
The computational hardness of pricing compound
options

Mark Braverman∗

Princeton University (mbraverm@cs.princeton.edu)

Kanika Pasricha
Princeton University (pasricha@alumni.princeton.edu)

Abstract

It is generally assumed that you can make a financial asset out of any underlying
event or combination thereof, and then sell a security. We show that while this is
theoretically true from the financial engineering perspective, compound securities might
be intractable to price. Even given no information asymmetries, or adversarial sellers,
it might be computationally intractable to put a value on these, and the associated
computational complexity might afford an advantage to the party with more compute
power. We prove that the problem of pricing an option on a single security with
unbounded compounding is PSPACE hard, even when the behavior of the underlying
security is computationally tractable. We also show that in the oracle model, even
when compounding is limited to at most k layers, the complexity of pricing securities
grows exponentially in k.

∗Research supported in part by an Alfred P. Sloan Fellowship, NSF CCF-0832797, an NSF CAREER
award (CCF-1149888), NSF Award CCF-1215990, a Turing Centenary Fellowship, and a Packard Fellowship
in Science and Engineering.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 13 (2014)

1 Introduction

A financial security is an instrument representing financial value. Examples of securities
include currencies, shares of companies, debt obligations, and commodity contracts. Simple
securities generally directly correspond to actual future cash flows, or events. For example,
a stock of a company can be viewed as a contract entitling one to the company’s dividend
payments. A simple oil futures contract entitles one for a given amount of oil to be delivered
at a pre-determined time. Simple securities therefore can be viewed as simple contracts that
can be traded among agents.

Based on these simple securities one can construct more complicated ones, known as
financial derivatives. The value of a derivative may depend on the value of one or multiple
securities in a complicated fashion. For example, a put option may allow one to sell a
stock at a later time at a predetermined price (e.g. the option to sell a share of GOOG
for $1000 a year from now), thus realizing a piece-wise linear function on the price of the
stock. Collateralized debt obligations (CDOs), which were much publicized during the 2008
financial crisis, represent step functions on bundles of debt obligations. Financial derivatives
are created for many different reasons, including risk-hedging and giving market participants
greater flexibility in expressing their beliefs through their holdings.

Assigning values to financial securities and derivatives is one of the primary functions of
financial markets and institutions. This function is at the heart of the stock market, and the
operations of hedge funds who extract surplus by identifying (and helping correct) mispriced
financial products. The subject of this paper is the computational complexity aspects of the
hardness of pricing financial derivatives. The process of valuing securities can be abstracted
as the process of (1) obtaining information about the present and the future that is relevant
to the present and future value of the security; and (2) performing computations to obtain a
price for the security based on the information. In this paper we focus on the computational
complexity of performing the second step, and thus abstract away as much of the first step
as possible. A common way of representing complex information about the future is through
Monte-Carlo simulations. We will assume therefore that we have a model of the relevant
future world-states and prices, either as a program or as a black-box oracle, and focus on the
hardness of turning this model into the relevant price. Much of economic theory deals with
information and uncertainty of the agents, which leads to various interesting phenomena.
Here we assume no uncertainty in that the model available to the pricer is exhaustive and
fully describes the system. Thus, a risk-neutral pricer should be able to produce the correct
prices by herself. In the case of a simple security this is, more or less, the case: by running
enough simulations of future returns and averaging them out, the pricer can estimate the
security’s value. What about compound securities? In this paper we restrict ourselves to
the simplest case of a single security (with multiple securities, the combinatorial relations
between them may induce computational hardness — an issue not present in the case of a
single security). The simplest kind of a single compound security is obtained by compounding
European options, which will be the main subject of study in this paper.

A European call option is the option to buy an asset at a given price that can only be
exercised at a given point of time. An example of a European option O1 is “The option to

2

buy one GOOG share at $900 on 07/01/2015”1. If the price of one GOOG share on that date
is $X, O1 will be worth max(X−900, 0) on that date. A compound option is an option on an
option. An example of a compound option O2 is “The option to buy two O1 options at $50
each on 07/01/2014”. The focus of this paper is the computational hardness of pricing such
options even in the presence of full information. To illustrate why compound options cannot
be straightforwardly priced using Monte Carlo simulations, note that the price of O2 today
depends not only on our belief about the distribution of the eventual price of GOOG on
07/01/2015, but also on our belief on the distribution of our belief on 07/01/2014 about the
price of GOOG a year from then. Intuitively, this roughly squares the amount of simulations
that are needed to price O2 as compared to O1. In this paper, we make this intuition precise.

1.1 Main results

To the best of our knowledge, we give the first computational-complexity-only hardness
results for pricing option contracts on a single security. We obtain results both when the
underlying security is modeled algorithmically, and when it can be queried through an oracle.
The main results are as follows:

• With unbounded compounding, the problem of (risk-neutral) pricing compound op-
tions is PSPACE-hard, even in the presence of full information, where the distribu-
tion of the future world-states is just uniform, and the function mapping future states
to payoffs is a poly-time computable function. Specifically, options considered are
compound European put options.

• We analyze the bounded compounding case in the oracle model, where the distribution
of the future states is still uniform, and the pricing algorithm may access the ultimate
value of the asset via an oracle that maps states to values. For options that are such
that pricing Option(Φ) requires knowing the value of the security Φ with error δ, we
show that the query complexity of pricing k-layered options scales as (Ω(δ))−2k. Thus
for small constant k’s, such as k = 3 or k = 4 and δ = 10−3, the query complexity is
on the order of ∼ 1018 or ∼ 1024, and differences in computing capacity may give the
computationally stronger player a real advantage in pricing the security. This suggests
one possible explanation for the vast computing resources utilized by financial firms2.

1.2 Related work and discussion

While a substantial body of work exists on the information-asymmetry aspects of security-
pricing games, there has not been much work directly addressing computational hardness of

1The closely related European put option is the option to sell an asset at a given price that can only be
exercised at a given point of time. For example “The option to sell one GOOG share at $900 on 07/01/2015”.

2Note that, while it is not common to see actual financial instruments that are explicitly k-layered for
k > 2, implicit deep compounding (that is harder to formalize) is likely to be occurring as a result of the use
of complex derivatives.

3

pricing financial instruments. Arora et al. introduced notions from computational complex-
ity into the study of financial derivatives [ABBG09]. They showed that securitization can
amplify the lemon costs arising from asymmetric information between the buyer and seller
about the underlying assets, by modeling the detection of tampering with the composition
of the securities as the problem of finding a dense subgraph. Lemon costs are the costs to
efficiency arising from the asymmetry of information between the seller and the buyer, in
the case of [ABBG09] the buyer expects that the seller has tampered with the composition
of the CDO over the various assets, to allocate risk in a way that is beneficial to the seller.
Zuckerman shows that this lemon placement can be remedied if the seller is required to
construct derivatives of a certain form, and uses pseudorandom graphs constructed using
expanders to demonstrate this [Zuc11]. We note that unlike our result, the main computa-
tional hardness result of [ABBG09] still requires some amount of information asymmetry to
be present (i.e. there is information about the underlying assets that is known to the seller
but not the buyer).

