
Space Complexity of the Directed Reacha-
bility Problem over Surface-Embedded Graphs

N. V. Vinodchandran

Abstract. The graph reachability problem, the computational task of
deciding whether there is a path between two given nodes in a graph is
the canonical problem for studying space bounded computations. Three
central open questions regarding the space complexity of the reachabil-
ity problem over directed graphs are: (1) improving Savitch’s O(log2 n)
space bound, (2) designing a polynomial-time algorithm with O(n1−ε)
space bound, and (3) designing an unambiguous non-deterministic log-
space (UL) algorithm. These are well-known open questions in complex-
ity theory, and solving any one of them will be a major breakthrough.
We will discuss some of the recent progress reported on these questions
for certain subclasses of surface-embedded directed graphs.
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1. Introduction

The graph reachability problem, the problem of deciding whether there is
a path from a given vertex s to a vertex t in a given graph, is central to
space-bounded computations. Various versions of this problem characterize
several important space complexity classes. Over directed graphs, it is the
canonical complete problem for non-deterministic log-space (NL). The break-
through result of Reingold implies that the undirected reachability problem
characterizes the complexity of deterministic log-space (L) [Rei08]. It is also
known that a certain restricted promise version of the reachability problem
over directed graphs characterizes randomized log-space computations (RL)
[RTV06]. Clearly, progress in space complexity studies is directly related to
progress in understanding graph reachability problems. We refer the readers
to an excellent (albeit two decades old) survey by Avi Wigderson [Wig92]
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to further understand the significance of reachability problems in complexity
theory.

This article is far from an exhaustive survey on the space complexity
of the graph reachability problem. In particular, some of the major progress
(such as Reingold’s algorithm for undirected graph reachability and Saks
and Zhou’s deterministic simulation of randomized log-space) will not be
discussed here. Instead, we will limit our discussion to some recent progress
that the author and his collaborators reported on these questions for certain
subclasses of surface-embedded directed graphs. It is mostly an elaboration
of the talk that the author gave on Prof. Somenath Biswas’s 60th birthday
celebration at IIT Kanpur in August of 2012.

Three Central Questions

We first discuss three central questions concerning the space complexity of the
directed graph reachability problem. These are well-known and difficult open
questions in the area, and progress on any of these is a step towards the much
bigger NL vs L question (the first two problems are discussed in Wigderson’s
1992 survey [Wig92]). However, the author feels that the known barriers for
attacking these problems are much less severe than those known for many
difficult open problems in time-bounded complexity classes and circuit lower
bounds, and believes that breakthrough progress on these problems can be
made in the near future.

Problem 1: Improving Savitch’s Bound. About 4 decades ago Savitch proved
that the reachability problem over directed graphs with n vertices can be
solved in space O(log2 n) deterministically [Sav70]. This implies that prob-
lems that can be solved nondeterministically in space s(n) have deterministic
algorithms with O(s2(n)) space bound. Thus, for polynomial space bounds,
nondeterminism does not add any additional power to determinism. For the
important case when the space bound is O(log n), Savitch’s theorem implies
that all problems in NL can be solved deterministically in O(log2 n) space.
Is this quadratic blow-up necessary? This is one of the most important open
problems in this topic.

Problem 2: Improving the BBRS bound. The time complexity of Savitch’s al-
gorithm is Θ(nlogn) - a super-polynomial bound. The standard breadth first
search algorithm (BFS) is another fundamental algorithm for solving graph
reachability. BFS can be implemented in linear time but requires linear space.
BFS is efficient in time but not in space, and Savitch’s algorithm is efficient
in space but takes super-polynomial time. Hence a natural and significant
question that researchers have considered is whether we can design an al-
gorithm for the directed graph reachability problem that is efficient in both
time and space. In particular, can we design a polynomial-time algorithm
for the directed graph reachability problem that uses only O(n1−ε) space for
some constant ε? The best known result in this direction is the two decades
old bound due to Barnes, Buss, Ruzzo, and Schieber [BBRS98] (which we
call the BBRS bound). By cleverly combining BFS and Savitch’s algorithm,
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Barnes, Buss, Ruzzo, and Schieber designed a polynomial-time algorithm for
reachability that uses space O(n/2

√
logn) - a slightly sub-linear function. Im-

proving the BBRS bound remains another significant open question regarding
the space complexity of the directed reachability problem.

