Affine extractors over large fields with exponential error

Jean Bourgain * Zeev Dvir ${ }^{\dagger} \quad$ Ethan Leeman ${ }^{\ddagger}$

Abstract

We describe a construction of explicit affine extractors over large finite fields with exponentially small error and linear output length. Our construction relies on a deep theorem of Deligne giving tight estimates for exponential sums over smooth varieties in high dimensions.

1 Introduction

An affine extractor is a mapping $E: \mathbb{F}_{q}^{n} \mapsto\{0,1\}^{m}$, with \mathbb{F}_{q} the field of q elements, such that for any subspace $V \subset \mathbb{F}_{q}^{n}$ of some fixed dimension k, the output of E on a uniform sample from V is distributed close to uniformly over the image. More precisely, if X_{V} is a random variable distributed uniformly on V, then $E\left(X_{V}\right)$ is ε-close, in statistical distance ${ }^{1}$, to the uniform distribution over $\{0,1\}^{m}$ (here, and in the following, we will often identify a random variable with its distribution). It is easy to show that a random function E will be an affine extractor. However, constructing explicit families of affine extractors is a challenging problem which is still open for many settings of the parameters. By explicit, we mean that the mapping E can be computed deterministically and efficiently, given the parameters n, k and q.

The task of constructing explicit affine extractor is an instance of a more general set of problems in which one has a combinatorial or algebraic object possessing certain 'nice' properties, one would expect to have in a random (or generic) object, and wishes to come up with an explicit instance of such an object. Other examples include expander graphs [RVW02, LPS88], Ramsey graphs [BRSW06], Error correcting codes, and other variants of algebraic extractors (e.g., extractors for polynomial sources [DGW09, BSG12] or varieties [Dvi12]). Explicit constructions of these 'pseudo-random' objects have found many (often surprising) applications in theoretical computer science and mathematics (see, e.g., [HLW06] for some examples).

Ideally we would like to be able to give explicit constructions of affine extractors for any

[^0]given n, k, q with output length m as large as possible and with error parameter ε as small as possible. It is not hard to show, using the probabilistic method, that there exist affine extractors with m close to $k \cdot \log (q)$ and $\varepsilon=q^{\Omega(-k)}$ over any finite field and for k as small as $O(\log (n))$. Matching these parameters with an explicit construction is still largely open.

When the size of the field is fixed (q is a constant and n tends to infinity) a construction of Bourgain [Bou07] (see also [Yeh11, Li11]) gives affine extractors with $m=\Omega(k)$ and $\varepsilon=q^{\Omega(-k)}$ whenever $k \geq \Omega(n)$ (k can actually be slightly sub linear in n). For smaller values of k, there are no explicit constructions of extractors (even with $m=1$) over small fields (see Theorem C in [Bou10] for a related result handling intermediate field sizes). When the size of the field \mathbb{F}_{q} is allowed to grow with n more is known. Gabizon and Raz [GR08] were the first to consider this case and showed an explicit constructions when $q>n^{c}$, for some constant c. Their construction achieves nearly optimal output length but with error $\varepsilon=q^{-\Omega(1)}$ instead of $q^{\Omega(-k)}$.

The purpose of this note is to give a construction of an explicit affine extractor for $q>$ $n^{C \cdot \log \log n}$ with error $q^{\Omega(-k)}$ and output length m close to $(1 / 2) k \log (q)$ bits. It will be more natural to consider the extractor as a mapping $E: \mathbb{F}_{q}^{n} \mapsto \mathbb{F}_{q}^{m}$ instead of with image $\{0,1\}^{m}$ and so we will aim to have output length m close to $k / 2$ (since each coordinate of the output is composed of roughly $\log (q)$ bits).

The construction does not work for any finite field \mathbb{F}_{q}. Firstly, we will only consider prime q. We will also need the property that $q-1$ does not have too many prime factors. We expect due to a result by Prachar [Hal56] that $q-1$ will have approximately $\log \log q$ distinct prime divisors: Prachar, in Halberstam's paper, proved that if $\omega(q-1)$ is the number of distinct prime factors of $q-1$, then

$$
\sum_{q \leq n} \omega(q-1)=(1+o(1)) \frac{n}{\log n} \log \log n
$$

Therefore, the average number of distinct prime divisors of $q-1$ for most q is $O(\log \log q)$, but some primes may have as many as $\frac{\log q}{\log \log q}$ distinct prime factors. We say that a prime q is typical if $q-1$ has $O(\log \log q)$ distinct prime factors ${ }^{2}$.

