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Abstract. We provide the first comprehensive proof-complexity analysis of different proof sys-
tems for propositional circumscription. In particular, we investigate two sequent-style calculi:
MLK defined by Olivetti [28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux
calculus NTAB suggested by Niemelä [26]. In our analysis we obtain exponential lower bounds
for the proof size in NTAB and CIRC and show a polynomial simulation of CIRC by MLK .
This yields a chain NTAB ≤p CIRC ≤p MLK of proof systems for circumscription of strictly
increasing strength with respect to lengths of proofs.

1 Introduction

Circumscription is one of the main formalisms for non-monotonic reasoning. It uses reasoning
with minimal models, the key idea being that minimal models have as few exceptions as pos-
sible. Therefore circumscription embodies common sense reasoning. Indeed, circumscription
is known to be equivalent to reasoning under the extended closed world assumption, one of
the main formalisms for reasoning with incomplete information. Apart from its foundational
relation to human reasoning, circumscription has wide-spread applications, e.g. in AI, descrip-
tion logics [7] and SAT solving [21]. Circumscription is used both in first-order as well as in
propositional logic, and we concentrate in this paper on the propositional case.

The semantics and complexity of circumscription have been the subject of intense research
(see e.g. the recent articles [7, 14, 29]). In particular, deciding circumscriptive inference is
harder than for propositional logic as it is complete for Πp

2, the second level of the polynomial
hierarchy [11,16]. Likewise, from the proof-theoretic side there are a number of formal systems
for circumscription ranging from sequent calculi [8, 28] to tableau methods [25,26,28].

The contribution of the present paper is a comprehensive analysis of these formal systems
from the perspective of proof complexity. The main objective in proof complexity is a precise
understanding of lengths of proofs. The two main tools for this are lower bound methods for
the size of proofs for specific proof systems as well as simulations between proof systems.
While lower bounds provide exact information on proof size, simulations compare the relative
strength of proof systems and determine whether proofs can be efficiently translated between
different formalisms. In this paper our results will employ both of these paradigms. While
the bulk of research in proof complexity has concentrated on propositional proofs the last
decade has seen ever increasing interest in proof complexity of non-classical logics (cf. [4] for
a survey). In particular, very impressive results have been obtained for modal and intuitionistic
logics [20,22].

Prior to this paper, very little was known about the proof complexity of propositional cir-
cumscription. Our analysis concentrates on three of the main formalisms for circumscription:
the tableau system NTAB introduced by Niemelä [26], the analytic sequent calculus CIRC
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by Bonatti and Olivetti [8], and the sequent calculus MLK by Olivetti [28]. Our main results
are exponential lower bounds for the proof size in the tableau system NTAB and the sequent
calculus CIRC (Theorems 6 and 19) as well as an efficient simulation of CIRC by MLK (The-
orem 13). Together with the simulation of NTAB by CIRC shown by Bonatti and Olivetti [8]
this gives a hierarchy of proof systems NTAB ≤p CIRC ≤p MLK . Moreover, this hierarchy
is strict as our results provide separations between the proof systems (Theorems 8 and 19).
While the systems NTAB and MLK only work for minimal entailment — the most important
special case of circumscription — we also extend the results on MLK to the calculus DMLK
from [28] for general circumscription (Theorem 16).

In related research, Egly and Tompits [15] investigated the proof-theoretic strength of
circumscription in a first-order version of Bonatti and Olivetti’s sequent calculus. They showed
that for some formulas, first-order CIRC has much shorter proofs than classical first-order
LK . Also in [1,5] the authors investigated the proof complexity of propositional default logic
and autoepistemic logic, two other main approaches to non-monotonic reasoning. Although
there are several translations between the different non-monotonic logics, we stress that none
of these previous results imply lower bounds or simulations for propositional circumscription.

This paper is organised as follows. In Sect. 2 we review background information and
notation about circumscription and proof complexity. In particular, we discuss the antisequent
calculus AC . Section 3 contains our first main result: the exponential lower bound for CIRC .
In Sect. 4 we prove the simulation of CIRC by MLK for minimal entailment; and this is
extended to full circumscription and the calculus DMLK in Sect. 5. Section 6 then contains
the comparison to Niemelä’s tableau calculus NTAB , obtaining a separation between this
tableau and CIRC . We conclude in Sect. 7 with a discussion and some open problems.

2 Preliminaries

Our propositional language contains the logical symbols ⊥,>,¬,→,∨,∧. The notation A[x/y]
indicates that in the formula A every occurrence of formula x is replaced by formula y. For a
set of formulae Σ, VAR(Σ) is the set of all atoms that occur in Σ. For a set P of atoms we
set ¬P = {¬p | p ∈ P}.

Circumscription is a non-monotonic logic introduced by McCarthy [24]. It looks at finding
the ‘minimal’ situations that can occur, given our assumptions (cf. McCarthy’s famous exam-
ple of the “missionaries and cannibals” problem [24]). For circumscription, the propositional
atoms are partitioned into three sets: P is the set of all atoms that are minimised, R is the
set of fixed atoms, and Z denotes all remaining atoms, which may vary from the minimisation
but are not themselves minimised. We usually only display P and R in the notation.

A model is a subset of the propositional atoms ΣProp. We define a pre-order ≤P ;R on
models I, J as follows: I ≤P ;R J ⇔ I ∩ P ⊆ J ∩ P and I ∩R = J ∩R. The relation ≤P ;R is
transitive and minimality can be defined for models. Let I |= Γ . We say that I is a (P ;R)-
minimal model of Γ (and denote it by I |=P ;R Γ ) if and only if for any model J ; if J |= Γ
then (J ≤P ;R I)⇒ (I ≤P ;R J).

If φ is a formula, then Γ �P ;R φ means that φ holds in all (P ;R)-minimal models of
Γ . This is the notion of semantic entailment in circumscription. A few special cases can be
noted. When P = ∅ then �P ;R coincides with �, the classical entailment. When P is the set
of all variables appearing in the formulae of the sequent then entailment is known as minimal
entailment, and we denote it with the symbol �M .
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Let us give an example. Consider a → b, a ∨ c �b,c;a b → a. There are only two possible
minimal models. If we set a to true then b must be true, but we minimise and so c is false. If
we take a as false then c must be true and we minimise so b is false. Hence the two models are
{c} and {a, b}. This example also demonstrates the difference between circumscription and
classical logic as the expression a→ b, a∨ c �b,c;a b→ a is not true, since model {b, c} falsifies
it.

When taking the same example and adding the atom b to the premise, we now get a
different set of minimal models; {b, c} and {a, b}. The succedent is now no longer true. This
demonstrates the non-monotonicity of circumscription.

Noteworthy of this example is that even though the right hand side is an implication,
bizarrely taking b as a premise does not entail a, namely b, a → b, a ∨ c 2b,c;a a. This is
because {b, c} and {a, b} are now the only minimal models, each with a different truth value
of a. So the deduction theorem does not hold in circumscription.

Proof Complexity. A proof system (Cook, Reckhow [12]) for a language L over alphabet Γ
is a polynomial-time computable partial function f : Γ ? ⇁ Γ ? with rng(f) = L. An f -proof
of string y is a string x such that f(x) = y.

From this we can start defining proof size. For f a proof system for language L and
string x ∈ L we define sf (x) = min(|w| : f(w) = x). Thus the partial function sf tells
us the minimum proof size of a theorem. We can overload the notation by setting sf (n) =
max(sf (x) : |x| ≤ n) where n ∈ N. For a function t : N → N, a proof system f is called
t-bounded if ∀n ∈ N, sf (n) ≤ t(n).

Proof systems are compared by simulations. We say that a proof system f simulates g
(g ≤ f) if there exists a polynomial p such that for every g-proof πg there is an f -proof πf
with f(πf ) = g(πg) and |πf | ≤ p(|πg|). If πf can even be constructed from πg in polynomial
time, then we say that f p-simulates g (g ≤p f). Two proof systems f and g are (p-)equivalent
(g ≡(p) f) if they mutually (p-)simulate each other.