High-dimensional markets, such as combinatorial markets, provide a rich ground for
hardness results. The high-dimensional nature of these markets allows for computationally
complex combinatorics to be encoded into them. Chen, Goel, and Pennock investigate the
pricing problem in combinatorial markets — specifically sports tournament results, which,
with n teams and 2n−1 outcome possibilities, is in general #P-hard [CGP08]. The same work
derives polynomial-time upper bound when restrictions are placed on the betting language
(i.e. the types of securities over the n-dimensional outcomes one is allowed to trade in).
Pennock also sets forth the idea of opening securities markets for hard problems, called “NP
markets” [Pen01].

Closely related to the problem of pricing complex multi-dimensional securities is the
problem of market-making over such securities. Bertsimas and Popescu [BP02] show that
finding optimal bounds for multi-dimensional derivative prices is NP-hard. Fortnow et
al. [FKPW05] develop and motivate the concept of a compound securities market (where
participants can bet on any boolean statement involving future outcomes). They also analyze
the matching problem of an intermediary to carry out optimal auctions in such a market,
showing that, with n events, the problem is coNP-complete in the divisible case and Σp

2-
complete in the indivisible case. Maymin conjectures that market efficiency implies that
P = NP, and that the market can be programmed to solve NP-complete problems [May11].

We see that there is significant work considering the hardness of pricing, or looking
into information and sensitivity problems in high-dimensional securities. There has also
been work examining how valuations for complex securities differ across investors, as well as
examining the demand for such assets. Related fields, such as bounded rationality models
for investors, and volatilities in the market have also been studied. However, there have
not been prior complexity-theoretic results elucidating the difficulty of pricing an individual
security from a purely computational perspective, which are what we initiate in this paper.

We show that hardness can “hide” not just in the n-dimensional space of possibilities
spanned by a large number n of securities, but in the interplay between time periods within
an n-layer compound security based on a single underlying asset.

4

The most important open problem raised by our work is understanding the applicability
of our results to typical scenarios, as well as understanding both theoretically and empirically
what makes perfectly modeled securities hard to price. One recurring theme in our examples
is the fact that multi-layered securitization leads to the amplification of the significance
of low-probability events. As such, one can view the compound securities we construct as
extremely leveraged instruments. What happens if leveraging is limited? In other words,
does a bound on the worst-case (or best-case) payoff of the security translate into an upper
bound on the complexity of pricing it? If the answer to this question is affirmative, it
would imply that the main source of computational hardness in pricing compound securities
is the need to account for tiny-probability events to which one is exposed through multi-
layered leveraging. Together with the results of the present paper it would suggest that for
complicated securities computational complexity is closely related to risk.

Acknowledgments

We would like to thank Itai Ashlagi, Jing Chen, and the anonymous ITCS’14 referees for
their helpful comments on earlier versions of the manuscript.

2 Background and notation

2.1 Types of options

A simple European put option put(ψ, s, t) is the right to sell stock ψ at a certain point in
time t at a predetermined price s called a strike price (an American put is the right to do so
until that point in time). The payoff from the put is the difference between the strike price,
and the actual value of the stock at the time of exercise: you would want the stock value to
be lower than the strike to make a payoff.

We will begin by focusing on a specific family of normalized (always priced between 0
and 1) multi step put option, which will be defined inductively as follows:

Φi = 2× put
(

Φi−1,
1

2
, i

)
∈ [0, 1]. (1)

Time intervals are numbered backwards as n, n−1, . . . , 0, so that time i happens before time
i− 1. Here Φ0 represents the underlying event, Φ1 will be the option to sell 2 shares of Φ0 at
time 1 (with a strike of 1/2), Φ2 is the option to sell 2 shares of Φ1 at time 2 (with a strike
of 1/2), etc.

More generally, a sequence Φ(t, s, v, φ) of compound European options of depth n is
defined by the underlying security φ and by three vectors t ∈ {call, put}n, s ∈ Rn, and
v ∈ Rn. Here Φ0(t, s, v, φ) := φ, and the other layers are defined by induction “backwards”:
Φi(t, s, v, φ) is a certain number of call or put options at a certain strike, priced i time periods
before time 0. Specifically,

Φi(t, s, v, φ) :=

{
vi × call (Φi−1(t, s, v, φ), si, i) if ti = call
vi × put (Φi−1(t, s, v, φ), si, i) if ti = put

(2)

5

In this language, the chain of compound securities {φi} from (1) corresponds to {Φi(t, s, v, φ)}
with φ = φ0, t = (put, put, . . . , put), s = (1/2, . . . , 1/2), and v = (2, . . . , 2).

By a slight abuse of notation, we will sometimes identify a security with its risk-neutral
value.

3 PSPACE-hardness of pricing multi-layered securities

In this section we show that if the depth of securitization is unbounded, then even pricing a
chain of simple put options on a poly-time computable base-security is PSPACE-hard. We
also show that pricing in any system of polynomial size where all conditional distributions
can be computed in polynomial time can be accomplished in PSPACE. Thus the pricing
problem is PSPACE-complete, and the PSPACE-hardness result is tight.

3.1 Warm-up: amplifying an exponentially small event

As a warm-up, we will show that pricing a sequence of call options is NP-hard. More
specifically, we will show how a compound chain of n options, each priced between 0 and 1
expresses the existence of an unsatisfying assignment of a boolean formula ψ(x1, . . . , xn). In
other words, the price of the security Ψn will be $1 if ψ is a tautology (always satisfied), and
$0 otherwise. We consider an environment where xi ∈U {0, 1} is revealed at time period i.
Thus xn is revealed first and x1 is revealed last. The price of Ψ0 will be just ψ(x1, . . . , xn).
We will have

Ψi = 2× call
(

Ψi−1,
1

2
, i

)
∈ [0, 1]. (3)

The price of Ψ0 = ψ is calculated after all the x1, . . . , xn have been revealed, and is just equal
to Ψ0(x1, . . . , xn) = ψ(x1, . . . , xn). The price of Ψ1 is calculated when all the x’s x2, . . . , xn
except for x1 have been revealed. What is the value of Ψ1(x2, . . . , xn)? At time i = 1, the
expected value of Ψ0 is 1 if ψ(0, x2, . . . , xn) = ψ(1, x2, . . . , xn) = 1, is 1/2 if exactly one of
ψ(0, x2, . . . , xn) and ψ(1, x2, . . . , xn) is 1, and 0 if they are both 0. The call option allowing
one to buy Ψ0 for $1/2 is therefore worth $1/2 in the first case and $0 in the other two cases.
Since Ψ1(x2, . . . , xn) is comprised of two such options we get (by a slight abuse of notation)

Ψ1(x2, . . . , xn) = ψ(0, x2, . . . , xn) ∧ ψ(1, x2, . . . , xn) = ∀x1ψ(x1, x2, . . . , xn).