Theorem 1. For any $\beta \in(0,1 / 2)$ there exists $C>0$ so that the following holds: Let $k \leq n$ be integers and let q be a typical prime such that $q>n^{C \log \log n}$. Then, if $m=\lfloor\beta k\rfloor$, there is an explicit function $E: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$ such that for any k-dimensional affine subspace V in \mathbb{F}_{q}^{n}, if X_{V} is a uniform random variable on V, then $E\left(X_{V}\right)$ is $q^{-\Omega(k)}$-close to the uniform distribution.

The rest of the paper is organized as follows: In Section 2 we describe the construction of the extractor. In Section 3 we prove that the output of the extractor is close to uniform, whenever the ingredients of the construction satisfy certain conditions. In Section 4 we discuss the explicitness of the construction and in Section 5 we combine all of these results to prove Theorem 1.

[^1]
2 The construction

The construction will be given by a polynomial mapping $F_{d, A}: \mathbb{F}_{q}^{n} \mapsto \mathbb{F}_{q}^{m}$. This mapping will take as parameters two objects. The first is a list of positive integers $d=\left(d_{1}, \ldots, d_{n}\right)$ and the other is an $m \times n$ matrix $A=\left(a_{i j}\right)$. The mapping is then defined as

$$
\begin{aligned}
F_{d, A}\left(x_{1}, \ldots, x_{n}\right) & =\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{d_{1}} \\
x_{2}^{d_{2}} \\
\vdots \\
x_{n}^{d_{n}}
\end{array}\right) \\
& =\left(\sum_{j=1}^{n} a_{1 j} x_{j}^{d_{j}}, \ldots, \sum_{j=1}^{n} a_{m j} x_{j}^{d_{j}}\right)^{t}
\end{aligned}
$$

This can be also written as $F_{d, A}(x)=A \cdot x^{d}$, where we interpret x^{d} as being coordinate-wise exponentiation.

We will show below that, if d and A satisfy certain conditions, the output $F_{d, A}\left(X_{V}\right)$ is exponentially close to uniform, whenever X_{V} is uniformly distributed over a k dimensional subspace.

3 The analysis

In this section we prove that the function $F_{d, A}(x)$ defined above is indeed an affine extractor for carefully chosen d and A. In the next section we will discuss the complexity of finding such d and A efficiently.

Theorem 3.1. For every $\beta<1 / 2$ there exists $\varepsilon>0$ such that the following holds: Let q be prime and let $m \leq k \leq n$ be integers with $m=\lfloor\beta k\rfloor$. Let A be an $m \times n$ matrix over \mathbb{F}_{q} in which every m columns are linearly independent. Let $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}_{>0}^{n}$ be such that $\operatorname{LCM}\left(d_{1}, \ldots, d_{n}\right) \leq q^{\varepsilon}$ and such that d_{1}, \ldots, d_{n} are all distinct and co-prime to $q-1$. Then, for any k-dimensional affine subspace $V \subset \mathbb{F}_{q}^{n}$, if X_{V} is uniformly distributed over V then $F_{d, A}\left(X_{V}\right)$ is $q^{-(\varepsilon / 2) k}$-close to uniform.

3.1 Preliminaries

We start by setting notations and basic properties of the discrete Fourier transform over \mathbb{F}_{q}^{m}. For $c=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{q}^{m}$ we define the additive character $\chi_{c}(x): \mathbb{F}_{q}^{m} \mapsto \mathbb{C}^{*}$ as $\chi_{c}(x)=\omega_{q}^{c \cdot x}$ where $c \cdot x=\sum_{i=1}^{m} c_{i} x_{i}$ and $\omega_{q}=e^{2 \pi i / q}$ is a primitive root of unity of order q.