Gentzen’s system LK is one of the historically first and best studied proof system [18].
It operates with sequents. Formally, a sequent is a pair (Γ ,∆) with Γ and ∆ finite sets of
formulae. A sequent is usually written in the form Γ ` ∆. In classical logic Γ ` ∆ is true
if every model for

∧
Γ is also a model of

∨
∆, where the disjunction of the empty set is

taken as ⊥ and the conjunction as >. The system can be used both for propositional and
first-order logic; the propositional rules are displayed in Fig. 1. Notice that the rules here do
not contain structural rules for contraction or exchange. These come for free as we chose to
operate with sets of formulae rather than sequences. Note the soundness of rule (• `), which
gives us monotonicity of classical propositional logic.

A useful ingredient for working towards a calculus for non-monotonic logics is the notion
of underivability. We use Γ 2 φ to denote that “there is a model M that satisfies all formulae
in Γ but for which ¬φ holds”. An antisequent is a pair of sets Γ , ∆ of formulae, denoted
Γ 0 ∆. Semantically, an antisequent Γ 0 Σ is true if there is some model M |= Γ so that for
all φ in Σ M |= ¬φ. This is equivalent to saying that we cannot derive Γ ` Σ.

Bonatti [6] devised an antisequent calculus AC ; its rules are given in Fig. 2. Correctness
and completeness of AC was proven by Bonatti.

Theorem 1. (Bonatti [6]) An antisequent is true if and only if it is derivable in the anti-
sequent calculus AC .
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(`)
A ` A

(⊥ `)
⊥ `

(` >)
` >

Γ ` Σ (• `)
∆,Γ ` Σ

Γ ` Σ (` •)
Γ ` Σ,∆

Γ ` Σ,A
(¬ `)

¬A,Γ ` Σ
A,Γ ` Σ

(` ¬)
Γ ` Σ,¬A

A,Γ ` Σ
(•∧ `)

B ∧A,Γ ` Σ
A,Γ ` Σ

(∧• `)
A ∧B,Γ ` Σ

Γ ` Σ,A Γ ` Σ,B
(` ∧)

Γ ` Σ,A ∧B

A,Γ ` Σ B,Γ ` Σ
(∨ `)

A ∨B,Γ ` Σ
Γ ` Σ,A

(` •∨)
Γ ` Σ,B ∨A

Γ ` Σ,A
(` ∨•)

Γ ` Σ,A ∨B

A,Γ ` Σ,B
(`→)

Γ ` Σ,A→ B

Γ ` Σ,A B,∆ ` Λ
(→`)

A→ B,Γ,∆ ` Σ,Λ

Γ,` Σ,∆ ∆,Γ ` Σ
(cut)

Γ ` Σ

Fig. 1. Rules of the sequent calculus LK [18]

The truth of an antisequent tells us of the existence of a model that satisfies the left hand
side but contradicts the right hand side. While this does not point immediately to the model
itself, it can be constructed from an AC -proof:

Proposition 2. Given an AC -proof of an antisequent Γ 0 ∆ we can construct in polynomial-
time a model M that satisfies Γ and falsifies ∆.

Proof. Given a derivation of an antisequent in AC we only have unary rules (rules that require
only one premise) and a single axiom (requires no premises) so any sequent results from unary
rules applied to an axiom (0). The axiom (0) gives us a trivial model that satisfies its RHS
but not LHS; we take the RHS atoms to be true and all other atoms to be false. Next we can
observe that in every application of the unary rules, the model that makes the premise true
also makes the conclusion true. We will only verify this for an example. If Γ 0 Σ,α, β is a
true antisequent, then there is some model M that satisfies Γ , but not any of Σ, α or β. So it
must not satisfy α ∨ β. Thus M witnesses the conclusion sequent of rule (0 ∨); Γ 0 Σ,α ∨ β
to be true. ut

We mention that Proposition 2 implies that AC is presumably not automatizable, i.e., it is
not possible to construct AC -proofs in polynomial-time (even though AC -proofs are always
of quadratic size [5]). In fact, using Proposition 2 it can be shown that automatizability of
AC is equivalent to a complexity assumption Q, studied in [17] and shown to be equivalent
to the p-optimality of the standard proof system for SAT in [3].

3 A lower bound for the sequent calculus CIRC

Bonatti and Olivetti [8] devised sequent calculi for several non-monotonic logics, among them
was circumscription in a sequent calculus referred to as CIRC . A new item known as a
constraint has been added to the sequents; Σ which is a set of atoms disjoint from R, so
the circumscriptive sequents are of form Σ;Γ `P ;R ∆ (which may be regarded as a 5-tuple).
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(0) where Γ and Σ are disjoint sets of propositional variables
Γ 0 Σ

Γ 0 Σ,α
(¬ 0)

Γ,¬α 0 Σ
Γ,α 0 Σ

(0 ¬)
Γ 0 Σ,¬α

Γ, α, β 0 Σ
(∧ 0)

Γ, α ∧ β 0 Σ
Γ 0 Σ,α

(0 •∧)
Γ 0 Σ,α ∧ β

Γ 0 Σ, β
(0 ∧•)

Γ 0 Σ,α ∧ β

Γ 0 Σ,α, β
(0 ∨)

Γ 0 Σ,α ∨ β
Γ, α 0 Σ

(•∨ 0)
Γ, α ∨ β 0 Σ

Γ, β 0 Σ
(∨• 0)

Γ, α ∨ β 0 Σ

Γ,α 0 Σ, β
(0→)

Γ 0 Σ,α→ β

Γ 0 Σ,α
(• →0)

Γ, α→ β 0 Σ
Γ, β 0 Σ

(→ • 0)
Γ, α→ β 0 Σ

Fig. 2. Inference rules of the antisequent calculus AC by Bonatti [6]

As defined by Bonatti and Olivetti [8], the sequent Σ;Γ `P ;R ∆ is true when: “In every
(P ∪Σ;R)-minimal model of Γ that satisfies Σ there is a formula φ ∈ ∆ that holds.”

When Σ is empty we omit it from the notation, and these are the circumscriptive sequents
we are primarily interested in. The rules of the calculus CIRC comprise the rules given in
Fig. 3 together with all rules from LK and AC . Bonatti and Olivetti proved the correctness
and completeness of CIRC :

Theorem 3. (Bonatti, Olivetti [8]) A sequent Σ;Γ `P ;R ∆ is true if and only if it is
derivable in CIRC .

Γ,¬P 0 q
(C1)

q,Σ;Γ `P ;∅ ∆

Σ,Γ ` ∆
(C2)

Σ;Γ `P ;R ∆

q,Σ;Γ `P ;R ∆ Σ;Γ,¬q `P ;R ∆
(C3)

Σ;Γ `P,q;R ∆

Σ;Γ, q `P ;R ∆ Σ;Γ,¬q `P ;R ∆
(C4)

Σ;Γ `P ;R,q ∆

In all rules q is atomic and does not occur in P or R, and ¬P = {¬p : p ∈ P}.

Fig. 3. Inference rules of the circumscription calculus CIRC of Bonatti & Olivetti [8]

To start a proof-theoretic investigation of CIRC we need the following notion:

Definition 4. Let π be a CIRC -proof of a circumscriptive sequent Γ `P ;R ∆; and let s be a
sequent occurring in π. We call s involved in π if either s is Γ `P ;R ∆ or is used as premise
for some rule whose conclusion is an involved sequent. We call s intermediate if s is involved
in π and occurs in π as a conclusion of any of rules (C1)–(C4).

Thus the intermediate sequents form the “essential CIRC -part” of the proof on which we
will focus our analysis. The whole proof can be much larger due to LK and AC -derivations.
The next lemma shows that intermediate sequences are always of a special form.
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Lemma 5. Let π be a proof of the minimal entailment formula Γ `VAR(Γ∪∆);∅ ∆. Then every
intermediate line in π (in the sense of Definition 4) is of the form P+;Γ,¬P− `P 0;∅ ∆, where
VAR(Γ ∪∆) = P 0 t P+ t P−.