Problem 3: NL vs UL Problem. UL denotes an unambiguous subclass of NL.
A decision problem L is in UL if and only if there exists a nondeterministic
log-space machine M deciding L such that, for every instance x, M has at
most one accepting computation on input x [BJLR91, ÀJ93]. Thus UL is a
complexity class that is sandwiched between NL and L. Is NL=UL? While typ-
ically such collapse results are unlikely in complexity theory (and even if they
are likely, they are nearly impossible to prove), there is an increasing body of
evidence that in this specific case the answer is yes, and the author believes
that we might be able to prove this equality using known techniques. Rein-
hardt and Allender showed using the isolation lemma that in the nonuniform
setting NL coincides with UL; that is NL/poly = UL/poly [RA00]. Further,
in a subsequent paper, Allender, Reinhardt, and Zhou showed that, under a
certain hardness assumption the construction given in [RA00] can be deran-
domized to show that NL = UL [ARZ99]. Thus it is very likely (at least to
the author) that NL = UL, though we do not yet have a proof. Can we show
NL = UL unconditionally?

Outline

In the next two sections we will discuss some progress that we have made
towards these three open questions - Section 2 on problems 1 and 2, and
Section 3 on the NL vs UL problem. All the results discussed in these sections
are for directed graphs embedded on topological surfaces. As an aside, in
Section 4 we reproduce the proof of the BBRS bound from [BBRS98], partly
to bring more attention to this nice algorithm.

2. Space efficient reachability algorithms for graphs with
topological structure

An important sub-case of Problem 1 (and Problem 2) is to design reachability
algorithms that beat Savitch’s bound (respectively, the BBRS bound) for di-
rected graphs with some topological structure (graphs that are embedded on
topological surfaces). We will discuss some recent progress reported along this
direction. The main results are (1) algorithms that beat both Savitch’s bound
and the BBRS bound for a subclass of directed acyclic graphs parameterized
by the number of sources and the genus of the embedding [SBV10, SV12]
(2) an algorithm for directed planar reachability that improves on the BBRS
bound [INP+13]. The main approach in both these results is that of space-
efficient “kernelization”.

Kernelization is a known preprocessing technique in designing algo-
rithms (for example in the area of fixed parameter tractability). Kernelization
algorithms are reductions from a problem to itself so that the easy part of
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the instance is abstracted out and the core part is retained in the reduced
instance. The hope is that the core part will be of smaller size and hence
known algorithms can be applied to this compressed instance yielding algo-
rithms with better complexity. We will first illustrate this in a simple scenario.

Consider a reachability instance 〈G, s, t〉 where G = (V,E) is a n-vertex
graph with the guarantee that it has at most k directed edges (the remaining
edges are undirected). Let Gun be the undirected graph we get by removing
all the directed edges fromG. For a directed edge e = (u, v) let tail(e) = u and
head(e) = v. We will show a simple log-space reduction that takes 〈G, s, t〉
and produces a reachability instance 〈G′, s′, t′〉 where G′ is a directed graph
with O(k) vertices.

In the reduced graph G′ = (V ′, E′), V ′ = {s′, t′} ∪ {ve | e is a directed
edge in G}. The pair (ve1 , ve2) ∈ E′ if tail(e2) is in the same connected
component as head(e1) in Gun. For a ve ∈ V ′, (s′, ve) ∈ E′ if tail(e) is in
the same connected component of s in Gun and (ve, t′) if head(e) is in the
same connected component of t in Gun. Notice that this reduction is log-
space since for checking whether two vertices u, v are in the same connected
component of Gun, we can use Reingold’s log-space algorithm for undirected
reachability. It is clear that there is a s-t path in G if and only if there is a
s′-t′ path in G′. Using this reduction together with Savitch’s algorithm we
get that reachability in graphs with no(1) directed edges can be solved in
o(log2 n). Also, by applying BFS to the reduced graph, we get that for any
ε > 0, reachability in graphs with O(n1−ε) directed edges can be solved in
polynomial time and O(n1−ε) space.

