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Abstract. This paper proves that there is, in every direction in Eu-
clidean space, a line that misses every computably random point. Our
proof of this fact shows that a famous set constructed by Besicovitch in
1964 has computable measure 0.
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1 Introduction

One objective of the theory of computing is to investigate the fine-scale geometry
of algorithmic information in Euclidean space. Recent work along these lines has
included algorithmic classifications of points lying on computable curves and
arcs [6, 13,18,21,23] and in more exotic sets [8, 16,17].

This paper concerns a simple, fundamental question: Can the direction of a
line in Euclidean space force the line to meet at least one random point? That is,
can the set of Martin-Löf random points, which is everywhere dense and contains
almost every point in Euclidean space, be avoided by lines in every direction?
For example, it is reasonable to conjecture that every line of random slope in
R2 contains a random point. We show here that this conjecture is false, and in
fact that—regardless of slope—every line can be translated so that it contains
no Martin-Löf random point. Moreover, the line can miss the larger class of all
computably random points.

Our solution of this problem builds on a very old—and ongoing—line of
research in geometric measure theory. In 1917 Fujiwara and Kakeya [12,14] posed
the question of the minimum area of a plane set in which a unit segment can be
continuously reversed without leaving the set, a Kakeya needle set. This question
was resolved in 1928 by Besicovitch and Perron [2, 20]: such a set can have
arbitrarily small measure. The work made use of a construction by Besicovitch
from 1919 [1] (but not widely circulated until its republication in 1928 [3]) of a
plane set of area 0 containing a unit line segment in every direction, a Kakeya
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set. This set was constructed using a clever iterated process of partitioning and
translating the pieces of an equilateral triangle.

In 1964, Besicovitch gave a simpler construction of a plane set with area 0
that contains a line in every direction, a Besicovitch set [5]. This line set B is
the point-line dual of a simply defined “fractal dust,” and for slopes m ∈ [0, 1]
the y-intercept for the line of slope m is given by applying a permutation on Z4

digit-by-digit to the base-4 expansion of m. The set B is described in detail in
section 4, and our main result is achieved by showing that B has computable
measure 0, as does its Cartesian product with Rn, for every n ∈ N.

More recent work on the “sizes” of Besicovitch sets and Kakeya sets has
focused on their dimensions. Davies showed that every Kakeya set in R2 has
Hausdorff dimension 2 [7], and the famous Kakeya conjecture states that Kakeya
sets in Rn have Hausdorff dimension n for all n ≥ 2. For more on this history,
consult [10,15].

The remainder of the paper is organized as follows. Section 2 contains pre-
liminary information regarding computable measure and randomness in Rn. In
section 3, we present a class of martingales for betting on open sets. In section
4, we describe the set from Besicovitch’s 1964 construction and prove the main
theorem in R2. Section 5 extends the main theorem to Rn. Section 6 mentions
open problems.

2 Computable Randomness in Rn

We now discuss the elements of computable measure and randomness in Rn. For
each r ∈ N and each u = (u1, ..., un) ∈ Zn, let

Qr(u) = [u1 · 2−r, (u1 + 1) · 2−r)× ...× [un · 2−r, (un + 1) · 2−r)

be the r-dyadic cube at u. Note that each Qr(u) is “half-open, half-closed” in
such a way that, for each r ∈ N, the family

Qr =
{
Qr(u)

∣∣ u ∈ {0, ..., 2r − 1}n
}

is a partition of the unit cube Q0(0) = [0, 1)n. The family

Q =

∞⋃
r=0

Qr

is the set of all dyadic cubes in [0, 1)n.
A martingale on [0, 1)n is a function d : Q → [0,∞) satisfying

d(Qr(u)) = 2−n
∑

a∈{0,1}n
d(Qr+1(2u + a)) (1)

for all Qr(u) ∈ Q. Intuitively, a martingale d is a strategy for placing successive
bets on the location of a point x ∈ [0, 1)n. After r bets have been placed, the
bettor’s capital is

d(r)(x) = d(Qr(u)),



where u us the unique element of {0, ..., 2r − 1}n such that x ∈ Qr(u). The
bettor’s next bet is on which of the 2n immediate subcubes Qr+1(2u + a) of
Qr(u) has x as an element. The condition (1) says that the bettor’s expected
capital after this bet is exactly the bettor’s capital before the bet, i.e., the payoffs
are fair. A martingale d succeeds at a point x ∈ [0, 1)n if

lim sup
r→∞

d(r)(x) =∞.