Proof. Let π be a CIRC proof of length n of Γ `VAR(Γ∪∆);∅ ∆. We show the lemma by
induction on the distance of involved sequents from the bottom of the proof.

Induction Hypothesis on the distance k from the end of the proof : For all
r ≥ n− k if the rth line of π is intermediate then it is of the form P+;Γ,¬P− `P 0;∅ ∆, where
VAR(Γ ∪∆) = P 0 t P+ t P−.

Base Case: For the base case, k = 0 and we need to show that Γ `VAR(Γ∪∆);∅ ∆ is of the
specified form. This is true when choosing P+, P− as empty and P 0 as VAR(Γ ∪∆).

Inductive Step: By induction hypothesis all intermediate lines with higher or same index
than the (n−k)-th line are of the desired form and we need to show that if the (n− 1−k)-th
is intermediate it is of the desired form. If line n − 1 − k is intermediate then it must be a
circumscriptive sequent and it must be a premise of some rule that derives an involved line.
However, the only rules that allow circumscriptive sequents as premises in CIRC are (C3)
and (C4). By induction hypothesis, all intermediate lines have empty R. So the rule cannot
be (C4), but must use (C3). Using the induction hypothesis again, the conclusion is of form
P+;Γ,¬P− `P 0,p;∅ ∆ where VAR(Γ,∪∆) = P 0tP+tP−t{p} and so either the (n−1−k)-th
line is P+;Γ,¬P−,¬p `P 0;∅ ∆ or it is P+, p;Γ,¬P−,`P 0;∅ ∆ for some variable atom p. Both
sequents are of the desired form. ut

Our first result shows an exponential lower bound to the proof size of CIRC .

Theorem 6. CIRC needs exponential-size proofs, i.e., sCIRC (n) ∈ 2Ω(n/ logn).

Proof. The idea is to construct a class of formulae which are of size O(n log n), but whose
proof size grows exponentially. We use propositional variables Pn = {pi, qi : 1 ≤ i ≤ n} and
define antecedant Γn := {pi∨qi : 1 ≤ i ≤ n} and succedent ∆n :=

∧
1≤i≤n(pi∧¬qi)∨(qi∧¬pi).

We consider the class of sequents Γn `Pn;∅ ∆n.
Intuitively the sequents express

∧
1≤i≤n pi ∨ qi `M

∧
1≤i≤n pi ⊕ qi, which is not classically

true. But they are true circumscriptive sequents, because every minimal model of Γn will
include pi or qi but cannot include both as these models are not minimal. Notice that the size
of the sequents is bounded by O(n log n) because to represent of each of the n variables we
need O(log n) bits.

Let now π be a CIRC -proof of ∅;Γn `Pn;∅ ∆n. We now argue inductively.
Induction Hypothesis (on k for k ≤ n): Let P+;Γn,¬P− `P 0;∅ ∆n be an intermediate

sequent of π (we know it is this form by Lemma 5) with k = n−|P−tP+|. Then the sub-proof
of P+;Γn,¬P− `P 0;∅ ∆n in π contains at least 2k lines of the form B;Γn,¬A `C;∅ ∆n, where
A,B,C are sets of atoms, with P+ ⊆ B, P− ⊆ A, and with B, A disjoint in any line.

Base Case (when k = 0): A single line is needed to state the end result P+;Γn,¬P− `P 0;∅
∆n, and it suffices to take B = P+, A = P−.

Inductive Step: Assume the induction hypothesis holds for k − 1. Our aim is to show
that if 1 ≤ k ≤ n, then P+;Γn,¬P− `P 0;∅ ∆n can only be inferred in CIRC by using (C3) in
the form of

s, P+;Γn,¬P− `P 0\{s};∅ ∆n P+;Γn,¬P−,¬s `P 0\{s};∅ ∆n

P+;Γn,¬P− `P 0;∅ ∆n
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for some s in P 0. Lemma 5 tells us that P+ t P− t P 0 = Pn. As k < n there is some i,
1 ≤ i ≤ n, such that pi, qi /∈ P+ t P− and so pi, qi ∈ P 0.

Suppose that P+;Γn,¬P− `P 0;∅ ∆n is inferred via (C1). Then, for some p ∈ P+, the
sequent Γn,¬P−,¬P 0 0 p must be obtainable in the antisequent calculus. But as pi, qi ∈ P 0

and pi∨qi ∈ Γn the set Γn,¬P−,¬P 0 is inconsistent and has no models. Hence Γn,¬P−,¬P 0 �
p and Γn,¬P−,¬P 0 0 p is not derivable in AC .

Suppose instead that it is inferred via (C2). Then P+, Γn,¬P− � ∆n must be true.
However, as pi, qi /∈ P+ t P− the model which takes pi, qi as both true is consistent with the
antecedent but not the succedent; so (C2) cannot be used.

Rule (C4) cannot be used either as the resulting sequent always has an element in R.
Hence, (C3) is used to infer P+;Γn,¬P− `P 0;∅ ∆n.

The inductive case needs proofs of both s, P+;Γn,¬P− `P 0\{s};∅ ∆n and P+;Γn,¬P−,¬s `P 0\{s};∅
∆n to construct the full proof. By the induction hypothesis each takes at least 2n−k−1 many
lines of our desired form. Atom s is either in B or in A but not both. Therefore the lines are
all distinct and there are 2 · 2n−k−1 many lines, hence at least 2n−k lines for the inductive
step.

Finally, when k = n we get that the full proof π of ∅;Γn `Pn;∅ ∆n contains at least 2n

applications of (C3). ut

In fact the proof even shows an exponential lower bound to the number of lines, i.e., the
proof length, which is a stronger statement.

4 Separating the sequent calculi CIRC and MLK

We now focus our attention on minimal entailment. In particular we will discuss Olivetti’s
sequent calculus MLK from [28] and compare its proof complexity with CIRC . MLK operates
with sequents Γ `M ∆. Semantically, Γ `M ∆ is true if

∨
∆ holds in all (VAR(Γ ∪∆); ∅)-

minimal models of Γ .

To introduce derivability we use the property of a positive atom in a formula from [28],
defined inductively as follows. Atom p is positive in formula p. Atom p is positive in formula
φ if and only if it is negative in ¬φ. If atom p is positive in formula φ or χ, it is positive in
φ∧χ and φ∨χ. If atom p is negative formula in φ or positive in χ then it is positive in φ→ χ.

The MLK calculus comprises all rules detailed in Fig. 4 together with all rules from LK .
Olivetti showed soundness and completeness of MLK .

Theorem 7. (Olivetti [28]) A sequent Γ `M ∆ is true if and only if it is derivable in
MLK .

We first show that for minimal entailment, CIRC is not better than MLK .

Theorem 8. CIRC does not p-simulate MLK for minimal entailment.

