

Affine extractors over large fields with exponential error

Jean Bourgain * Zeev Dvir [†]

Ethan Leeman[‡]

Abstract

We describe a construction of explicit affine extractors over large finite fields with exponentially small error and linear output length. Our construction relies on a deep theorem of Deligne giving tight estimates for exponential sums over smooth varieties in high dimensions.

1 Introduction

An affine extractor is a mapping $E : \mathbb{F}_q^n \mapsto \{0,1\}^m$, with \mathbb{F}_q the field of q elements, such that for any subspace $V \subset \mathbb{F}_q^n$ of some fixed dimension k, the output of E on a uniform sample from V is distributed close to uniformly over the image. More precisely, if X_V is a random variable distributed uniformly on V, then $E(X_V)$ is ε -close, in statistical distance¹, to the uniform distribution over $\{0,1\}^m$ (here, and in the following, we will often identify a random variable with its distribution). It is easy to show that a random function E will be an affine extractor. However, constructing *explicit* families of affine extractors is a challenging problem which is still open for many settings of the parameters. By explicit, we mean that the mapping E can be computed deterministically and efficiently, given the parameters n, k and q.

The task of constructing explicit affine extractor is an instance of a more general set of problems in which one has a combinatorial or algebraic object possessing certain 'nice' properties, one would expect to have in a random (or generic) object, and wishes to come up with an explicit instance of such an object. Other examples include expander graphs [RVW02, LPS88], Ramsey graphs [BRSW06], Error correcting codes, and other variants of algebraic extractors (e.g., extractors for polynomial sources [DGW09, BSG12] or varieties [Dvi12]). Explicit constructions of these 'pseudo-random' objects have found many (often surprising) applications in theoretical computer science and mathematics (see, e.g., [HLW06] for some examples).

Ideally we would like to be able to give explicit constructions of affine extractors for any

^{*}School of Mathematics, Institute for Advanced Study, Princeton, NJ. Email: bourgain@ias.edu. Research supported by NSF grant DMS 1301619.

[†]Department of Computer Science and Department of Mathematics, Princeton University, Princeton NJ. Email: zeev.dvir@gmail.com. Research partially supported by NSF grants CCF-0832797, CCF-1217416 and by the Sloan fellowship.

[‡]Department of Mathematics, University of Texas at Austin. Email: eleeman@math.utexas.edu

¹The statistical distance between two distributions P and Q on a finite domain Ω is defined as $\max_{S \subseteq \Omega} |P(S) - Q(S)|$. We say that P is ε -close to Q if the statistical distance between P and Q is at most ε .

given n, k, q with output length m as large as possible and with error parameter ε as small as possible. It is not hard to show, using the probabilistic method, that there *exist* affine extractors with m close to $k \cdot \log(q)$ and $\varepsilon = q^{\Omega(-k)}$ over any finite field and for k as small as $O(\log(n))$. Matching these parameters with an explicit construction is still largely open.

When the size of the field is fixed (q is a constant and n tends to infinity) a construction of Bourgain [Bou07] (see also [Yeh11, Li11]) gives affine extractors with $m = \Omega(k)$ and $\varepsilon = q^{\Omega(-k)}$ whenever $k \ge \Omega(n)$ (k can actually be slightly sub linear in n). For smaller values of k, there are no explicit constructions of extractors (even with m = 1) over small fields (see Theorem C in [Bou10] for a related result handling intermediate field sizes). When the size of the field \mathbb{F}_q is allowed to grow with n more is known. Gabizon and Raz [GR08] were the first to consider this case and showed an explicit constructions when $q > n^c$, for some constant c. Their construction achieves nearly optimal output length but with error $\varepsilon = q^{-\Omega(1)}$ instead of $q^{\Omega(-k)}$.

The purpose of this note is to give a construction of an explicit affine extractor for $q > n^{C \cdot \log \log n}$ with error $q^{\Omega(-k)}$ and output length m close to $(1/2)k \log(q)$ bits. It will be more natural to consider the extractor as a mapping $E : \mathbb{F}_q^n \to \mathbb{F}_q^m$ instead of with image $\{0, 1\}^m$ and so we will aim to have output length m close to k/2 (since each coordinate of the output is composed of roughly $\log(q)$ bits).