Continuing this reasoning, we get by a simple induction that for all i

Ψi(xi+1, . . . , xn) = ∀x1 . . . ∀xiψ(x1, . . . , xi, xi+1, . . . , xn),

which finally leads to
Ψn = ∀x1 . . . ∀xnψ(x1, . . . , xn).

Therefore Ψn will be worth $1 if ψ is a tautology and $0 otherwise. This immediately implies
that pricing Ψn, even when the formula ψ is given explicitly (i.e. we can perfectly model the
n-step future) is NP-hard.

6

More importantly, the price of Ψn will distinguish between ψ being a tautology and ψ
having one unsatisfying assignment xunsat. Since the probability of xunsat being actually
realized is 2−n, this means that the price of Ψn detects a probability 2−n-event n steps
into the future! Even though xunsat is extremely unlikely to be realized, the possibility of
it occurring affects the price of Ψn. A real-life analogue of this are examples of securities
being affected by a small change in the probability of the US default. While a US default is
extremely unlikely, changes in its estimated probability (such as changes in rating between
AAA and AA) affect securities prices with this risk built into them quite a bit.

3.2 PSPACE-hardness

Theorem 1. Consider the multi-step option Φ from (1). Even when the basic security Φ0

can be priced in polynomial time, and the environment is such that a bit of information is
observed uniformly at random at each step, valuing a multi-step option Φn is PSPACE-hard.

Proof. Let φ(x1, . . . , xn) be any boolean formula. As in the previous section, we assume that
xi is revealed at time i, starting with xn. We will define the chain of compound options
given by (1) with Φ0(x1, . . . , xn) = φ(x1, . . . , xn). Let us calculate the risk-neutral price for
Φn working from Φ0 backwards. Recall that

Φ1(x2, . . . , xn) = 2× put(Φ0, 1/2, 1).

The value of the put option put(Φ0, 1/2, 1) depends on the values of Φ0(0, x2, . . . , xn) and
Φ0(1, x2, . . . , xn). The option is worthless, unless Φ0(0, x2, . . . , xn) = Φ0(1, x2, . . . , xn) = 0,
in which case it is worth 1/2. Thus

Φ1(x2, . . . , xn) = ¬Φ0(0, x2, . . . , xn) ∧ ¬Φ0(1, x2, . . . , xn) = ¬∃x1φ(x1, x2, . . . , xn).

Similarly,

Φ2(x3, . . . , xn) = ¬∃x2¬∃x1φ(x1, x2, . . . , xn) = ∀x2∃x1φ(x1, x2, . . . , xn),

and continuing by induction we obtain (assuming n is even for convenience)

Φn = ¬∃xn . . .¬∃x2¬∃x1φ(x1, x2, . . . , xn) = ∀xn∃xn−1∀xn−2 . . . ∀x2∃x1φ(x1, x2, . . . , xn).

Therefore, pricing Φn is equivalent to determining the truth value of a general quantifier-
bounded formula (QBF), where the basic formula φ is poly-time computable. This problem
is PSPACE-hard (see e.g. [AB09] for more information about PSPACE and QBF), which
completes the proof.

3.3 Tightness: pricing compound securities is in PSPACE

In this section we show that our lower bound from the previous section is tight. That is, we
show that the problem of pricing securities of the type slightly generalizing (2). We define an

7

n-period environment with an underlying security S(x1, ..., xn) ∈ R, where xi ∈U Ei is the

event occurring at step i. Moreover, |Ei| < 2n
O(1)

(i.e. events have polynomial descriptions)3,
and S is poly-time computable. The pricing is risk-neutral, and contracts are formulated
based on prices in future rounds. In its fullest generality, a compound option S on S is given
by a sequence of functions: the type functions ti : (xn, . . . , xi+1) 7→ t ∈ {call, put}, the strike
functions si : (xn, . . . , xi+1) 7→ s ∈ R, and the volume functions vi : (xn, . . . , xi+1) 7→ v ∈ R.
At time i = 0 (i.e. at the end), a share of S0 pays S(x1, ..., xn). At time i a share of Si+1

allows one to either buy or sell (depending on the value of ti(xn, . . . , xi+1)) vi(xn, . . . , xi+1)
shares of Si at price si(xn, . . . , xi+1) each. The goal is to price a share of Sn. Using a simple
recursive algorithm, we show this can be done in PSPACE:

Theorem 2. If the functions S, ti, si, vi are in PSPACE, then pricing Sn is in PSPACE
as well.

Proof. Consider the following algorithm:

Price(i, t, s, v, xn, . . . , xi+1):
if i = 0

return S(x1, . . . , xn);
else
expectedPrice = 1

|Ei|
∑

xi∈Ei Price(i− 1, t, s, v, xn, . . . , xi+1, xi)

if ti(xn, . . . , xi+1) = ‘call’
return vi(xn, . . . , xi+1) ·max (0, expectedPrice− si(xn, . . . , xi+1))

else
return vi(xn, . . . , xi+1) ·max (0, si(xn, . . . , xi+1)− expectedPrice)

A simple inductive argument shows that Price(i, t, s, v, xn, . . . , xi+1) correctly prices Si
given history (xn, . . . , xi+1). Therefore Price(n, t, s, v) will correctly price Sn. It remains
to analyze the space complexity of the Price algorithm. Note that each instance of the
algorithm (without the recursive calls) only uses a polynomial amount of space: to evaluate
the functions t, v, s, and S, to enumerate xi over Ei, and to accumulate the main

∑
of

expectedPrice. Next observe that each recursive call reduces the value of i, thus the depth
of the recursion is n, which multiplies the space cost of the algorithm by a factor of n at
most. Therefore computing Sn can be done in PSPACE.

4 The oracle complexity of bounded-layered securities

In this section we consider a more specialized (and, arguably, more realistic) scenario where
the securities are of bounded compounding depth, such as depth k = 3 or k = 4. Intuitively,
in this case we expect that the problem of pricing securities would be in polynomial time,

3Assuming we have an explicit distribution of xi, we may without loss of generality relabel Ei, perhaps
enlarging it slightly, so that it is uniform on Ei.

