradiction that we have a function h with L1(α, h) ≥ L1(α, f) and∫ γ
0 h(t)dt ≥ C. Define H(s) =

∫ s
0 h(t)dt. Then for every s ∈ [α, γ] let us take g = 1[0,s−α] in the

definition of the L1. Then we will get that

1

2
(1−H(s)) +H(s− α) ≥ L1(α, f) =

1

2
(1− F (s)) + F (s− α) = T (α). (7)

31

Claim 57. For every i = 1, . . . , l it holds that H(iα) − H((i − 1)α) ≤ F (iα) − F ((i − 1)α) in
particular H(iα) ≤ F (iα).

Proof. Let us prove this by induction on i. For i = 1 this follows from Equation (7) for s = α.
For i we will get it from Equation (7) for s = iα and induction assumption on i− 1.

1

2
(1−H(iα)) +H((i− 1)α) ≥ 1

2
(1− F (iα)) + F ((i− 1)α)

Rewriting the above inequality we get:

H(iα)−H((i− 1)α) ≤ F (iα)− F ((i− 1)α)− (F ((i− 1)α)−H((i− 1)α)) .

Since by induction we assume that F ((i− 1)α)−H((i− 1)α) ≥ 0 the claim follows.

On other hand by using Equation (7) at s = γ we get that from second property of the theorem
it follows that:

T (α) =
1

2
(1− F (γ)) + F (γ − α) =

1− C
2

+ F (γ − α)

Using third property of the theorem we will get that F (γ−α) = F ((l−1)α)+{ γα}(F (lα)−F ((l−1)α))
thus

T (α) =
1− C

2
+ F ((l − 1)α) +

{γ
α

}
(F (lα)− F ((l − 1)α)) . (8)

Now let us take in the definition of L1 value of s = γ and g(x) to be 1 on [0, (l − 1)α] and
{ γ
α

}
on

[(l − 1), α, lα]. Note that
∫ γ

0 g = α(l − 1) + α
{ γ
α

}
= (l +

{ γ
α

}
)α− α = γ − α. Using this g we will

get an equation

1

2
(1−H(γ)) +H((l − 1)α) +

{γ
α

}
(H(lα)−H((l − 1)α)) ≥ T (α)

Since H(γ) ≥ C it follows that

H((l − 1)α) +
{γ
α

}
(H(lα)−H((l − 1)α)) ≥ T (α)− 1− C

2
.

From Equation 8 it follows that

H((l − 1)α) +
{γ
α

}
(H(lα)−H((l − 1)α)) ≥ F ((l − 1)α) +

{γ
α

}
(F (lα)− F ((l − 1)α)) .

Therefore from Claim 57 and above equation it follows that an equality should hold. Therefore:

L1(α, g) ≤ 1
2(1−H(γ)) +H((l − 1)α) +

{ γ
α

}
(H(lα)−H((l − 1)α)) =

= 1
2(1−H(γ))− 1−C

2 + T (α) ≤ T (α) = L1(α, f) .

Thus L1(α, f) = L1(α, h).

Now in order to calculate L1(α) all we need is to construct the functions that admits all four
conditions of Theorem 56 with C = γ = 1.

Let us define functions fα as follows: f̃α(x) = 2i in the interval (iα,min{(i + 1)α, 1}]. Define

Nα =
∫ 1

0 f̃α(t)dt. Define fα(x) = f̃α
Nα

. Note that fα has a property that fα(x − α) = 1
2f(x) for

x ∈ [α, 1]. Let us define Fα(s) =
∫ s

0 fα(t)dt. Properties 1-3 follow immediately. Property 4 follows
from the following lemma:

32

Claim 58. The function:

T (s) =
1

2
(1− Fα(s)) + Fα(s− α)

is constant.

Proof. Let us differentiate T (s).

T ′(s) = fα(s− α)− 1

2
fα(s)

But this is zero since fα(s− α) = 2f(s).

