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Abstract

We prove that there is, in every direction in Euclidean space, a line
that misses every computably random point. We also prove that there
exist, in every direction in Euclidean space, arbitrarily long line segments
missing every double exponential time random point.

1 Introduction

One objective of the theory of computing is to investigate the fine-scale geometry
of algorithmic information in Euclidean space. Recent work along these lines
has included algorithmic classifications of points lying on computable curves
and arcs [14, 26, 6, 32, 23] and in more exotic sets [22, 19, 8, 15].

This paper concerns a simple, fundamental question: Can the direction of a
line in Euclidean space force the line to meet at least one random point? That
is, can the set of Martin-Löf random points, which is everywhere dense and
contains almost every point in Euclidean space, be avoided by lines in every
direction? For example, it is reasonable to conjecture that every line of random
slope in R2 contains a random point. We show here that this conjecture is false,
and in fact that—regardless of slope—every line can be translated so that it
contains no Martin-Löf random point. Moreover, the line can miss the larger
class of all computably random points.

Our solution of this problem builds on a very old—and ongoing—line of
research in geometric measure theory. In 1917 Fujiwara and Kakeya [17, 13]
posed the question of the minimum area of a plane set in which a unit seg-
ment can be continuously reversed without leaving the set, a Kakeya needle
set. This question was resolved in 1928 by Besicovitch [2]: such a set can have
arbitrarily small measure. The work made use of a construction by Besicovitch
from 1919 [1] (but not widely circulated until its republication in 1928 [3]) of a
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plane set of area 0 containing a unit line segment in every direction, a Kakeya
set. This set was constructed using a clever iterated process of partitioning and
translating the pieces of an equilateral triangle.

In 1964 Besicovitch used a duality principle to construct a plane set with area
0 that contains a line in every direction, a Besicovitch set [5]. Falconer [10, 11]
used an alternative duality principle to give a somewhat simpler construction
of a Besicovitch set. This latter set B, which is the point-line dual of a simply
defined “fractal dust,” is described in detail in Section 4. Our main result is
achieved by showing that B has computable measure 0, as does its Cartesian
product with Rn, for every n ∈ N. We also sketch an alternative proof suggested
to us by Turetsky (personal communication) and an anonymous reviewer.

Our main result leads us to conjecture that there is, in every direction in
Euclidean space, a line that misses not only every computably random point, but
every point that is feasibly random (i.e., polynomial time random, as defined in
Section 2). We are unable to prove this conjecture at this time, but in Section 5
we prove a weaker result along these lines. Specifically, we show that there exist,
in every direction in the Euclidean plane, arbitrarily long line segments missing
every point that is double exponential time random (a randomness condition
defined in Section 2). Our proof of this fact uses Besicovitch’s above-mentioned
1919 construction of a Kakeya set, together with later refinements of this proof
by Perron [25], Schoenberg [29], and Falconer [11].

More recent work on the “sizes” of Besicovitch sets and Kakeya sets has
focused on their dimensions. Davies showed that every Kakeya set in R2 has
Hausdorff dimension 2 [7], and the famous Kakeya conjecture states that Kakeya
sets in Rn have Hausdorff dimension n for all n ≥ 2. For more on this history,
consult [11, 18].

The remainder of the paper is organized as follows. Section 2 contains pre-
liminary information regarding computable and time-bounded measure and ran-
domness in Rn. In Section 3, we present a class of martingales for betting on
open sets. In Section 4, we describe Falconer’s Besicovitch set B and prove
the main theorem in R2. In Section 5 we describe a Kakeya set K and use it
to prove our result on segments missing every double exponential time random
point in R2. Section 6 extends our two theorems to Rn (n ≥ 2). Section 7
mentions open problems.