8

but with an exponent growing with k. To the best of our understanding, the existing
complexity-theoretic frameworks are not fine enough to prove an nΩ(k) bound under an
accepted hypothesis4. Therefore we will prove bounds in the oracle model, where the model
of the security’s behavior is given by an oracle rather than by an explicit formula. This
relaxation is justified by the fact that pricing complex securities is usually accomplished by
means of Monte Carlo simulations. The oracle set up has the added benefit of enabling
unconditional results5.

Specifically, we look at the complexity of pricing multi-layered tranche securities. The
simplest tranche contract S1 on a security S0 is one that at time t = 1 pays the portion of
S0 that is between prices p and p+ δ6. In addition, we assume that the price of P (S0, t = 0)
is always in {0, 1} (this is the case, for example, if S0 is a debt obligation which may or may
not be honored at time t = 0, and its price at t = 1 is the probability it will be honored,
while the price at t = 0 is whether it was ultimately honored). The payout of S1 at time
t = 1 is given by

P (S1, t = 1) =

0 if 0 ≤ P (S0, t = 1) ≤ p
1 if p+ δ ≤ P (S0, t = 1) ≤ 1
P (S0,t=1)−p

δ
if p < P (S0, t = 1) < p+ δ

(4)

We have a model which serves as an oracle which outputs random samples for the market
between t = 1 and t = 0, thus giving us samples of the value of P (S0, t = 0). More
specifically, we assume that the state of the market between times t = 1 and t = 0 are
labeled by a distribution x1 ∈U E1, and P (S0, x1, t = 0) is a deterministic function to which
we have an oracle access. Using this oracle, we need to estimate the price P (S1, t = 1).

4.1 Pricing a single tranche contract

As a warm-up, we will show that the query complexity of pricing P (S1, t = 1), even assuming
that P (S0, t = 1) /∈ (p, p + δ) (and therefore P (S1, t = 1) must be either 0 or 1) is Ω(δ2/p).
While there are several ways of doing it, we will use information-theoretic formalism since
it leads to the shortest proof we know of. For the multi-layered case we will need a more
elaborate martingale argument. To prove the lower bound, we create an environment where
E1 is exponentially large, and one of the two cases hold: under process P0, for each x1 ∈ E1,
P (S0, x1, t = 0) = Bp i.i.d. Bernoulli, while under process P1, P (S0, x1, t = 0) = Bp+δ. In
the former case the price P (S1, t = 1) ≈ 0, while in the latter it is ≈ 1. Therefore, pricing
P (S1, t = 1) requires distinguishing between P0 and P1 based on samples. In other words,
we need to distinguish between samples coming from the two processes.

4It is possible that one can get a computational hardness result under a sufficiently strong version of the
Exponential Time Hypothesis.

5Note that even the hardness result from the previous section depends on the (very plausible) assumption
that P 6= PSPACE

6Thus S1 represents the (p, p + δ) tranche of S0. Equivalently, we could have considered a security
representing the (1− p− δ, 1− p)-tranche.

9

Denote V := P (S1, t = 1) the value of S1 at time 1. Suppose that we have a uniform
prior V ∈U {0, 1}, and we need to use samples to distinguish V = 0 from V = 1 with a good
probability. Let Y = Y1, Y2, . . . , YN be the sequence of price signals obtained by querying
P (S0, xi, t = 0). Note that by the definition of the process it does not matter which value
xi gets queried as they are i.i.d. given V . We will use mutual information. Recall that the
mutual information between two random variables X, Y is defined as

I(X;Y) := H(X)−H(X|Y),

where H(X) =
∑

x Pr[X = x] log(1/Pr[X = x]) is Shannon’s entropy. Mutual information
captures the amount of information Y reveals about X (the quantity turns out to be sym-
metric). The basics of information theory can be found in [CT91]. If N queries of the Yi’s
suffice to detect V with a high degree of confidence, this means that the mutual information
I(V ;Y1, . . . , YN) = Ω(1). We will show that

I(V ;Y1, . . . , YN) = O

(
N · δ

2

p

)
, (5)

and therefore it must be the case that N = Ω
(
p
δ2

)
. By the chain rule for mutual information,

I(V ;Y1, . . . , YN) =
N∑
i=1

I(V ;Yi|Y1, . . . , Yi−1).

Theorem 3. The mutual information between I(V ;Yi|Y1, . . . , Yi−1) = O
(
δ2

p

)
, hence Ω

(
p
δ2

)
queries are needed to to value S1 even if we restrict the price of S1 to {0, 1}.
If no such restriction is made, then the number of queries needed to get a price on a security

within an error of ε > 0 is Ω
(

p
(εδ)2

)
Proof. Denote Z := Y1, . . . , Yi−1. Conditional mutual information can also be written in
terms of the Kullback-Leibler Divergence as follows:

I(V ;Yi|Z) = EV ZD(Yi|V Z‖Yi|Z).

As above, Yi is drawn from the Bernoulli Bp+δ when V = 1 and from Bp when V = 0. Since
Yi is a boolean variable, we can write:

ESZD(Y |V Z ||Y |Z) = D(Bα||Bβ)

for some α and β which are determined by V and Z. Here p ≤ α, β ≤ p+ δ. The following
simple claim is proved in the Appendix:

Claim 4. For p < 1/2, δ < 1/4, if p ≤ α, β ≤ p+ δ, then D(Bα||Bβ) = O(δ2/p).

10

The claim immediately implies that I(V ;Yi|Z) = O(δ2/p).

For the second statement, we can say that S1 is a multi-tranche security whose payoff
function is tighter than the one used so far, since we now need to distinguish between a price
of P (S1, t = 1) = 0, versus, say, price P (S1, t = 1) = ε, as opposed to just distinguishing 0
from 1. This corresponds to distinguishing a stream of i.i.d. variable Bp from a stream of
Bp+εδ. A proof very similar to the first part demonstrates that the number of queries needed

is Ω
(

p
(εδ)2

)
.

4.2 Multiple layers

Extending the examples from last section, we consider an environment where Ei is exponen-
tially large and is observed between times t = i and t = i−1. We are able to query the value
P (S0, xk, . . . , x1, t = 0). Extend the definition of S1 to a multi-layered Si by generalizing (4):

P (Si, xk, . . . , xi, t = i) =

0 if 0 ≤ P (Si−1, xk, . . . , xi, t = i) ≤ p
1 if p+ δ ≤ P (Si−1, xk, . . . , xi, t = i) ≤ 1
P (Si−1,t=i)−p

δ
if p < P (Si−1, xk, . . . , xi, t = i) < p+ δ

(6)

Here, we assume that k is a constant (such as 3 or 10), and are interested in the depen-
dence of the query complexity on p and δ.

