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ABSTRACT. The threshold degree of a Boolean function f is the minimum degree of a
real polynomial p that represents f in sign: f .x/ ⌘ sgnp.x/. In a seminal 1969 mono-
graph, Minsky and Papert constructed a polynomial-size constant-depth f^;_g-circuit
in n variables with threshold degree ˝.n1=3/: This bound underlies some of today’s
strongest results on constant-depth circuits. It has been an open problem (O’Donnell and
Servedio, STOC 2003) to improve Minsky and Papert’s bound to n˝.1/C1=3:

We give a detailed solution to this problem. For any fixed k > 1; we construct an
f^;_g-formula of size n and depth k with threshold degree˝.n

k�1
2k�1 /. This lower bound

nearly matches a knownO.
p
n/ bound for arbitrary formulas, and is exactly tight for reg-

ular formulas. Our result proves a conjecture due to O’Donnell and Servedio (STOC 2003)
and a different conjecture due to Bun and Thaler (2013). Applications to communication
complexity and computational learning are given.

1. INTRODUCTION

Let f W f0; 1gn ! f0; 1g be a given Boolean function. A real polynomial p is said to
represent f in sign if

sgnp.x/ D
(

�1 if f .x/ D 0;

C1 if f .x/ D 1;

for every input x 2 f0; 1gn: The main complexity measure of interest is the degree of
p. The minimum degree of a sign-representing polynomial for f is called the threshold
degree of f , denoted deg˙.f /. This notion was introduced in 1969 in the seminal work of
Minsky and Papert [31], who proved that the parity function on n variables has threshold
degree n and examined the threshold degree of several other functions. Sign-representing
polynomials quickly found a variety of applications in theoretical computer science, the
first of which were size-depth trade-offs [34, 48] and lower bounds [27, 28] for various
types of threshold circuits, oracle separations [4] for PP, and the famous proof that PP is
closed under intersection [8].

Sign-representing polynomials have been particularly useful in the study of constant-
depth circuits, leading to algorithmic and complexity-theoretic breakthroughs in the area.
One such example is the fastest known algorithm for learning DNF formulas, due to Kli-
vans and Servedio [23], with running time expf QO.n1=3/g. The authors of [23] obtained
their algorithm by proving an upper bound of O.n1=3 logn/ on the threshold degree of
polynomial-size DNF formulas, essentially matching a classic lower bound due to Minsky
and Papert [31]. Another success story is the fastest known algorithm for learning read-
once formulas, due to Ambainis et al. [3], with running time expf QO.pn/g. That algorithm,
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too, follows from an upper bound of O.
p
n/ on the threshold degree of read-once formu-

las, obtained in a series of breakthrough papers [33, 15, 3, 30] by learning theorists and
quantum researchers.

Sign-representing polynomials have been equally influential in the complexity-theoretic
study of constant-depth circuits. Recall that AC0 denotes the class of f^;_;:g-circuits of
constant depth and polynomial size. Aspnes et al. [4] used the notion of threshold degree
and its relaxations to give an ingenious new proof that AC0 circuits cannot compute or even
approximate the parity function. Another contribution [39, 41] in which threshold degree
played a central role is the first construction of an AC0 circuit with exponentially small
discrepancy and hence maximum communication complexity in nearly every model. This
discrepancy result was used in [39] to show the optimality of Allender’s classic simulation
of AC0 functions by majority circuits, solving the open problem [27] on the relation be-
tween these two circuit classes. Subsequent work generalized the threshold degree method
of [39, 41] to communication models with three or more parties, resolving well-known
questions [14, 6, 43, 46] in communication complexity and circuit complexity. Yet an-
other example of the use of threshold degree in complexity theory is the first exponential
lower bound on the sign-rank of AC0 circuits [37], posed as a challenge by Babai et al. [5]
twenty-two years earlier.

1.1. Our results. In light of these algorithmic and complexity-theoretic applications, the
problem of determining the threshold degree of constant-depth circuits has attracted con-
siderable attention. Forty-five years ago, Minsky and Papert [31] proved an˝.n1=3/ lower
bound on the threshold degree of the constant-depth circuit

f .x/ D
n1=3^
iD1

n2=3_
jD1

xij :

The only subsequent progress was a lower bound of ˝.n1=3 logk n/ for an arbitrary con-
stant k, due to O’Donnell and Servedio [33]. In other words, it has been open since 1969 to
obtain a polynomial improvement on Minsky and Papert’s lower bound. We give a detailed
solution to this problem. Our main result is as follows:

THEOREM 1.1. Let k > 1 be any fixed integer. Define f W f0; 1gn ! f0; 1g by

f D NOR
n

1
2k�1

ı NOR
n

2
2k�1

ı � � � ı NOR
n

2
2k�1ê

k�1

:

Then

deg˙.f / D ˝
⇣
n

k�1
2k�1

⌘
:

As usual, the symbol ı denotes function composition. Thus, the function f above is a
depth-k tree of NOR gates, with top fan-in n1=.2k�1/ and all other fan-ins n2=.2k�1/: Recall
that by De Morgan’s law, a tree of NOR gates is equivalent to a tree of alternating AND
and OR gates of the same depth and size. For typesetting convenience, we work with NOR
trees throughout this manuscript.

Several remarks are in order. For depth k D 2; Theorem 1.1 gives a new and entirely
different proof of Minsky and Papert’s classic ˝.n1=3/ lower bound. For depth k D 3;
Theorem 1.1 proves a conjecture of O’Donnell and Servedio [33] who proposed the func-
tion ANDn1=5 ı ORn2=5 ı ANDn2=5 as a candidate for threshold degree ˝.n2=5/: Finally,
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the lower bound of Theorem 1.1 is essentially optimal. As k grows, the bound approaches
˝.

p
n/, nearly matching a well-known O.

p
n/ upper bound on the threshold degree of

arbitrary read-once Boolean formulas [30]. Moreover, we show that for any fixed depth k;
the lower bound of Theorem 1.1 is tight for “regular” Boolean formulas:

THEOREM 1.2. Let k > 1 be any fixed integer. Define f W f0; 1gn ! f0; 1g by

f D NORn1
ı NORn2

ı � � � ı NORnk
;

where n1; n2; : : : ; nk are arbitrary integers with n1n2 � � �nk D n: Then

deg˙.f / D O
⇣
n

k�1
2k�1 logn

⌘
:

Our techniques allow us to prove another conjecture on the threshold degree of constant-
depth circuits. The element distinctness function EDnW f0; 1gndlogne ! f0; 1g is given by

EDn.x/ D
^

i;jD1;2;:::;nW
i¤j

dlogne_
kD1

xi;k ˚ xj;k :

Viewing the arguments to EDn as dlogne-bit integers, the function evaluates to true if and
only if these n integers are pairwise distinct. A moment’s reflection reveals that EDn is a
CNF formula of polynomial size. Bun and Thaler [13] proposed the composed function
ORn2=5 ı EDn3=5 as another candidate for threshold degree ˝.n2=5/, a conjecture that we
prove in this paper:

THEOREM 1.3. Consider the depth-3 polynomial-size f^;_g-circuit f given by

f D ORn2=5 ı EDn3=5 :

Then

deg˙.f / > ˝.n2=5/:

The lower bound in this theorem is optimal up to a logarithmic factor. This function
is quite different from the corresponding construction of Theorem 1.1 for depth k D 3.
Remarkably, the threshold degree in both cases turns out to be the same up to a logarithmic
factor: ˝.n2=5/ versus ˝.n= logn/2=5, where n denotes the total number of variables.

1.2. Further applications. Lower bounds on the threshold degree translate in a black-box
manner into various lower bounds in computational learning theory and communication
complexity. We focus on two illustrative applications in these research areas. By the
pattern matrix method [39, 41, 43, 46], Theorem 1.1 gives an improved construction of a
constant-depth circuit with exponentially small discrepancy:

THEOREM 1.4. For any k > 1; there is an .explicitly given/ two-party communication
problem f W f0; 1gn ⇥ f0; 1gn ! f0; 1g; representable by a read-once f^;_g-formula of
constant depth, with discrepancy

disc.f / 6 exp
⇣
�˝

⇣
n

1
2 � 1

k

⌘⌘
:

The best previous bound was exp.�˝.n= logn/2=5/, due to Bun and Thaler [13], preceded
by a bound of exp.�˝.n1=3// due to Buhrman et al. [11] and Sherstov [39, 41]. By the
results of [46], Theorem 1.4 generalizes to three or more parties.
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As a second application, we consider the notions of threshold weight and threshold
density, defined for a given Boolean function f W f0; 1gn ! f0; 1g as the minimum size of a
majority-of-parity and threshold-of-parity circuit for f , respectively. Both quantities play
a prominent role in computational learning theory. By the black-box reduction in [27],
Theorem 1.1 in this paper implies:

THEOREM 1.5. For any k > 1; there is an .explicitly given/ read-once f^;_g-formula
f W f0; 1gn ! f0; 1g of constant depth with threshold weight and threshold density

exp
⇣
˝

⇣
n

1
2 � 1

k

⌘⌘
:

The best previous bounds were exp.˝.n= logn/2=5/ for threshold weight, due to Bun and
Thaler [13], and exp.˝.n1=3// for threshold density, due to Krause and Pudlák [27].

1.3. Proof overview. Sign-representation is a particularly powerful analytic model, which
explains the difficulty of proving lower bounds on the threshold degree. A much weaker
model is that of uniform approximation, whereby a real polynomial represents a Boolean
function f if it approximates f pointwise within 1=3, ranging in Œ�1=3; 1=3ç on f �1.0/
and in Œ2=3; 4=3ç on f �1.1/. Central to our proof is a hybrid model, best thought of as
one-sided approximation [16, 12, 45, 13], in which the representing polynomial ranges
in Œ�1=3; 1=3ç on f �1.0/ and in Œ2=3;C1/ on f �1.1/: The complexity measure of a
Boolean function f in each of these cases is the minimum degree of a real polynomial
that represents f : the threshold degree, approximate degree, and one-sided approximate
degree of f; respectively.

We obtain our results by proving the following more general statement.

THEOREM 1.6. Let f be an arbitrary Boolean function, with one-sided approximate de-
gree d: Then for all integers n; k > 0;

deg˙.NORcn ı NORcn2 ı � � � ı NORcn2û
k

ıf / > nk minfn; dg; (1.1)

where c > 1 is an absolute constant.

Theorem 1.6 gives the best possible lower bound on the threshold degree of the composi-
tion (1.1) in terms of the one-sided approximate degree of f: We consider this result to be
of independent interest. It allows one to start with a function f that has high one-sided ap-
proximate degree—a weak notion of hardness—and transform it into a vastly harder func-
tion, with high threshold degree. We deduce our lower bounds in Theorems 1.1 and 1.3
from Theorem 1.6 by letting f be either the NOR function or the element distinctness
function, for both of which the one-sided approximate degree is known.

We give three different proofs of Theorem 1.6, one for arbitrary k and two simpler
ones for the special case k D 0. We describe all three below. While the main result of
this paper (Theorem 1.1) requires the full power of Theorem 1.6 for arbitrary k; the case
k D 0 is already sufficient to prove an ˝.n2=5/ lower bound on the threshold degree of
constant-depth circuits.

Proof for arbitrary k. The search for a sign-representing polynomial for a given Boolean
function f can be formulated as a linear program. By strong duality, the nonexistence
of a sign-representing polynomial is therefore equivalent to the existence of a certain dual
object. This dual point of view has been influential in past research [33, 39, 38, 44, 12, 45]
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and plays a central role in our paper as well. Put another way, we prove Theorem 1.6
constructively, by exhibiting a feasible object in the dual space. This object must be a
nonzero function that agrees with f in sign and is additionally orthogonal to low-degree
polynomials.

The key challenge is ensuring the agreement in sign between the dual object and the
Boolean function f: This contrasts with simpler settings such as uniform approximation,
where the dual object is allowed to disagree with f on a small fraction of inputs. The
vast majority of methods developed to date, including most recently the paper of Bun and
Thaler [13], only work for uniform approximation.

We pursue a different approach. At a high level, the proof proceeds by induction
on circuit depth. For each depth, we do more than rule out a sign-representing polyno-
mial—rather, we construct a pair of highly structured dual objects that imply high thresh-
old degree and additionally allow for induction. A recurring technique in this paper is the
construction of dual objects with desired analytic or metric properties by taking convex
combinations of dual objects that almost have the desired properties. The technical part of
the paper includes intuitive descriptions at each level of granularity.

Proof for k D 0. This case corresponds to compositions of the form NORn ı f; where f
is an arbitrary Boolean function. Equivalently, we may speak of ORn ı f since threshold
degree is invariant under negation. We are able to fully characterize the threshold degree
of any such composition.

To build intuition for our result, suppose that����f � p

q

����
1
<

1

2n
;

where p and q are polynomials. Then ORn ı f is sign-represented by
nX
iD1

p.xi /

q.xi /
� 1

2
:

To obtain a sign-representing polynomial for ORn ı f; it suffices to multiply through by
the positive quantity

Q
q.xi /

2. In summary, the threshold degree of ORn ı f is at most
degp C 2n deg q: This construction is due to Beigel et al. [8], who used it in an ingenious
way to prove the closure of PP under intersection. In previous work [38], we showed that
this construction is optimal for n D 2; i.e., the threshold degree of OR2 ı f equals (up to
a small multiplicative constant) the least degree of a rational function that approximates f
pointwise. However, no characterization was known for growing n.

Observe that the above construction works even if p=q approximates f in a one-sided
manner. In fact, we prove that this modified construction achieves the smallest possible
degree. Our proof works by manipulating a feasible solution to the dual of the one-sided
rational approximation problem for f; in order to construct a feasible solution to the dual
of the sign-representation problem for ORn ı f: The proof in this paper is unrelated to the
earlier work [38] for n D 2. As a corollary to the newly obtained characterization of the
threshold degree of ORn ı f; we recover the special case of Theorem 1.6 for k D 0.