A well known theorem of Ville [22], restated in the present setting, says that a
set E ⊆ [0, 1)n has Lebesgue measure 0 if and only if there is a martingale d
that succeeds at every point x ∈ E. It follows easily by the countable additivity
and translation invariance of Lebesgue measure that a set E ⊆ Rn has Lebesgue
measure 0 if and only if there is a martingale d that succeeds at every point
x ∈ E#, where

E# = [0, 1)n ∩
⋃

t∈Zn
(E + t). (2)

Let
J =

{
(r,u) ∈ N× Zn

∣∣ u ∈ {0, ..., 2r − 1}n
}
.

Then a martingale d : Q → [0,∞) is computable if there is a computable function

d̂ : N× J → Q ∩ [0,∞) such that, for all (s, r,u) ∈ N× J ,∣∣∣d̂(s, r,u)− d(Qr(u))
∣∣∣ ≤ 2−s.

A set E ⊆ Rn is defined to have computable measure 0 if there is a computable
martingale d that succeeds at every point x ∈ E#, where E# is defined as in
(2). A point x ∈ Rn is computably random if it is not an element of any set of
computable measure 0, i.e., if there is no computable martingale that succeeds
at x. It is well known [9, 19] that every random point in Rn (i.e., every Martin-
Löf random point in Rn) is computably random and that the converse does not
hold. In particular, then, almost every point in Rn is computably random.

3 Betting on Open Sets

In this section we describe a class of martingales that are used in the proof of
the main theorem in section 4. These martingales are also likely to be useful in
future investigations.

For any set G ⊆ [0, 1)n with m(G) > 0, define a martingale dG : Q → [0,∞)
recursively as follows.

(i) dG(Q0(0)) = 1.
(ii) For all r ≥ 0, u ∈ {0, ..., 2r − 1}n, and a ∈ {0, 1}n,

dG(Qr+1(2u + a)) =

{
0 if dG(Qr((u)) = 0

2ndG(Qr(u))m(G∩Qr+1(2u+a))
m(G∩Qr(u)) otherwise.



That is, for each cube Q ∈ Qr, the values of the martingale on the immediate
subcubes of Q are proportional to the measures of the subcubes’ intersections
with E.

Theorem 1 For every nonempty set G that is open as a subset of the subspace

[0, 1)n of Rn and every x ∈ G, d
(r)
G (x) = 1/m(G) for all sufficiently large r.

Proof. Let G be a nonempty open set in the subspace [0, 1)n of Rn. Then m(G) >
0, and by a routine induction argument, for any r ∈ N and u ∈ {0, ..., 2r − 1}n,

dG(Qr(u)) = 2nr
m(G ∩Qr(u))

m(G)
. (3)

For any x ∈ G there exists ε > 0 such that Bε(x) ⊆ G∩ [0, 1)n. Let r > −log(ε)

and Q ∈ Qr such that x ∈ Q. Then d
(r)
G (x) = dG(Q), and 2−r < ε, so Q ⊆

Bε(x) ⊆ E. Applying (3),

d
(r)
G = 2nr

m(G ∩Q)

m(G)
= 2nr

m(Q)

m(G)
=

1

m(G)
.

�

4 Betting on Besicovitch

In 1964 Besicovitch [5] (see also [10, 11]) gave an elegant construction of a
Lebesgue measure 0 set B ⊆ R2 (our notation, not his) that contains a line
in every direction. This section reviews this construction and proves that the set
B in fact has computable measure 0. Hence B contains a line in every direction
in R2, and each of these lines misses every computably random point in R2.

For each m, b ∈ R, let Lm,b ⊆ R2 be the line with slope m and y-intercept b.
Besicovitch defined the line set operator

L : P(R2)→ P(R2)

by

L(F ) =
⋃
{Lm,b | (m, b) ∈ F}

for all F ⊆ R2. (We call L(F ) the line set of F .) It is easy to verify that the
operator L is monotone, maps open sets to open sets, and maps closed sets to
closed sets.