The construction does not work for any finite field \mathbb{F}_q . Firstly, we will only consider prime q. We will also need the property that q-1 does not have too many prime factors. We expect due to a result by Prachar [Hal56] that q-1 will have approximately $\log \log q$ distinct prime divisors: Prachar, in Halberstam's paper, proved that if $\omega(q-1)$ is the number of distinct prime factors of q-1, then

$$\sum_{q \le n} \omega(q-1) = (1+o(1)) \frac{n}{\log n} \log \log n.$$

Therefore, the average number of distinct prime divisors of q-1 for most q is $O(\log \log q)$, but some primes may have as many as $\frac{\log q}{\log \log q}$ distinct prime factors. We say that a prime q is **typical** if q-1 has $O(\log \log q)$ distinct prime factors².

Theorem 1. For any $\beta \in (0, 1/2)$ there exists C > 0 so that the following holds: Let $k \leq n$ be integers and let q be a typical prime such that $q > n^{C \log \log n}$. Then, if $m = \lfloor \beta k \rfloor$, there is an explicit function $E : \mathbb{F}_q^n \to \mathbb{F}_q^m$ such that for any k-dimensional affine subspace V in \mathbb{F}_q^n , if X_V is a uniform random variable on V, then $E(X_V)$ is $q^{-\Omega(k)}$ -close to the uniform distribution.

The rest of the paper is organized as follows: In Section 2 we describe the construction of the extractor. In Section 3 we prove that the output of the extractor is close to uniform, whenever the ingredients of the construction satisfy certain conditions. In Section 4 we discuss the explicitness of the construction and in Section 5 we combine all of these results to prove Theorem 1.

²The constant in the big 'O' can be arbitrary at the cost of increasing the constant C in Theorem 1.

2 The construction

The construction will be given by a polynomial mapping $F_{d,A} : \mathbb{F}_q^n \to \mathbb{F}_q^m$. This mapping will take as parameters two objects. The first is a list of positive integers $d = (d_1, \ldots, d_n)$ and the other is an $m \times n$ matrix $A = (a_{ij})$. The mapping is then defined as

$$F_{d,A}(x_1,\ldots,x_n) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1^{d_1} \\ x_2^{d_2} \\ \vdots \\ x_n^{d_n} \end{pmatrix}$$
$$= \left(\sum_{j=1}^n a_{1j} x_j^{d_j}, \ldots, \sum_{j=1}^n a_{mj} x_j^{d_j} \right)^t$$

This can be also written as $F_{d,A}(x) = A \cdot x^d$, where we interpret x^d as being coordinate-wise exponentiation.

We will show below that, if d and A satisfy certain conditions, the output $F_{d,A}(X_V)$ is exponentially close to uniform, whenever X_V is uniformly distributed over a k dimensional subspace.

3 The analysis

In this section we prove that the function $F_{d,A}(x)$ defined above is indeed an affine extractor for carefully chosen d and A. In the next section we will discuss the complexity of finding such d and A efficiently.

Theorem 3.1. For every $\beta < 1/2$ there exists $\varepsilon > 0$ such that the following holds: Let q be prime and let $m \leq k \leq n$ be integers with $m = \lfloor \beta k \rfloor$. Let A be an $m \times n$ matrix over \mathbb{F}_q in which every m columns are linearly independent. Let $d = (d_1, \ldots, d_n) \in \mathbb{Z}_{>0}^n$ be such that $\operatorname{LCM}(d_1, \ldots, d_n) \leq q^{\varepsilon}$ and such that d_1, \ldots, d_n are all distinct and co-prime to q - 1. Then, for any k-dimensional affine subspace $V \subset \mathbb{F}_q^n$, if X_V is uniformly distributed over V then $F_{d,A}(X_V)$ is $q^{-(\varepsilon/2)k}$ -close to uniform.

3.1 Preliminaries

We start by setting notations and basic properties of the discrete Fourier transform over \mathbb{F}_q^m . For $c = (c_1, \ldots, c_m) \in \mathbb{F}_q^m$ we define the additive character $\chi_c(x) : \mathbb{F}_q^m \mapsto \mathbb{C}^*$ as $\chi_c(x) = \omega_q^{c \cdot x}$ where $c \cdot x = \sum_{i=1}^m c_i x_i$ and $\omega_q = e^{2\pi i/q}$ is a primitive root of unity of order q.

The following folklore result (known in the extractor literature as a XOR lemma) gives sufficient conditions for a distribution to be close to uniform. The simple proof can be found in [Rao07] for example.

Lemma 3.2. Let X be a random variable distributed over \mathbb{F}_q^m and suppose that $|\mathbb{E}[\chi_c(X)]| \leq \varepsilon$ for every non-zero $c \in \mathbb{F}_q^m$. Then X is $\varepsilon \cdot q^{m/2}$ close, in statistical distance, to the uniform distribution over \mathbb{F}_q^m .