Thus we have that for every s it holds that Cα = L1(α, fα) = 1
2(1−Fα(s))+Fα(s−α) for every

s. We can now easily calculate Cα.

Lemma 59.

Cα = L1(α, fα) =
1

2

(
1− 1

(1 + { 1
α})2

b 1
α
c − 1

)
.

Proof. We can pick s = α. In this case T (s) = 1
2(1− Fα(α)) = 1

2

(
1− 1

(1+{ 1
α
})2b

1
α c−1

)
.

Therefore we have proved the following lemma.

Lemma 60. For α = 1
k for integer k we have L1(α) = 1

2(1 − 1
2k−1

). For all other α it is

1
2

(
1− 1

(1+{ 1
α
})2b

1
α c−1

)
.

14 Two sided communication

In this section we would like to answer the question in what is the maximal amount of error we
can handle in case we want that both Alice and Bob will return the correct answer. As in previous
section we can define the function f(t) of the rate at which Bob speaks with respect to Alice’s rate.
Let us define

L2(α, f) = inf

{∫ s

0
g(t)f(t)dt : 0 ≤ g(t) ≤ 1,

∫ s

0
g(t)dt ≥ s− 2α+ 1

2
, s ∈ [1− 2α, 1]

}
.

Let us define

L2(α) = sup
f
{min(L1(α, f), L2(α, f)) :

∫ 1

0
f(t)dt = 1, f(t) ≥ 0} .

The following theorems have almost the same proof as Theorems 54 and 55.

Theorem 61. For every (α, β) such that β < L2(α). There exists a protocol π which is resilient to
(α, β) noise and which solves pointer jumping problem. The protocol π uses Oα,β(T) communication.

33

Proof. Let us set f to be a function such that β < L1(α, f) and β < L2(α, f). Let ε = O(L2(α)−β)
be a small constant. Define the function

b(i) ,

⌊
n

ε

∫ (i+1)/n

i/n
f(t)dt

⌋
.

Let a(i) = 1
ε for every i. Let π be the list decoding protocol from previous section with code C which

is (ε, 1
ε +1) list decodable and with n rounds. Our protocol will be πa,b. Let us define c′A, c

′
B, w

′
A, w

′
B

to be messages sent by Alice and Bob and messages received by them. Let cA, cB, wA, wB be a
corresponding messages on which the list decoding protocol π was simulated. Alice output the
codeword c ∈ C which minimizes an expression

n∑
i=1

b(i)d(c[i], wA[i]) .

Bob outputs c ∈ C which minimizes an expression

n∑
i=1

a(i)d(c[i], wB[i]) .

Since a(i) is constant this is the same as to just output closest codeword to wB. The output of
Alice is correct by Theorem 55. So now we need to prove that output of Bob is correct. Let coutput
the output of the Bob. Let s · n be a first place where coutput is different from cA; then we know
from Lemma 49 that

d(coutput[s, . . . , n], wB[s, . . . , n]) ≥ n− s · n
2

−O(εn) .

Let s′ =
∑s·n

i=1 b(i) then from Lemma 52 it follows that

L2(α, f) > β ≥ d(w′A[1, . . . s′], c′B[1, . . . , s′]) =
s·n∑
i=1

b(i)d(wA[i], cB[i]).

Let us define g(t) = d(wA[btnc], cB[btnc]). By taking ε small enough we have∫ s

0
g(t)f(t)dt < L2(α, f) .

Thus by definition of L2 we get that∫ s

0
g(t)dt <

s− 2α+ 1

2
.

Note that the following holds

n

∫ s

0
g(t)dt = d(wA[1, . . . , s · n], cB[1, . . . , s · n]) .

From Corollary 45 it follows that

d(wB[1, . . . s · n], cA[1, . . . , s · n]) + d(wA[1, . . . , s · n], cB[1, . . . , s · n]) ≥ s · n−O(εn) .