We are interested in the line set of a particular self-similar fractal F , which
we now define. Consider the alphabet Σ = {0, 1, 2, 3}. For each i ∈ Σ define the
contraction Si : R2 → R2 by

Si(x, y) =
1

4
((x, y) + (i, ai)),



Fig. 1. F0 and F1, along with their line sets. F0 and L(F0) are shaded gray; F1 and
L(F1) are black.

where a0 = 2, a1 = 0, a2 = 3, and a3 = 1. For each w ∈ Σ∗ define the set
F (w) ⊆ R2 by the recursion

F (λ) = [0, 1]2;

F (iw) = Si(F (w))

for all i ∈ Σ and w ∈ Σ∗. For each k ∈ N let

Fk =
⋃
{F (w) | w ∈ Σk}.

The sets F0 and F1, along with their line sets, are depicted in Figure 1. We are
interested in the set

F =

∞⋂
k=0

Fk.

This set F is an uncountable, totally disconnected set, informal called a “frac-
tal dust.” More formally it is the attractor of the iterated function system
(S0, S1, S2, S3), i.e., it is a self-similar fractal.

Let RefY : R2 → R2 and Rotθ : R2 → R2 denote reflection across the y-axis
and rotation about the origin by the angle θ, respectively. The set

B = L(F ) ∪ Rotπ
2

(L(F )) ∪ RefY
(
L(F ) ∪ Rotπ

2
(L(F ))

)
(4)



is the Besicovitch set mentioned in the first paragraph of this section.

Observation 2 The set B contains a line in every direction in R2.

Proof. Let m ∈ [0, 1]. By (4) it suffices to show that L(F ) contains a line of
slope m. But this is clear, since each Fk, and hence F , contains a point of the
form (m, b). �

Using an ingenious duality principle and some nontrivial fractal geometry,
Besicovitch also proved the following.

Lemma 3 (Besicovitch [5]) The set B has Lebesgue measure 0.

It is not obvious whether or how Besicovitch’s proof of Lemma 3 can be
effectivized. Nevertheless we prove the following.

Theorem 4 (main theorem, in R2) The set B has computable measure 0. Hence
there is, in every direction in R2, a line that misses every computably random
point.

The remainder of this section is devoted to proving Theorem 4. We begin
with a property of the line set operator.

Lemma 5 Let I and J be closed intervals of finite length, so that R = I × J is
a solid rectangle. Let R′ = (I×J◦)∪(I◦×J) be R with its four corners removed.
Then

L(R′) ⊆ L(R)◦ ∪ Y,

where Y = {(0, y) | y ∈ R} is the y-axis of R2.

Proof. See appendix.

Lemma 5 has the following consequence for the stages Fk in the construction
of F .

Corollary 6 For every n ∈ N

L(Fk+1) ⊆ L(Fk)◦ ∪ Y.

Proof. It suffices to note that Fk+1 dos not contain any of the corners of the
squares comprising Fk. �

Proof of Theorem 4. By (4) it suffices to prove that L(F ) has computable mea-
sure 0. We do this by presenting a computable martingale d that succeeds at
every point x ∈ L(F )#, where

L(F )# = [0, 1)2 ∩
⋃
t∈Z2

(L(F ) + t)

is defined as in (2). See appendix for details. �



5 Higher Dimensions

For every n ∈ N, the set B × Rn contains a line in every direction in Rn+2,
and Fubini’s theorem implies that this set has Lebesgue measure 0 [11]. In this
section we show that B × Rn also has computable measure 0.

For any set E ⊆ Rn and y ∈ Rm, for 1 ≤ m < n, define

Ey = {(x1, ..., xn−m) ∈ Rn−m | (x1, ..., xn−m, y1, ..., ym) ∈ E}.

The following computable Fubini theorem may be known, but we do not know
a reference at the time of this writing.

Theorem 7 Let E ∈ Rn. If there is a computable martingale d on [0, 1)n−m

such that the set

NE(d) = {y ∈ [0, 1)m | ∃ x ∈ E#
y such that d does not succeed at x}

has computable measure 0, then E has computable measure 0.