Proof. We use the hard examples from Theorem 6 and show that they can be proved in MLK
in polynomial size. Using the same notation as in the proof of Theorem 6 we define Γ i as
Γn\{pi ∨ qi}. Consider the following MLK derivation.
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(`M )
Γ `M ¬p

Γ ` ∆ (``M )
Γ `M ∆

for p atomic and not positive in any formula in Γ

Γ,`M Σ,∆ ∆,Γ `M Λ
(M-cut)

Γ ` Σ,Λ
Γ `M Σ Γ `M ∆

(• `M )
Γ,Σ `M ∆

Γ `M Σ,A Γ `M Σ,B
(`M ∧)

Γ `M Σ,A ∧B
A,Γ `M Σ B,Γ `M Σ

(∨ `M )
A ∨B,Γ `M Σ

Γ `M Σ,A
(`M •∨)

Γ `M Σ,B ∨A
Γ `M Σ,A

(`M ∨•)
Γ `M Σ,A ∨B

A,Γ `M Σ
(`M ¬)

Γ `M Σ,¬A
A,Γ `M Σ,B

(`M→)
Γ `M Σ,A→ B

Fig. 4. Rules of the sequent calculus MLK for minimal entailment (Olivetti [28])

(`)
pi ` pi

(• `)
Γ i, pi ` pi

(``M )
Γ i, pi `M pi

(`M )
Γ i, pi `M ¬qi

(`M ∧)
Γ i, pi `M pi ∧ ¬qi

(`M ∨•)
Γ i, pi `M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

(`)
qi ` qi

(• `)
Γ i, qi ` qi

(``M )
Γ i, qi `M qi

(`M )
Γ i, qi `M ¬pi

(`M ∧)
Γ i, qi `M qi ∧ ¬pi

(`M •∨)
Γ i, qi `M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

(∨ `M )
Γn `M (pi ∧ ¬qi) ∨ (qi ∧ ¬pi)

This proof tree shows that Γn `M (pi∧¬qi)∨ (qi∧¬pi) can be proved in linear length. By
repeated use (at most a linear number of times) of rule (`M ∧) we build the big conjunction
and obtain Γn `M ∆n in polynomial size. ut

The next lemma provides a translation of intermediate CIRC -sequent to MLK -sequents,
which is easy to verify model-theoretically.

Lemma 9. Let VAR(Γ,∆) = P 0 tP+ tP−. Then P+;Γ,¬P− `P 0;∅ ∆ is true if and only if
Γ,¬P− `M ∆,¬P+ is true.

Proof. Assume that P+;Γ,¬P− `P 0;∅ ∆ holds and let N be a (P+ t P 0; ∅)-minimal model
of Γ,¬P−. N is also (VAR(Γ ∪∆); ∅)-minimal for Γ,¬P− as it cannot satisfy any p ∈ P−.
Either N satisfies P+, in which case it must satisfy ∆, or it must satisfy the disjunction of
¬P+ hence Γ,¬P− `M ∆,¬P+.

Conversely, if Γ,¬P− `M ∆,¬P+, then let N be a (P+tP 0; ∅)-minimal model of Γ,¬P−.
N must not satisfy any p ∈ P−, hence it is (VAR(Γ∪∆); ∅)-minimal, which means if it satisfies
P+ it must satisfy ∆. Hence P+;Γ,¬P− `P 0 ∆. ut

Given a minimal entailment sequent Λ `VAR(Λ,∆);∅ ∆ and its proof (ti)0≤i≤n in CIRC we
define a map τ that acts on intermediate sequents of the form Σ;Γ `P ;∅ ∆ and maps them
to the MLK -sequent Γ `M ∆,¬Σ. This map is well defined as Lemma 5 guarantees that all
intermediate sequents are exactly of the form that allow the translation in Lemma 9.

To compare MLK with CIRC we need a few facts on LK (cf. the appendix).
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Lemma 10. 1. For sets of formulae Γ,∆ and disjoints sets of atoms Σ+, Σ− with VAR(Γ ∪
∆) = Σ+ tΣ− we have sLK(Σ+,¬Σ−, Γ ` ∆) ∈ O(|Σ+,¬Σ−, Γ ` ∆|2).

2. For formulae φ, χ we have sLK(χ ` φ[χ/⊥]) ∈ O(|χ|+ |φ|).

Lemma 11. Let Σ, Γ ∆ be sets of formulae. From a sequent Σ,
∧
Γ `M ∆ of size n we can

derive Σ,Γ `M ∆ in an O(n3) size MLK proof.

Proof. Informally, the idea is that writing a conjunction or a list of formulae is semantically
the same thing, but must be treated as different objects in a proof. The lemma demonstrates
the ability of MLK to prove one direction of the equivalence in polynomial size. The strategy
used is to inductively prove Σ,

∧
Γ, Γ ′ `M ∆ for Γ ′ ⊆ Γ . We use proof by induction on the

number of elements r of Γ ′.

Induction hypothesis (on r): We can derive Σ,
∧
Γ, Γ ′ `M ∆ in a size O(rn2) proof

from Σ,
∧
Γ `M ∆.

Base case (r = 0): Γ ′ is empty and so the sequent we need to prove is exactly the one
we have started with.

Inductive step: Below is the extension we get the proof for the iterative step on the num-
ber of elements of Γ ′, we use an additional assumption that we can prove Σ+,

∧
Γ, Γ ′\{φ} ` φ

in O(n2) size for φ ∈ Γ ′. This works by using axiom φ ` φ and building the big conjunction
using (•∧ `) and (∧• `) rules. Then weakening with (• `) to get the sequent. This derived
sequent takes proof size O(n2).

Σ,
∧
Γ, Γ ′\{φ} `M ∆

Σ,
∧
Γ, Γ ′\{φ} ` φ

(``M )
Σ,

∧
Γ, Γ ′\{φ} `M φ

(• `M )
Σ,

∧
Γ, Γ ′ `M ∆

Using our induction hypothesis we have total size as O((r − 1)n2) + O(n2) which is size
O(rn2) as required.

Now after the induction, we have the r = |Γ | case, Σ,
∧
Γ, Γ `M ∆ and now we can cut

on
∧
Γ . We prove Σ,Γ `

∧
Γ and in quadratic size using (`),(• `) and (` ∧).

Σ,Γ `
∧
Γ

(``M )
Σ,Γ `M

∧
Γ Σ,

∧
Γ, Γ `M ∆

(M-cut)
Σ,Γ `M ∆

This retains the O(n3) bound. ut

Remark 12. As can be seen the M-cut rule is very powerful and allows us to manipulate
the minimal entailment sequents, by using classical sequents. In fact, even when omitting all
rules (`M ∧), (∨ `M ), (`M •∨), (`M ∨•), (`M ∨•), (`M ¬), (`M→) from MLK we still obtain
a calculus that is complete for minimal entailment and p-simulates the original MLK . An
example illustrating this for (`M ¬) is given below.

A ` A (` ¬)` A,¬A
(repeated use of • `)

Γ ` A,¬A
(``M )

Γ `M A,¬A Γ,A `M ∆
(M-cut)

Γ `M ∆,¬A

9



The next theorem is the main result in this section. Together with Theorem 8 it shows
that MLK is strictly stronger than CIRC for minimal entailment.

Theorem 13. MLK p-simulates CIRC for minimal entailment.

Proof. Let π be a CIRC proof of minimal entailment sequent Λ `VAR(Λ,∆) ∆. We will show
that there exists constants a and b (independent of π and the sequent) such that there is a
proof π? of Λ `M ∆ in MLK with |π?| ≤ a|π|4 + b.

The induction argument forms from taking each line of the proof in CIRC and translating
it using τ defined after Lemma 9 and showing it can be derived in quartic size in MLK .

Induction hypothesis (on the number r of applications of (C3) and (C4)): Let Λ `VAR(Λ,∆)

∆ be a minimal entailment sequent with CIRC proof π of size n. Let Σ;Γ `P ;∅ ∆ be an in-
termediate sequent of π (as in Definition 4), which is preceded by r applications of rules (C3)
and (C4) in π, and the sub-proof up to that line is of size k. Then τ(Σ;Γ `P ;∅ ∆) can be
derived in an (ak3 + b)-size MLK proof.

Base Case (r = 0): For the base cases we only have to consider conclusions of rules (C1)
and (C2).

C1: The problem with rule (C1) is that it uses the antisequent calculus, which is not
incorporated in MLK . When using (C1) in CIRC proof π we would start with premise Γ,¬P 0
q and end with conclusion q,Σ;Γ `P ;∅ ∆, so we have to find an MLK proof starting with
the axioms of the MLK calculus that is quartic in size and reaches conclusion τ(q,Σ;Γ `P ;∅
∆) = Γ `M ∆,¬q,¬Σ.

Suppose that the intermediate sequent q,Σ;Γ `P ;∅ ∆ is inferred via (C1) in the CIRC
proof π. Then Γ,¬P 0 q holds; so there is some model N in which Γ,¬P and ¬q hold.
Moreover, since we have the AC -proof we can efficiently construct this N by Proposition 2,
which is needed to get a p-simulation.