At first, we place no restrictions on the intermediate prices of P (Si, xk, . . . , xi, t = i) ∈
[0, 1]. In this scenario, it is quite easy to obtain an exponential (in k) bound on the complexity
of pricing P (Sk, t = k):

Theorem 5. Ω
(
p
δ2k

)
queries are required to price a k-layered multi-tranche security. There-

fore, the number of queries becomes Ω
(

1
δ2k

)
when p is constant.

It is also not hard to see that the bound in the theorem is tight.

Proof. The proof follows by observing that if the value of S0 ultimately only depends on x1,
then distinguishing P (Sk, t = k) = 1 from P (Sk, t = k) = 0 is equivalent to distinguishing
P (Sk−1, t = k − 1) = p + δ from P (Sk−1, t = k − 1) = p, is equivalent to distinguishing
P (Sk−2, t = k − 2) = p + pδ + δ2 from P (Sk−2, t = k − 2) = p + pδ, etc. Ultimately,
it is equivalent to distinguishing P (S0, t = 1) = p + pδ + pδ2 + . . . + pδk−1 + δk from
P (S0, t = 1) = p + pδ + pδ2 + . . . + pδk−1, which by the second part of Theorem 3 requires
Ω
(
p
δ2k

)
queries.

4.3 Multiple layers, assuming integral intermediate pricing

One may argue that the main source of hardness in Theorem 5 is the fact that the multi-
layered structure allows one to amplify tiny differences in the prices of S0 at time t = 1.
Such an amplification becomes impossible if we make the following additional constraint on
the environment: at any time t, the expected price of St must be ∈ {0, 1}. One way to think

11

about it is St being a tranche contract valued at time t which may either pay or not pay,
depending on the predicted behavior of St−1 at time t− 1 after xt ∈ Et is observed.

We show that under this scenario the query complexity drops slightly to Θ(p/δ2)k, al-
though it remains exponential in k. Therefore amplification per se is not the only source
of hardness in pricing multi-level securities – demonstrating a certain level of robustness to
these results.

4.3.1 An upper bound on pricing multi-layered securities

Claim 6. We can differentiate between the current value of the security being Sk(t = k) = 1

or Sk(t = k) = 0 with a high probability using O

(
p·log(Cδ)

δ2

)k
observations (C is a universal

constant).

We will show this bound to be tight up to the polylog factors. The proof uses Chernoff
bounds and is quite routine. It is deferred to the Appendix.

4.3.2 A matching lower bound

We extend the definition of the one-layer process to a k-layered process that is “barely
integral” at all layers as follows. The environment has exponentially large Ek, . . . , E1, where
xi ∈ Ei is observed between times i and i−1. To each setting of a prefix of variables xk, . . . , xi
corresponds a value P (Si, xk, . . . , xi+1, t = i) ∈ {0, 1}. The value of P (Si, xk, . . . , xi, t = i−1)
is drawn i.i.d. from Bp+δ if P (Si, xk, . . . , xi+1, t = i) = 1 and from Bp if P (Si, xk, . . . , xi+1, t =
i) = 0. In addition, we start with the prior P (Sk, t = k) ∼ B1/2, and we need to determine
its value.

Theorem 10. The number of queries required to price a k-layered multi-tranche security

without intermediate fractional pricing is
(
Ω
(
p
δ2

))k · p.

Proving this theorem will require some preparation. The key to our analysis will be
understanding the effect of a single observation of P (S0, xk, . . . , x1, t = 0) on the predicted
values along the entire chain P (S1, xk, . . . , x2, t = 1), P (S2, xk, . . . , x3, t = 2), all the way
to the main quantity of interest P (Sk, t = k). By a slight abuse of notation we denote by
P (Si) the estimated value (before the last query) of P (Si, xk, . . . , xi+1, t = i). We denote
this predicted value if the answer to the query was 0 by P (Si) − ∆i, so that the change
in the estimated value of P (Si, xk, . . . , xi+1, t = i) effected by querying P (S0, xk, . . . , x1, t =
0) and getting answer 0 is ∆i. Note that since expected value is a martingale, and the
probability of getting answer 1 is ≈ p, the predicted value conditioned on observing a 1 is
approximately P (Si) + ∆i · (1 − p)/p. We would like to claim that while ∆1 can be fairly
large – as P (S0, xk, . . . , x1, t = 0) can tell us a lot about P (S1, xk, . . . , x2, t = 1), we expect
this knowledge to diminish as we look at higher levels of compounding. In fact it does, which
eventually gives us a handle on the “progress” made by the querying algorithm.

12

Claim 7.

∆i = ∆i−1 ·O
(
δ

p

)
· P (Si).

The proof is fairly straightforward, but tedious, and can be found in the Appendix.
We will consider the tree of all possible observed sequences xk, . . . , x1. Each node on this

tree is parametrized by a partial sequence of observations ηi = xk, . . . , xi+1. After τ queries,
let pη,i(τ) be the current estimated valuation of the node ηi. Let ∆η,i(τ) be the change from
pη,i(τ − 1) to pη,i(τ) assuming one of the leafs in the subtree of ηi has been queried (and
0 otherwise). Note that the estimated value may change even with other queries, through
changes in estimated values of the ancestors of ηi.

The following is proved similarly to Claim 7, with the proof again deferred to the Ap-
pendix. Note that the O(•) statement is just a corollary of Claim 7.

Claim 8. If pη,i(τ − 1), pη,i−1(τ − 1) ∈ (p/2, 2p) then ∆η,i(τ) = Θ(δ ·∆η,i−1(τ)).

The ∆η,i(τ) is now a family of random processes, defined by the querying strategy. At
each time τ values along exactly one path from the root to a leaf are affected. We know
that the process at each node is a martingale that has a probability ≈ 1 − p of decreasing
and a probability of ≈ p on increasing at each step. Unlike the previous lower bound, for
consistency we set up the example so that a-priori the probability value pη,k(0) of the root
is p (and not 1/2). Thus the total change in the value of the root, |

∑
τ ∆η,k(τ)| ≥ p/2

approximately holds, since by the end of the process the value of the root pη,k(τend) is
determined to be 0 or 1.