Proof. Let d1 be such a martingale for E and let d2 be a computable martingale
on [0, 1)m that succeeds at every y ∈ NE(d1). Define two martingales on [0, 1)n,
d′1 and d′2, by

d′1(Qr(u1, ..., un)) = d1(Qr(u1, ..., un−m));

d′2(Qr(u1, ..., un)) = d2(Qr(un−m+1, ..., un)).

Note that both are computable.
Now let x = (x1, ..., xn) ∈ E#. If (xn−m+1, ..., xn) ∈ NE(d1), then d′2 suc-

ceeds at x; otherwise, d′1 succeeds at x. We conclude that the computable mar-
tingale d = d′1 + d′2 succeeds at every x ∈ E#, hence E has computable measure
0. �

Corollary 8 For every computable measure 0 set E and n ∈ N, the set E ×Rn
has computable measure 0.

Theorem 9 (main theorem, in Rn) For every n ≥ 2 there is, in every direction
in Rn, a line that misses every computably random point.

Proof. By Theorem 4, B has computable measure 0. Thus by Corollary 8, B ×
Rn−2 has computable measure 0 for every n ≥ 3. �

6 Open Problems

It would be interesting to know whether there exist lines in every direction
missing larger classes of random points. In particular, is there a line in every
direction missing every polynomial time random point in Euclidean space?

Besicovitch’s duality idea for constructing the set B came soon after, and was
perhaps prompted by, the Mathematical Association of America’s production of
a film in which he explained his 1919 solution of the Kakeya needle problem.
(The article [4] is based on this film.) Does a copy of this film still exist?
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Appendix

Proof of Theorem 4. Trivial martingale transformations show that the sets of
computable measure 0 in R2 are closed under 90◦ rotations, reflections about
the coordinate axes, and finite unions. Hence by (4) it suffices to prove that L(F )
has computable measure 0. We do this by presenting a computable martingale
d that succeeds at every point x ∈ L(F )#, where

L(F )# = [0, 1)2 ∩
⋃
t∈Z2

(L(F ) + t)

is defined as in (2).
For each t ∈ Z2 and k ∈ N let

Ht,k = [0, 1)2 ∩ (L(Fk)◦ + t),

noting that Ht,k is an open set in the subspace [0, 1)2 of R2. The sets Fk are so
simply defined that the function h : Z2 × N→ Q defined by

h(t, k) = m(Ht,k)

is computable. For each t ∈ Z2 Lemma 3 tells us that

0 = m([0, 1)2 ∩ (L(F ) + t))

= m(

∞⋂
k=0

([0, 1)2 ∩ (L(Fk) + t)))

= lim
k→∞

m([0, 1)2 ∩ (L(Fk) + t))

= lim
k→∞

h(t, k).

Hence the function k : Z2 × N→ N defined by

k(t, j) = the least k such that g(t, k) ≤ 2−j

is also computable.
For each t = (t1, t2) ∈ Z2 and j ∈ N, define the set Gt,j and the coefficient

ct,j as follows.

(i) If Ht,k(t,|t1|+|t2|+j) 6= ∅, then

Gt,j = Ht,k(t,|t1|+|t2|+j)

and
ct,j = m(Gt,j).

(ii) Otherwise,
Gt,j = [0, 1)2

and
ct,j = 2−(|t1|+|t2|+j).



Define the special-purpose martingale dY by

dY (Qr(u)) =

{
2r if u1 = 0
0 if u1 > 0

for all r ∈ N and u = (u1, u2) ∈ {0, ..., 2r − 1}2. Finally, let

d = dY +
∑
t∈Z2

∞∑
j=0

ct,jdGt,j ,

where each dGt,j is defined from Gt,j as in section 3. Then

d([0, 1)2) ≤ 1 +
∑
t∈Z2

∞∑
j=0

2−(|t1|+|t2|+j)

= 19 <∞,

so d is a martingale.
To see that d is computable, define

d̂ : N× J → Q

(where J is defined as in section 2) by

d̂(s, r,u) = dY (Qr(u)) +

p∑
t1=−p

p∑
t2=−p

p∑
j=0

ct,jdGt,j (Qr(u)),

where p = s + 2r + 6. Then d̂ is computable, and it is clear that d̂(s, r,u) ≤
d(Qr(u)) holds for all (s, r,u) ∈ N × J . We now fix (s, r,u) ∈ N × J , let p =

s+ 2r + 6, and estimate the difference d(Qr(u))− d̂(s, r,u).
For each index set I ⊆ Z2 × N define the sums

σ(I) =
∑

(t,j)∈I

ct,jdGt,j (Qr(u))

and
τ(I) =

∑
(t,j)∈I

2−(|t1|+|t2|+j).