Consider the sets of atoms Σ+ = VAR(Γ )∩N and Σ− = VAR(Γ )\(N∪{q}∪P ). We claim
that Σ+ ⊆ Σ ⊆ Σ+ t Σ−. The first inclusion holds because q,Σ;Γ `P ;∅ ∆ is intermediate.
Atoms in Σ+ each must fall in one of the three sets of atoms stated in Lemma 5; each of these
atoms is positive in N and hence of the three disjoint sets it can be in it must be in the one
that is made up of q,Σ, as the others contain only negative atoms. Since q is negative in N ,
it must be in Σ. For the second inclusion, we use the fact that all the atoms in our sequent
occur in Σ+, Σ−, P or q. Since atoms in Σ do not occur in P or q they occur in Σ+ tΣ−.

Therefore we can find Σ? ⊆ Σ− such that Σ = Σ+ tΣ?.

For set of atoms A = {a1, . . . , al} let us define Γ̂ (A) =
∧
Γ [a1/⊥, . . . , al/⊥]. This notation

allows us to replace the variables with their assigned value, and treat the antecedent as a single
formula. Let m = |Λ `VAR(Λ,∆) ∆|.

Let U tQ = Σ−∪P . Then Σ+ `M Γ̂ (U) is true. This is because all atoms in Q and U are
minimised to not true, and the remaining positive atoms of N are all true, hence the minimal
model is N and so Γ is satisfied. We incorporate these sequents in a proof by induction where
we replace ⊥ with atoms in Γ̂ one by one.

Induction hypothesis (on the number |Q| of reintroduced variables): We claim that
Σ+ `M Γ̂ (U) has an MLK -proof of size O(m2) where U tQ = Σ− ∪ P .

Base case (|Q| = 0): We need to derive Σ+ `M Γ̂ (Σ− ∪ P ). It follows from Lemma 10
that ¬q,Σ+ ` Γ̂ (Σ− ∪ P ) in a O(m2)-size proof. We augment this with the derivation:

10



¬q,Σ+ ` Γ̂ (Σ− ∪ P )
(``M )

¬q,Σ+ `M Γ̂ (Σ− ∪ P )
(`M )

Σ+ `M ¬q
(M-cut)

Σ+ `M Γ̂ (Σ− ∪ P )

Inductive step: Using Lemma 10 we derive Σ+, Γ̂ (U∪{p}),¬p ` Γ̂ (U) in an MLK -proof
of linear size. We augment this by

Σ+ `M Γ̂ (U ∪ {p})

Σ+, Γ̂ (U ∪ {p}),¬p ` Γ̂ (U)
(``M )

Σ+, Γ̂ (U ∪ {p}),¬p `M Γ̂ (U)
(`M )

Σ+, Γ̂ (U ∪ {p}) `M ¬p
(M-cut)

Σ+, Γ̂ (U ∪ {p}) `M Γ̂ (U)
(M-cut)

Σ+ `M Γ̂ (U)

Since we only add a linear size extension on each inductive step we retain a quadratic
bound.

Now we have the inductive and base case, and all can be proved in quadratic size because
we need to supply a linear number of iterations of a linear size proof each. Therefore, for
Q = Σ− ∪ P we obtain an MLK -proof of Σ+ `M

∧
Γ of size O(m2). We proceed extending

the proof.

Σ+ `M
∧
Γ

(`M )
Σ+ `M ¬q

(• `M )
Σ+,

∧
Γ `M ¬q

Using Lemma 11 we can add a cubic size proof to get Σ+, Γ `M ¬q. Now we wish to
weaken the right hand side. To do this we start with the axiom ¬q ` ¬q. Then use the
weakening rules of LK to get Σ+, Γ,¬q ` ¬q,¬Σ?, ∆. We then continue with

Σ+, Γ `M ¬q
Σ+, Γ,¬q ` ¬q,¬Σ?, ∆

(``M )
Σ+, Γ,¬q `M ¬q,¬Σ?, ∆

(M-cut)
Σ+, Γ `M ¬q,¬Σ?, ∆

Repeated use of rule (`M ¬) on sequents derives Γ `M ∆,¬q,¬Σ, which is equivalent to the
conclusion in (C1) under translation τ .

C2: We start with the classical sequent Σ,Γ ` ∆ and then continue with

Σ,Γ ` ∆
(``M )

Σ,Γ `M ∆
repeated use of (`M ¬)

Γ `M ∆,¬Σ
to obtain Γ `M ∆,¬Σ = τ(Σ;Γ `P ;∅ ∆).

Inductive step: In our overall induction we still need to consider the cases of applications
of rules (C3) and (C4).

C3: For (C3) our premises translated under τ must be Λ,¬P− `M ∆,¬P+,¬p and
Λ,¬P−,¬p `M ∆,¬P+, yielding

Λ,¬P− `M ∆,¬P+,¬p Λ,¬P−,¬p `M ∆,¬P+

(M-cut)
Λ,¬P− `M ∆,¬P+

C4: Since we have no fixed elements (C4) can be ignored.
Finally, using the induction on the entire proof gives us a cubic size proof of the sequent

τ(Λ `VAR(Λ,∆);∅ ∆), and this is Λ `M ∆ as required. Since our proof is constructive we even
obtain a p-simulation. ut
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5 Extending the simulation to full circumscription

While MLK only works for minimal entailment Olivetti [28] also augmented this calculus to
obtain a sequent calculus for full circumscription. The rules of this calculus DMLK are shown
in Figure 5. To distinguish between the different sequent calculi we use the notation Γ BP ;R∆
for derivability in DMLK .

(P -int)
Γ BP ;R ¬p

Γ,N(U)BP ;R ∆
(Z-int)

Γ,N(z), U → z BP ;R ∆

Γ ` ∆ (` B)
Γ BP ;R ∆

for p ∈ P and not positive in any formula in Γ
for z ∈ Z and z /∈ Γ,∆,U and formula U occurring negatively in N(U)

Γ,BP ;RΣ,∆ ∆,Γ BP ;R Λ
(B-cut)

Γ ` Σ,Λ
Γ BP ;R Σ Γ BP ;R ∆

(•B)
Γ,Σ BP ;R ∆

Γ BP ;R Σ,A Γ BP ;R Σ,B
(B∧)

Γ BP ;R Σ,A ∧B
A,Γ BP ;R Σ B,Γ BP ;R Σ

(∨B)
A ∨B,Γ BP ;Z Σ

Γ BP ;R Σ,A
(B • ∨)

Γ BP ;R Σ,B ∨A
Γ BP ;R Σ,A

(B ∨ •)
Γ BP ;R Σ,A ∨B

A,Γ BP ;R Σ
(B¬)

Γ BP ;R Σ,¬A
A,Γ BP ;R Σ,B

(B→)
Γ BP ;R Σ,A→ B

Fig. 5. Rules of the sequent calculus DMLK for circumscription (Olivetti [28])

Theorem 14. (Olivetti [28]) DMLK is sound and complete for circumscription.

If we want to prove a p-simulation of DMLK by CIRC it is necessary to make use of
the (Z-int) rule. This seems problematic as the (Z-int) rule is syntactically quite restrictive
and specialised for Olivetti’s proof of Theorem 14. We therefore alternatively suggest to
incorporate the antisequent calculus, adding rules of AC and the following new rule

Γ,R+,¬R−,¬P−,¬P 0 0 p
(0 B)

Γ,R+,¬R−,¬P− BP ;R ¬P+

for p ∈ P+, P− t P 0 t P+ = P , and R+ t R− = R. This still yields a sequent calculus
DMLK + (0 B) which is sound and complete for circumscription.

Similarly to Lemmas 5 and 9, the next lemma provides a translation of circumscriptive
sequents to B-sequents.

Lemma 15. Let Γ `P ;R ∆ be a circumscriptive sequent with a CIRC -proof π.

1. Every intermediate sequent of π is of form P+;Γ,¬P−, R+,¬R− `P 0;R0 ∆, where P is
partitioned into sets P+, P−, P 0; R is partitioned analogously.