34

Thus we have that for small enough ε

d(wB[1, . . . s · n], cA[1, . . . , s · n]) >
s · n+ 2αn− n

2
.

Thus total error we have is

d(wB[1, . . . n], cA[1, . . . , n]) >
n− s · n

2
+
s · n+ 2αn− n

2
> αn.

Contradiction to the assumption that there is at most α fraction of the communication is corrupted

Theorem 62. For every α, β with β > L2(α), if protocol π resilient to (α, β) noise. Then there
exist constant c(α, β) rounds protocol with the same communication complexity in which Alice or
Bob solves the task.

Proof. Let α′ < α be a number such that β > L2(α′). Let us take ε = O(min{α− α′, β − L2(α)}).
Let us consider protocol π. Let as assume that during the protocol Alice sent nA symbols and

Bob sent nB symbols. Let T (1) be the time when Alice sent her εnA’s symbol, and T (i) be the
time when Alice sent her iεnA’s symbol. Let n1 = T (1)− εnA be the number of messages Bob sent
by the time Alice sent εnA of her messages. Let ni = T (i)− inAε be the number of messages Bob
sent in the time when Alice sent iεnA of her communication. Let us set f(x) to be equal ni−ni−1

εnB

in the interval [(i − 1)ε, iε]. Note that
∫ 1

0 f(t)dt = 1. In other words f(x) is an approximation of
the rate at which Bob speaks.

By definition of L2(α′) we have that β > L1(α′, f) or β > L2(α′, f). If β > L1(α′, f) then from
Theorem 55 we will get that there exists a constant round protocol in which Alice solves π. Thus
let us assume that β > L2(α′, f).

Thus by definition of L2(α′) there exists s ∈ [0, 1] and 0 ≤ g(t) ≤ 1 such that
∫ s

0 g(t)dt ≥ s−2α′+1
2

such that
∫ s

0 f(t)g(t)dt < β.

Let t = b s−2α′+1
2ε c We can assume w.l.o.g. that g = 1S′ where S′ is union of t of intervals of

form [(i− 1)ε, iε] plus part of such interval. Let us define

S = ∪tk=1[(ik − 1)ε, ikε] .

Then it holds that ∫ s

0
f(t)1Sdt < β

Let us now assume that Eve has erased communication of Bob on the intervals [T (ik − 1), T (ik)]
(from the definition of S) and the communication of Alice in all the rest intervals before s. Note
that since µ(S) ≥ s−2α′+1

2 − ε we have erased at most s − (s−2α′+1
2 − ε) ≤ s+2α−1

2 fraction of the
communication of Alice before s and at most β fraction of communication of Bob. Note that after
time s, Alice communicates 1−s fraction of her communication. Thus after time s Eve can corrupt
at least α− s+2α−1

2 = 1−s
2 . In other words Eve can corrupt 1

2 of communication of Alice, after time
s.

We claim that by time s Bob knows the answer. Therefore we are done since then we now
have a 2

ε round protocol in which Bob solves the task. The proof of this fact is the same as in
Theorem 55.

35

15 Calculating the Function L2(α)

Assume that α ≤ 1
3 . Here we are going to use the following function. f̃α(x) = 2i in the interval

(iα,min{(i+ 1)α, 1− 2α}] and in the interval [1− 2α, 1] it will be (1 + { 1
α})2

b 1
α
c−2. Then we will

define fα to be normalization of f̃α. Let us also define Fα(s) =
∫ s

0 fα(t)dt. The hardest part of this
subsection is the following lemma

Lemma 63.

L2(α, fα) = L1(α, fα) =
1

2

(
1− 1

(1 + { 1
α})2

b 1
α
c−1 − 1

)
.

In particular we will get that L1(1/k) = L2(1/k) = 1
2(1− 1

2k−1−1
).