The next powerful theorem is a special case of a theorem of Deligne [Del74] (see [MK93] for a statement of the theorem in the form we use here). Before stating the theorem we will need the following definition: Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a homogenous polynomial. We say that f is **smooth** if the only common zero of the (homogenous) n partial derivatives $\frac{\partial f}{\partial x_i}(x)$, $i \in [n]$ over the algebraic closure of \mathbb{F}_q , is the all zero vector.

Theorem 3.3 (Deligne). Let $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a polynomial of degree d and let f_d denote its homogenous part of degree d. Suppose f_d is smooth. Then, for every non-zero $b \in \mathbb{F}_q$ we have

$$\left|\sum_{x\in\mathbb{F}_q^n}\chi_b(f(x))\right| \le (d-1)^n \cdot q^{n/2}.$$

Another simple lemma we will use in the proof shows how to parameterize a given subspace $V \subset \mathbb{F}_q^n$ in a convenient way as the image of a particular linear mapping.

Lemma 3.4. Let $V \subset \mathbb{F}_q^n$ be a k-dimensional affine subspace. Then, there exists an affine map $\ell = (\ell_1, \ldots, \ell_n) : \mathbb{F}_q^k \to \mathbb{F}_q^n$ whose image is V such that the following holds: There exists k indices $1 \leq j_1 < j_2 < \ldots < j_k \leq n$ such that

1. For all $i \in [k], \ell_{j_i}(t) = t_i$.

2. If
$$j < j_1$$
, then $\ell_j(t) \in \mathbb{F}_q$.

3. If $j < j_i$ for i > 1 then $\ell_j(t)$ is an affine function just of the variables $t_1, t_2, \ldots, t_{i-1}$.

Proof. The mapping ℓ can be defined greedily as follows. Let j_1 be the smallest index so that the j_1 'th coordinate of V is not constant. We let $\ell_{j_1}(t) = t_1$ and continue to find the next smallest coordinate so that the j_2 'th coordinate of V is not a function of t_1 . Set $\ell_{j_2}(t) = t_2$ and continue in this fashion to define the rest of the mapping.

3.2 Proof of Theorem 3.1

Let $Z = F_{d,A}(X_V)$ denote the random variable over \mathbb{F}_q^m obtained by applying $F_{d,A}$ on a uniform sample from the subspace V. Observe that, w.l.o.g., we can assume

$$d_1 > d_2 > \ldots > d_n$$

since permuting the columns of A keeps the property that every m columns are linearly independent.

Let $\ell : \mathbb{F}_q^k \to \mathbb{F}_q^n$ be an affine mapping satisfying the conditions of Lemma 3.4 so that the image of ℓ is V. Thus, there is a set $S \subset [n]$ of size |S| = k so that, if $S = \{j_1 < \ldots < j_k\}$, the coordinates of the mapping ℓ satisfy the three items in the lemma.

Let $c = (c_1, \ldots, c_m) \in \mathbb{F}_q^m$ be a non zero vector. We will proceed to give a bound on the expectation $|\mathbb{E}[\chi_c(Z)]|$ and then use Lemma 3.2 to finish the proof. To that end, let $b = (b_1, \ldots, b_n)$ be given by the product $c^t \cdot A$ (multiplying A from the left by the transpose of c). Then,

$$\chi_c(F_{d,A}(x)) = \chi_1(b \cdot x^d) = \omega_q^{b_1 x_1^{d_1} + \dots + b_n x_n^{d_n}}.$$

Therefore,

$$|\mathbb{E}[\chi_c(Z)]| = \left| q^{-k} \sum_{t_1, \dots, t_k \in \mathbb{F}_q} \chi_1\left(b_1 \ell_1(t)^{d_1} + \dots + b_n \ell_n(t)^{d_n}\right) \right|.$$
 (1)

We will now perform an invertible (non-linear) change of variables on the above exponential sum to bring it to a more convenient form. Let

$$D = \mathrm{LCM}(d_{j_1}, \ldots, d_{j_k}).$$

and let $D_i = D/d_{j_i}$ for $i = 1 \dots k$. The change of variables is given by

$$s_i^{D_i} = t_i, \ i \in [k].$$

Observe that this is an invertible change of variables since the d_i 's are all co-prime to q-1 (and hence the numbers D_i are as well). Specifically, we have $s_i = t_i^{D_i^{-1} \mod q-1}$.