We give yet another proof of Theorem 1.6 for k D 0 by combining our techniques with
a construction due to Bun and Thaler [13]. Specifically, the authors of [13] proved that
ORn ı f cannot be approximated uniformly within 1

2 � exp.�˝.n// by a polynomial of
degree less than the one-sided approximate degree of f; a form of hardness amplification
for uniform approximation. In and of itself, that result does not imply anything about the
threshold degree of ORn ı f: Indeed, there are examples of functions [35, 36, 40] with
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threshold degree 1 that cannot be approximated uniformly within 1
2 � exp.�˝.n// by a

polynomial of degree cn for some constant c > 0: Nevertheless, we are able to adapt the
techniques of this work to the setting of Bun and Thaler [13] and thereby obtain another
proof of Theorem 1.6 for k D 0:

2. PRELIMINARIES

We use the term Euclidean space to refer to Rn for some positive integer n: Through-
out this paper, Boolean functions are mappings X ! f0; 1g for some finite subset X of
Euclidean space, most often X D f0; 1gn: For Boolean functions f W f0; 1gn ! f0; 1g and
gWX ! f0; 1g; we let f ı g denote the componentwise composition of f with g; i.e., the
Boolean function on Xn that sends .x1; x2; : : : ; xn/ 7! f .g.x1/; g.x2/; : : : ; g.xn//: By
associativity, this definition extends unambiguously to compositions f1 ı f2 ı � � � ı fk of
three or more functions.

For a bit string x 2 f0; 1gn;we let jxj D x1Cx2C � � �Cxn denote the Hamming weight
of x: The kth level of the Boolean hypercube f0; 1gn is the subset fx 2 f0; 1gn W jxj D kg:
The notation log x refers to the logarithm of x to base 2. The negation of a Boolean
function f WX ! f0; 1g is denoted :f and defined as usual by .:f /.x/ D :f .x/: The
functions ANDn;ORn;NORnW f0; 1gn ! f0; 1g have their standard definitions:

ANDn.x/ D
n̂

iD1
xi ; ORn.x/ D

n_
iD1

xi ; NORn D :ORn:

The element distinctness function EDnW .f0; 1gdlogne/n ! f0; 1g is given by

EDn.x/ D
^

i;jD1;2;:::;nW
i¤j

dlogne_
kD1

xi;k ˚ xj;k :

Viewing the arguments to EDn as dlogne-bit integers, the function evaluates to true if and
only if these n integers are pairwise distinct. The sign function is denoted

sgn t D

Ä
�1 if t < 0;
0 if t D 0;

1 if t > 0:

For a multivariate real polynomial pWRn ! R, we let degp denote the total degree of
p, i.e., the largest degree of any monomial of p: We use the terms degree and total degree
interchangeably in this paper. The following simple but fundamental fact, due to Minsky
and Papert [31], allows one to transform a multivariate real polynomial on f0; 1gn to a
related univariate real polynomial on f0; 1; 2; : : : ; ng without an increase in degree.

PROPOSITION 2.1 (Minsky and Papert). Let pW f0; 1gn ! R be an arbitrary polynomial.
Then the mapping

m 7! E
x2f0;1gn

jxjDm
p.x/ .m D 0; 1; 2; : : : ; n/

is a univariate real polynomial of degree at most degp:

We adopt the convention that 00 D 1; justified by continuity.
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2.1. Norms and products. For a finite set X; we let RX denote the linear space of func-
tions f WX ! R: This space is equipped with the usual norms and inner product:

kf k1 D max
x2X

jf .x/j;
kf k1 D

X
x2X

jf .x/j;

hf; gi D
X
x2X

f .x/g.x/:

The tensor product of f 2 RX and g 2 RY is the real function f ˝g 2 RX⇥Y defined by
.f ˝ g/.x; y/ D f .x/g.y/: The tensor product f ˝ f ˝ � � � ˝ f (n times) is abbreviated
f ˝n: The support of a function f WX ! R is denoted suppf D fx 2 X W f .x/ ¤ 0g: A
convex combination of f1; f2; : : : ; fk 2 RX is any function of the form �1f1C�2f2C� � �C
�kfk ; where �1;�2; : : : ;�k are nonnegative and sum to 1: The convex hull of F ✓ RX ,
denoted convF; is the set of all convex combinations of functions in F:

For f WX ! R; the symbols jf j and sgnf have their usual meanings as the real func-
tions given by jf j.x/ D jf .x/j and .sgnf /.x/ D sgnf .x/: In the context of functions,
the relational operators 6;D; and > and arithmetic operations are applied pointwise. For
example, the phrase “f > 2jgj on X” means that f .x/ > 2jg.x/j for every x 2 X:

Throughout this manuscript, we view probability distributions as real functions, which
allows us to use the various notational devices introduced above. In particular, for proba-
bility distributions � and �; the symbol supp� denotes the support of �, and �˝� denotes
the probability distribution given by .�˝ �/.x; y/ D �.x/�.y/: If � is a probability dis-
tribution on X; we consider � to be defined on any superset of X with the understanding
that � D 0 outside X:

2.2. Approximation by polynomials. Let f WX ! f0; 1g be given, for a finite subset
X ⇢ Rn: The ✏-approximate degree of f; denoted deg✏.f /; is the least degree of a real
polynomial p such that kf �pk1 6 ✏:We refer to any such polynomial for f as a uniform
approximant with error ✏. Define

E.f; d/ D min
pWdegp6d

kf � pk1;

where the minimum is over polynomials of degree at most d: In words, E.f; d/ is the least
error to which f can be approximated by a real polynomial of degree no greater than d .
In this notation, deg✏.f / D minfd W E.f; d/ 6 ✏g: In the study of Boolean functions, the
standard setting of the error parameter is ✏ D 1=3.

Observe that deg1=2.f / D 0 for every Boolean function f , the approximant in question
being the constant polynomial 1=2: While the 1=2-approximate degree of a Boolean func-
tion is always a trivial concept, the limit of the ✏-approximate degree as ✏ % 1=2 turns out
to be a fundamental and mathematically rich notion. It is known as the threshold degree of
f; denoted

deg˙.f / D lim
✏%1=2

deg✏.f /:

It is a simple but instructive exercise to verify that deg˙.f / is precisely the least degree of
a real polynomial p that represents f in sign:

sgnp.x/ D
(

�1 if f .x/ D 0;

C1 if f .x/ D 1:
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Clearly,

deg˙.f / 6 deg✏.f /; 0 6 ✏ <
1

2
:

Key to our work is a hybrid notion of approximation whereby a Boolean function f is
approximated uniformly on f �1.0/ and represented in sign on f �1.1/: Formally, the one-
sided ✏-approximate degree of f; denoted degC

✏ .f /; is the least degree of a real polynomial
p such that

f .x/ � ✏ 6 p.x/ 6 f .x/C ✏; x 2 f �1.0/;

f .x/ � ✏ 6 p.x/; x 2 f �1.1/:

We refer to any such polynomial for f as a one-sided approximant with error ✏: Again, the
canonical setting of the error parameter is ✏ D 1=3: Threshold degree and ✏-approximate
degree are invariant under function negation:

deg˙.f / D deg˙.:f /; (2.1)
deg✏.f / D deg✏.:f / (2.2)

for every Boolean function f and every ✏: In contrast, the gap between the one-sided
approximate degree of a Boolean function f W f0; 1gn ! R versus its negation :f can be
as large as 1 versus ˝.

p
n/; achieved for f D ORn:

Each of the above three approximation-theoretic notions has a dual characterization,
obtained by an appeal to linear programming duality. For threshold degree, we have:

THEOREM 2.2. Let f WX ! f0; 1g be given. Then deg˙.f / > d if and only if there exists
 WX ! R such that

(i)  .x/ > 0 whenever f .x/ D 1;
(ii)  .x/ 6 0 whenever f .x/ D 0;

(iii) h ;pi D 0 for every polynomial p of degree less than d; and
(iv)  ¥ 0:

A convenient shorthand for (i) and (ii), which we use often, is .�1/1�f  > 0: We refer
the reader to [4, 33, 38] for a proof of Theorem 2.2. Analogously, approximate degree has
the following dual characterization [41, 47]:

THEOREM 2.3. Let f WX ! f0; 1g be given. Then deg✏.f / > d if and only if there exists
 WX ! R such that

(i) hf; i > ✏k k1;
(ii) h ;pi D 0 for every polynomial p of degree less than d:

Finally, the dual characterization of one-sided approximate degree is as follows [13].

THEOREM 2.4. Let f WX ! f0; 1g be given. Then degC
✏ .f / > d if and only if there exists

 WX ! R such that

(i) hf; i > ✏k k1;
(ii) h ;pi D 0 for every polynomial p of degree less than d; and

(iii)  .x/ > 0 whenever f .x/ D 1:

The dual objects that arise in Theorems 2.2–2.4 share the following metric properties.
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PROPOSITION 2.5. Let  WX ! R be given with h ; 1i D 0: Then
(i)

P
xW .x/>0 j .x/j D k k1=2;

(ii) k k1 6 k k1=2;
(iii) hf; i 6 k k1=2 for every Boolean function f WX ! f0; 1g:

Proof. (i) We haveX
xW .x/>0

j .x/j D hj j C  ; 1i
2

D hj j; 1i
2

D k k1
2

:

(ii) For every x⇤ 2 X;
0 D jh ; 1ij > j .x⇤/j �

X
x¤x⇤

j .x/j D 2j .x⇤/j � k k1:

(iii) Immediate from (i) since f ranges in f0; 1g:
We will need tight bounds on the one-sided approximate degree of several functions.

The following theorem, due to Nisan and Szegedy [32], was one of the first results in this
line of work.

THEOREM 2.6 (Nisan and Szegedy).

deg1=3.NORn/ D ⇥.
p
n/;

degC
1=3.NORn/ D ⇥.

p
n/:

The following result, obtained recently by Bun and Thaler [13, Appendix A], generalizes
earlier work [1, 2] on the approximate degree of element distinctness to the one-sided case.

THEOREM 2.7 (Bun and Thaler).

degC
1=3.EDn/ D ˝.n2=3/:

We will also need an explicit dual object for the NOR function, in the sense of Theo-
rem 2.4. There are previous constructions of such objects, due to Špalek [49] and Bun and
Thaler [12], but we require additional properties not ensured by previous work.

THEOREM 2.8. Let ✏ be given, 0 < ✏ < 1. Then for some ı D ı.✏/ > 0 and every n > 2;
there exists an .explicitly given/ function !W f0; 1; 2; : : : ; ng ! R such that

!.0/ >
1 � ✏

2
� k!k1;

.�1/nCt!.t/ > ✏

4t2
� k!k1 .t D 1; 2; : : : ; n/;

degp <
p
ın H) h!; pi D 0:

The proof of this result is an adaptation of previous analyses [49, 12] and can be found in
Appendix A.

2.3. Robust polynomials. A natural approach to approximating a composed function
f ı g is to approximate f and g separately and compose the resulting approximants. For
this approach to work, the approximating polynomial for f needs to be robust to noise
in the inputs, i.e., it needs to approximate f not only on the Boolean hypercube but also
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on any perturbation of a Boolean vector. The following result from [42] gives an efficient
procedure for making any polynomial robust to noise.

THEOREM 2.9 (Sherstov). Let pW f0; 1gn ! Œ�1; 1ç be a given polynomial. Then for every
ı > 0; there is a polynomial probustWRn ! R of degree O.degp C log 1

ı / such that

jp.x/ � probust.x C ✏/j < ı
for every x 2 f0; 1gn and ✏ 2 Œ�1=3; 1=3çn:
Note that the degree of the robust polynomial grows additively rather than multiplicatively
with the error parameter ı: This fact will play a crucial role in the next section, where
we prove our upper bound on the threshold degree of constant-depth circuits. It follows
from the above result that the approximate degree is always well-behaved under function
composition [42]:

COROLLARY 2.10 (Sherstov). Let f W f0; 1gn ! f0; 1g and gWX ! f0; 1g be given. Then

deg1=3.f ı g/ 6 c deg1=3.f / deg1=3.g/

for some absolute constant c > 0 independent of f; g; n:

3. THE UPPER BOUND

Consider an AND-OR tree of depth k on n variables, in which the fan-in may vary from
level to level but is the same for all gates at any given level. O’Donnell and Servedio [33]
made the following ingenious observation in a footnote of their paper: either the product of
odd-level fan-ins is at most

p
n or the product of even-level fan-ins is at most

p
n, which

means that the standard arithmetization of the AND-OR tree gives a sign-representing
polynomial of degree at most

p
n.

While this construction falls short of achieving our desired bound of O.n
k�1

2k�1 logn/;
the trick of odd- versus even-level fan-ins plays an essential role in our proof. The other
key ingredient is work on robust approximation [42], which allows one to make a poly-
nomial robust to noise with essentially no overhead in degree. We start by calculating the
parameters in O’Donnell and Servedio’s construction.

LEMMA 3.1 (cf. O’Donnell and Servedio). Let f D NORnk
ı NORnk�1

ı � � � ı NORn1
;

where n1n2 � � �nk D n: Then

E.f; n2n4n6 � � � / 6 1

2
� 1

2nn2n4n6��� : (3.1)

Proof. By working with the negation of f if necessary, we may assume that

f .x/ D � � �
n3_
i3D1

n2̂

i2D1

n1_
i1D1œ

k

xi1;i2;:::;ik :

Consider the polynomial

p.x/ D � � �
n3X
i3D1

n2Y
i2D1

n1X
i1D1

xi1;i2;:::;ik :
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It is clear that degp D n2n4n6 � � � : Moreover, f .x/ D 0 forces p.x/ D 0, whereas
f .x/ D 1 forces

1 6 p.x/ 6
⇣�
nn2

1 n3
�n4 n5

⌘n6

: : : 6 nn2n4n6���:

Now (3.1) is immediate, the approximant in question being
1

2
C 1

nn2n4n6���

✓
p.x/ � 1

2

◆
:

Equation (3.1) shows that O’Donnell and Servedio’s approach gives a uniform approx-
imant with reasonable accuracy, rather than just a sign-representing polynomial. Combin-
ing this fact with results on robust approximation, we obtain a robust sign-representing
polynomial for the AND-OR tree:

COROLLARY 3.2. Let f D NORnk
ı NORnk�1

ı � � � ı NORn1
; where n1n2 � � �nk D n:

Then there is a polynomial probustWRn ! R such that

degprobust 6 .n2n4n6 � � � / � c logn (3.2)

for some absolute constant c > 0; and

jf .x/ � probust.x C ✏/j 6 1

2
� 1

4nn2n4n6��� (3.3)

for every x 2 f0; 1gn and ✏ 2 Œ�1=3; 1=3çn:
Proof. By Lemma 3.1, there is a polynomial pW f0; 1gn ! Œ�2; 2ç of degree at most
n2n4n6 � � � such that

kf � pk1 6 1

2
� 1

2nn2n4n6��� :

Invoking Theorem 2.9 with ı D 1=8nn2n4n6��� gives a polynomial probustWRn ! R of
degree O.degp C deg 1

ı / such that

jp.x/ � probust.x C ✏/j 6 1

4nn2n4n6���

for every x 2 f0; 1gn and ✏ 2 Œ�1=3; 1=3çn: Now (3.2) and (3.3) are immediate.