The following folklore result (known in the extractor literature as a XOR lemma) gives sufficient conditions for a distribution to be close to uniform. The simple proof can be found in [Rao07] for example.

Lemma 3.2. Let X be a random variable distributed over \mathbb{F}_{q}^{m} and suppose that $\left|\mathbb{E}\left[\chi_{c}(X)\right]\right| \leq \varepsilon$ for every non-zero $c \in \mathbb{F}_{q}^{m}$. Then X is $\varepsilon \cdot q^{m / 2}$ close, in statistical distance, to the uniform distribution over \mathbb{F}_{q}^{m}.

The next powerful theorem is a special case of a theorem of Deligne [Del74] (see [MK93] for a statement of the theorem in the form we use here). Before stating the theorem we will need the following definition: Let $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be a homogenous polynomial. We say that f is smooth if the only common zero of the (homogenous) n partial derivatives $\frac{\partial f}{\partial x_{i}}(x), i \in[n]$ over the algebraic closure of \mathbb{F}_{q}, is the all zero vector.
Theorem 3.3 (Deligne). Let $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial of degree d and let f_{d} denote its homogenous part of degree d. Suppose f_{d} is smooth. Then, for every non-zero $b \in \mathbb{F}_{q}$ we have

$$
\left|\sum_{x \in \mathbb{F}_{q}^{n}} \chi_{b}(f(x))\right| \leq(d-1)^{n} \cdot q^{n / 2}
$$

Another simple lemma we will use in the proof shows how to parameterize a given subspace $V \subset \mathbb{F}_{q}^{n}$ in a convenient way as the image of a particular linear mapping.

Lemma 3.4. Let $V \subset \mathbb{F}_{q}^{n}$ be a k-dimensional affine subspace. Then, there exists an affine map $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right): \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n}$ whose image is V such that the following holds: There exists k indices $1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n$ such that

1. For all $i \in[k], \ell_{j_{i}}(t)=t_{i}$.
2. If $j<j_{1}$, then $\ell_{j}(t) \in \mathbb{F}_{q}$.
3. If $j<j_{i}$ for $i>1$ then $\ell_{j}(t)$ is an affine function just of the variables $t_{1}, t_{2}, \ldots, t_{i-1}$.

Proof. The mapping ℓ can be defined greedily as follows. Let j_{1} be the smallest index so that the j_{1} 'th coordinate of V is not constant. We let $\ell_{j_{1}}(t)=t_{1}$ and continue to find the next smallest coordinate so that the $j_{2}{ }^{\prime}$ th coordinate of V is not a function of t_{1}. Set $\ell_{j_{2}}(t)=t_{2}$ and continue in this fashion to define the rest of the mapping.

3.2 Proof of Theorem 3.1

Let $Z=F_{d, A}\left(X_{V}\right)$ denote the random variable over \mathbb{F}_{q}^{m} obtained by applying $F_{d, A}$ on a uniform sample from the subspace V. Observe that, w.l.o.g., we can assume

$$
d_{1}>d_{2}>\ldots>d_{n}
$$

since permuting the columns of A keeps the property that every m columns are linearly independent.

Let $\ell: \mathbb{F}_{q}^{k} \mapsto \mathbb{F}_{q}^{n}$ be an affine mapping satisfying the conditions of Lemma 3.4 so that the image of ℓ is V. Thus, there is a set $S \subset[n]$ of size $|S|=k$ so that, if $S=\left\{j_{1}<\ldots<j_{k}\right\}$, the coordinates of the mapping ℓ satisfy the three items in the lemma.

Let $c=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}_{q}^{m}$ be a non zero vector. We will proceed to give a bound on the expectation $\left|\mathbb{E}\left[\chi_{c}(Z)\right]\right|$ and then use Lemma 3.2 to finish the proof. To that end, let $b=$ $\left(b_{1}, \ldots, b_{n}\right)$ be given by the product $c^{t} \cdot A$ (multiplying A from the left by the transpose of c). Then,

$$
\chi_{c}\left(F_{d, A}(x)\right)=\chi_{1}\left(b \cdot x^{d}\right)=\omega_{q}^{b_{1} x_{1}^{d_{1}}+\ldots+b_{n} x_{n}^{d_{n}}} .
$$