By the trivial bound dGt,j (Qr(u)) ≤ 4r and the fact that ct,j ≤ 2−(|t1|+|t2|+j)

always holds, we have
σ(I) ≤ 4rτ(I)

for every I ⊆ Z2 × N. Now

d(Qr(u)) = dY (Qr(u)) + σ(Z2 × N),

and
d̂(s, r,u) = dY (Qr(u)) + σ(I0),



where

I0 = {(t1, t2, j) | − p ≤ t1 ≤ p, −p ≤ t2 ≤ p, j ≤ p},

so

d(Qr(u))− d̂(s, r,u) = σ((Z2 × N) r I0)

≤ 4rτ((Z2 × N) r I0).

If we let

Ia =
{

(t1, t2, j)
∣∣ |ta| > p

}
for a ∈ {1, 2} and

I+ =
{

(t1, t2, j)
∣∣ j > p

}
,

then

(Z2 × N) r I0 ⊆ I1 ∪ I2 ∪ I+,

so

d(Qr(u))− d̂(s, r,u) ≤ 4r(τ(I1) + τ(I2) + τ(I+)).

Now

τ(I1) = τ(I2)

= 2

∞∑
t1=p+1

2−t1
∞∑

t2=−∞
2−|t2|

∞∑
j=0

2−j

= 12

∞∑
t1=p+1

2−t1

= 12 · 2−p,

and

τ(I+) =

∞∑
t1=−∞

2−|t1|
∞∑

t2=−∞
2−|t2|

∞∑
j=p+1

2−j

= 9 · 2−p,

so

d(Qr(u))− d̂(s, r,u) ≤ 4r · 33 · 2−p

= 33 · 2−(s+6)

< 2−s

Hence d̂ testifies that d is computable.
To see that d succeeds at every point in L(F )#, let x ∈ [0, 1)2 ∩ (L(F ) + t).

By Corollary 6 we have two cases.



Case 1. x ∈ Y . Then

lim sup
r→∞

d(r)(x) ≥ lim sup
r→∞

d
(r)
Y (x)

= lim sup
r→∞

2r

=∞,

so d succeeds at x.
Case 2. x ∈ L(Fk) for every k ∈ N. Then x ∈ Ht,k for every k ∈ N, so clause

(i) holds in the definitions of Gt,j and ct,j for every j ∈ N, with x ∈ Gt,j . By
Theorem 1, this implies that

lim sup
r→∞

d(r)(x) ≥ lim sup
r→∞

∞∑
j=0

ct,jd
(r)
Gt,j

(x)

= lim sup
r→∞

∞∑
j=0

m(Gt,j)d
(r)
Gt,j

(x)

=∞,

whence d succeeds at x. �

Proof of Lemma 5. First let (m, b) ∈ I × J◦. Then there exists ε > 0 such that
{m} × (b − ε, b + ε) ⊆ I × J . Then Lm,b′ ⊆ L(I × J) = L(R) holds for all
b′ ∈ (b− ε, b+ ε), so Lm,b ⊆ L(R)◦. This shows that L(I × J◦) ⊆ L(R)◦.

Now let (m, b) ∈ I◦×J . Then there exists ε > 0 such that (m−ε,m+ε)×{b} ⊆
I × J . Then Lm′,b ⊆ L(I, J) = L(R) holds for all m′ ∈ (m − ε,m + ε), so
Lm,b ⊆ L(R)◦ ∪{(0, b)} ⊆ L(R)◦ ∪Y . This shows that L(I◦×J) ⊆ L(R)∪Y . �
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