We will now describe the the main kernelization result of [SBV10, SV12]
and its application. Let G(m, g) denote the class of DAGs with at most m =
m(n) source vertices embedded on a surface (orientable or non-orientable)
of genus at most g = g(n), where n is the number of vertices. Building
on [SBV10], in [SV12] we show the following reduction for graphs in G(m, g).

Theorem 1 ([SV12]). There is a log-space reduction that, given an instance
〈G, s, t〉 (presented as a combinatorial embedding) where G ∈ G(m, g) and s, t
are vertices of G, outputs an instance 〈G′, s′, t′〉 where G′ is a directed graph
and s′, t′ vertices of G′, so that (a) there is a directed path from s to t in G
if and only if there is a directed path from s′ to t′ in G′, (b) G′ has O(m+ g)
vertices.

By combining the above reduction with Savitch’s theorem (with m =
g = 2O(

√
logn)) we get that reachability over graphs with 2O(

√
logn) sources

embedded on a surface of genus 2O(
√

logn) can be decided in deterministic
log-space. For m = g = no(1) we get o(log2 n) space algorithm for reacha-
bility that beats Savitch’s bound. For m = g = O(n1−ε), we get O(n1−ε)
space algorithm with polynomial running time for reachability, for any small
constant ε, improving the BBRS bound.

One of the motivations for investigating the reachability problem for
this class of sufrace-embedded graphs comes from earlier work due to Al-
lender, Barrington, Chakraborthy, Datta, and Roy [ABC+09]. In [ABC+09],
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the authors considered reachability in planar DAGs with a single source ver-
tex. They called this class of graphs SMPD (abbreviation for Single source
Multiple sink Planar Dags). SMPD generalizes SSPD - Single source Single
sink Planar Dags. SSPDs are interesting since they generalize series parallel
graphs which is a well-studied restriction of directed acyclic graphs. Allender
et al. presented a log-space algorithm for reachability in SMPD and left open
whether reachability can be solved using logarithmic space over planar DAGs
with multiple source nodes. In [SBV10], building on the SMPD algorithm,
we present a log-space algorithm for planar dags with logarithmic number
of sources. In the subsequent paper [SV12], via a careful use of techniques
developed in [SBV10], we proved the log-space kernelization theorem that
in particular implied a log-space algorithm for reachability in graphs with
2O(
√

logn) sources, embedded on a surface of genus 2O(
√

logn). The proof of
this theorem is technically involved and we will not discuss it here. It remains
a significant open question whether reachability for planar Dags (without
any restriction on the number of sources) can be solved deterministically in
o(log2 n) space.

While improving Savitch’s bound even for planar graphs remains open,
the question of improving the BBRS bound for planar graphs was settled
recently. Using a kernelization approach, in [INP+13], we showed that the
directed planar reachability problem can be solved in polynomial time using
roughly O(n1/2) space. This result extends a similar bound for the reacha-
bility problem over grid graphs due to Asano and Doerr [AD11].

Theorem 2 ([INP+13]). For any constant 0 < ε < 1/2, there is an algorithm
that, given a directed planar graph G and two vertices s and t, decides whether
there is a path from s to t. This algorithm runs in time nO(1/ε) and uses
O(n1/2+ε) space, where n is the number of vertices of G.

For showing this result, we first design a polynomial-time and Õ(
√
n)-

space algorithm for computing a “separator” of O(
√
n) size for an undirected

planar graph. (For any undirected graph G and for any constant ρ, 0 < ρ < 1,
a ρ-separator of G is a a subset of vertices S whose removal disconnects G into
two subgraphs A and B, such that |A| and |B| is at most ρn). This algorithm
is based on a parallel algorithm for constructing a planar separator due to
Gazit and Miller [GM87].