The statement of Claim 8 is such that a different process ∆′ that we will define will be
useful in analyzing the query complexity of the entire process. ∆′ is the restriction of the
∆’s to paths along which all values are within the interval (p/2, 2p). Specifically, we define

∆′η,i(τ) :=

{
∆η,i(τ) if pη,j(τ) ∈ (p/2, 2p) for j = i, i− 1, . . . , 1
0 otherwise

Our proof strategy is in two stages: (1) use Claim 8 to argue that the total change
∑

τ ∆′η,k(τ)
is small unless many queries are made; (2) prove that if the total change in terms of

∑
∆′ is

small then also the total change in terms of ∆ is small (note that the converse direction is
trivial since |∆′| ≤ |∆|); (3) therefore to attain the necessary magnitude of

∑
τ ∆η,k(τ), we

need to make many queries.
We start with the second point, linking the magnitude of the sum of ∆′ with the magni-

tude of the sum of the ∆’s:

Lemma 9. For any stopping rule T , and any node ηi,

E

[
T∑
τ=0

∆2
η,i(τ)

]
< (Θ(1/p))i · E

[
T∑
τ=0

∆′2η,i(τ)

]

13

Proof. We will prove the claim by induction on the layer index i. The statement is obviously
true for i = 0, since for i = 0 the node η0 is either queried or not, and the equality holds in
either case. Suppose the claim holds for layers up to i− 1; our goal is to prove it for i.

We define T ′ as
T ′ = min(T, tout)

where tout is the first time that pη,i /∈
(
p
2
, 2p
)
.

By Claim 7, if we are only concerned with pη,i(τ − 1) ∈
(
p
2
, 2p
)
,

T ′∑
τ=0

∆2
η,i(τ) = O

δ2

T ′∑
τ=0

∑
ηi−1 child of ηi

∆2
η,i−1(τ)

By the inductive hypothesis we have

E

[
T ′∑
τ=0

∆2
η,i(τ)

]
< (Θ(1/p))i−1 ·O

E

δ2

T ′∑
τ=0

∑
ηi−1 child of ηi

∆′2η,i−1(τ)

 .

By Claim 8 this implies

E

[
T ′∑
τ=0

∆2
η,i(τ)

]
< (Θ(1/p))i−1 ·O

(
E

[
δ2

T ′∑
τ=0

∆′2η,i(τ)

])
.

All that is needed to complete the proof is to show that

E

[
T∑
τ=0

∆2
η,i(τ)

]
≤ O(1/p) · E

[
T ′∑
τ=0

∆2
η,i(τ)

]
. (7)

This is done via a variance argument which uses basic properties of martingales, and is
deferred to the Appendix.

Theorem 10. The number of queries required to price a k-layered multi-tranche security

without intermediate fractional pricing is Ω
(

Θ(p)
δ2

)k
· p.

Remark 11. For p is not too small, p = Θ(1), we get a tight lower bound of Ω
(

Θ(1)
δ2

)k
. With

some additional work, the bound in Theorem 10 most likely can be improved to Ω
(

Θ(p)
δ2

)k
,

but at the expense of further complicating the proofs.

Proof. Note that E[
∑T

τ=0 ∆2
η,k(τ)] is Θ(p) (we go from a prior probability p to a near-full

knowledge about the price of the root node). Therefore, by Lemma 9,

E

[
T∑
τ=0

∆
′2
η,k(τ)

]
> (Θ(p))k+1 . (8)

14

By Claim 8 and because value of ∆
′

η,k(τ) is 0 unless pη,j(τ) ∈
(
p
2
, 2p
)

for all j = k, . . . , 1, we
get

E

[
T∑
τ=0

∆
′2
η,k(τ)

]
< E

[∑
` leaf node

T∑
t=0

∆
′2
`,k(τ) ·Θ(δ)2k

]
= E[T] ·Θ(δ)2k. (9)

Putting equations (8) and (9) together, we get

E[T] ≥ 1

Θ(δ)2k
· E

[
T∑
τ=0

∆
′2
η,k(τ)

]
>

Θ(p)k+1

Θ(δ)2k
,

which completes the proof of the theorem.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach,
volume 1. Cambridge University Press Cambridge, 2009.

[ABBG09] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computa-
tional complexity and information asymmetry in financial products. Princeton
Center for Computational Intractability, http://www. cs. princeton. edu/ rongge,
2009.

[BP02] Dimitris Bertsimas and Ioana Popescu. On the relation between option and
stock prices: a convex optimization approach. Operations Research, 50(2):358–
374, 2002.

[CGP08] Yiling Chen, Sharad Goel, and David M Pennock. Pricing combinatorial markets
for tournaments. In Proceedings of the 40th annual ACM symposium on Theory
of computing, pages 305–314. ACM, 2008.

[CT91] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley Series
in Telecommunications. John Wiley & Sons Inc., New York, 1991. A Wiley-
Interscience Publication.

[FKPW05] Lance Fortnow, Joe Kilian, David M Pennock, and Michael P Wellman. Betting
boolean-style: a framework for trading in securities based on logical formulas.
Decision Support Systems, 39(1):87–104, 2005.

[May11] Philip Z Maymin. Markets are efficient if and only if p= np. Algorithmic Finance,
1(1):1–11, 2011.

[Pen01] David M Pennock. Np markets, or how to get everyone else to solve your in-
tractable problems. In Workshop on Economic Agents, Models, and Mecha-
nisms at the 17th International Joint Conference on Artificial Intelligence (IJ-
CAI. Citeseer, 2001.

15

[Zuc11] David Zuckerman. Pseudorandom financial derivatives. In Proceedings of the
12th ACM conference on Electronic commerce, pages 315–320. ACM, 2011.

16

A Deferred proofs

Claim 4. For p < 1/2, δ < 1/4, if p ≤ α, β ≤ p+ δ, then D(Bα||Bβ) = O(δ2/p).

Proof. Kullback-Leibler Divergence is defined as

D(P‖Q) = Σp(x)log
p(x)

q(x)

Now the observation can be either 1 or 0, so

D(Bα‖Bβ) = α log
α

β
+ (1− α) log

1− α
1− β

= log
1− α
1− β

+ α log
α− αβ
β − αβ

.

Using the Taylor series expansion of log(1 + x) (assuming α, β < 3/4):

D = −α− β
1− β

− (α− β)2

2 · (1− β)2
− (α− β)3

3 · (1− β)3
...

+ α

(
α− β
β − βα

− (α− β)2

2 · (β − βα)2
+

(α− β)3

3 · (β − βα)3
...