2. Let σ be the function that takes intermediate sequents of π of the form P+;Γ,¬P−, R+,¬R− `P 0;R0

∆ to sequents Γ,¬P−, R+,¬R−BP ;R∆,¬P+. Let A be an intermediate sequent of π, then
σ(A) is a true sequent.
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Proof. For item 1 we use proof by induction similar to Lemma 5.
Induction Hypothesis (on the distance k from the end of the proof): for all r ≥ n− k,

if the rth line is intermediate then it is of the form P+;Γ,¬P−, R+,¬R− `P 0;R0 ∆, where P
is partitioned into sets P+, P−, P 0, and R is partitioned similarly.

Base Case (k = 0): We need to show Γ `P ;R ∆ is of the required form. If we take
P+, P−, R+, R− as empty, P 0 = P and R0 = R then this holds.

Inductive Step: The induction hypothesis tells us that all intermediate lines with higher
index than the (n − k)th line are of the desired form and we only need to show that if the
(n−1−k)th is intermediate it is of the desired form. If line n−1−k is intermediate then it must
be a circumscription sequent and it must be a premise of some rule that concludes with an
involved line. However, the only rules that allow circumscriptive sequents as premises in CIRC
are (C3) and (C4), which means in this instance the conclusion is an intermediate sequent and
by the induction hypothesis we can write that conclusion as P+;Γ,¬P−, R+,¬R− `P 0;R0 ∆,
with corresponding partitions.

If the rule used is (C3) then the (n−1−k)th line is either of the form P+, p;Γ,¬P−, R+,¬R− `P 0\{p};R0

∆ or P+;Γ,¬P−,¬p,R+,¬R− BP 0\{p};R0 ∆. If the rule used is (C4) then the (n − 1 − k)th
line is either P+;Γ,¬P−, R+, r,¬R− `P 0;R0\{r} ∆ or P+;Γ,¬P−, R+,¬R−,¬r `P 0;R0\{r} ∆.
In every case we prove the inductive step.

The proof of item 2 is exactly the same as the proof of Lemma 9. ut

We can now state the simulation.

Theorem 16. DMLK + (0 B) p-simulates CIRC .

Proof. Let π be a CIRC proof of sequent Λ `P ;R ∆. We will show that a proof π? of polyno-
mially similar size can be constructed in DMLK + (0 B).

The induction argument forms from taking each intermediate line of the proof in CIRC
and translating it using σ defined in Lemma 15 and showing it can be inferred in polynomial
size (for fixed polynomial w) in the calculus DMLK + (0 B).

Induction Hypothesis on the number r of applications of (C3) and (C4): Let Γ `P ;R

∆ be a circumscriptive sequent with CIRC -proof π of size n. Let Σ;Ψ `P 0;R0 ∆ be an
intermediate sequent of π (as in Definition 4) of π, which is preceded by r applications of
rules (C3) and (C4) in π, and the sub-proof up to that line is of size k. Then σ(Σ;Ψ `P ;∅ ∆)
can be derived in an w(r)-size DMLK + (0 B)-proof π?.

Base Case r = 0: For the base cases we are only concerned about the conclusions of the
rules (C1) and (C2).

C1: In π we would start with a sequence in AC which can be copied exactly into π?. Using
Lemma 15, the conclusion of (C1) in π is P+;Γ,¬P−, R+,¬R− `P 0;∅ ∆ (for P = P−tP 0tP+,
R = R− tR+), and hence the premise must be Γ,¬P−,¬P 0, R+,¬R− 0 p for p ∈ P+. If we
apply σ to the conclusion we can repeat the derivation using rule (0 B):

Γ,¬P−,¬P 0, R+,¬R− 0 p
Γ,¬P−, R+,¬R− BP 0;∅ ¬P+

For each formula δ ∈ ∆ we can add it to the B− sequent by utilising the (B-cut) rule.
C2: In π we would start with a proof in LK which can be copied for π?. This proof will

end with Σ,Ψ ` ∆. In π it immediately uses (C2) to derive Σ;Ψ `P ;R ∆, but in π? we
repeatedly use (` ¬) until we have Ψ ` ∆,¬Σ; and then we use (` B) to get Ψ BP ;R ∆,¬Σ
as required.
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C3: For (C3) our premises translated under σ must be Γ,¬P−, R+,¬R−BP ;R∆,¬P+,¬p
and Γ,¬P−,¬p,R+,¬R− BP ;R ∆,¬P+. Then we get

Γ,¬P−, R+,¬R− BP ;R ∆,¬P+,¬p Γ,¬P−,¬p,R+,¬R− BP ;R ∆,¬P+

(B-cut)
Γn,¬P−, R+,¬R− BP ;R ∆,¬P+

C4: For (C4) our premises translated under σ must be Γ,¬P−, R+,¬R−, r BP ;R ∆,¬P+

and Γ,¬P−, R+,¬R−,¬r BP ;R ∆,¬P+. We derive

Γ,¬P−, R+,¬R−, r BP ;R ∆,¬P+

Γ,¬P−, R+,¬R− BP ;R ∆,¬P+,¬r Γ,¬P−, R+,¬R−,¬r BP ;R ∆,¬P+

Γn,¬P−, R+,¬R− BP ;R ∆,¬P+

Since this proof is constructive, we obtain a p-simulation. ut

6 Comparison to Niemelä’s tableau calculus

We now discuss the relations of these sequent calculi to a tableau calculus for minimal en-
tailment. This tableau works for clausal theories and was introduced by Niemelä [26]. In this
paper we will refer to this tableau calculus as NTAB .

For clausal theory Γ and formula φ, a Niemelä-tableau is defined as follows. We start the
construction of the tableau T with a single branch (Ci)0≤i≤k containing all the clauses of
Γ ∪∆, where ∆ is ¬φ expressed in CNF (conjunctive normal form). There are two rules for
extending a branch, where the premises must occur earlier in the branch. Figure 6 gives these
two rules where those clauses above the line indicate the premises needed to use the rule, and
the clauses below indicate the extensions.

{a1, a2, . . . , am,¬b1,¬b2, . . . ,¬bn}, {b1}, . . . , {bn}, {¬a1}, . . . , {¬aj−1}, {¬aj+1}, . . . , {¬am}
(N1)

{aj}

{a1, a2, . . . , am,¬b1,¬b2, . . . ,¬bn}, {b1}, . . . , {bn}
(N2)

{aj} | {¬aj}

Fig. 6. Rules of Niemelä’s tableau NTAB [26]. The notation {aj} | {¬aj} indicates that the branch splits.

Niemelä’s tableau NTAB uses the following conditions to close branches.

1. A branchB is (classically) closed when for some atoms b1, . . . , bn the clauses {¬b1, . . . ,¬bn},
{b1}, . . . , {bn} occur in the same branch.

2. Let NΓ (B) = {¬c | c is an atom, {c} does not occur in B, and ∃C ∈ Γ s.t. c ∈ C }. A
branch B is ungrounded when B contains a unit clause {a}, for which NΓ (B) ∪ Γ 2 a.

3. A branch is MM-closed if it is either closed or ungrounded.

The correctness and completeness of NTAB was shown by Niemelä:

Theorem 17. (Niemelä [26]) For clausal Γ and arbitrary φ there is an NTAB proof for
Γ, φ with all its branches MM-closed if and only if Γ �M φ.
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In the same work [8], where Bonatti and Olivetti introduce CIRC , they also compare it
to NTAB , showing that tableaux in NTAB can be efficiently translated into CIRC -proofs.

Theorem 18. (Bonatti, Olivetti [8]) CIRC p-simulates NTAB.