We are now in a position to describe the final construction. We start by splitting the
NOR tree at some level into a top part and a bottom part. Next, we construct a robust sign-
representing polynomial for the top part, and a uniform approximant with error 1=3 for the
bottom part. Finally, we compose the resulting polynomials to obtain a sign-representing
polynomial for the original tree. This approach is made precise in the following theorem.

THEOREM 3.3. Let f D NORnk
ı NORnk�1

ı � � � ı NORn1
; where n1n2 � � �nk D n: Then

deg˙.f / 6 ck min
iD0;1;:::;k�1

fpn1n2 � � �ni niC2niC4niC6 � � �g logn; (3.4)

for some absolute constant c > 1.

Proof. Fix i arbitrarily and write f D f 0 ı f 00; where

f 0 D NORnk
ı NORnk�1

ı � � � ı NORniC1
;

f 00 D NORni
ı NORni�1

ı � � � ı NORn1
:
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Corollary 3.2 provides a polynomial p0
robust of degree at most .niC2niC4niC6 � � � / � c0 logn

for some absolute constant c0 > 1 such that

jf 0.x/ � p0
robust.x C ✏/j < 1

2
(3.5)

for every x 2 f0; 1gniC1niC2���nk and ✏ 2 Œ�1=3; 1=3çniC1niC2���nk :
On the other hand, Theorem 2.6 states that deg1=3.NORm/ D O.

p
m/, whence by

Corollary 2.10 the 1=3-approximate degree of f 00 does not exceed .c00/i
p
n1n2 � � �ni for

some absolute constant c00 > 1: Fix a polynomial p00 of that degree, with

kf 00 � p00k1 6 1

3
: (3.6)

By (3.5) and (3.6),

kf 0 ı f 00 � p0
robust ı p00k1 <

1

2
:

In summary, the threshold degree of f D f 0 ı f 00 is at most the product of the degrees of
p0

robust and p00; whence (3.4).

We have arrived at the main result of this section, which settles Theorem 1.2 from the
Introduction.

THEOREM 3.4. Let f D NORnk
ı NORnk�1

ı � � � ı NORn1
; where n1n2 � � �nk D n: Then

deg˙.f / 6 ck � n k�1
2k�1 logn

for some absolute constant c > 1:

Proof. The idea is to carefully optimize the choice of i in the previous theorem, by replac-
ing the minimum with a geometric mean. Specifically, let c > 1 be the absolute constant
from Theorem 3.3. Then

deg˙.f /
ck logn

6 min
iD0;1;:::;k�1

˚p
n1n2 � � �ni niC2niC4niC6 � � �  

6 .n2n4n6 � � � / 1
2k�1

k�1Y
iD1

�p
n1n2 � � �ni niC2niC4niC6 � � � � 2

2k�1 ;

where the second inequality is obtained by replacing the minimum with a geometric mean
of the quantities involved. Raising both sides to the power 2k � 1 and simplifying,✓

deg˙.f /
ck logn

◆2k�1
6 .n2n4n6 � � � /

 
k�1Y
iD1

n1n2 � � �ni
! 

k�1Y
iD1

n2iC2n
2
iC4n

2
iC6 � � �

!

D
�

kY
jD1

n
j�1�2

j
j �1

2

k
j

��
kY

jD1
n
k�j
j

��
kY

jD1
n
2
j

j �1
2

k
j

�

D
kY

jD1
nk�1
j

D nk�1:
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4. THE LOWER BOUND

We prove our lower bound on the threshold degree of constant-depth circuits by induc-
tion on circuit depth. The notion of a dual pair, defined next, plays a central role in this
inductive argument.

DEFINITION. Let f WX ! f0; 1g be given. A .d0; d1; ✏/-dual pair for f is any pair of
functions  0;  1WX ! R such that:

(i) hf; 1i > 1�✏
2 k 1k1,

(ii)  1.x/ > 0 whenever f .x/ D 1,
(iii) h 1; pi D 0 for every polynomial p of degree less than d1,
(iv) h 0; pi D 0 for every polynomial p of degree less than d0,
(v)

 0.x/ D
(

maxf 1.x/; 0g if f .x/ D 0;

2 Œ�✏j 1.x/j; ✏j 1.x/jç if f .x/ D 1:

This definition is monotonic in ✏; in the sense that a .d0; d1; ✏/-dual pair is a .d0; d1; ✏0/-
dual pair for every ✏0 > ✏: In our applications, we will always take ✏ D 1=3:

Properties (i)–(iii) can be summarized by saying that f has one-sided 1�✏
2 -approximate

degree at least d1: The dual object  1 witnesses this fact, in the sense of linear program-
ming duality (Theorem 2.4). The key difficulty is that  1 need not always agree in sign
with f : while such agreement is assured on f �1.1/; there may well be inputs in f �1.0/
on which  1 is positive. The role of the accompanying object  0 is to eliminate those er-
rors without introducing new ones. For this to work efficiently,  0 needs to be orthogonal
to polynomials of sufficiently high degree d0: The challenge in our proof is to inductively
construct new dual pairs from old ones, while ensuring sufficiently rapid growth of d0; d1:

The following lemma shows how we obtain our first dual pair. It corresponds to the
base case of the inductive argument.

LEMMA 4.1. Let f WX ! f0; 1g be a given Boolean function, degC
✏ .f / > 0: Then f

has a .1; degC
✏ .f /;

1
2✏ � 1/-dual pair.

Proof. Abbreviate d D degC
✏ .f /: By Theorem 2.4, there exists  1WX ! R such that

hf; 1i > ✏k 1k1; (4.1)
f .x/ D 1 H)  1.x/ > 0; (4.2)
degp < d H) h 1; pi D 0: (4.3)

Define  0WX ! R by

 0.x/ D

‚
maxf 1.x/; 0g if f .x/ D 0;✓
1 � k 1k1

2hf; 1i
◆
 1.x/ if f .x/ D 1:

With properties (4.1)–(4.3) already established, the proof will be complete once we show
that ˇ̌̌̌

1 � k 1k1
2hf; 1i

ˇ̌̌̌
6 1

2✏
� 1; (4.4)

h 0; 1i D 0: (4.5)
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By (4.3) and Proposition 2.5 (i), (iii),X
xW 1.x/>0

 1.x/ D k 1k1
2

; (4.6)

hf; 1i 6 k 1k1
2

: (4.7)

Now the upper bound (4.4) is immediate from (4.1) and (4.7). The remaining property (4.5)
can be verified as follows:

h 0; 1i D
X

xWf .x/D0
 0.x/C

X
xWf .x/D1

 0.x/

D
X

xW 1.x/>0

.1 � f .x// 1.x/C
X
x2X

f .x/

✓
1 � k 1k1

2hf; 1i
◆
 1.x/

D
X

xW 1.x/>0

 1.x/

›
Dk 1k1=2

�
X

xW 1.x/>0

f .x/ 1.x/

ù
Dhf; 1i

C
✓
1 � k 1k1

2hf; 1i
◆

hf; 1i;

where the final calculations use (4.6) and (4.2).

The inductive step in our proof is realized by the following “amplification theorem,”
which transforms a dual pair for a given function f into a dual pair for the composed
function NOR.f; f; : : : ; f /:

THEOREM 4.2. Let ✏; ı 2 .0; 1/ be arbitrary. Let f WX ! f0; 1g be any function that has
a .d0; d1; ✏/-dual pair, where d0; d1 > 1: Then the function

F D NORcn ı f
has a .minfnd0; d1g;minfnd0;pnd1g; ı/-dual pair, where c D c.✏; ı/ > 0 is a constant
independent of f; n; d0; d1:

The proof of Theorem 4.2 is lengthy and technical, and we defer it to Section 5. To com-
plete our program, we need to bridge the notions of dual pairs and sign-representation. The
following lemma does just that.

LEMMA 4.3. Let f WX ! f0; 1g be any function that has a .d0; d1; ✏/-dual pair for some
0 6 ✏ < 1: Then

deg˙.f / > minfd0; d1g:
Proof. Let . 0;  1/ be a .d0; d1; ✏/-dual pair for f: By definition,

degp < d0 H) h 0; pi D 0; (4.8)
degp < d1 H) h 1; pi D 0; (4.9)
f .x/ D 1 H)  1.x/ > 0; (4.10)
f .x/ D 1 H) j 0.x/j 6 ✏j 1.x/j; (4.11)
f .x/ D 0 H)  0.x/ D maxf 1.x/; 0g; (4.12)

hf; 1i > 1 � ✏

2
k 1k1: (4.13)
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Letting  D  1 �  0; we have

degp < minfd0; d1g H) h ;pi D 0; (4.14)
f .x/ D 1 H)  .x/ > 0; (4.15)
f .x/ D 0 H)  .x/ 6 0; (4.16)

where the first item holds by (4.8) and (4.9), the second by (4.10) and (4.11), and the third
by (4.12). Finally, we claim that

 ¥ 0: (4.17)

Indeed, (4.13) implies that  1 is not identically zero on f �1.1/; whereas (4.11) ensures
that sgn .x/ D sgn 1.x/ on f �1.1/: By (4.14)–(4.17) and Theorem 2.2, the proof is
complete.

Combining the above three results, we arrive at the technical centerpiece of this paper,
stated previously as Theorem 1.6 in the Introduction:

THEOREM 4.4. Let f WX ! f0; 1g be given. Then for all integers n; k > 0;

deg˙.NORcn ı NORcn2 ı � � � ı NORcn2û
k

ıf / > nk minfn; degC
1=3.f /g;

where c > 1 is an absolute constant, independent of f; n; k:

Proof. Take c > 1 sufficiently large, and abbreviate m D minfn; degC
1=3.f /g: We need

only consider the case m > 1; the lower bound being trivial otherwise. We claim that for
each k D 0; 1; 2; : : : ; the function

NORcn2 ı � � � ı NORcn2û
k

ıf

has a .dmnk�1e; mnk ; 1=2/-dual pair. This claim holds by induction on k; with the base
case k D 0 settled by Lemma 4.1 and the inductive step realized by Theorem 4.2. Applying
Theorem 4.2 once more shows that the function

NORcn ı NORcn2 ı � � � ı NORcn2û
k

ıf (4.18)

has an .mnk ; mnk ; 1=2/-dual pair. It follows by Lemma 4.3 that the composition (4.18)
has threshold degree at least mnk , as was to be shown.

COROLLARY 4.5. There exists an absolute constant c > 0 such that for all n; k > 0;

deg˙.NORn ı NORn2 ı � � � ı NORn2ù
k

/ > .cn/k :

Proof. Immediate from Theorems 2.6 and 4.4.

This corollary settles our main result, stated as Theorem 1.1 in the Introduction. We note
that all parts of our argument (Lemmas 4.1 and 4.3 and Theorems 2.6, 4.2, and 4.4) are
constructive in that they produce explicit solutions to corresponding dual linear programs.
In particular, our proof produces an explicit dual object, in the sense of Theorem 2.2, that
witnesses the lower bound in Corollary 4.5.
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COROLLARY 4.6. For every Boolean function f WX ! f0; 1g and every n > 1;

deg˙.ORn ı f / > minfcn; degC
1=3.f /g;

where c > 0 is an absolute constant. In particular,

deg˙.ORn2=5 ı EDn3=5/ D ˝.n2=5/:

Proof. The first claim holds by taking k D 0 in Theorem 4.4 and recalling that threshold
degree is invariant under function negation. The second claim is immediate from the first
in light of Theorem 2.7.

This settles Theorem 1.3 from the Introduction. In Sections 6 and 7 we will present two
alternate proofs of Corollary 4.6, completely different from the proof just given. In fact,
we will fully characterize the threshold degree of ORn ı f for every f .

5. PROOF OF THEOREM 4.2

The objective of this section is to prove Theorem 4.2 (the “amplification theorem”),
which transforms a dual pair for a given Boolean function into a dual pair of higher degree
for the composed function NOR.f; f; : : : ; f /. We start by reviewing the notation and
hypothesis of the theorem. We then introduce auxiliary dual objects and establish their
properties. In the final subsection, we put these ingredients together to obtain the desired
dual pair.

5.1. Notation. We adopt verbatim the notations and hypothesis of Theorem 4.2. Specif-
ically, f is an arbitrary Boolean function on a finite subset X of Euclidean space; the
reals 0 < ✏ < 1 and 0 < ı < 1 are arbitrary parameters; and it is assumed that f has a
.d0; d1; ✏/-dual pair . 0;  1/, for some positive integers d0; d1: By definition,

degp < d0 H) h 0; pi D 0; (5.1)
degp < d1 H) h 1; pi D 0; (5.2)
f .x/ D 1 H)  1.x/ > 0; (5.3)
f .x/ D 1 H) j 0.x/j 6 ✏j 1.x/j; (5.4)
f .x/ D 0 H)  0.x/ D maxf 1.x/; 0g; (5.5)

and

hf; 1i > 1 � ✏

2
k 1k1: (5.6)

A simple but vital consequence of (5.2) is that

h 1; 1i D 0: (5.7)

It follows from (5.6) that

 1 ¥ 0; (5.8)

whence by homogeneity we may assume that

k 1k1 D 1: (5.9)

Define ˛ by

hf; 1i D 1 � ˛
2

: (5.10)
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 1

�1 �0�⇤  0 f

⇤ Q⇤ı✏n

L !