Let us denote by

$$\tilde{\ell}_j(s) = \ell_j(s_1^{D_1}, \dots, s_k^{D_k}).$$

Changing variables in (1) now gives

$$|\mathbb{E}[\chi_c(Z)]| = \left| q^{-k} \sum_{s_1, \dots, s_k \in \mathbb{F}_q} \chi_1\left(b_1 \tilde{\ell}_1(s)^{d_1} + \dots + b_n \tilde{\ell}_n(s)^{d_n} \right) \right|.$$
(2)

Claim 3.5. The functions $\tilde{\ell}_i^{d_i}(s)$, $i \in [n]$, satisfy the following:

- 1. For all $i \in [k]$ we have $\tilde{\ell}_{j_i}^{d_{j_i}}(s) = s_i^D$.
- 2. For all $j \notin S$ the function $\tilde{\ell}_j^{d_j}(s)$ is a polynomial in s_1, \ldots, s_k of total degree less than D.

Proof. To see the first item, let $i \in [k]$ and observe that $\ell_{j_i}(t) = t_i$. Thus,

$$\tilde{\ell}_{j_i}^{d_{j_i}}(s) = \left(s_i^{D/d_{j_i}}\right)^{d_{j_i}} = s_i^D.$$

For the second item, let $j \notin S$ and suppose $j_i < j < j_{i+1}$ for some $i \in [k]$ (a similar argument will work for the two cases $j < j_1$ and $j > j_k$). By Lemma 3.4, the affine function $\ell_j(t)$ depends only on the variables t_1, \ldots, t_i . Thus, the maximum degree obtained in $\tilde{\ell}_j^{d_j}(s)$ is bounded by

$$d_j \cdot \max\{D_1, \dots, D_i\} = d_j \cdot D_i = D \cdot (d_j/d_{j_i}) < D.$$

In view of the last claim, we can write (2) as

$$|\mathbb{E}[\chi_c(Z)]| = \left| q^{-k} \sum_{s_1, \dots, s_k \in \mathbb{F}_q} \chi_1\left(b_{j_1}s_1^D + \dots + b_{j_k}s_k^D + g(s)\right) \right|,\tag{3}$$

where g(s) is a polynomial of total degree less than D. If we knew that all of b_{i_1}, \ldots, b_{i_k} were non zero we could have applied Deligne's result (Theorem 3.3) and complete the proof (since the polynomial in the sum is clearly smooth). However, since $b = c^t \cdot A$ for an arbitrary non-zero $c \in \mathbb{F}_q^m$, b might have some coordinates equal to zero. However, since every m columns of A are linearly independent, we have that the vector $b = (b_1, \ldots, b_n)$ can have at most m - 1 < k/2zero coordinates (otherwise c would be orthogonal to at least m columns). Hence, out of the kvalues b_{i_1}, \ldots, b_{i_k} , at least k/2 are non zero. Suppose w.l.o.g that these are the first k/2 (if k is odd we need to add the floor function below for k/2). We can now break the sum in (3) using the triangle inequality as follows

$$|\mathbb{E}[\chi_c(Z)]| = q^{-k/2} \sum_{s_{k/2+1},\dots,s_k \in \mathbb{F}_q} \left| q^{-k/2} \sum_{s_1,\dots,s_{k/2} \in \mathbb{F}_q} \chi_1\left(\sum_{i \in [k/2]} b_{j_i} s_i^D + g_{s_{k/2+1},\dots,s_k}(s_1,\dots,s_{k/2})\right) \right|, \quad (4)$$

with $g_{s_{k/2+1},\ldots,s_k}(s_1,\ldots,s_{k/2})$ a polynomial in $s_1,\ldots,s_{k/2}$ of degree less than D. In each of the inner sums we have a smooth polynomial of degree D in the ring $\mathbb{F}_q[s_1,\ldots,s_{k/2}]$ and so, applying Theorem 3.3 on each of them (and recalling that $D \leq q^{\varepsilon}$), we obtain

$$|\mathbb{E}[\chi_c(Z)]| \le q^{-k/2} \cdot (D-1)^{k/2} \cdot q^{k/4} \le q^{(-1/4 + \varepsilon/2)k}$$
(5)

Using Lemma 3.2, and setting $\varepsilon = 1/4 - \beta/2 > 0$, we now get that Z has statistical distance at most

$$q^{(-1/4+\varepsilon/2)k} \cdot q^{m/2} \le q^{(-1/4+\varepsilon/2+\beta/2)k} \le q^{-(\varepsilon/2)k}$$

from the uniform distribution on \mathbb{F}_q^m . This completes the proof of Theorem 3.1.

4 Explicitness of $F_{d,A}$

The explicitness of the construction requires us to give a deterministic, efficient, algorithm to produce a matrix A and a sequence of integers d_1, \ldots, d_n satisfying the conditions of Theorem 3.1.