We will now show that the converse simulation does not hold, i.e.,we will prove a sepa-
ration between NTAB and CIRC . This separation uses the well-known pigeonhole principle
PHPn+1

n . This an elementary, but famous principle for which a wealth of lower bounds is
known in proof complexity (cf. [2,19]). PHPn+1

n uses variables xi,j with i ∈ [n+1] and j ∈ [n],
indicating that pigeon i goes into hole j. PHPn+1

n consists of the clauses
∨
j∈[n] xi,j for all

pigeons i ∈ [n + 1] and ¬xi1,j ∨ ¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [n + 1] and
holes j ∈ [n]. We use these formulas to obtain an exponential separation between NTAB and
CIRC .

Theorem 19. NTAB does not simulate CIRC for minimal entailment.

Proof. We first show that sNTAB (PHPn+1
n ` ⊥) ≥ exp(cnk). The crucial observation is that

any tableau in NTAB for the pigeonhole principle, is in fact a refutation using the DPLL
algorithm [13]. This can be seen as follows. The formula ¬⊥ in conjunctive normal form is
just the empty set. So each tableau has as starting nodes just the clauses of PHPn+1

n . In any
MM-closed tableau for this sequent, every branch must be closed. This holds as PHPn+1

n is
inconsistent; so the antisequent NΓ (B), Γ 0 a is untrue and the ungrounded condition never
holds for any branch.

The only clauses that can be derived by (N1) and (N2) are unit clauses. The unit clauses
being derived by rule (N2) can be interpreted as the branching labels in the DPLL algorithm.
Using (N1) is a restricted form of unit propagation; this step can be done at any point in
the DPLL algorithm, and normally it is done automatically between each branching step.
Using (N2) is equivalent to branching on a variable. When a branch is (classically) closed this
means that the empty clause can be inferred by unit propagation in a constant number of
steps. Therefore each proof of PHPn+1

n ` ⊥ in NTAB can be efficiently turned into a DPLL
execution.

It is well known that runs of the DPLL algorithm can be efficiently translated into reso-
lution refutations. Therefore the exponential lower bound for PHPn+1

n of Haken [19] applies
and each NTAB -proof of PHPn+1

n ` ⊥ must be of exponential size. On the other hand,
Buss [10] showed that the pigeonhole formulas admit polynomial-size Frege proofs; and Frege
systems are known to be p-equivalent to LK (cf. [23]). As LK is part of CIRC we obtain
polynomial-size CIRC -proofs of PHPn+1

n `M ⊥. ut

7 Conclusion

Combining results from this paper together with earlier results from [8] we obtain the p-
simulations NTAB ≤p CIRC ≤p MLK of proof systems for propositional circumscription.
Moreover, all these systems are exponentially separated. While this tells us that MLK is the
best proof systems with respect to size of proofs, this might be different when it comes to
proof search. In fact, NTAB and CIRC are both analytic which enables efficient proof search
strategies (cf. [8]), whereas for MLK the restricted cut rule is very powerful, making the system
highly non-analytic. This is in line with the experience from classical proof complexity and
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SAT solving where strong proof systems are known to be not automatizable under suitable
assumptions (cf. [9]); and modern SAT solvers all build on rather weak proof systems [27].

In terms of proof complexity, the main question left open by this paper is to show lower
bounds for MLK . Clearly, as circumscription is complete for the second level Πp

2 of the polyno-
mial hierarchy [11,16], there exist at least super-polynomial lower bounds for MLK assuming
NP 6= Πp

2. However, it might be very hard to show such bounds unconditionally. We note
that for default logic and autoepistemic logic it is even known that showing lower bounds for
the sequent calculi of these logics from [8] is as hard as showing lower bounds for classical
LK [1, 5], which is the main open problem in propositional proof complexity. We leave open
whether a similar connection as in [1, 5] can also be shown between LK and MLK .
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Appendix

This appendix contains proofs of some facts for LK , which have been omitted in the main
part of the paper.

Lemma 10. 1. For sets of formulae Γ,∆ and disjoints sets of atoms Σ+, Σ− with VAR(Γ ∪
∆) = Σ+ tΣ− we have sLK(Σ+,¬Σ−, Γ ` ∆) ∈ O(|Σ+,¬Σ−, Γ ` ∆|2).

2. For formulae φ, χ we have sLK(χ ` φ[χ/⊥]) ∈ O(|χ|+ |φ|).

Proof of Lemma 10 part 1

Proof. First let us consider individual formulas, here φ will be a well formed formula in Γ ∪∆.
Because we have only one model either Σ � φ or Σ � (¬φ).

Induction hypothesis (on the number of connectives of φ): The proof length (now
denoted as S(φ)) of either Σ+,¬Σ− ` φ or Σ+,¬Σ− ` ¬φ is bounded above by fixed
polynomial p(w) ∈ O(w2) with w = |Σ|+ |φ|.

Firstly let Σ = Σ+ ∪ ¬Σ−.

Base Case (|φ| = 1): If φ = > then Σ+ � φ. We use the proof

(` >)` > repeated (linearly bounded) use of (• `)
Σ ` >

Since we repeatedly use the weakening rule we can place a quadratic bound on the proof
size.

If φ = ⊥ it can be proved false.

(⊥ `)
(⊥ ` ∅)

(` ¬)
(` ¬⊥)

repeated (linearly bounded) use of (• `)
(Σ ` ¬⊥)

Since we use repeated use of the weakening rule we can place a quadratic bound on the
proof size.

If φ is atomic and true then φ ∈ Σ+, φ ` φ is obtained via axiom (`), the remaining LHS
is obtained via (• `).

Since we use repeated use of the weakening rule we can place a quadratic bound on the
proof size.

If φ is atomic and false then φ ∈ Σ−,

(`)
φ ` φ

(` ¬)
∅ ` φ,¬φ

(¬ `)¬φ ` ¬φ

and then by weakening with (• `) the right hand side.

Since we use repeated use of the weakening rule we can place a quadratic bound on the
proof size.

Hence our inductive hypothesis is true for |φ| = 1.

Inductive Step:
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– If φ = ¬χ then if φ is true in the model then χ is false so it is already done by the proof
in quadratic size of the negation of χ by the induction hypothesis.

– If φ = ¬χ and if φ is false in the model then χ is true so

Σ ` χ
(¬ `)

Σ,¬χ ` ∅
(` ¬)

Σ ` ¬φ

And we can simply add this to the end of the proof and retain the quadratic size from the
induction hypothesis.

– If φ = χ ∨ ψ and if φ is true in the model then either Σ ` χ or Σ ` ψ. In the case that
Σ ` χ we can use our inductive hypothesis. Then proceed as follows;

Σ ` χ
(` ∨•)

Σ ` φ

In the case that Σ ` ψ we can use our inductive hypothesis. Then proceed as follows;

Σ ` ψ
(` •∨)

Σ ` φ

The proof length is bounded above by S(χ) + S(ψ) + O(w), which allows us to retain a
quadratic bound.

– If φ = χ∨ψ and if φ is false in the model, then Σ ` (¬χ) and Σ ` (¬ψ). We use the proof
below to obtain sequents Σ,χ ` and Σ,ψ ` similarly.

(`)
χ ` χ

¬ `
χ,¬χ `

(` ¬)
χ ` ¬¬χ

repeated (linearly bounded) use of (• `)
Σ,χ ` ¬¬χ

Σ ` ¬χ
(¬ `)

(Σ,¬¬χ `)
(cut)

Σ,χ `

We then do similarly for ψ and use both to complete the proof.

Σ,χ ` Σ,ψ `
(∨ `)

Σ,χ ∨ ψ `
(` ¬)

Σ ` ¬φ

By the repeated use of weakening, the proof length is bounded above by S(χ) + S(ψ) +
O(w), which allows us to retain the quadratic bound.

– If φ = χ ∧ ψ and if φ is true in the model, then Σ ` χ and Σ ` ψ as with a proof length
bounded by our inductive hypothesis, the proof for ψ follows as;

Σ ` χ Σ ` ψ
(` ∧)

Σ ` ψ

The proof length is bounded above by S(χ) + S(φ) +O(w), which allows us to retain the
quadratic bound.

– If φ = χ ∧ ψ and if φ is false in the model, then either Σ ` ¬χ or Σ ` ¬ψ. Without loss
of generality if Σ ` ¬χ, then we use its bounded proof via the induction hypothesis.