)
D = −α− β

1− β
+
α− β
1− α

+
(α− β)2

β(1− α)
− (α− β)2

2β(1− α)2
− (α− β)2

2(1− β)2
+O

(
(α− β)3

β3

)
D =

(α− β)2

(1− β)(1− α)
+

2(α− β)2(1− α)− (α− β)2

2β(1− α)2
− (α− β)2

2(1− β)2
+O

(
(α− β)3

β3

)
D =

(α− β)2(1 + β − 2α)

2β(1− β)(1− α)2
− (α− β)2

2(1− β)2
+O

(
(α− β)3

β3

)
D(Bα||Bβ) =

(α− β)2(1− 2α− β + 4αβ − β2 − βα2)

2β(1− β)2(1− α)2
+O

(
(α− β)3

β3

)
D(Bα||Bβ) =

(α− β)2(1− 2α− β + 4αβ − β2 − βα2)

2β(1− 2α− β + 4αβ − β2 − βα2 + α2β2 − α2β + α2 − 2αβ2 − β)

+O

(
(α− β)3

β3

)
Therefore,

D(Bα||Bβ) = O

(
(α− β)2

β

)
(10)

where p ≤ α, β ≤ p+ δ and 0 < p, which is a small fraction. This is largest when α is p+ δ
and β is p

D(Bα||Bβ) = O

(
δ2

p

)

17

Claim 6. We can differentiate between the current value of the security being Sk(t = k) = 1

or Sk(t = k) = 0 with a high probability using O

(
p·log(Cδ)

δ2

)k
observations (C is a universal

constant).

Proof. (Sketch) Our algorithm is to sample n values of the security one level up from the
current security being looked at in the multi-layer security. For example, while deciding
whether P (S1, xk, . . . , x2, t = 1) = 0 or P (S1, xk, . . . , x2, t = 1) = 1, we sample n values of
P (S0, xk, . . . , x2, x1, t = 0), one level into the future. By the integrality condition, in the
worst case, we need the n queries to distinguish the Bernoulli Distribution Bp from Bp+δ.
Even if we needed to distinguish Bp+δ/3 from Bp+2δ/3, we could do it by Chernoff bounds,

using O

(
p·log(Cδ)

δ2

)
queries, we can achieve correct identification with error < 3δ/C < δ/3.

The answer can now be fed to the next layer to yield the claim.

Claim 7.

∆i = ∆i−1 ·O
(
δ

p

)
· P (Si).

Proof. Denote by ev1 all the queries collected so far that correspond to the history xk, . . . , xi,
and denote by ev all other queries. Let obs be the answer to the query P (S0, xk, . . . , x1, t = 0),
and Qi := P (Si, xk, . . . , xi+1, t = i) ∈ {0, 1} and Qi−1 := P (Si, xk, . . . , xi, t = i− 1) ∈ {0, 1}.
By definition,

∆i = P [Qi = 1|ev, ev1]− P [Qi = 1|ev, ev1, obs = 0].

Conditioning on Qi−1, we get

∆i = P [Qi = 1|ev, ev1, Qi−1 = 0]P [Qi−1 = 0|ev, ev1]

− P [Qi = 1|ev, ev1, obs = 0, Qi−1 = 0]P [Qi−1 = 0|ev, ev1, obs = 0]

+ P [Qi = 1|ev, ev1, Qi−1 = 1]P [Qi−1 = 1|ev, ev1]

− P [Qi = 1|ev, ev1, obs = 0, Qi−1 = 1]P [Qi−1 = 1|ev, ev1, obs = 0]

When conditioning on Qi−1, conditioning on obs = 0 is irrelevant. Also, we see that

P [Qi−1 = 0|ev, ev1, obs = 0]− P [Qi−1 = 0|ev, ev1]

= P [Qi−1 = 1|ev, ev1]− P [Qi−1 = 1|ev, ev1, obs = 0] = ∆i−1

Therefore the term is now

∆i = (P [Qi = 1|ev, ev1, Qi−1 = 1]− P [Qi = 1|, ev, ev1, Qi−1 = 0])∆i−1

18

by Bayes rule

=

(
P [Qi−1 = 1|ev, ev1, Qi = 1]P [Qi = 1|ev, ev1]

P [Qi−1 = 1|ev, ev1]
− P [Qi−1 = 0|ev, ev1, Qi = 1]P [Qi = 1|ev, ev1]

P [Qi−1 = 0|ev, ev1]

)
×∆i−1

=

(
P [Qi−1 = 1|ev, ev1, Qi = 1]

P [Qi−1 = 1|ev, ev1]
− P [Qi−1 = 0|ev, ev1, Qi = 1]

P [Qi−1 = 0|ev, ev1]

)
∆i−1P [Qi = 1|ev, ev1]

≤
(

P [Qi−1 = 1|ev1, Qi = 1]

P [Qi−1 = 1|Qi = 0, ev, ev1]
− P [Qi−1 = 0|ev1, Qi = 1]

P [Qi−1 = 0|Qi = 0, ev, ev1]

)
∆i−1P [Qi = 1|ev, ev1]

(11)

since the denominators are resized to exaggerate the difference, and conditioning on ev is
irrelevant if conditioning on Qi as well.

Consider the following equations which follow from Bayes rule, and the fact that condi-
tioned on Qi−1, ev1 is independent of Qi:

P [Qi−1 = 1|Qi = 1, ev1]

P [Qi−1 = 1|Qi = 0, ev1]
=
P [Qi−1 = 1|Qi = 1]P [ev1|Qi = 0]

P [Qi−1 = 1|Qi = 0]P [ev1|Qi = 1]

since P [ev1|Qi−1 = 1] cancels out from the numerator and the denominator. Therefore,

P [Qi−1 = 1|Qi = 1, ev1]

P [Qi−1 = 1|Qi = 0, ev1]
=

(p+ δ)P [ev1|Qi = 0]

pP [ev1|Qi = 1]

P [ev1|Qi = 0] = P [ev1|Qi−1 = 1]P [Qi−1 = 1|Qi = 0]+P [ev1|Qi−1 = 0]P [Qi−1 = 0|Qi = 0]

by breaking up the above expression through conditioning on Qi−1.
Denote α = P [ev1|Qi−1 = 1], β = P [ev1|Qi−1 = 0]. Then

P [ev1|Qi = 0] = αp+ β(1− p)

Similarly
P [ev1|Qi = 1] = α(p+ δ) + β(1− p− δ)

Therefore,
P [Qi−1 = 1|Qi = 1, ev1]

P [Qi−1 = 1|Qi = 0, ev1]
=

(p+ δ)(αp+ β(1− p))
p(α(p+ δ) + β(1− p− δ))

Which for δ < p < 1/3 implies

P [Qi−1 = 1|Qi = 1, ev1]

P [Qi−1 = 1|Qi = 0, ev1]
≤ p+ δ

p
·
(

1 +
δ

p

)
By exactly the same reasoning,

P [Qi−1 = 0|Qi = 1, ev1]

P [Qi−1 = 0|Qi = 0, ev1]
≥ 1− p− δ

1− p
·
(

1− δ

p

)
19

So, going back to where we left off after (11),

∆i ≤
[
p+ δ

p
·
(

1 +
δ

p

)
− 1− p− δ

1− p
·
(

1− δ

p

)]
∆i−1P [Qi = 1|ev, ev1]

Therefore, we have proved the claim, since the equation above implies that

∆i = O

(
δ

p

)
·∆i−1P [Qi = 1|ev, ev1],

which is our claim.