 0; 1

Figure 5.1: Construction of the dual pair . 0; 1/. Arrows indicate dependencies.

Then

0 6 ˛ < ✏; (5.11)

where the upper bound is immediate from (5.6) and (5.9), whereas the lower bound holds
by (5.7), (5.9), and Proposition 2.5 (iii).

The objective of the proof is to construct a dual pair . 0; 1/ with sufficiently high
degrees for the Boolean function F WXN ! f0; 1g given by

F D NORN ı f;
whereN D cn for some constant c D c.✏; ı/ > 0: The construction will proceed in stages,
shown schematically in Figure 5.1. The inputs to the construction, shaded in gray, are the
function f; its dual pair . 0;  1/; and the parameters n; ✏; ı: These are combined to build
more complex intermediate objects, resulting eventually in the desired dual pair . 0; 1/
for F: To be precise, the intermediate objects are function families, indexed by nonnegative
integers as in !n; Ld ;⇤Nk;m: Throughout the proof, small letters (f; 0;  1;�0;�1;�⇤; p/
are reserved for functions on X; whereas capital letters . 0; 1; L;⇤; Q⇤; P; P0; P1/ refer
to functions on XN :

5.2. Fundamental distributions. We start by examining several probability distributions
induced on X by the sign behavior of  1. By (5.9), the function j 1j is a probability
distribution on X; legitimizing the following definition.

DEFINITION. Let �0 and �1 be the probability distributions induced by j 1j on the sets
fx 2 X W  1.x/ < 0g and fx 2 X W  1.x/ > 0g; respectively.
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Equations (5.7) and (5.8) guarantee that fx W  1.x/ < 0g and fx W  1.x/ > 0g are
nonempty, so that �0 and �1 are well-defined. By (5.7),

 1 D 1

2
�1 � 1

2
�0: (5.12)

We now claim that

degp < d1 H) h�0; pi D h�1; pi; (5.13)
f .x/ D 1 H) 2 1.x/ D �1.x/; (5.14)
f .x/ D 1 H) 2j 0.x/j 6 ✏�1.x/; (5.15)
f .x/ D 0 H) 2 0.x/ D �1.x/: (5.16)

The first item is a direct consequence of (5.2) and (5.12); the second follows from (5.3)
and (5.12); the third follows from (5.4) and (5.14); and the final item holds by (5.5).

DEFINITION. Define �⇤WX ! Œ0; 1ç by �⇤.x/ D .1 � f .x//�1.x/:
We have

h1 � f;�1i D 1 � hf;�1i
D 1 � hf;�1 � �0i since supp�0 ✓ f �1.0/

D 1 � 2hf; 1i by (5.12)
D ˛ by (5.10), (5.17)

whence

k�⇤k1 D ˛: (5.18)

We will need the following technical result from [45, Claim 3.3], which continues to hold
with �⇤ replaced by any function.

LEMMA 5.1. For every polynomial P WXN ! R and every k D 0; 1; 2; : : : ; N; the map-
ping

´ 7!
*
�˝k

⇤ ˝
N�kO
iD1

�´i
; P

+
; ´ 2 f0; 1gN�k ; (5.19)

is a polynomial of degree at most .degP /=d1:

Proof (adapted from [45]). By linearity, it suffices to consider factored polynomials of the
form P.x1; : : : ; xN / D p1.x1/ � � �pN .xN /: In this case (5.19) simplifies to

´ 7!
kY
iD1

h�⇤; pi i �
N�kY
iD1

h�´i
; pkCi i; ´ 2 f0; 1gN�k : (5.20)

By (5.13), polynomials pi of degree less than d1 satisfy h�0; pi i D h�1; pi i and therefore
do not contribute to the degree of (5.20) as a real function on f0; 1gN�k . It follows that the
degree of (5.20) is at most jfi W degpi > d1gj 6 .degP /=d1:
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5.3. Auxiliary objects in the tensor space. The fundamental distributions �0 and �1 on
X naturally give rise to the following family of functions ⇤Nk;mWXN ! Œ0; 1ç:

DEFINITION. For nonnegative integers k;m with k Cm 6 N; define

⇤Nk;m.x1; x2; : : : ; xN / D E
S;T

24Y
i2S

�⇤.xi / �
Y
i2T

�1.xi / �
Y

i…S[T
�0.xi /

35 ; (5.21)

where the expectation is over a uniformly random pair of disjoint sets S; T ✓ f1; 2; : : : ; N g
of size jS j D k and jT j D m:

We proceed to examine basic analytic and metric properties of ⇤Nk;m:

LEMMA 5.2.
(i) supp⇤Nk;0 ✓ F �1.1/;

(ii) h⇤Nk;m; 1i D k⇤Nk;mk1 D ˛k ;

(iii) ⇤Nk;m D ⇤Nk0;m0 on F �1.1/ whenever k Cm D k0 Cm0;
(iv) hF;⇤Nk;mi D ˛kCm;
(v) ⇤Nk;m.x/ ¤ 0 only if jfi W  1.xi / > 0gj D k Cm:

Proof. (i) Immediate from the fact that supp�0 ✓ f �1.0/ and supp�⇤ ✓ f �1.0/.
(ii) The first equality holds because ⇤Nk;m is nonnegative, whereas the second is imme-

diate from the fact that the nonnegative functions �0;�1;�⇤ satisfy k�0k1 D k�1k1 D 1
by definition and k�⇤k1 D ˛ by (5.18).

(iii) Recall that �⇤ D �1 on f �1.0/: Since F �1.1/ D f �1.0/N , the claim follows.
(iv) We have

hF;⇤Nk;mi D hF;⇤NkCm;0i by (iii)

D h1;⇤NkCm;0i by (i)

D ˛kCm by (ii).

(v) Immediate from the fact that supp�⇤ ✓ supp�1 D fx 2 X W  1.x/ > 0g and
supp�0 D fx 2 X W  1.x/ < 0g.

LEMMA 5.3. For any polynomial P WXN ! R; the mapping

m 7! h⇤Nk;m; P i .m D 0; 1; 2; : : : ; N � k/ (5.22)

is a univariate polynomial of degree at most .degP /=d1:

Proof. For S ✓ f1; 2; : : : ; N g with jS j D k; define

⇤NS;m.x/ D E
T

24Y
i2T

�1.xi / �
Y

i…S[T
�0.xi /

35Y
i2S

�⇤.xi /;

where the expectation is over a uniformly random subset T ✓ f1; 2; : : : ; N g n S of car-
dinality jT j D m: It is clear that ⇤Nk;m D EjS jDk ⇤NS;m; and therefore (5.22) is a convex
combination of mappings

m 7! h⇤NS;m; P i .m D 0; 1; 2; : : : ; N � k/ (5.23)
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as S ranges over k-element subsets. As a result, the proof will be complete once we show
that (5.23) is a polynomial of degree at most .degP /=d1:

By symmetry, we may assume that S D f1; 2; : : : ; kg: By Lemma 5.1, the function
�W f0; 1gN�k ! R given by

�.´/ D
*
�˝k

⇤ ˝
N�kO
iD1

�´i
; P

+
has degree at most .degP /=d1: Therefore by Proposition 2.1,

m 7! E
´2f0;1gN �k

j´jDm

�.´/ .m D 0; 1; 2; : : : ; N � k/ (5.24)

is a univariate polynomial of degree at most .degP /=d1: It remains to note that the right-
hand side of (5.24) is precisely h⇤NS;m; P i:

We now define a real function Q⇤N;rk that approximates ⇤Nk;0 pointwise and is addition-
ally orthogonal to low-degree polynomials. The parameter r controls the accuracy of the
approximation.

DEFINITION. For integers k; r with 0 6 k 6 N and 0 6 r < k; define Q⇤N;rk WXN ! R
by

Q⇤N;rk .x/ D 2k

.k � r � 1/ä

⇥ E
jS jDk

24Y
i2S

 0.xi / �
k�r�1Y
iD1

0@i �
X
j2S

f .xj /

1A �
Y
i…S

�0.xi /

35 ; (5.25)

where the expectation is over a uniformly random S ✓ f1; 2; : : : ; N g of size jS j D k:

LEMMA 5.4.

(i) h Q⇤N;rk ; P i D 0 for every polynomial P of degree less than .r C 1/d0;

(ii) Q⇤N;rk .x/ ¤ 0 only if jfi W  1.xi / > 0gj D k;

(iii) Q⇤N;rk D ⇤N0;k on F �1.1/;

(iv) j Q⇤N;rk j 6 ✏k�r�k
r

�
⇤N0;k on F �1.0/:

Proof. (i) For t D 0; 1; 2; : : : , it follows from (5.1) that  0˝t is orthogonal to every poly-
nomial of degree less than td0: In particular, the function

x 7!
Y
i2S

 0.xi / �
k�r�1Y
iD1

0@i �
X
j2S

f .xj /

1A �
Y
i…S

�0.xi /;

where S ✓ f1; 2; : : : ; N g is a given subset, is orthogonal to every polynomial of degree
less than .jS j � .k � r � 1//d0. Since Q⇤N;rk is a linear combination of such functions with
jS j D k; the claim follows.

(ii) We have supp 0 ✓ fx 2 X W  1.x/ > 0g by (5.3)–(5.5), and supp�0 D fx 2 X W
 1.x/ < 0g by definition. The claim is now immediate from the defining equation, (5.25).
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(iii) For every x 2 F �1.1/; we have f .xi / D 0 and 2 0.xi / D �1.xi / for every i;
where the former holds by definition and the latter by (5.16). Making these substitutions
in (5.25),

Q⇤N;rk .x/ D E
jS jDk

24Y
i2S

�1.xi / �
Y
i…S

�0.xi /

35 D ⇤N0;k.x/:

(iv) Fix any x with F.x/ D 0. We claim that for every subset S ✓ f1; 2; : : : ; N g of size
jS j D k;

2k

.k � r � 1/ä
Y
i2S

j 0.xi /j �
k�r�1Y
iD1

ˇ̌̌̌
ˇ̌i �

X
j2S

f .xj /

ˇ̌̌̌
ˇ̌ �
Y
i…S

�0.xi /

6 ✏k�r
 
k

r

!Y
i2S

�1.xi / �
Y
i…S

�0.xi /: (5.26)

To see this, consider the nonempty set A D fi W f .xi / D 1g. There are three possibilities.

⌅ If A ª S; then both sides of (5.26) vanish because �0 is supported on f �1.0/:
⌅ If A ✓ S and 1 6 jAj 6 k � r � 1; then

Qk�r�1
iD1 ji �P

j2S f .xj /j D 0 and the
left-hand side of (5.26) vanishes.

⌅ If A ✓ S and k � r 6 jAj 6 k; then the left-hand side of (5.26) simplifies to 
jAj � 1
k � r � 1

! Y
i2S

j2 0.xi /j �
Y
i…S

�0.xi /

6
 
k

r

!Y
i2S

j2 0.xi /j �
Y
i…S

�0.xi /

D
 
k

r

!Y
i2A

j2 0.xi /j �
Y
i2SnA

j2 0.xi /j �
Y
i…S

�0.xi /

D
 
k

r

!Y
i2A

j2 0.xi /j �
Y
i2SnA

�1.xi / �
Y
i…S

�0.xi / by (5.16)

6
 
k

r

!
✏k�r Y

i2A
�1.xi / �

Y
i2SnA

�1.xi / �
Y
i…S

�0.xi / by (5.15).

This completes the proof of (5.26). One now obtains j Q⇤N;rk .x/j 6 ✏k�r�k
r

�
⇤N0;k.x/ by

passing to expectations on both sides of (5.26) with respect to a uniformly random subset
S of cardinality k:

5.4. Simulating symmetric structure. The next step in our construction is a family of
real functions L1; L2; : : : ; Lm; : : : with pairwise disjoint support whose role is to mimic
the levels of the Boolean hypercube, in the sense that inner product with Lm roughly
corresponds to the averaging operation on the mth level of the hypercube. In this way, we
are able to simulate symmetric structure in a context with little actual symmetry.
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Let c0 D c0.ı/ > 0 be a sufficiently large even integer. Then for each k D 0; 1; 2; : : : ; n;
Theorem 2.8 gives an explicit function !k W f0; 1; 2; : : : ; c0n � kg ! R such that

k!kk1 D 1; (5.27)

!k.0/ >
1

2
� ı

12
; (5.28)

j!k.t/j > ı

24t2
.t > 1/; (5.29)

sgn!k.t/ D
(
1 if t D 0;

.�1/kCt otherwise;
(5.30)

degp <
p
n H) h!k ; pi D 0: (5.31)

By Proposition 2.5 (ii),

k!kk1 6 1

2
: (5.32)

We will work with the following integer parameters:

c00 D min
⇢
c > 2 W ✏c�12cH.1=c/ <

ı

20

�
; (5.33)

N D c0c00n; (5.34)

where H is the binary entropy function. Observe that c00 D c00.✏; ı/ > 0 is a constant.

DEFINITION. Define L1; L2; : : : ; Lc0nWXN ! R by

Lm D
m�1X
kD0

✓
4

ı

◆k
!k.m � k/⇤Nc00k;c00.m�k/ .m 6 n/;

Lm D
nX
kD0

✓
4

ı

◆k
!k.m � k/

⇣
⇤Nc00k;c00.m�k/ � Q⇤N;nc00m

⌘
.m > nC 1/:

The following lemma collects key properties of this function family.