Therefore,

$$
\begin{equation*}
\left|\mathbb{E}\left[\chi_{c}(Z)\right]\right|=\left|q^{-k} \sum_{t_{1}, \ldots, t_{k} \in \mathbb{F}_{q}} \chi_{1}\left(b_{1} \ell_{1}(t)^{d_{1}}+\ldots+b_{n} \ell_{n}(t)^{d_{n}}\right)\right| . \tag{1}
\end{equation*}
$$

We will now perform an invertible (non-linear) change of variables on the above exponential sum to bring it to a more convenient form. Let

$$
D=\operatorname{LCM}\left(d_{j_{1}}, \ldots, d_{j_{k}}\right)
$$

and let $D_{i}=D / d_{j_{i}}$ for $i=1 \ldots k$. The change of variables is given by

$$
s_{i}^{D_{i}}=t_{i}, \quad i \in[k] .
$$

Observe that this is an invertible change of variables since the d_{i} 's are all co-prime to $q-1$ (and hence the numbers D_{i} are as well). Specifically, we have $s_{i}=t_{i}^{D_{i}^{-1}} \bmod q-1$.

Let us denote by

$$
\tilde{\ell}_{j}(s)=\ell_{j}\left(s_{1}^{D_{1}}, \ldots, s_{k}^{D_{k}}\right)
$$

Changing variables in (1) now gives

$$
\begin{equation*}
\left|\mathbb{E}\left[\chi_{c}(Z)\right]\right|=\left|q^{-k} \sum_{s_{1}, \ldots, s_{k} \in \mathbb{F}_{q}} \chi_{1}\left(b_{1} \tilde{\ell}_{1}(s)^{d_{1}}+\ldots+b_{n} \tilde{\ell}_{n}(s)^{d_{n}}\right)\right| . \tag{2}
\end{equation*}
$$

Claim 3.5. The functions $\tilde{\ell}_{i}^{d_{i}}(s), i \in[n]$, satisfy the following:

1. For all $i \in[k]$ we have $\tilde{\ell}_{j_{i}}^{d_{i}}(s)=s_{i}^{D}$.
2. For all $j \notin S$ the function $\tilde{\ell}_{j}^{d_{j}}(s)$ is a polynomial in s_{1}, \ldots, s_{k} of total degree less than D.

Proof. To see the first item, let $i \in[k]$ and observe that $\ell_{j_{i}}(t)=t_{i}$. Thus,

$$
\tilde{\ell}_{j_{i}}^{d_{i}}(s)=\left(s_{i}^{D / d_{j_{i}}}\right)^{d_{j_{i}}}=s_{i}^{D} .
$$

For the second item, let $j \notin S$ and suppose $j_{i}<j<j_{i+1}$ for some $i \in[k]$ (a similar argument will work for the two cases $j<j_{1}$ and $j>j_{k}$). By Lemma 3.4, the affine function $\ell_{j}(t)$ depends only on the variables t_{1}, \ldots, t_{i}. Thus, the maximum degree obtained in $\tilde{\ell}_{j}^{d_{j}}(s)$ is bounded by

$$
d_{j} \cdot \max \left\{D_{1}, \ldots, D_{i}\right\}=d_{j} \cdot D_{i}=D \cdot\left(d_{j} / d_{j_{i}}\right)<D
$$

In view of the last claim, we can write (2) as

$$
\begin{equation*}
\left|\mathbb{E}\left[\chi_{c}(Z)\right]\right|=\left|q^{-k} \sum_{s_{1}, \ldots, s_{k} \in \mathbb{F}_{q}} \chi_{1}\left(b_{j_{1}} s_{1}^{D}+\ldots+b_{j_{k}} s_{k}^{D}+g(s)\right)\right|, \tag{3}
\end{equation*}
$$