Claim 8. If pη,i(τ − 1), pη,i−1(τ − 1) ∈ (p/2, 2p) then ∆η,i(τ) = Θ(δ ·∆η,i−1(τ)).

Proof. As before, let ev1 be results of queries corresponding to the subtree of ηi−1 and
let ev be all other queries, accumulated by time τ − 1. As in the proof of Claim 7 let
Qi := P (Si, xk, . . . , xi, t = i) ∈ {0, 1} and Qi−1 := P (Si, xk, . . . , xi−1, t = i − 1) ∈ {0, 1},
where node ηi−1 corresponds to the sequence xk, . . . , xi−1.

We start off by defining a few terms. For y, z ∈ {0, 1},

ayz = Pr[Qi−1 = y|ev1, Qi = z]

by = Pr[Qi = y|ev, ev1]

Γyz = Pr[Qi = y|Qi−1 = z] =
Pr[Qi−1 = z|Qi = y]Pr[Qi = y]

Pr[Qi−1 = z]

Now, by the third line of equation (11),

∆η,i(τ) =

(
P [Qi−1 = 1|ev, ev1, Qi = 1]

P [Qi−1 = 1|ev, ev1]
− P [Qi−1 = 0|ev, ev1, Qi = 1]

P [Qi−1 = 0|ev, ev1]

)
∆η,i−1(τ)P [Qi = 1|ev, ev1]

In terms of our notation above, and because conditioning on ev is irrelevant while condition-
ing on Qi, this equals

∆η,i(τ) =

(
a11

a11b1 + a10b0

− a01

a01b1 + a00b0

)
∆η,i−1(τ)P [Qi = 1|ev, ev1]

=
a11a00b0 − a01a10b0

(a11b1 + a10b0)(a01b1 + a00b0)
∆η,i−1(τ)P [Qi = 1|ev, ev1]

Since a11b1 + a10b0 is approximately p (by definition), and b0 and a01b1 + a00b0 are approxi-
mately 1− p, we get

∆η,i(τ) ≈ 1

p
· (a11a00 − a01a10)∆η,i−1(τ)P [Qi = 1|ev, ev1]

=
1

p
· Pr[Qi−1 = 1|ev1]Pr[Qi−1 = 0|ev1]

Pr[Qi = 1|ev1]Pr[Qi = 0|ev1]
×

(Pr[Qi = 1|Qi−1 = 1]Pr[Qi = 0|Qi−1 = 0]− Pr[Qi = 1|Qi−1 = 0]Pr[Qi = 0|Qi−1 = 1])×
∆η,i−1(τ)P [Qi = 1|ev, ev1]

20

We can see that Pr[Qi−1=1|ev1]Pr[Qi−1=0|ev1]
Pr[Qi=1|ev1]Pr[Qi=0|ev1]

is equal to (up to a multiplicative constant) p(1−p)
p(1−p)

if Pr[Qi−1 = 1|ev1] ∈
(
p
2
, 2p
)
, so we have (again, using the definition of Γ above)

∆η,i(τ) ≈ 1

p
(Γ11Γ00 − Γ10Γ01)∆η,i−1(τ)P [Qi = 1|ev, ev1]

=
1

p
· Pr[Qi = 0]Pr[Qi = 1]

Pr[Qi−1 = 0]Pr[Qi−1 = 1]
×

(Pr[Qi−1 = 1|Qi = 1]Pr[Qi−1 = 0|Qi = 0]− Pr[Qi−1 = 0|Qi = 1]Pr[Qi−1 = 1|Qi = 0])×
∆η,i−1(τ)P [Qi = 1|ev, ev1]

Since Pr[Qi=0]Pr[Qi=1]
Pr[Qi−1=0]Pr[Qi−1=1]

does not depend on any evidence, it represents the original proba-

bilities, and thus exactly equals 1 (since P [Qi−1 = 1] = P [Qi = 1] = p initially), so we are
left with

∆η,i(τ) ≈ 1

p
(Pr[Qi−1 = 1|Qi = 1]Pr[Qi−1 = 0|Qi = 0]−Pr[Qi−1 = 0|Qi = 1]Pr[Qi−1 = 1|Qi = 0])×

∆η,i−1(τ)P [Qi = 1|ev, ev1]

=
1

p
[(p+ δ)(1− p)− (1− p− δ)p]∆k−1Pr[Qi = 1|ev, ev1]

=
1

p
δ∆η,i−1(τ)Pr[Qi = 1|ev, ev1]

For the node probability value being within our restricted
(
p
2
, 2p
)

environment, this means
that

∆η,i(τ) = Θ (δ) ∆η,i−1(τ)

completing the proof of the claim.

Proof of equation (7).

Proof. We will specifically show that

E

[
T∑
τ=0

∆2
η,i(τ)

]
≤ 8

p
· E

[
T ′∑
τ=0

∆2
η,i(τ)

]
.

Firstly, note that T equals T ′ whenever pη,i(τ) ∈
(
p
2
, 2p
)

for τ = 0, 1, . . . , T .
Next, by a general property of martingales,

E

[
T∑
t=0

∆2
η,i(τ)

]
= V ar(pη,i(T)) and E

[
T ′∑
t=0

∆2
η,i(τ)

]
= V ar(pη,i(T

′)).

Therefore, all we have to prove is:

V ar(pη,i(T)) ≤ 8

p
· V ar(pη,i(T ′)). (12)

21

We have

V ar(pη,i(T)) = E[(pη,i(T)− pη,i(0))2]

= E[(pη,i(T)− pη,i(0))2|T = T ′] · Pr[T = T ′] + E[(pη,i(T)− pη,i(0))2|T > T ′] · Pr[T > T ′]
(13)

and

V ar(pη,i(T
′)) = E[(pη,i(T

′)− pη,i(0))2]

= E[(pη,i(T)− pη,i(0))2|T = T ′] ·Pr[T = T ′] +E[(pη,i(T
′)− pη,i(0))2|T > T ′] ·Pr[T > T ′].

(14)

The first parts of (13) and (14) match. The contribution of (pη,i(T
′) − pη,i(0))2|T > T ′ to

(14) is at least (p/2)2 = p2/4, while the contribution of E[(pη,i(T)− pη,i(0))2|T > T ′] to (13)
is at most V ar(Bp+δ) < 2p. Therefore the ratio is bounded by 8/p, completing the proof.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