Theorem 3 ([INP+13]). There is an algorithm that takes an undirected planar
graph G with n vertices as input and outputs a (8/9)-separator of G of size
O(
√
n). This algorithm runs in polynomial time and uses Õ(

√
n) space. (Here

Õ(s(n)) denotes O(s(n)(log n)O(1))).

Proof Sketch. While for obtaining the O(n1/2+ε) space bound we need a
recursive approach, it is easy to illustrate the idea for the case when the
space bound is O(n2/3). Let G = (V,E) be the input directed planar graph.
Let Gu be the underlying undirected graph. The first step is to apply the
planar separator algorithm repeatedly k times on the connected components
of Gu that are bigger than n2/3 to further partition the graph until every
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component is of size ≤ n2/3. It is easy to see that after k = d 23 ×
logn

log(9/8)e
applications we get a collection S of separators with total size O(n2/3) so
that removing S partitions the graph into disconnected components where
each component is of size ≤ n2/3. (This is a standard trick used in many
separator-based algorithms). Let C1, C2, . . . , Cl be the set of vertices in these
components.

Now consider the kernel graph G = (V, E) where V = S ∪ {s, t}. For
any two nodes x and y in V, (x, y) is a directed edge if and only if there is
a directed path from x to y in the subgraph of G that is induced by V ∪ Ci
(call this Gi), for some connected component Ci in the partition. Clearly the
number of nodes in G is O(n2/3). Now consider the algorithm that decides
whether there is a directed path from s to t in G by performing a BFS on
G starting at s. Whenever BFS queries (x, y) ∈ E?, the algorithm performs
BFSs for each of the graphs Gi starting at x looking for a path from x to y,
and returns YES if for some Gi this inner BFS returns true. Notice that since
|V ∪Ci| is at most O(n2/3), each of this BFSs can be implemented in O(n2/3)
space and polynomial time. Hence overall the algorithm takes O(n2/3) space
and polynomial time.

For extending this proof to the O(n1/2+ε) space bound, we need |S| =
O(n1/2+ε). But that will result in large components and a simple applica-
tion of the inner BFSs will not give the required space bound. Instead, we
can apply the algorithm recursively. By limiting the number of recursive ap-
plications to a constant, we can make sure that the running time remains
polynomial. We omit the details. �

Before we move on to the next section we would like to mention that
there is a certain computational model known as NNJAG model in which it
is possible to prove lower bounds those match both Savitch’s bound and the
BBRS bound [Poo93, CR80, EPA99]. The NNJAG model is a branching pro-
gram model tailored towards the reachability problem with restricted access
to the input graph. While all the known algorithms for general reachability
(such as BFS, DFS, Savitch’s algorithm, BBRS algorithm) can be imple-
mented in the NNJAG without substantial increase in time and space (in
comparison to implementations on a random access machine), it is not clear
to the author how a general approach such as kernelization can be handled
in these models. It is conceivable that algorithms based on kernelization can
overcome NNJAG lower bounds and help solve these open problems.

3. NL vs UL problem

The main progress on this problem also has been on graphs with some topo-
logical structure. We first discuss a technique developed by Reinhardt and
Allender [RA00] since all the known proofs on this problem use their tech-
nique.

A positively and polynomially weighted graph is said to be min-unique
if, between any two nodes the minimum weight path (if it exists) is unique.
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Here the weight of a path is the sum of the weights of its edges. Reinhardt
and Allender [RA00] showed, using an adaptation of the inductive counting
technique of Immerman [Imm88] and Szelepcsényi [Sze88], that the reach-
ability question in min-unique graphs can be decided in UL. They combine
this construction with an observation due to Wigderson [Wig94] that the iso-
lation lemma of Mulmuley, Vazirani and Vazirani [MVV87] can be used to
non-uniformly assign weights to make a given graph min-unique. These two
steps imply the collapse result that NL is in non-uniform UL.