where $g(s)$ is a polynomial of total degree less than D. If we knew that all of $b_{i_{1}}, \ldots, b_{i_{k}}$ were non zero we could have applied Deligne's result (Theorem 3.3) and complete the proof (since the polynomial in the sum is clearly smooth). However, since $b=c^{t}$. A for an arbitrary non-zero $c \in \mathbb{F}_{q}^{m}, b$ might have some coordinates equal to zero. However, since every m columns of A are linearly independent, we have that the vector $b=\left(b_{1}, \ldots, b_{n}\right)$ can have at most $m-1<k / 2$ zero coordinates (otherwise c would be orthogonal to at least m columns). Hence, out of the k values $b_{i_{1}}, \ldots, b_{i_{k}}$, at least $k / 2$ are non zero. Suppose w.l.o.g that these are the first $k / 2$ (if k is odd we need to add the floor function below for $k / 2$). We can now break the sum in (3) using the triangle inequality as follows
$\left|\mathbb{E}\left[\chi_{c}(Z)\right]\right|=q^{-k / 2} \sum_{s_{k / 2+1}, \ldots, s_{k} \in \mathbb{F}_{q}}\left|q^{-k / 2} \sum_{s_{1}, \ldots, s_{k / 2} \in \mathbb{F}_{q}} \chi_{1}\left(\sum_{i \in[k / 2]} b_{j_{i}} s_{i}^{D}+g_{s_{k / 2+1}, \ldots, s_{k}}\left(s_{1}, \ldots, s_{k / 2}\right)\right)\right|$,
with $g_{s_{k / 2+1}, \ldots, s_{k}}\left(s_{1}, \ldots, s_{k / 2}\right)$ a polynomial in $s_{1}, \ldots, s_{k / 2}$ of degree less than D. In each of the inner sums we have a smooth polynomial of degree D in the $\operatorname{ring} \mathbb{F}_{q}\left[s_{1}, \ldots, s_{k / 2}\right]$ and so, applying Theorem 3.3 on each of them (and recalling that $D \leq q^{\varepsilon}$), we obtain

$$
\begin{equation*}
\left|\mathbb{E}\left[\chi_{c}(Z)\right]\right| \leq q^{-k / 2} \cdot(D-1)^{k / 2} \cdot q^{k / 4} \leq q^{(-1 / 4+\varepsilon / 2) k} \tag{5}
\end{equation*}
$$

Using Lemma 3.2, and setting $\varepsilon=1 / 4-\beta / 2>0$, we now get that Z has statistical distance at most

$$
q^{(-1 / 4+\varepsilon / 2) k} \cdot q^{m / 2} \leq q^{(-1 / 4+\varepsilon / 2+\beta / 2) k} \leq q^{-(\varepsilon / 2) k}
$$

from the uniform distribution on \mathbb{F}_{q}^{m}. This completes the proof of Theorem 3.1.

4 Explicitness of $F_{d, A}$

The explicitness of the construction requires us to give a deterministic, efficient, algorithm to produce a matrix A and a sequence of integers d_{1}, \ldots, d_{n} satisfying the conditions of Theorem 3.1.

Finding an $m \times n$ matrix in which each $m \times m$ sub matrix is invertible can be done efficiently as long as q, the field size, is sufficiently large. For example, one can take a Vandermonde matrix with $a_{i j}=r_{j}^{i-1}$ for any set of distinct field elements $r_{1}, \ldots, r_{n} \in \mathbb{F}_{q}$.

To find a sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ we will have to make some stronger assumption about q. This is summarized in the following lemma.

Lemma 4.1. For any $\varepsilon>0$ there exists $C>0$ such that the following holds: There is a deterministic algorithm that, given integer inputs n, q, k where $k<n<q, q$ a typical prime such that $q>n^{C \log \log n}$, runs in $\operatorname{poly}(n)$ time and returns n integers $d_{1}>\ldots>d_{n}>1$ all co-prime to $q-1$ with $\operatorname{LCM}\left(d_{1}, \ldots, d_{n}\right)<q^{\varepsilon}$.

Proof. Let D be the product of the first $\left\lceil\log _{2}(n+1)\right\rceil$ primes that are co-prime with $q-1$. Let $d_{1}>\ldots>d_{n}$ be n distinct divisors of D. If $q-1$ has at most $C^{\prime} \log \log (q)$ prime factors, D can be upper bounded by the product of the first $\log n+C^{\prime}(\log \log q)$ primes . By the Prime Number Theorem,

$$
D<\left(n(\log q)^{C^{\prime}}\right)^{C^{\prime \prime} \log \log \left(n(\log q)^{C^{\prime}}\right)}
$$

for some constant $C^{\prime \prime}>0$. Now for any $\varepsilon, C^{\prime \prime}, C^{\prime}$, we can pick a sufficiently large C such that, if $q>n^{C \log \log n}$ this expression is at most q^{ε}.