LEMMA 5.5.
(i) Lm.x/ ¤ 0 only if jfi W  1.xi / > 0gj D c00m;

(ii) Lm D 0 on F �1.1/ for every m > nC 1;
(iii) .�1/mLm > 0;

(iv) Lm D Pm�1
kD0 .4=ı/

k!k.m � k/⇤Nc00m;0 on F �1.1/ for every m D 1; 2; : : : ; n;

(v) kLmk1 D Pminfm�1;ng
kD0 .4˛c

00
=ı/kj!k.m � k/j:

Proof. (i) Immediate from Lemma 5.2 (v) and Lemma 5.4 (ii).
(ii) On F �1.1/; we have the following identity for every k:

⇤Nc00k;c00.m�k/ � Q⇤N;nc00m D ⇤N0;c00m � Q⇤N;nc00m D 0;

where the first step uses Lemma 5.2 (iii), and the second Lemma 5.4 (iii). The claim is
now immediate from the defining equation of Lm for m > nC 1:

(iii) For m D 1; 2; : : : ; n; the claim follows directly from (5.30) and the nonnegativity
of⇤Nc00k;c00.m�k/. Consider now Lm form > nC 1 and fix an arbitrary point x 2 suppLm:
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Then F.x/ D 0 by (ii). As a result,

j Q⇤N;nc00m.x/j 6 ✏c
00m�n

 
c00m
n

!
⇤N0;c00m.x/ (5.35)

by Lemma 5.4 (iv). In light of (5.30), the defining equation of Lm for m > nC 1 gives

.�1/mLm.x/ D
nX
kD0

✓
4

ı

◆k
j!k.m � k/j

⇣
⇤Nc00k;c00.m�k/.x/ � Q⇤N;nc00m.x/

⌘
D

nX
kD1

✓
4

ı

◆k
j!k.m � k/j⇤Nc00k;c00.m�k/.x/

C
(

j!0.m/j⇤N0;c00m.x/ �
nX
kD0

✓
4

ı

◆k
j!k.m � k/j Q⇤N;nc00m.x/

)
:

Using the estimates (5.29), (5.32), and (5.35), we arrive at

.�1/mLm.x/ >
nX
kD1

✓
4

ı

◆k
j!k.m � k/j⇤Nc00k;c00.m�k/.x/

C
(

ı

24m2
�

✓
4

ı

◆n
� ✏c00m�n

 
c00m
n

!)
⇤N0;c00m.x/:

The terms in the summation are nonnegative. Thus, the proof will be complete once we
show that the expression in braces is nonnegative as well, which is accomplished by the
following calculation:

✓
4

ı

◆n
� ✏c00m�n

 
c00m
n

!

6
✓
4

ı

◆m�1
� ✏c00m�m

 
c00m
m

!
since m > nC 1 and c00 > 2

6 ı

4

✓
4

ı
� ✏c00�12c

00H.1=c00/
◆m

6 ı

4 � 5m by (5.33)

6 ı

24m2
since m > 2:

(iv) Immediate from Lemma 5.2 (iii).
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(v) For m D 1; 2; : : : ; n;

kLmk1 D hLm; sgnLmi
D .�1/mhLm; 1i by (iii)

D .�1/m
m�1X
kD0

✓
4

ı

◆k
!k.m � k/h⇤Nc00k;c00.m�k/; 1i

D .�1/m
m�1X
kD0

 
4˛c

00

ı

!k
!k.m � k/ by Lemma 5.2 (ii)

D
m�1X
kD0

 
4˛c

00

ı

!k
j!k.m � k/j by (5.30):

The analysis for m > nC 1 is similar but has an additional step:

kLmk1 D hLm; sgnLmi
D .�1/mhLm; 1i by (iii)

D .�1/m
nX
kD0

✓
4

ı

◆k
!k.m � k/h⇤Nc00k;c00.m�k/ � Q⇤N;nc00m; 1i

D .�1/m
nX
kD0

✓
4

ı

◆k
!k.m � k/h⇤Nc00k;c00.m�k/; 1i by Lemma 5.4 .i/

D .�1/m
nX
kD0

 
4˛c

00

ı

!k
!k.m � k/ by Lemma 5.2 (ii)

D
nX
kD0

 
4˛c

00

ı

!k
j!k.m � k/j by (5.30).

5.5. Constructing the dual objects. We are finally in a position to construct the claimed
dual pair . 0; 1/ for F: Let

 0 D
X

mD1;2;:::;c0nW
m even

Lm C
nX

mD0

✓
4

ı

◆m ✓
!m.0/ � 1

2

◆
⇤Nc00m;0; (5.36)

 1 D
c0nX
mD1

Lm C
nX

mD0

✓
4

ı

◆m
!m.0/⇤

N
c00m;0: (5.37)

The next two lemmas establish useful facts about these functions.
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LEMMA 5.6. There are Q⇤0; Q⇤1 2 spanf Q⇤N;nm W nC 1 6 m 6 N g such that

 0 D
nX
kD0

✓
4

ı

◆k⌅✓
!k.0/ � 1

2

◆
⇤Nc00k;0 C

X
mD1;2;:::;c0n�kW
m⌘k .mod 2/

!k.m/⇤
N
c00k;c00m

˘

C Q⇤0; (5.38)

 1 D
nX
kD0

✓
4

ı

◆k c0n�kX
mD0

!k.m/⇤
N
c00k;c00m C Q⇤1: (5.39)

Proof. Substituting the defining equation for Lm in (5.36),

 0 D
X

mD1;2;:::;c0nW
m even

minfm�1;ngX
kD0

✓
4

ı

◆k
!k.m � k/⇤Nc00k;c00.m�k/

C
nX

mD0

✓
4

ı

◆m ✓
!m.0/ � 1

2

◆
⇤Nc00m;0 C Q⇤0

D
nX
kD0

X
mD1;2;:::;c0n�kW
m⌘k .mod 2/

✓
4

ı

◆k
!k.m/⇤

N
c00k;c00m

C
nX

mD0

✓
4

ı

◆m ✓
!m.0/ � 1

2

◆
⇤Nc00m;0 C Q⇤0;

where Q⇤0 is as claimed in the lemma statement. Now (5.38) is immediate.
The proof for  1 is analogous. Substituting the defining equation for Lm in (5.37),

 1 D
c0nX
mD1

minfm�1;ngX
kD0

✓
4

ı

◆k
!k.m � k/⇤Nc00k;c00.m�k/

C
nX

mD0

✓
4

ı

◆m
!m.0/⇤

N
c00m;0 C Q⇤1

D
c0nX
mD0

minfm;ngX
kD0

✓
4

ı

◆k
!k.m � k/⇤Nc00k;c00.m�k/ C Q⇤1;

where Q⇤1 is as claimed in the lemma statement. The final expression is equivalent to (5.39)
by basic algebra.
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LEMMA 5.7. On F �1.1/; one has

 0 D
X

mD0;1;:::;nW
m even

 
�1
2

✓
4

ı

◆m
C

mX
kD0

✓
4

ı

◆k
!k.m � k/

!
⇤Nc00m;0

C
X

mD0;1;:::;nW
m odd

✓
4

ı

◆m ✓
!m.0/ � 1

2

◆
⇤Nc00m;0; (5.40)

 1 D
nX

mD0

 
mX
kD0

✓
4

ı

◆k
!k.m � k/

!
⇤Nc00m;0: (5.41)

Proof. For any input x with F.x/ D 1,

 0.x/ D
X

mD1;2;:::;c0nW
m even

Lm.x/C
nX

mD0

✓
4

ı

◆m ✓
!m.0/ � 1

2

◆
⇤Nc00m;0.x/

D
X

mD1;2;:::;nW
m even

 
m�1X
kD0

✓
4

ı

◆k
!k.m � k/

!
⇤Nc00m;0.x/

C
nX

mD0

✓
4

ı

◆m ✓
!m.0/ � 1

2

◆
⇤Nc00m;0.x/;

where the first equality holds by definition, and the second by Lemma 5.5 (ii), (iv). This
proves (5.40).

The proof of (5.41) is closely analogous. For x 2 F �1.1/;

 1.x/ D
c0nX
mD1

Lm.x/C
nX

mD0

✓
4

ı

◆m
!m.0/⇤

N
c00m;0.x/

D
nX

mD1

 
m�1X
kD0

✓
4

ı

◆k
!k.m � k/

!
⇤Nc00m;0.x/C

nX
mD0

✓
4

ı

◆m
!m.0/⇤

N
c00m;0.x/;

where the first equality holds by definition, and the second by Lemma 5.5 (ii), (iv).

We are now in a position to establish one by one the properties required of  0; 1 to be
a dual pair for F: The five lemmas that follow, Lemmas 5.8–5.12, are independent and can
be read in any order.

LEMMA 5.8. hF; 1i > 1�ı
2 k 1k1:
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Proof. We have

hF; 1i D
nX

mD0

mX
kD0

✓
4

ı

◆k
!k.m � k/hF;⇤Nc00m;0i by (5.41)

D
nX

mD0

mX
kD0

✓
4

ı

◆k
!k.m � k/˛c00m by Lemma 5.2 (iv)

D
nX
kD0

 
4˛c

00

ı

!k n�kX
mD0

˛c
00m!k.m/ by basic algebra

>
nX
kD0

 
4˛c

00

ı

!k ⇣
!k.0/ � ˛c00k!kk1

⌘
>

nX
kD0

 
4˛c

00

ı

!k ✓
1

2
� ı

12
� ˛c00

◆
by (5.27), (5.28)

>
nX
kD0

 
4˛c

00

ı

!k
1 � ı
2

by (5.11), (5.33).

On the other hand,

k 1k1 6
c0nX
mD1

kLmk1 C
nX

mD0

✓
4

ı

◆m
j!m.0/jk⇤Nc00m;0k1 by (5.37)

D
c0nX
mD1

minfm�1;ngX
kD0

 
4˛c

00

ı

!k
j!k.m � k/j

C
nX

mD0

 
4˛c

00

ı

!m
j!m.0/j by Lemmas 5.5(v), 5.2(ii)

D
nX
kD0

 
4˛c

00

ı

!k c0n�kX
mD0

j!k.m/j by basic algebra

D
nX
kD0

 
4˛c

00

ı

!k
by (5.27).

LEMMA 5.9.  1.x/ > 0 whenever F.x/ D 1:

Proof. By (5.41), it suffices to show that✓
4

ı

◆m
!m.0/ >

m�1X
kD0

✓
4

ı

◆k
j!k.m � k/j .m D 0; 1; : : : ; n/: (5.42)

This relation follows directly from the properties of !k . Specifically, by (5.28) the left-
hand side of (5.42) is at least .4=ı/m.1 � ı=6/=2 > .4=ı/m=3; whereas by (5.32) the
right-hand side of (5.42) is at most

Pm�1
kD0 .4=ı/

k=2 6 .4=ı/m=6:
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LEMMA 5.10. Let P0; P1WXN ! R be polynomials with

degP0 < minfnd0; d1g;
degP1 < minfnd0;

p
nd1g:

Then

h 0; P0i D h 1; P1i D 0:

Proof. Lemma 5.3 guarantees the existence of univariate real polynomials p0; p1; : : : ; pn
such that

h⇤Nc00k;m; P1i D pk.m/ .k D 0; 1; : : : ; nI m D 0; 1; : : : ; N � c00k/; (5.43)

degpk <
p
n .k D 0; 1; : : : ; n/: (5.44)

Thus,

h 1; P1i D
nX
kD0

✓
4

ı

◆k c0n�kX
mD0

!k.m/h⇤Nc00k;c00m; P1i by Lemmas 5.6 and 5.4 (i)

D
nX
kD0

✓
4

ı

◆k c0n�kX
mD0

!k.m/pk.c
00m/ by (5.43)

D
nX
kD0

✓
4

ı

◆k
� 0 by (5.31) and (5.44)

D 0:

We now prove the claim for  0. By (5.27), (5.31), and Proposition 2.5 (i),

X
mW!k.m/>0

!k.m/ D 1

2

for every k; which in view of (5.30) is equivalent to

!k.0/C
X

mD1;2;:::;c0n�kW
m⌘k .mod 2/

!k.m/ D 1

2
: (5.45)

From this point on, the analysis is similar to the one above for  1: By Lemma 5.3, there
are reals a0; a1; : : : ; an (i.e., zero-degree polynomials) such that

h⇤Nc00k;m; P0i D ak .k D 0; 1; : : : ; nI m D 0; 1; : : : ; N � c00k/: (5.46)
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By Lemmas 5.6 and 5.4 (i),

h 0; P0i D
nX
kD0

✓
4

ı

◆k ⇥✓
!k.0/ � 1

2

◆
h⇤Nc00k;0; P0i C

X
mD1;2;:::;c0n�kW
m⌘k .mod 2/

!k.m/h⇤Nc00k;c00m; P0i

˘

D
nX
kD0

✓
4

ı

◆k⌅
!k.0/ � 1

2
C

X
mD1;2;:::;c0n�kW
m⌘k .mod 2/

!k.m/

˘
ak by (5.46)

D
nX
kD0

✓
4

ı

◆k
� 0 by (5.45)

D 0:

LEMMA 5.11.  0 D maxf 1; 0g on F �1.0/:

Proof. Recall from Lemma 5.2 (i) that for any k; the support of ⇤Nk;0 is contained in
F �1.1/: As a result, the defining equations (5.36) and (5.37) simplify on F �1.0/ to

 0 D
X

mD1;2;:::;c0nW
m even

Lm;  1 D
c0nX
mD1

Lm:

This completes the proof because by Lemma 5.5 (i), (iii), the functionsL1; L2; : : : ; Lm; : : :
have pairwise disjoint support, with sgnLm D .�1/m on the support of Lm:

LEMMA 5.12. j 0j 6 ı 1 on F �1.1/.

Proof. Recall from Lemma 5.2 (v) that the functions ⇤Nc00m;0 for m D 0; 1; 2; : : : ; n have
pairwise disjoint support. Therefore, the claimed result will follow immediately from
Lemma 5.7 once we verify the inequality

max

(ˇ̌̌̌
ˇ�12

✓
4

ı

◆m
C

mX
kD0

✓
4

ı

◆k
!k.m � k/

ˇ̌̌̌
ˇ ;

✓
4

ı

◆m ˇ̌̌̌1
2

� !m.0/
ˇ̌̌̌ )

6 ı

mX
kD0

✓
4

ı

◆k
!k.m � k/ (5.47)
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for every m D 0; 1; : : : ; n: We haveˇ̌̌̌
!m.0/ � 1

2

ˇ̌̌̌
6 ı

12
by (5.28) and (5.32),

j!k.m � k/j 6 1

2
by (5.32).