Thus a space-efficient derandomization of the isolation lemma will show
that NL = UL. However, derandomizing isolation lemma in its generality
will have much deeper consequences and is a well known and difficult open
problem [AM08]. Instead, a viable and concrete approach for showing NL =
UL is to first consider a class of graphs over which the reachability problem
is NL-complete, and prescribe a deterministic log-space computable weight
function which will make graphs in this class min-unique.

In [ABC+09], the authors solve this min-unique weight assignment prob-
lem for the class of layered grid graphs. Layered grid graphs are graphs with
vertices on a n × n grid and the edges that go west-to-east and south-to-
north. Subsequently in [BTV09], we show how to extend this weight function
to general grid graphs (without restriction on the direction of edges). This
implied that directed planar reachability is in UL since the directed planar
reachability problem is known to be reducible to the grid graph reachability
problem [ADR05]. In fact this even implied that the reachability problem
for graphs embedded on constant genus surfaces and graphs that are K3,3-
free and K5-free are in UL since the reachability problem for these classes of
graphs reduces to the directed planar reachability problem [KV10, TW09] in
log-space.

While, in [BTV09] we showed that directed planar reachability is in UL
it was not clear then how to solve the min-unique weight assignment problem
for planar graphs. In a subsequent paper, we solve this problem using Green’s
Theorem, a celebrated result from multivariate calculus [TV12]. Since it is a
slightly non-standard approach to use an analytical result to solve discrete
problems, we believe this approach has the potential to solve the general NL vs
UL problem. We next present the proof of the min-unique weight assignment
problem for directed planar graphs based on Green’s theorem.

Green’s theorem, stated below, relates a certain curve integral over a
closed curve on the plane to a related double integral over the region enclosed
by this curve.

Theorem 4 (Green’s Theorem). Let C be a closed, piece-wise smooth, simple
curve on the plane which is oriented counterclockwise. Let RC be the region
bounded by C. Let P and Q be functions of (x, y) defined on a region con-
taining RC that have continuous partial derivatives in the region. Then∮

C

(P dx+Qdy) =
∫∫

RC

(
∂Q

∂x
− ∂P

∂y

)
dA
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We use the following corollary that we get if we substitute Q(x, y) = x
and P (x, y) = 0 in Green’s theorem.

Corollary 5 (Area by line integrals). Let C be a closed, piece-wise smooth,
simple curve on the plane that is oriented counterclockwise. Let RC be the
region bounded by C. Then,

Area(RC) =
∮
C

x dy

Theorem 6 ([TV12]). There is a log-space algorithm that, given any planar
graph G, assigns weights to the edges so that the resulting weighted graph is
min-unique.

Let us assume that the planar graph G = (V,E) is presented as a
straight-line drawing. That is, each vertex v is represented as a point (xv, yv)
in the plane so that an edge (u, v) is a line between points (xu, yu) and
(xv, yv). In addition, no such lines intersect other than at the vertices. More-
over, we will assume that the coordinates are integer points with values
bounded by poly(n) (n is the number of vertices). Typically, planar graphs
are presented as a combinatorial embedding and it is not clear how such
line drawings can be computed in log-space from a combinatorial embed-
ding. However, this is not critical and in [TV12] we show how to handle this
presentation issue.

Let e = (u, v) be a directed edge directed from u to v where u is identified
with the point (xu, yu) and v is identified with (xv, yv). For such a directed
edge, define a weight function w as follows:

wgt(e) = 2×
∮
e

x dy = (yv − yu)(xv + xu)

The required isolation property of the weight function is proved using
the following crucial lemma.

Lemma 7. Let G be a directed planar graph and let C be any directed simple
cycle in G. Let RC be the region enclosed by C. Then the weight of the cycle
C, |wgt(C)| = 2×Area(Rc). In particular, wgt(C) is non-zero.

Proof. Let C = (e1, e2, . . . , el) be a directed cycle oriented counterclockwise.
Then we have

wgt(C) =
∑
i

wgt(ei) = 2×
∑
i

∮
ei

x dy = 2×
∮
C

x dy = 2×Area(RC)

The third equality follows from the linearity of integrals and the last
equality follows from Corollary 7. If C is oriented clockwise, we get that
wgt(C) = −2×Area(RC). Hence the lemma.