5 Proof of Theorem 1

We now put all the ingredients together to prove Theorem 1. Given $m=\lfloor\beta k\rfloor$ we let $\varepsilon=1 / 4-$ $\beta / 2$ and, using Lemma 4.1 find a sequence of integers d_{1}, \ldots, d_{n} all coprime to $q-1$ so that their product is at most q^{ε}. We let A be an $m \times n$ Vandermonde matrix and define $E(x)=F_{d, A}(x)$. Using Theorem 3.1 we get that $E\left(X_{V}\right)$ is $q^{-(\varepsilon / 2) k}$-close to the uniform distribution on \mathbb{F}_{q}^{m}.

References

[Bou07] J. Bourgain. On the construction of affine extractors. Geometric And Functional Analysis, 17(1):33-57, 2007.
[Bou10] J. Bourgain. On exponential sums in finite fields. In I. Bárány, J. Solymosi, and G. Sági, editors, An Irregular Mind, volume 21 of Bolyai Society Mathematical Studies, pages 219-242. Springer Berlin Heidelberg, 2010.
[BRSW06] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for subpolynomial entropy and ramsey graphs beating the frankl-wilson construction. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 671-680, New York, NY, USA, 2006. ACM Press.
[BSG12] E. Ben-Sasson and A. Gabizon. Extractors for polynomials sources over constant-size fields of small characteristic. In APPROX-RANDOM, Lecture Notes in Computer Science, pages 399-410. Springer, 2012.
[Del74] P. Deligne. La conjecture de Weil. I, Inst. Hautes Etudes Sci. Publ. Math., 43:273307, 1974.
[DGW09] Z. Dvir, A. Gabizon, and A. Wigderson. Extractors And Rank Extractors For Polynomial Sources. Comput. Complex., 18(1):1-58, 2009.
[Dvi12] Z. Dvir. Extractors for varieties. Comput. Complex., 21:515-572, 2012.
[GR08] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields. Combinatorica, 28(4):415-440, 2008.
[Hal56] H. Halberstam. On the Distribution of Additive Number-Theoretic Functions (II). Journal of the London Mathematical Society, 1(1):1-14, 1956.
[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc., 43:439-561, 2006.
[Li11] X. Li. A new approach to affine extractors and dispersers. In IEEE Conference on Computational Complexity, pages 137-147. IEEE Computer Society, 2011.
[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277, 1988.
[MK93] O. Moreno and P. Kumar. Minimum distance bounds for cyclic codes and Deligne's theorem. IEEE Transactions on Information Theory, 39(5):1524-1534, 1993.
[Rao07] A. Rao. An Exposition of Bourgains 2-Source Extractor. In Electronic Colloquium on Computational Complexity (ECCC), volume 14, page 034, 2007.
[RVW02] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. 155(1):157-187, 2002.
[Yeh11] A. Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245-256, 2011.

[^0]: *School of Mathematics, Institute for Advanced Study, Princeton, NJ. Email: bourgain@ias.edu. Research supported by NSF grant DMS 1301619.
 ${ }^{\dagger}$ Department of Computer Science and Department of Mathematics, Princeton University, Princeton NJ. Email: zeev.dvir@gmail.com. Research partially supported by NSF grants CCF-0832797, CCF-1217416 and by the Sloan fellowship.
 ${ }^{\ddagger}$ Department of Mathematics, University of Texas at Austin. Email: eleeman@math.utexas.edu
 ${ }^{1}$ The statistical distance between two distributions P and Q on a finite domain Ω is defined as $\max _{S \subseteq \Omega}|P(S)-Q(S)|$. We say that P is ε-close to Q if the statistical distance between P and Q is at most ε.

[^1]: ${ }^{2}$ The constant in the big ' O ' can be arbitrary at the cost of increasing the constant C in Theorem 1.