19



(`)
χ ` χ

(¬ `)
χ,¬χ `

(` ¬)
χ ` ¬¬χ

repeated (linearly bounded) use of (• `)
Σ,χ ` ¬¬χ

Σ ` ¬χ
(¬ `)

Σ,¬¬χ `
(cut)

Σ,χ `
(∧• `)

Σ,φ `
(` ¬)

Σ ` ¬φ
By the repeated use of weakening, the proof length is bounded above by S(χ)+S(φ)+O(w),
which allows us to retain the quadratic bound.

– If φ = χ → ψ and φ is true in the model, then either Σ ` ¬χ or Σ ` ψ. If Σ ` (¬χ) we
use the short proof from the induction hypothesis.

(`)
χ ` χ

(¬ `)
χ,¬χ `

(` ¬)
χ ` ¬¬χ

repeated (linearly bounded) use of (• `)
Σ,χ ` ¬¬χ

Σ ` ¬χ
(¬ `)

Σ,¬¬χ `
(cut)

Σ,χ `
(` •)

Σ,χ ` ψ
(`→)

Σ ` φ
If instead Σ ` ψ we use the short proof of it from the inductive hypothesis and proceed
as follows;

Σ ` ψ
(• `)

Σ,χ ` ψ
(`→)

Σ ` φ
By the repeated use of weakening, in either case it is bounded above by S(χ) + O(w),
which allows us to retain the quadratic bound.

– If φ = χ→ ψ and φ is false in the model, then Σ ` χ and Σ ` ¬ψ. We use the short proof
of φ ` φ again in the same way;

ψ ` ψ
(¬ `)

ψ,¬ψ `
(` ¬)

ψ ` ¬¬ψ
repeated (linearly bounded) use of (• `)

Σ,ψ ` ¬¬ψ
Σ ` ¬ψ

(¬ `)
Σ,¬¬ψ `

(cut)
Σ,ψ `

And finish the proof as follows;

Σ,ψ ` Σ ` χ
(→`)

Σ,φ `
(` ¬)

Σ ` ¬φ
By the repeated use of weakening, the proof length is bounded above by S(χ)+S(φ)+O(w),
which allows us to retain the quadratic bound.

In order to complete the proof for Σ,Γ ` ∆ we can use the rules (` •), (• `) for weakening.
In the case that the left hand side is inconsistent because Σ ` ¬φ for some φ ∈ Γ it can be
done quickly by using the (¬ `) rule to bring over ¬¬φ and change this into φ using the same
trick that we have done in many of the proofs above. The remainder follows from weakening.

ut
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Proof of Lemma 10 part 2

Proof. Induction hypothesis:(on the logical depth of φ) sLK(φ(⊥),¬a ` φ(a)) ≤ p(n) ≥
sLK(φ(a),¬a ` φ(⊥))

We can split this into two hypotheses
i)sLK(φ(⊥),¬a ` φ(a)) ≤ p(n)
ii)sLK(φ(a),¬a ` φ(⊥)) ≤ p(n)
Base Case (when φ(a) = φ(⊥) or φ(a) = a):
When we have φ(a) = φ(⊥)

(`)
φ(a) ` φ(⊥)

(• `)
φ(a),¬a ` φ(⊥)

Here case i) is identical to case ii)
Another part of the base case is when φ(a) = a. We can prove case i) easily as below

(⊥ `)⊥ ` (• `)⊥,¬a `
(` •)⊥,¬a ` a

For case ii)

(`)
a ` a (¬ `)
a,¬a `

(` •)
a,¬a ` ⊥

Inductive Step:
Suppose φ(a) = ¬χ(a) by the induction hypothesis we have χ(a),¬a ` χ(⊥), this can be

used to derive case i).

χ(a),¬a ` χ(⊥)
(` ¬)

¬a ` χ(⊥),¬χ(a)
(¬ `)

¬χ(⊥),¬a `,¬χ(a)

Also by the induction hypothesis we have χ(⊥),¬a ` χ(a), this can be used to derive case
ii).

χ(⊥),¬a ` χ(a)
(` ¬)

¬a ` χ(a),¬χ(⊥)
(¬ `)

¬χ(a),¬a `,¬χ(⊥)

Suppose φ(a) = χ(a) ∨ ψ(a) by the induction hypothesis we have χ(⊥),¬a ` χ(a) and
ψ(⊥),¬a ` ψ(a). We use this to derive case i).

χ(⊥),¬a ` χ(a)
(` ∨•)

χ(⊥),¬a ` χ(a) ∨ ψ(a)

ψ(⊥),¬a ` ψ(a)
(` •∨)

ψ(⊥),¬a ` χ(a) ∨ ψ(a)
(∨ `)

χ(⊥) ∨ ψ(⊥),¬a ` χ(a) ∨ ψ(a)

By the induction hypothesis we have χ(a),¬a ` χ(⊥) and ψ(a),¬a ` ψ(⊥). We use this
to derive case ii).
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χ(a),¬a ` χ(⊥)
(` ∨•)

χ(a),¬a ` χ(⊥) ∨ ψ(⊥)

ψ(a),¬a ` ψ(⊥)
(` •∨)

ψ(a),¬a ` χ(⊥) ∨ ψ(⊥)
(∨ `)

χ(a) ∨ ψ(a),¬a ` χ(⊥) ∨ ψ(⊥)

Suppose φ(a) = χ(a) ∧ ψ(a) by the induction hypothesis we have χ(⊥),¬a ` χ(a) and
ψ(⊥),¬a ` ψ(a). We use this to derive case i).

χ(⊥),¬a ` χ(a)
(∧• `)

χ(⊥) ∧ ψ(⊥),¬a ` χ(a)

ψ(⊥),¬a ` ψ(a)
(•∧ `)

χ(⊥) ∧ ψ(⊥),¬a ` ψ(a)
(` ∧)

χ(⊥) ∧ ψ(⊥),¬a ` ψ(a)

By the induction hypothesis we have χ(a),¬a ` χ(⊥) and ψ(a),¬a ` ψ(⊥). We use this
to derive case ii).

χ(a),¬a ` χ(⊥)
(∧• `)

χ(a) ∧ ψ(a),¬a ` χ(⊥)

ψ(a),¬a ` ψ(⊥)
(•∧ `)

χ(a) ∧ ψ(a),¬a ` ψ(⊥)
(` ∧)

χ(a) ∧ ψ(a),¬a ` ψ(⊥)

Suppose φ(a) = χ(a) → ψ(a) by the induction hypothesis we have χ(a),¬a ` χ(⊥) and
ψ(⊥),¬a ` ψ(a). From this we can prove case i).

χ(a),¬a ` χ(⊥)
(` •)

χ(a),¬a ` χ(⊥), ψ(a)
(`→)

¬a ` χ(⊥), χ(a)→ ψ(a)

ψ(⊥),¬a ` ψ(a)
(• `)

χ(a), ψ(⊥)¬a `, ψ(a)
(`→)

ψ(⊥),¬a ` χ(⊥), χ(a)→ ψ(a)
(→`)

χ(⊥)→ ψ(⊥),¬a ` χ(a)→ ψ(a)

By the induction hypothesis we have χ(⊥),¬a ` χ(a) and ψ(a),¬a ` ψ(⊥). From this we
can prove case ii).

χ(⊥),¬a ` χ(a)
(` •)

χ(⊥),¬a ` χ(a), ψ(⊥)
(`→)

¬a ` χ(a), χ(⊥)→ ψ(⊥)

ψ(a),¬a ` ψ(⊥)
(• `)

χ(⊥), ψ(a)¬a `, ψ(⊥)
(`→)

ψ(a),¬a ` χ(⊥), χ(⊥)→ ψ(⊥)
(→`)

χ(a)→ ψ(a),¬a ` χ(⊥)→ ψ(⊥)

Our steps that have the highest order polynomial size are linear factors in the base case
and hence we can find a linear proof. ut
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