�

The following lemma establishes Theorem 6.
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Lemma 8. Let G be a directed planar graph. Then with respect to the weight
function wgt, for every pair of nodes u and v, if there is a directed path from
u to v, then there is a unique path from u to v of minimum weight.

Proof. Suppose there are u, v so that there are two u to v paths P1 and
P2 of minimum weight. We will assume that the paths do not intersect on
vertices other than the end points (otherwise we can find two vertices u′ and
v′ along these paths that satisfies this property using a standard cut-and-
paste argument and use these vertices instead). We have wgt(P1) = wgt(P2).
Now consider the graph G′ that is same as G except that the path P2 is
reversed so that the set of edges (P1,−P2) becomes a simple cycle in G′

(−P2 denotes the reversed path). Let C denote this cycle. Then wgt(C) =
wgt(P1) + wgt(−P2) = wgt(P1) − wgt(P2) = 0. The second equality because
of the skew-symmetry of the weight function. This contradicts Lemma 7. �

It is clear that we can use Green’s Theorem to design a class of min-
unique weight functions. In fact any “nice” solution to the differential equa-
tion

(
∂Q
∂x −

∂P
∂y

)
= 1 will yield such a weight function. For example, setting

P (x, y) = −y
2 and Q(x, y) = x

2 to the left hand side of Green’s theorem yields
the weight function w(e) = (xuyv − xvyu) which is also min-unique.

Can we use such geometric techniques to design min-unique weight func-
tions for larger classes of graphs? In [BTV09] it is observed that reachability
in layered grid graphs over 3 dimensions is complete for NL. It might be pos-
sible to use generalizations of Green’s theorem (such as Stokes’ theorem) to
design a min-unique weight function for 3 dimensional layered grid graphs.

4. The BBRS bound

We will present the algorithm due to Barnes, Buss, Ruzzo, and Schieber
[BBRS98] that solves the directed graph reachability problem in sub-linear
space and polynomial time.

Theorem 9 ([BBRS98]). For any k, there is a polynomial-time algorithm that
given a directed graph G and two nodes s and t, decides whether there is a
path from s to t in space O( n

2k
√

log n ), where n is the number of vertices of G.

Proof. The algorithm uses a combination of BFS and Savitch’s algorithm.
For a parameter λ (this will be set to 2k

√
logn to get the desired bound), it

constructs the levels of BFS tree that are at λ distance apart. Divide the
vertex set into levels according to distance from s. That is, the level i vertex
set is defined as:

Vi = {v | d(s, v) = i},where d is the distance function.

Partition the set of vertices into λ equivalence classes C0, C1, . . . , Cλ−1

where Cj =
⋃bn/λc
i=0 Vj+iλ. Since the Cis partition the vertex set, we have the

following fact.

Fact 10. ∃j∗ so that |Cj∗ | ≤ dnλe
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The Partial-BFS algorithm (described below) constructs Cj∗ level by
level. Since we do not explicitly know which Cj has ≤ n

λ nodes, the algorithm
will keep a counter to count the number of vertices and try from j = 0. At
any point of the construction, if |Cj | > n

λ , it will abandon that j and try
the next value for j. The algorithm will succeed for the first such j. This
will only increase the space by an additive O(log n) factor and the time by
a multiplicative factor of λ. Hence we will assume that the algorithm knows
j∗. Following is the description of the Partial-BFS algorithm.

Partial-BFS(G, s) /* Outputs Cj∗*/
V0 = {s}
Vj∗ = Construct(G,V0, j

∗)
For i = 1 to bnλc

Viλ+j∗ = Construct(G,V(i−1)λ+j∗ , λ)
Add Viλ+j∗ to Cj∗

End-For
Output Cj∗

In general, the procedure Constrct takes G and a set of nodes S
and a parameter λ and returns the set of nodes that are at distance λ from
some node in S. Construct will use the bounded version of the reachability
problem (Barnes et al. calls it short path problem) as subroutine.

SPATH(u, v, λ) = true⇔ there is a path of length ≤ λ from u to v in G.