Finding an $m \times n$ matrix in which each $m \times m$ sub matrix is invertible can be done efficiently as long as q, the field size, is sufficiently large. For example, one can take a Vandermonde matrix with $a_{ij} = r_i^{i-1}$ for any set of distinct field elements $r_1, \ldots, r_n \in \mathbb{F}_q$.

To find a sequence $d = (d_1, \ldots, d_n)$ we will have to make some stronger assumption about q. This is summarized in the following lemma.

Lemma 4.1. For any $\varepsilon > 0$ there exists C > 0 such that the following holds: There is a deterministic algorithm that, given integer inputs n, q, k where k < n < q, q a typical prime such that $q > n^{C \log \log n}$, runs in poly(n) time and returns n integers $d_1 > \ldots > d_n > 1$ all co-prime to q - 1 with $\operatorname{LCM}(d_1, \ldots, d_n) < q^{\varepsilon}$.

Proof. Let D be the product of the first $\lceil \log_2(n+1) \rceil$ primes that are co-prime with q-1. Let $d_1 > \ldots > d_n$ be n distinct divisors of D. If q-1 has at most $C' \log \log(q)$ prime factors, D can be upper bounded by the product of the first $\log n + C'(\log \log q)$ primes. By the Prime Number Theorem,

$$D < \left(n \left(\log q\right)^{C'}\right)^{C'' \log \log\left(n \left(\log q\right)^{C'}\right)}$$

for some constant C'' > 0. Now for any ε, C'', C' , we can pick a sufficiently large C such that, if $q > n^{C \log \log n}$ this expression is at most q^{ε} .

5 Proof of Theorem 1

We now put all the ingredients together to prove Theorem 1. Given $m = \lfloor \beta k \rfloor$ we let $\varepsilon = 1/4 - \beta/2$ and, using Lemma 4.1 find a sequence of integers d_1, \ldots, d_n all coprime to q-1 so that their product is at most q^{ε} . We let A be an $m \times n$ Vandermonde matrix and define $E(x) = F_{d,A}(x)$. Using Theorem 3.1 we get that $E(X_V)$ is $q^{-(\varepsilon/2)k}$ -close to the uniform distribution on \mathbb{F}_q^m .

References

- [Bou07] J. Bourgain. On the construction of affine extractors. *Geometric And Functional* Analysis, 17(1):33–57, 2007.
- [Bou10] J. Bourgain. On exponential sums in finite fields. In I. Bárány, J. Solymosi, and G. Sági, editors, An Irregular Mind, volume 21 of Bolyai Society Mathematical Studies, pages 219–242. Springer Berlin Heidelberg, 2010.
- [BRSW06] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for subpolynomial entropy and ramsey graphs beating the frankl-wilson construction. In *Proceedings of the thirty-eighth annual ACM symposium on Theory of computing*, pages 671–680, New York, NY, USA, 2006. ACM Press.
- [BSG12] E. Ben-Sasson and A. Gabizon. Extractors for polynomials sources over constant-size fields of small characteristic. In *APPROX-RANDOM*, Lecture Notes in Computer Science, pages 399–410. Springer, 2012.
- [Del74] P. Deligne. La conjecture de Weil. I, Inst. Hautes Etudes Sci. Publ. Math., 43:273– 307, 1974.
- [DGW09] Z. Dvir, A. Gabizon, and A. Wigderson. Extractors And Rank Extractors For Polynomial Sources. Comput. Complex., 18(1):1–58, 2009.
- [Dvi12] Z. Dvir. Extractors for varieties. Comput. Complex., 21:515–572, 2012.
- [GR08] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields. Combinatorica, 28(4):415–440, 2008.

- [Hal56] H. Halberstam. On the Distribution of Additive Number-Theoretic Functions (II). Journal of the London Mathematical Society, 1(1):1–14, 1956.
- [HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc., 43:439–561, 2006.
- [Li11] X. Li. A new approach to affine extractors and dispersers. In *IEEE Conference on Computational Complexity*, pages 137–147. IEEE Computer Society, 2011.
- [LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.
- [MK93] O. Moreno and P. Kumar. Minimum distance bounds for cyclic codes and Deligne's theorem. *IEEE Transactions on Information Theory*, 39(5):1524–1534, 1993.
- [Rao07] A. Rao. An Exposition of Bourgains 2-Source Extractor. In *Electronic Colloquium* on Computational Complexity (ECCC), volume 14, page 034, 2007.
- [RVW02] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. 155(1):157–187, 2002.
- [Yeh11] A. Yehudayoff. Affine extractors over prime fields. *Combinatorica*, 31(2):245–256, 2011.

8

ISSN 1433-8092

http://eccc.hpi-web.de

ECCC