Thus, the left-hand side of (5.47) is at most✓
4

ı

◆m ˇ̌̌̌1
2

� !m.0/
ˇ̌̌̌
C
m�1X
kD0

✓
4

ı

◆k
j!k.m � k/j 6

✓
4

ı

◆m ✓
ı

12
C ı

8 � 2ı
◆

6
✓
4

ı

◆m�1
;

whereas the right-hand side of (5.47) is at least

ı

✓
4

ı

◆m
!m.0/ � ı

m�1X
kD0

✓
4

ı

◆k
j!k.m � k/j > ı

✓
4

ı

◆m ✓
1

2
� ı

12
� ı

8 � 2ı
◆

>
✓
4

ı

◆m�1
:

Lemmas 5.8–5.12 establish that . 0; 1/ is a .minfnd0; d1g;minfnd0;pnd1g; ı/-dual
pair for F: This completes the proof of Theorem 4.2.

5.6. Generalizations. The proof of Theorem 4.2 presented in this section can be general-
ized in several ways. As a concrete example, define a generalized .d0; d1; ✏/-dual pair for
f WX ! f0; 1g to be any pair of real functions  0;  1WX ! R such that

(i) hf; 1i > 1�✏
2 k 1k1,

(ii)  1.x/ > 0 whenever f .x/ D 1,
(iii) h 1; pi D 0 for every polynomial p of degree less than d1,
(iv) h 0; pi D 0 for every polynomial p of degree less than d0,
(v)

 0.x/ 2
(
Œ 1.x/; 2 1.x/ç if f .x/ D 0 and  1.x/ > 0;
Œ�✏j 1.x/j; ✏j 1.x/jç otherwise.

This definition extends the notion of a .d0; d1; ✏/-dual pair from Section 4. Indeed, re-
quirements (i)–(iv) are unchanged but the final requirement (v) is significantly weaker than
before. It is not hard to adapt our proof of Theorem 4.2 to this alternate definition of a dual
pair, for a small absolute constant ✏ > 0:

6. A COMPLETE CHARACTERIZATION OF THE THRESHOLD DEGREE

In this section, we study composed functions of the form ORn ı f . We fully character-
ize the threshold degree of any such composition in terms of an approximation-theoretic
property of f: Specifically, we show that up to a logarithmic factor, the threshold degree of
ORn ı f for n > 2 equals

min
d0;d1

fnd0 C d1g ;
where the minimum is over all d0; d1 > 0 such that f can be approximated in a one-sided
manner to within 1=3 by a rational function with denominator degree d0 and numerator
degree d1. As a limiting case, we show that the threshold degree of ORn ı f for n large



BREAKING THE MINSKY-PAPERT BARRIER FOR CONSTANT-DEPTH CIRCUITS 31

essentially coincides with the one-sided approximate degree of f . The work in this section
gives a different proof of Corollary 4.6.

6.1. One-sided rational approximation. Analogous to the one-sided approximation of
Boolean functions by polynomials, reviewed in Section 2, the definition below formalizes
one-sided approximation by rational functions.

DEFINITION. For d0 > 0 and a Boolean function f WX ! f0; 1g, define degC
✏ .f; d0/ to

be the smallest d1 > 0 for which there exist polynomials p0; p1 of degree at most d0; d1;
respectively, with

f .x/ D 0 H)
ˇ̌̌̌
p1.x/

p0.x/

ˇ̌̌̌
6 ✏;

f .x/ D 1 H) p1.x/

p0.x/
> 1 � ✏:

Implicit in this definition is the requirement that p0.x/ ¤ 0 for every x 2 X: Since a
polynomial can be viewed as a rational function with denominator degree 0; we have

degC
✏ .f / D degC

✏ .f; 0/:

There is a partial equivalence between one-sided and two-sided approximation by ra-
tional functions. Specifically, any one-sided rational approximant for f with denominator
degree d0 and numerator degree d1 gives a two-sided (`1-norm) approximant for the same
function with a numerator and denominator of degree at most 2d0C2d1: This equivalence
has no bearing on our paper because we treat numerator degree and denominator degree
as distinct complexity measures—indeed, our interest is precisely in the trade-off between
them. Nevertheless, we include a proof of this interesting fact for the sake of completeness.

PROPOSITION 6.1. For every function f WX ! f0; 1g and every 0 < ✏ < 1=2;

M 6 min
p;q

⇢
degp C deg q W

����f � p

q

����
1

6 ✏

�
6 4M;

where

M D min
dD0;1;2;:::

fd C degC
✏ .f; d/g:

Proof. The lower bound is trivial since one-sided approximation is a weaker requirement
than approximation in the `1 norm. In the other direction, fix an integer d > 0 and
polynomials p0; p1 of degree at most d and degC

✏ .f; d/, respectively, with jp1=p0j 6 ✏
on f �1.0/ and p1=p0 > 1 � ✏ on f �1.1/. Letting

Qf D p21
p21 C ✏.1 � ✏/p20

;

we have 0 6 Qf 6 ✏ on f �1.0/ and 1 � ✏ 6 Qf 6 1 on f �1.1/.

Analogous to polynomial approximation, there is a generic way to rapidly reduce the
error in a one-sided approximation by rational functions.

PROPOSITION 6.2. For any function f WX ! f0; 1g and any k D 1; 2; 3; : : : ;

degC
✏k

✏k C.1�✏/k

.f; kd/ 6 k degC
✏ .f; d/:
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Proof. Fix d > 0 and polynomials p0; p1 of degree at most d and degC
✏ .f; d/; respec-

tively, such that jp1=p0j 6 ✏ on f �1.0/ and p1=p0 > 1 � ✏ on f �1.1/. Letting q0 D pk0
and q1 D pk1=.✏

k C .1 � ✏/k/, we obtainˇ̌̌̌
q1

q0

ˇ̌̌̌
6 ✏k

✏k C .1 � ✏/k
on f �1.0/;

q1

q0
> 1 � ✏k

✏k C .1 � ✏/k
on f �1.1/:

A substantial disadvantage of one-sided approximate degree, in the setting of rational
functions, is its lack of a clean and exact dual characterization. We therefore consider a
closely related quantity that admits such a characterization.

DEFINITION. For d0; d1 > 0 and a Boolean function f WX ! f0; 1g; define R.f; d0; d1/
as the infimum over all ✏ > 0 for which there exist polynomials p0; p1 of degree at most
d0; d1, respectively, such that

f .x/ D 0 H) jp1.x/j < ✏p0.x/; (6.1)
f .x/ D 1 H) jp0.x/j < ✏p1.x/: (6.2)

It is clear that R.f; d0; d1/ is always well-defined and ranges in Œ0; 1ç. We now have two
notions of error for the one-sided rational approximation of Boolean functions: one-sided
approximate degree and the new quantity R.f; d0; d1/: Fortunately, the two notions are
equivalent, with degC

✏ .f; d0/ > d1 roughly corresponding to R.f; d0; d1/ >
p
✏=.1 � ✏/:

The proposition below makes this correspondence formal.

PROPOSITION 6.3. For d0; d1 > 0 and every Boolean function f WX ! f0; 1g;

degC
✏ .f; d0/ > d1 H) R

✓
f;
d0

2
;
d1

2

◆
> 4

r
✏

1 � ✏
; (6.3)

degC
✏ .f; d0/ 6 d1 H) R .f; 2d0; 2d1/ 6 ✏

1 � ✏
: (6.4)

Proof. Assume that degC
✏ .f; d0/ > d1 and fix ı > R.f; d0=2; d1=2/ arbitrarily. Then by

definition, there are polynomials p0; p1 of degree at most d0=2 and d1=2, respectively,
such that jp1j < ıp0 on f �1.0/ and jp0j < ıp1 on f �1.1/: In particular, the infimum

inf
⇣>0

⇢
ı2

1C ı4
� p21.x/

p20.x/C ⇣

�
has absolute value less than ı4=.1 C ı4/ on f �1.0/ and exceeds 1=.1 C ı4/ on f �1.1/:
We obtain

degC
ı4

1Cı4

.f; d0/ 6 d1;

whence

ı > 4

r
✏

1 � ✏

by the premise of (6.3). Since ı > R.f; d0=2; d1=2/ was chosen arbitrarily, (6.3) follows.
In the other direction, assume that degC

✏ .f; d0/ 6 d1. Then for every ı > ✏; there
are polynomials p0; p1 of degree at most d0; d1, respectively, such that jp1=p0j < ı on
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f �1.0/ and p1=p0 > 1� ı on f �1.1/: Letting q0 D p20 and q1 D p21=.ı� ı2/, we obtain
jq1j < q0ı=.1 � ı/ on f �1.0/ and jq0j < q1ı=.1 � ı/ on f �1.1/. Put another way,

R.f; 2d0; 2d1/ 6 ı

1 � ı :
Since the choice of ı > ✏ was arbitrary, (6.4) follows.

6.2. Passing to the dual program. One-sided rational approximation, as formalized by
the quantity R.f; d0; d1/; admits the following intuitive dual characterization.

THEOREM 6.4. Let f WX ! f0; 1g be a given Boolean function, d0; d1 > 0. Then for
every ✏ > 0; the nonexistence of polynomials p0; p1 such that

(i) jp1j < ✏p0 on f �1.0/;
(ii) jp0j < ✏p1 on f �1.1/;

(iii) degp0 6 d0;
(iv) degp1 6 d1;

is equivalent to the existence of  0;  1WX ! R such that
(v)  0 > ✏j 1j on f �1.0/;

(vi)  1 > ✏j 0j on f �1.1/;
(vii) degp 6 d0 H) h 0; pi D 0;

(viii) degp 6 d1 H) h 1; pi D 0;
(ix)  0 ¥ 0;
(x)  1 ¥ 0.

Proof. Let P0 and P1 denote the linear subspaces of real polynomials on X of degree at
most d0 and d1, respectively. Conditions (i) and (ii) can be rewritten as

✏1�f p0 C ✏f p1 > 0;

.�✏/1�f p0 C .�✏/f p1 < 0
on X: By linear programming duality, this system of inequalities in p0 2 P0; p1 2 P1 is
infeasible if and only if there exist nonnegative functions �;� on X; not both identically
zero, such that

✏1�f � � .�✏/1�f � 2 P?
0 ; (6.5)

✏f � � .�✏/f � 2 P?
1 : (6.6)

The existence of such � and � is in turn equivalent to the existence of  0;  1WX ! R, not
both identically zero, that obey (v)–(viii), where we identify  0 and  1 with the left-hand
sides of (6.5) and (6.6), respectively.

Finally, the requirement that at least one of  0;  1 be not identically zero is logically
equivalent to the requirement that  0 ¥ 0 and  1 ¥ 0 simultaneously. Indeed, if ex-
actly one of  0;  1 were identically zero, then by (v)–(vi) the other would have to be a
nonnegative function, contradicting h 0; 1i D h 1; 1i D 0:

COROLLARY 6.5. Let f WX ! f0; 1g be a given Boolean function, R.f; d0; d1/ > 0:
Then R.f; d0; d1/ is the supremum over all ✏ > 0 for which there exist  0;  1WX ! R
with

(i)  0 > ✏j 1j on f �1.0/;
(ii)  1 > ✏j 0j on f �1.1/;
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(iii) degp 6 d0 H) h 0; pi D 0;
(iv) degp 6 d1 H) h 1; pi D 0;
(v)  0 ¥ 0;

(vi)  1 ¥ 0.

6.3. Lower bound on the threshold degree. We are now in a position to prove a lower
bound on the threshold degree of any composition ORn ı f: The following first-principles
construction plays an important role in the proof.

LEMMA 6.6. For integers n; d with n > 1 and 0 6 d 6 n; let

pn;d .t/ D
nY

iDn�dC1

i � t
i
:

Then

pn;d .0/ D 1;

jpn;d .t/j 6
✓
1 � d

n

◆t
; t D 1; 2; : : : ; n:

Proof. The cases t D 0 and t > n�d are straightforward, with pn;d evaluating to 1 in the
former case and vanishing in the latter. For t D 1; 2; : : : ; n � d; we have the closed form

pn;d .t/ D
 
n � t
d

! 
n

d

!�1
;

whence

jpn;d .t/j D n � d
n

� n � d � 1
n � 1 � � � � � n � d � t C 1

n � t C 1
6

✓
n � d
n

◆t
:

We have reached the main technical result of this section.