Proof. First let us calculate L1(α, fα). To do so we need to calculate for every s the value
min{

∫ s
0 f(t)g(t)dt + 1

2(1 − Fα(s)) :
∫ s

0 g(t)dt ≥ s − α}. For s ≤ 1 − α(1 + { 1
α)} the function

which minimizes this expression is g = 1[0,s−α]. Thus for s < 1 − 2α this expression is equal to
1
2(1− Fα(s)) + F (s− α) Consider the function:

T (s) =
1

2
(1− Fα(s)) + Fα(s− α) .

Note that T ′(s) = f(s−α)− 1
2fα(s) ≥ 0. Thus T (s) is non-decreasing. We have that T (α) ≤ T (s)

for every s ≥ α. Thus for s ≤ 1 − α(1 + { 1
α}) we can get at least T (α). For s > 1 − α(1 + { 1

α})
the optimal g is 1 on interval [0, . . . 1− α(2 + { 1

α})] and 1 on interval [1− α(1 + { 1
α}), s] Therefore

value of L1 for s > 1− α(1 + { 1
α}) is

T (s) = Fα(1− α(2 + { 1

α
})) + Fα(s)− Fα(1− α(1 + { 1

α
})) +

1− F (s)

2
.

Again T ′(s) = 1
2f(s) ≥ 0. Thus minimum is achieved at s = 1 − α(1 + { 1

α}). Direct calculation
shows that T (α) < T (1− α(1 + { 1

α})). Therefore

L1(α, fα) =
1

2
(1− Fα(α)) =

1

2

(
1− 1

(1 + { 1
α})2

b 1
α
c−1 − 1

)
.

To calculate L2(α, fα) note that for s ≥ 1 − 2α an optimal g is 1 on [0, 1 − α(2 + { 1
α})] and 1

on [
s−2α(1+{ 1

α
})+1

2 , s]. Thus

T2(s) = Fα(1− α(2 + { 1

α
})) + Fα(s)− Fα(

s− 2α(1 + { 1
α}) + 1

2
) .

Again differentiate T2 we get that T ′2(s) = f(s)− 1
2f(

s−2α(1+{ 1
α
})+1

2). It is easy to see that T ′(s) > 0
for s > 1− 2α. Thus minimal is achieved when s = 1− 2α Thus

L2(α, fα) = Fα(1− 2α) =
1

2
(1− Fα(α)) =

1

2

(
1− 1

(1 + { 1
α})2

b 1
α
c−1 − 1

)
.

36

Theorem 64.
L2(α) = L1(α, fα) = L2(α, fα) .

Proof. From Lemma 63 we know that L1(α, fα) = L2(α, fα) let us denote this value by C. Let us
assume that we have function g which is better than fα i.e.,

∫ 1
0 g(t)dt = 1 and

min{L1(α, g), L2(α, g)} ≥ min{L1(α, fα), L2(α, fα)} = L1(α, fα) = L2(α, fα) = C

Denote by G(s) =
∫ s

0 g(t)dt. Then by taking s = 1−2α in definition of L2 we have that G(1−2α) ≥
L2(α, g) ≥ Fα(1 − 2α) = C. Thus we have that L1(α, f) ≤ L1(α, g) ≤ L1(α, 1 − 2α,C). Now
to complete the proof we need to show that L1(α, fα) = L1(α, 1 − 2α,C). This follows from
Theorem 56. The conditions 1-3 follows immediately. To see the condition 4 note that for s ∈ [α, β]
it holds that fα(s) = 2fα(s− α).

16 Proof of Theorems 4 and 5

Since from Theorems 61, 62 it follows that L2 is the boundary of (α, β) we can handle L2 must be
symmetric in α, β i.e., if L2(α) = β then L2(β) = α. Also note that L2 is decreasing function and
that L2(1

3) = 1
3 . Therefore if β = L2(α) then α ≤ 1

3 or β ≤ 1
3 . Thus the region Ru can be defined

by
RU = {(α, β) : β < L2(α)} .