We can use an algorithm for SPATH as subroutine to solve Construct
as follows. Given (G,S, λ), to check whether v ∈ V is at distance λ from some
vertex in S, first check whether SPATH(u, v, λ) is true for some u ∈ S and
check for all u ∈ S, SPATH(u, v, λ− 1) is false.

For a given algorithm for SPATH, let T (n, λ) be its time complexity
and S(n, λ) be its space complexity. Then the time complexity of Con-
struct is O(n3)T (n, λ) and its space complexity is O(nλ ) + S(n, λ). More-
over, once Cj∗ is constructed, reachability can be solved by making dnλe calls
to SPATH(u, t, λ) (for all u ∈ Cj∗). Thus the total running time for the
reachability algorithm will be O(n4)T (n, λ) and the space bound will be
O(nλ ) + S(n, λ).

We will now focus on SPATH. We will use a divide and conquer approach
as in Savitch’s algorithm to design an algorithm for SPATH. The problem
with a direct application of Savitch’s algorithm is its running time: at each
level of recursion it cycles through all n nodes as a candidate for the middle
node. This results in O(nlogn) time. Since we are interested in keeping the
time polynomial, we can not afford to cycle through all n nodes. Instead, we
will divide the set of nodes into µ equivalence classes and use a Savitch-like
divide and conquer on these equivalence classes (instead of the vertices). For
µ = 2O(

√
logn) the depth of recursion will be O(

√
log n) and this approach

will result in polynomial time.
For a parameter µ, partition the vertex set into µ equivalence classes

[1], [2], . . . [µ] where vertex x ∈ [a] ⇔ x ≡ a (mod µ). Each equivalence
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class has dnµe elements (except for the last one whose cardinality may be
smaller). We will use [a], [b], [c] etc to denote these equivalence classes of
vertices. Although this is not a very standard notation, the ith vertex of the
equivalence class [a] (according to some fixed ordering) will be denoted by
[a](i).

Consider the procedure Modified-Savitch(G, [a], [b], X, l) where [a]
and [b] are equivalence classes of vertices, X is an dnµe binary array, and l is
a length parameter. This procedure returns a binary vector Y of size dnµe,
where

Y [j] = 1 ⇔ ∃i so that X[i] = 1 and there is a path
of length ≤ 2l from [a](i) to [b](j)

SPATH(u, v, λ) can be solved by one call to Modified-Savitch with
parameter ([a], [b], Xu, dlog2 λe) where [a] = the equivalence class containing
u, [b] = the equivalence class containing v, and Xu is the vector with 1 in
the index corresponding to u and 0 otherwise. There is a path from u to v if
and only if there is a 1 in the index corresponding to v in the output vector
Y . Below is a recursive version of the algorithm Modified-Savitch.

Modified-Savitch(G, [a], [b], X, l)
If l = 0 then
If [a] = [b] then Y ← X
Else Y [j] = 1 iff ∃i such that there is an edge from [a](i) to [b](j)

Else
Y ← −→0
For c = 1 to µ

Z ←Modified-Savitch(G, [a], [c], X, l − 1)
Yc ←Modified-Savitch(G, [c], [b], Z, l − 1)
Y ← Y ∨ Yc

Return Y

Correctness of Modified-Savitch is easy to prove. Its time and space
bounds can be estimated using the following recurrence.

S(l) = O(
n

µ
) + S(l − 1)

= O(
n

µ
)× l

T (l) = µ× 2× T (l − 1) +O(n)

= (2µ)l+1 ×O(n)

Setting µ = 2(k+1)
√

logn and l = dlog2 λe, we get an algorithm for
SPATH with time complexity T (n, λ) = O(2log λ × 2(k+1)

√
logn(log λ+1) × n)

and space complexity S(n, λ) = O( n
2(k+1)

√
log n × log λ).
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For λ = 2k
√

logn, this results in polynomial time and space O( n
2k
√

log n )
giving an algorithm for the reachability problem with polynomial running
time and O( n

2k
√

log n ) space bound.
�
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