THEOREM 6.7. Let d0; d1 > 0 be integers, f WX ! f0; 1g a given Boolean function. If
R.f; d0; d1/ > ✏; then

deg˙.ORn ı f / > minfb✏2nc.d0 C 1/; d1 C 1g; n D 1; 2; 3; : : : :

Proof. Abbreviate F D ORn ı f: We need only consider the case ✏ > 0; the theorem
being trivial otherwise. Since R.f; d0; d1/ > ı for sufficiently small ı > ✏, Corollary 6.5
guarantees the existence of  0;  1WX ! R such that

f .x/ D 0 H)  0.x/ > ıj 1.x/j; (6.7)
f .x/ D 1 H)  1.x/ > ıj 0.x/j; (6.8)
degp < d0 C 1 H) h 0; pi D 0; (6.9)
degp < d1 C 1 H) h 1; pi D 0; (6.10)
 0 ¥ 0: (6.11)
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For integers n; d; let pn;d denote the degree-d polynomial constructed in Lemma 6.6.
Define A;BWXn ! R by

A.x/ D pn;n�b✏2nc

 
nX
iD1

f .xi /

!
nY
iD1

 0.xi /;

B.x/ D
Y

i Wf .xi /D0
j 0.xi /j �

Y
i Wf .xi /D1

ı 1.xi /

�
nY
iD1
.1 � f .xi // �

nY
iD1
.j 0.xi /j � ı 1.xi //:

We have

F.x/ D 0 H) A.x/ D
nY
iD1

j 0.xi /j; (6.12)

F.x/ D 1 H) jA.x/j 6 ✏2
P
f .xi /

nY
iD1

j 0.xi /j; (6.13)

where the first item follows from Lemma 6.6 and the nonnegativity of  0 on f �1.0/, and
the second is immediate from Lemma 6.6. Continuing, (6.7) and (6.8) imply

F.x/ D 0 H) B.x/ 6
nY
iD1

j 0.xi /j; (6.14)

F.x/ D 1 H) B.x/ > ı2
P
f .xi /

nY
iD1

j 0.xi /j; (6.15)

respectively. Finally, we claim that

degP < b✏2nc.d0 C 1/ H) hA;P i D 0; (6.16)
degP < d1 C 1 H) hB;P i D 0: (6.17)

The first claim follows directly from (6.9), whereas the second follows from (6.10) once
one rewrites

B.x/ D
nY
iD1

fı 1.xi /C .1 � f .xi //.j 0.xi /j � ı 1.xi //g

�
nY
iD1
.1 � f .xi //.j 0.xi /j � ı 1.xi //

D
X

S✓f1;2;:::;ng
S¤¿

Y
i2S

ı 1.xi / �
Y
i…S
.1 � f .xi //.j 0.xi /j � ı 1.xi //:

By (6.12)–(6.15), the function  D 1
ıB � 1

✏A satisfies

.�1/1�F.x/ .x/ > .ı � ✏/2n
nY
iD1

j 0.xi /j:

Recalling (6.11), we conclude that .�1/1�F > 0 and ¥ 0:Moreover, (6.16) and (6.17)
ensure that  is orthogonal to polynomials of degree less than minfb✏2nc.d0C1/; d1C1g.
By the dual characterization of threshold degree (Theorem 2.2), the proof is complete.
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Rewording the previous theorem in terms of one-sided approximate degree, we obtain:

COROLLARY 6.8. Let f WX ! f0; 1g be given. Then for all ✏ > 0 and all integers n > 1
and d > 0;

deg˙.ORn ı f / > min

(j
n
p
✏.1C ✏/

k⇠d C 1

2

⇡
;

&
degC

✏ .f; d/

2

')
: (6.18)

Proof. If ✏ D 0 or degC
✏ .f; d/ D 0, then the right-hand side of (6.18) vanishes, and the

claim is trivially true. As a result, we may assume that ✏ > 0 and degC
✏ .f; d/ > 1. Consider

the nonnegative integers d0 D b12dc and d1 D b12 degC
✏ .f; d/� 1

2c: Then degC
✏ .f; 2d0/ >

2d1 by definition, whence

R.f; d0; d1/ > 4

r
✏

1 � ✏
> 4
p
✏.1C ✏/

by Proposition 6.3. Therefore, Theorem 6.7 implies that

deg˙.ORn ı f / > min
nj
n
p
✏.1C ✏/

k
.d0 C 1/; d1 C 1

o
D min

(j
n
p
✏.1C ✏/

k⇠d C 1

2

⇡
;

&
degC

✏ .f; d/

2

')
:

As a special case, we recover Corollary 4.6 with an entirely new proof:

COROLLARY 6.9. Let f WX ! f0; 1g be given. Then

deg˙.ORn ı f / > 1

2
minfn; degC

1=3.f /g:
In particular,

deg˙.ORn2=5 ı EDn3=5/ D ˝.n2=5/:

Proof. The first assertion is trivial for n D 1, whereas for n > 2 it follows by taking
d D 0 and ✏ D 1=3 in Corollary 6.8. The second assertion follows from the first by
Theorem 2.7.

6.4. Upper bound on the threshold degree. We now recall a matching upper bound on
the threshold degree of any composition ORn ı f . This result was already implicit in the
original paper of Beigel et al. [8], with various related statements obtained in subsequent
work [22, 38, 40].

THEOREM 6.10 (cf. Beigel et al.). Let f WX ! f0; 1g be given. Then for all integers
n > 1,

deg˙.ORn ı f / 6 min
06✏< 1

2n

min
dD0;1;2;:::

˚
2nd C degC

✏ .f; d/
 

(6.19)

6 dlog 2ne min
dD0;1;2;:::

f2nd C degC
1=3.f; d/g: (6.20)

Proof (cf. [8, 22]). Abbreviate F D ORn ı f , and fix an integer d > 0 and a real num-
ber 0 6 ✏ < 1

2n . By definition, there are polynomials p0; p1 of degree at most d and
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degC
✏ .f; d/, respectively, such thatˇ̌̌̌

p1

p0

ˇ̌̌̌
<

1

2n
on f �1.0/;

p1

p0
> 1 � 1

2n
on f �1.1/:

Then

sgn

 
nX
iD1

p1.xi /

p0.xi /
� 1

2

!
D
(

�1 if F.x1; x2; : : : ; xn/ D 0;

1 otherwise.

Multiplying the expression in parentheses by the positive quantity
Q
p0.xi /

2 gives a sign-
representing polynomial for F of degree at most 2nd C degC

✏ .f; d/; namely,
nX
iD1

p0.xi /p1.xi /

nY
jD1
j¤i

p0.xj /
2 � 1

2

nY
jD1

p0.xj /
2:

This completes the proof of (6.19). Now (6.20) can be verified as follows:

deg˙.ORn ı f / 6 min
dD0;1;2;:::

⇢
2n � dlog 2ned C degC

1
2nC1

.f; dlog 2ned/
�

6 dlog 2ne min
dD0;1;2;:::

f2nd C degC
1=3.f; d/g;

where the first inequality follows by taking ✏ D 1
2nC1 in (6.19), and the second follows by

taking ✏ D 1
3 and k D dlog 2ne in Proposition 6.2.

6.5. The final characterization. It remains to show that our lower and upper bounds on
the threshold degree of ORnıf essentially coincide. We start with a technical observation.

PROPOSITION 6.11. Let GWN ! R and gWN ! R be given functions, where

(i) G is nondecreasing and unbounded,
(ii) g is nonincreasing,

(iii) G.0/ 6 g.0/:

Then

max
iD0;1;2;:::

minfG.i C 1/; g.i/g > 1

2
min

iD0;1;2:::
fG.i/C g.i/g:

Proof. We will prove the claimed result under much weaker assumptions on G and g.
Specifically, the only consequence of (i)–(iii) that we will use is the existence of i⇤ > 0
such that G.i⇤/ 6 g.i⇤/ and G.i⇤ C 1/ > g.i⇤ C 1/: We have:

2max
i>0

minfG.i C 1/; g.i/g > minf2G.i⇤ C 1/; 2g.i⇤/g
> minf2G.i⇤ C 1/;G.i⇤/C g.i⇤/g
> minfG.i⇤ C 1/C g.i⇤ C 1/;G.i⇤/C g.i⇤/g
> min

i>0
fG.i/C g.i/g:

The desired characterization of the threshold degree of ORn ı f is as follows.
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THEOREM 6.12. For every function f WX ! f0; 1g and every n > 2;

D

8
6 deg˙.ORn ı f / 6 D � 2dlog 2ne;

where

D D min
dD0;1;2;:::

n
nd C degC

1=3.f; d/
o
:

Proof. The upper bound on the threshold degree follows directly from Theorem 6.10. The
lower bound can be verified as follows:

deg˙.ORn ı f / > max
d>0

min
⇢
n.d C 1/

4
;

degC
1=3.f; d/

2

�
> min
d>0

⇢
nd

8
C degC

1=3.f; d/

4

�
;

where the first inequality holds by taking ✏ D 1=3 in Corollary 6.8, and the second follows
by Proposition 6.11.

Prior to our work, the characterization in Theorem 6.12 was only known for n D 2;with
the upper and lower bounds for that case obtained by Beigel et al. [8] and Sherstov [38],
respectively. Specifically, those authors showed that up to a small multiplicative constant,
the threshold degree of OR2 ı f equals the smallest degree of a rational function that
approximates f pointwise within 1=3:

deg˙.OR2 ı f / D ⇥

✓
min
p;q

⇢
degp C deg q W

����f � p

q

����
1

6 1

3

�◆
:

By Proposition 6.1, this characterization is equivalent to Theorem 6.12 for n D 2:
It is instructive to examine the limiting behavior of the threshold degree as n ! 1:

THEOREM 6.13. Let f WX ! f0; 1g be given. Then for all n large enough,

deg˙.ORn ı f / 6 degC
1=3.f / � dlog 2ne;

deg˙.ORn ı f / >
degC

1=3.f /

2
:

Proof. The upper bound holds for all n by taking d D 0 in Theorem 6.10. Taking ✏ D 1=3
and d D 0 in Corollary 6.8 shows that the lower bound holds for n large enough:

In other words, for n sufficiently large the threshold degree of ORn ı f essentially equals
the one-sided polynomial approximate degree of f: This conclusion is intuitively satis-
fying in light of the construction of Theorem 6.10, in which rational approximants with
nonconstant denominators become inefficient for large n:

7. A SIMPLER PROOF FOR DEPTH 2

In Corollary 4.6, we proved that

deg˙.ORn ı f / D cminfn; degC
1=3.f /g

for some absolute constant c > 0 and every function f WX ! f0; 1g; with the following
important special case:

deg˙.ORn2=5 ı EDn3=5/ D ˝.n2=5/:
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We gave an alternate proof of these results in the previous section, using our characteriza-
tion of the threshold degree for compositions ORn ı f . We will now present a third and
simpler yet proof, which combines the techniques of this paper with a construction due
to Bun and Thaler [13]. Unfortunately, this proof does not generalize to compositions of
greater depth and does not allow us to recover the general result of Theorem 4.4 nor the
main result of this paper, Theorem 1.1.

THEOREM 7.1. Let f WX ! f0; 1g be given. Suppose that there exist  0;  1WX ! R
such that

(i)  1 > j 0j on f �1.1/;
(ii)  0 D maxf 1; 0g on f �1.0/;

(iii) degp < d0 H) h 0; pi D 0;
(iv) degp < d1 H) h 1; pi D 0;
(v)  1 ¥ 0:

Then

deg˙.ORn ı f / > minfnd0; d1g .n D 1; 2; 3; : : : /:

Proof. We may assume that d1 > 0; the claimed lower bound being trivial otherwise.
Write  1 D �C � ��; where �C D maxf 1; 0g and �� D maxf� 1; 0g are the positive
and negative parts of  1, respectively. Observe that �C ¥ 0 and �� ¥ 0 by (iv), (v). As
usual, we need to decide what dual object to use for the function in question, F D ORnıf:
Bun and Thaler [13] used �˝n

C ��˝n
� for this purpose, an elegant choice that works well in

the setting of pointwise approximation. Since our interest is in sign-representation instead,
we must additionally ensure agreement in sign with F: To this end, we define our dual
object to be

 D �˝n
C � �˝n

� �  0˝n:

By (i) and (ii),

j 0j 6 �C on f �1.1/; (7.1)

 0 D �C on f �1.0/; (7.2)

supp�� ✓ f �1.0/: (7.3)

On F �1.1/;

 .x/ D
nY
iD1

�C.xi / �
nY
iD1

��.xi / �
nY
iD1

 0.xi / by definition

D
nY
iD1

�C.xi / �
nY
iD1

 0.xi / by (7.3)

> 0 by (7.1) and (7.2).

On F �1.0/;

 .x/ D
nY
iD1

�C.xi / �
nY
iD1

��.xi / �
nY
iD1

 0.xi / by definition

D �
nY
iD1

��.xi / by (7.2).
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Since �� ¥ 0; the last equation additionally shows that  ¥ 0:
Summarizing, we have shown that .�1/1�F > 0 and  ¥ 0: In light of Theorem 2.2,

the claimed lower bound on the threshold degree of F will follow once we show that  
is orthogonal to every polynomial P of degree less than minfnd0; d1g. By linearity, it
suffices to consider factored polynomials P.x1; x2; : : : ; xn/ D p1.x1/p2.x2/ � � �pn.xn/:
Use a telescoping sum to write

�˝n
C � �˝n

� D
nX

jD1
�C ˝ � � � ˝ �C›

j�1

˝.�C � ��/˝ �� ˝ � � � ˝ ��›
n�j

:

Then

h ; P i D
nX

jD1
h�C; p1i � � � h�C; pj�1i h 1; pj ĩ

D0

h��; pjC1i � � � h��; pni

� h 0˝n; P i™
D0

;

where the marked inner products are zero by (iii) and (iv).

COROLLARY 7.2. For every f WX ! f0; 1g;
deg˙.ORn ı f / > minfn; degC

1=4.f /g:
In particular,

deg˙.ORn2=5 ı EDn3=5/ D ˝.n2=5/:

Proof. We may assume that degC
1=4.f / > 0, the claim being trivial otherwise. Then

Lemma 4.1 guarantees that f has a .1; degC
1=4.f /; 1/-dual pair, which means in partic-

ular that the hypothesis of Theorem 7.1 holds with d0 D 1 and d1 D degC
1=4.f /: This

proves the first claim. The second claim follows from the first by Theorem 2.7.

8. ADDITIONAL APPLICATIONS

In this concluding section, we examine additional applications of our main result and in
particular prove Theorems 1.4 and 1.5 from the Introduction. We assume basic familiarity
with communication complexity theory and computational learning. For a concise intro-
duction to these research areas, we refer the reader to the monographs by Kushilevitz and
Nisan [29] and Kearns and Vazirani [21].

8.1. Communication complexity. Let f WX ⇥ Y ! f0; 1g be a given two-party com-
munication problem. The ✏-error randomized communication complexity of f , denoted
R✏.f /; is the minimum cost of a communication protocol with public randomness that
computes f with error at most ✏ on every input. For a probability distribution � on X ⇥Y;
the discrepancy of f with respect to � is given by

disc�.f / D max
X 0✓X
Y 0✓Y

ˇ̌̌̌
ˇ̌X
x2X 0

X
y2Y 0

.�1/f .x;y/�.x; y/
ˇ̌̌̌
ˇ̌ :
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The minimum discrepancy of f over all probability distributions is denoted

disc.f / D min
�

disc�.f /:

Discrepancy plays a central role in communication complexity theory because it implies
communication lower bounds in almost every model, with low discrepancy corresponding
to high communication complexity. In particular, the randomized communication com-
plexity of every function f obeys

R✏.f / > log
1 � 2✏

disc.f /
; (8.1)

a fundamental inequality known as the discrepancy method [29, Sec. 3.5].
Discrepancy is difficult to analyze, except in a handful of canonical cases. A technique

that has proven useful in this regard is the pattern matrix method [39, 41], which among
other things translates lower bounds on approximate degree into upper bounds on discrep-
ancy. We will use the following version of the pattern matrix method [41, Thm. 7.3].