Theorem 65. For each (α, β) ∈ RU and for every protocol π there exists another protocol π′,
with CC(π′) = Oα,β(CC(π)) which is resilient (α, β) adversarial noise. Such that π′(x, y) outputs
transcript of π(x, y).

Proof. This follows from the Theorem 61 and the fact that Pointer Jumping Problem is complete
for communication complexity.

Theorem 66. For every (α, β) /∈ RU and for every T the following holds. Let π′ be a protocol
resilient to (α, β) adversarial noise which solves the Pointer Jumping Problem of depth T . Then
CC(π′) = 2Ωα,β(T).

Proof. From Theorem 62 it follows that there exists constant Oα,β(1) round protocol π′′ with
the same communication complexity which solves one way pointer jumping problem. Then from
Corollary 9 it follows that communication complexity of π′′ is 2Ωα,β(T).

17 Conclusions

In this paper we completely answered the question of characterizing the maximal error rate we can
handle in adversarial interactive communication with a constant-rate encoding. We have defined
list decoding of interactive communication and showed that this primitive is also important for
unique decoding of interactive communication. Our encodings are constant rate, i.e. only incur
constant blow-up in communication. However we have not tried to optimize this constant, leaving
such optimization as an open problem. Below we highlight this and additional outstanding open
problems:

37

Open Problem 1. The big problem is to understand what is the best rate is possible for interactive
communication. We want to note that this question is widely open even in the random noise
scenario. Recently there was some progress on this question in random noise scenario with noise
rate approaching 0 by Kol and Raz [KR13].

Open Problem 2. In this paper we made an encoding over a channel with a large constant-size
alphabet. Without much effort one can modify all our protocols to work over a binary channel with
a loss of a factor two in the error rates one can handle. However it is not clear at all that these
error rates are best possible. Establishing the region of (α, β) for which unique decoding is possible
over binary alphabet is an open problem.

Open Problem 3. Construct explicit list tree codes with computationally efficient encoding and
decoding. It is plausible that construction list-decodable tree codes will be an easier problem than
just a regular tree codes since, similarly to potent tree codes from [GMS11], a random prefix code
is a list decodable tree code with high probability, while it is not a tree code with high probability.

References

[AGS13] Shweta Agrawal, Ran Gelles, and Amit Sahai. Adaptive protocols for interactive com-
munication. arXiv preprint arXiv:1312.4182, 2013.

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial
noise. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium
on, pages 160–166. IEEE, 2012.

[BN13] Zvika Brakerski and Moni Naor. Fast algorithms for interactive coding. In Electronic
Colloquium on Computational Complexity (ECCC), volume 20, page 14, 2013.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In Proceedings of the 43rd annual ACM symposium on Theory of com-
puting, pages 159–166. ACM, 2011.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, pages 161–167. ACM,
2012.

[Eli57] Peter Elias. List decoding for noisy channels. 1957.

[FGOS12] Mattew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J Schulman. Optimal
coding for streaming authentication and interactive communication. In Electronic Col-
loquium on Computational Complexity (ECCC), volume 19, page 104, 2012.

[GH13] Mohsen Ghaffari and Bernhard Haeupler. Optimal error rates for interactive coding ii:
Efficiency and list decoding. arXiv preprint arXiv:1312.1763, 2013.

[GHS13] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates for inter-
active coding i: Adaptivity and other settings. arXiv preprint arXiv:1312.1764, 2013.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In Rafail Ostrovsky, editor, FOCS, pages 768–777. IEEE, 2011.

38

[Gur04] Venkatesan Guruswami. List decoding of error-correcting codes. Springer, 2004.

[KR13] Gillat Kol and Ran Raz. Interactive channel capacity. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, STOC, pages 715–724. ACM, 2013.

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM
J. Comput., 22(1):211–219, February 1993.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 42(6):1745–1756, 1996.

[Woz58] John M Wozencraft. List decoding. Quarterly Progress Report, 48:90–95, 1958.

39

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