THEOREM 8.1 (Sherstov). Let f W f0; 1gn ! f0; 1g be a given Boolean function. Define
F W f0; 1g4n ⇥ f0; 1g4n ! f0; 1g by

F.x; y/ D f

 
: : : ;

4_
jD1

.xi;j ^ yi;j /; : : :
!
:

Then

disc.F / 6 2� deg˙.f /=2:

Combining this theorem with our main result, we obtain:

THEOREM 8.2. Fix an arbitrary constant k > 1 and define fnW f0; 1gn ! f0; 1g by

fn D NOR
n

1
2k�1

ı NOR
n

2
2k�1

ı � � � ı NOR
n

2
2k�1ê

k�1

:

Consider the communication problem FnW f0; 1gn ⇥ f0; 1gn ! f0; 1g given by Fn.x; y/ D
fn.x ^ y/: Then for some constant c D c.k/ > 0 and all n;

disc.Fn/ 6 exp
⇣
�cn k�1

2k�1

⌘
;

R
1
2 �exp

✓
�cn k�1

2k�1

◆.Fn/ > cn
k�1

2k�1 :

Proof. By the discrepancy method (8.1), it suffices to prove the discrepancy upper bound.
The identity NORs ı ORt D NORst implies that fn ı OR4 ı AND2 is a subfunction of
F22k�1n. Therefore,

disc.F22k�1n/ 6 disc.fn ı OR4 ı AND2/

6 2� deg˙.fn/=2

6 exp.�˝.n k�1
2k�1 //;

where the last two inequalities hold by Theorems 8.1 and 1.1, respectively.
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Depth Discrepancy Reference

3 expf�˝.n1=3/g [11, 39, 41]

4 expf�˝.n= logn/2=5g [13]

d > 3 expf�˝.n 1
2 � 1

4d�6 /g This paper

Table 8.1: Discrepancy of f^;_g-circuits of constant depth and polynomial size.

This settles Theorem 1.4 from the Introduction. For any d > 3, Theorem 8.2 gives an
explicit two-party communication problem F W f0; 1gn ⇥ f0; 1gn ! f0; 1g; computable by
a read-once f^;_g-formula of depth d; with discrepancy

exp
⇣
�˝

⇣
n

1
2 � 1

4d�6

⌘⌘
:

This result matches all previous lower bounds for f^;_g-circuits of polynomial size and
depth d D 3, and strictly improves on previous work for depth d > 3: Table 8.1 gives a
quantitative and bibliographic summary of this line of research. Finally, we remark that
Theorem 8.2 generalizes to three or more parties, by the multiparty version of the pattern
matrix method [46].

8.2. Computational learning. Apart from threshold degree, several other complexity
measures are of interest when sign-representing a Boolean function f W f0; 1gn ! f0; 1g
by real polynomials. Two such are the density and weight of the sign-representing polyno-
mial. Unlike threshold degree, these measures depend on the exact choice of basis for the
subspace of real polynomials of a given degree. The canonical choice is the parity basis
�S for S ✓ f1; 2; : : : ; ng; where �S W f0; 1gn ! f�1;C1g is given by

�S .x/ D .�1/
P

i2S xi :

This basis derives its name from the fact that �S computes the parity of the bits in S; with
output values �1 and C1 corresponding to odd and even parity, respectively. The threshold
density of f; denoted dns.f /; is the minimum size of a set family S such that

sgn

 X
S2S

�S�S

!
⌘
(

�1 if f .x/ D 0;

C1 if f .x/ D 1

for some reals �S . A more subtle complexity measure is the threshold weight of f; denoted
W.f / and defined as the minimum sum

P
S✓f1;2;:::;ng j�S j over all integers �S such that

sgn

� X
S✓f1;2;:::;ng

�S�S

�
⌘
(

�1 if f .x/ D 0;

C1 if f .x/ D 1:

In other words, dns.f / is the minimum number of functions �S in any linear combination
that sign-represents f; whereas W.f / is the minimum sum of coefficients in any integer
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Depth Threshold weight Threshold density Reference

3 expf˝.n1=3/g expf˝.n1=3/g [27]

4 expf˝.n= logn/2=5g no bound [13]

d > 3 expf˝.n 1
2 � 1

4d�6 /g expf˝.n 1
2 � 1

4d�6 /g This paper

Table 8.2: Threshold weight and threshold density of f^;_g-circuits of constant
depth and polynomial size.

linear combination of �S that sign-represents f: Readers with background in circuit com-
plexity will notice that the threshold density and threshold weight of f exactly correspond
to the minimum size of a threshold-of-parity and threshold-of-majority circuit for f; re-
spectively. It is clear that dns.f / 6 W.f / for every f; and a little more thought reveals
that 1 6 dns.f / 6 2n and 1 6 W.f / 6 .2

p
2/n: These complexity measures have

been extensively studied [9, 10, 17, 19, 7, 20, 27, 22, 26, 24, 25, 11, 36], motivated by
applications to computational learning and circuit complexity.

The following ingenious theorem, due to Krause and Pudlák [27, Prop. 2.1], translates
lower bounds on threshold degree into lower bounds on threshold density.

THEOREM 8.3 (Krause and Pudlák). Let f W f0; 1gn ! f0; 1g be a given Boolean function.
Define F W .f0; 1gn/3 ! f0; 1g by F.x; y; ´/ D f .: : : ; .´i ^ xi / _ .´i ^ yi /; : : : /: Then

dns.F / > 2deg˙.f /:

Combining Krause and Pudlák’s technique with the main result of this paper, we obtain the
desired lower bound on the threshold density of constant-depth circuits.

THEOREM 8.4. Fix an arbitrary constant k > 1 and define FnW f0; 1g2n ! f0; 1g by

Fn D NOR
n

1
2k�1

ı NOR
n

2
2k�1

ı � � � ı NOR
n

2
2k�1ê

k�1

ı NOR2:

Then

W.Fn/ > dns.Fn/ > exp
⇣
˝

⇣
n

k�1
2k�1

⌘⌘
:

Proof. Define fnW f0; 1gn ! f0; 1g by

fn D NOR
n

1
2k�1

ı NOR
n

2
2k�1

ı � � � ı NOR
n

2
2k�1ê

k�1

:
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The identity NORs ı ORt D NORst implies that fn ı OR2 ı AND2 is a subfunction of
F22k�1n. The claimed lower bound for Fn now follows from

dns.F22k�1n/ > dns.fn ı OR2 ı AND2/

> 2deg˙.fn/

> exp.˝.n
k�1

2k�1 //;

where the last two inequalities hold by Theorems 8.3 and 1.1, respectively.

This establishes Theorem 1.5 from the Introduction. For any d > 3, Theorem 8.4 gives
a read-once f^;_g-formula F W f0; 1gn ! f0; 1g of depth d with threshold weight and
threshold density

exp
⇣
˝

⇣
n

1
2 � 1

4d�6

⌘⌘
:

This result matches all previous lower bounds for f^;_g-circuits of polynomial size and
depth d D 3, and strictly improves on previous work for depth d > 3: The reader will find
a quantitative and bibliographic summary of this line of research in Table 8.2.

Remark. Threshold weight and threshold density are sometimes defined in terms of a dif-
ferent monomial basis, whose elements are the conjunction functions x 7! Q

i2S xi for
S ✓ f1; 2; : : : ; ng: Krause and Pudlák’s theorem easily generalizes to that setting, as does
Theorem 8.4.
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APPENDIX A. CONSTRUCTING A DUAL OBJECT FOR NOR

The purpose of this appendix is to prove Theorem 2.8, which gives a dual object for
the NOR function with a number of additional properties. The development here closely
follows earlier work by Špalek [49] and Bun and Thaler [12]. The main points of departure
are a more careful choice of roots for the dual object and the use of shifts, to induce
the desired sign behavior and metric properties. We start with a well-known binomial
identity [18].

FACT A.1. For every polynomial p of degree less than n;

nX
tD0
.�1/t

 
n

t

!
p.t/ D 0:

The next lemma constructs a dual object for NOR that has the sign behavior claimed in
Theorem 2.8 but may lack the corresponding metric properties.

LEMMA A.2. Let ✏ be given, 0 < ✏ < 1. Then for some ı D ı.✏/ > 0 and every n > 2;
there exists an .explicitly given/ function !W f0; 1; 2; : : : ; ng ! R such that

!.0/ >
1 � ✏

2
� k!k1; (A.1)

.�1/nCt!.t/ > 0 .t D 1; 2; : : : ; n/; (A.2)

degp <
p
ın H) h!; pi D 0: (A.3)

Proof. We first consider the case of n odd. Let m D 2d4=✏e C 1 and d D bpn=mc.
Define S D f2g [ fi2m W i D 0; 1; 2; : : : ; dg, so that S ✓ f0; 1; 2; : : : ; ng: Consider the

http://arxiv.org/abs/0803.4516
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function !W f0; 1; 2; : : : ; ng ! R given by

!.t/ D .�1/nCtCjS jC1

nä

 
n

t

! Y
iD0;1;2;:::;nW

i…S

.t � i/:

Fact A.1 implies that ! is orthogonal to every polynomial of degree at most d; so that (A.3)
holds with

ı D 1

2d4=✏e C 1
:

A routine calculation reveals that

!.t/ D

Ä
.�1/jfi2S Wi<tgj Y

i2Snftg

1

jt � i j if t 2 S;

0 otherwise.
(A.4)

In particular,

!.0/

j!.2/j D
dY
iD1

i2m � 2
i2m

> 1 �
dX
iD1

2

i2m
> 1 � 2

m

1X
iD1

1

i2
D 1 � ⇡2

3m

and
!.0/

j!.i2m/j D i2m � 2
4

� .d � i/ä .d C i/ä

d ä d ä
> i2m � 2

4
.i D 1; 2; : : : ; d /:

Hence,

k!k1
!.0/

D 1C j!.2/j
!.0/

C
dX
iD1

j!.i2m/j
!.0/

6 2C ⇡2

3m � ⇡2
C

dX
iD1

4

i2m � 2

6 2C ⇡2

3m � ⇡2
C 4

m � 2
1X
iD1

1

i2

D 2C ⇡2

3m � ⇡2
C 2

m � 2 � ⇡
2

3

6 2C 2✏;

where the last step holds because m > 8=✏: Now (A.1) is immediate.
It remains to examine the sign behavior of !. Since ! vanishes outside S; the require-

ment (A.2) holds trivially at those points. For t 2 S; it follows from (A.4) that

sgn!.2/ D �1;
sgn!.i2m/ D .�1/iC1 .i D 1; 2; : : : ; d /:

Since m is odd, these equations yield sgn!.t/ D .�1/tC1 for positive t 2 S: This settles
(A.2) and completes the proof for n odd. The proof for n even is closely analogous, with
the difference that one works with the set S D f0g [ fi2m C 1 W i D 0; 1; 2; : : : g for an
odd integer m D ⇥.1=✏/.

We have reached the main result of this section, stated earlier as Theorem 2.8.
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THEOREM. Let ✏ be given, 0 < ✏ < 1. Then for some ı D ı.✏/ > 0 and every n > 2;
there exists an .explicitly given/ function !W f0; 1; 2; : : : ; ng ! R such that

!.0/ >
1 � ✏

2
� k!k1; (A.5)

.�1/nCt!.t/ > ✏

4t2
� k!k1 .t D 1; 2; : : : ; n/; (A.6)

degp <
p
ın H) h!; pi D 0: (A.7)

Proof. The cases n D 2 and n D 3 can be handled directly by taking ı D ı.✏/ D 1=4 and
defining

!W .0; 1; 2/ 7!
✓
1

2
� ✏

3
;�1
2
;
✏

3

◆
;

!W .0; 1; 2; 3/ 7!
✓
1

2
� ✏

3
;
✏

4
;�1
2
;
✏

12

◆
;

respectively. In the rest of the proof, we treat the complementary case n > 4:
For some ı D ı.✏/ > 0 and all n > 4; Lemma A.2 ensures the existence of functions

!0W f0; 1; 2; : : : ; 2bn=4cg ! R and !1W f0; 1; 2; : : : ; ng ! R such that

k!0k1 D k!1k1 D 1; (A.8)

!0.0/ >
6 � ✏

12
; (A.9)

!1.0/ >
6 � ✏

12
; (A.10)

.�1/t!0.t/ > 0; t > 0; (A.11)

.�1/nCt!1.t/ > 0; t > 1; (A.12)

degp <
p
ın H) h!0; pi D h!1; pi D 0: (A.13)

For convenience, extend !0 and !1 to all of Z by defining these functions to be zero outside
their original domain. Define !W f0; 1; 2; : : : ; ng ! R by

!.t/ D !1.t/C ⇢

bn=2cX
iD1

.�1/iCn
i2

!0.t � i/C ⇢

nX
iDbn=2cC1

.�1/iCn
i2

!0.�t C i/;

where

⇢ D 5✏

⇡2.1 � ✏/
:

We proceed to verify the three properties of ! claimed in the theorem statement. To
begin with,

k!k1 6 k!1k1 C ⇢

nX
iD1

1

i2
k!0k1 6 1C ⇢

1X
iD1

1

i2
D 1C ⇢ � ⇡

2

6

D 6 � ✏

6.1 � ✏/
; (A.14)

where the second inequality uses (A.8). Now (A.5) is immediate because !.0/ D !1.0/ >
.6 � ✏/=12 by (A.10).
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Property (A.6) for t > 1 can be verified as follows:

.�1/nCt!.t/ D j!1.t/j C ⇢

bn=2cX
iD1

j!0.t � i/j
i2

C ⇢

nX
iDbn=2cC1

j!0.�t C i/j
i2

> ⇢ � j!0.0/j
t2

> 5✏

⇡2.1 � ✏/
� 6 � ✏

12t2

> ✏

4t2
� k!k1;

where the first step follows from (A.11) and (A.12), the third from (A.9), and the fourth
from (A.14).

The remaining property (A.7) is immediate from (A.13).
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