2 Computable and Time-Bounded Randomness
in Rn

We now discuss the elements of computable measure and randomness in Rn.
For each r ∈ N and each u = (u1, ..., un) ∈ Zn, let

Qr (u) =
[
u1 · 2−r, (u1 + 1) · 2−r

)
× ...×

[
un · 2−r, (un + 1) · 2−r

)
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be the r-dyadic cube at u. Note that each Qr (u) is “half-open, half-closed” in
such a way that, for each r ∈ N, the family

Qr =
{
Qr (u)

∣∣ u ∈ {0, ..., 2r − 1}n
}

is a partition of the unit cube Q0 (0) = [0, 1)
n
. The family

Q =

∞⋃
r=0

Qr

is the set of all dyadic cubes in [0, 1)
n
.

A martingale on [0, 1)
n

is a function d : Q → [0,∞) satisfying

d (Qr (u)) = 2−n
∑

a∈{0,1}n
d (Qr+1 (2u + a)) (1)

for all Qr (u) ∈ Q. Intuitively, a martingale d is a strategy for placing successive
bets on the location of a point x ∈ [0, 1)

n
. After r bets have been placed, the

bettor’s capital is
d(r) (x) = d (Qr (u)) ,

where u us the unique element of {0, ..., 2r − 1}n such that x ∈ Qr (u). The
bettor’s next bet is on which of the 2n immediate subcubes Qr+1 (2u + a) of
Qr (u) has x as an element. The condition (1) says that the bettor’s expected
capital after this bet is exactly the bettor’s capital before the bet, i.e., the
payoffs are fair. A martingale d succeeds at a point x ∈ [0, 1)

n
if

lim sup
r→∞

d(r) (x) =∞ .

A well known theorem of Ville [30], restated in the present setting, says that a set
E ⊆ [0, 1)

n
has Lebesgue measure m(E) = 0 if and only if there is a martingale d

that succeeds at every point x ∈ E. It follows easily by the countable additivity
and translation invariance of Lebesgue measure that a set E ⊆ Rn has Lebesgue
measure 0 if and only if there is a martingale d that succeeds at every point
x ∈ E#, where

E# = [0, 1)
n ∩

⋃
t∈Zn

(E + t) . (2)

Let
J =

{
(r,u) ∈ N× Zn

∣∣ u ∈ {0, ..., 2r − 1}n
}
.

Then a martingale d : Q → [0,∞) is computable if there is a computable function

d̂ : N× J → Q ∩ [0,∞) such that, for all (s, r,u) ∈ N× J ,∣∣∣d̂ (s, r,u)− d (Qr (u))
∣∣∣ ≤ 2−s . (3)

A set E ⊆ Rn is defined to have computable measure 0 if there is a computable
martingale d that succeeds at every point x ∈ E#, where E# is defined as in
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(2). A point x ∈ Rn is computably random if it is not an element of any set of
computable measure 0, i.e., if there is no computable martingale that succeeds
at x. Computable randomness was introduced by Schnorr [27, 28]. It is well
known [24, 9] that every random point in Rn (i.e., every Martin-Löf random
point in Rn) is computably random and that the converse does not hold. In
particular, then, almost every point in Rn is computably random.

Resource-bounded measure, a complexity-theoretic generalization of Lebesgue
measure that induces measure on complexity classes, has been used to define
complexity-theoretic notions of randomness [21]. Adapting these notions to
Euclidean space, a martingale d : Q → [0,∞) is p-computable (respectively, ee-

computable) if there is a function d̂ : N×J → Q∩ [0,∞) that satisfies (3) and is

computable in (s+r)O(1) time (respectively, in 22
O(s+r)

time). A point x ∈ Rn is
p-random (or polynomial time random, or feasibly random) if no p-computable
martingale succeeds at x [21]. A point x ∈ Rn is ee-random (or double expo-
nential time random) if no ee-computable martingale succeeds at x [16]. It is
routine to show that every computably random point is ee-random, that every
ee-random point is p-random, and that the converses of these statements are
false.

3 Betting on Open Sets

In this section we describe a class of martingales that are used in the proof of
the main theorem in Section 4. These martingales are also likely to be useful in
future investigations.

For any set G ⊆ [0, 1)
n

with m (G) > 0, define a martingale dG : Q → [0,∞)
recursively as follows.

(i) dG (Q0 (0)) = 1.

(ii) For all r ≥ 0, u ∈ {0, ..., 2r − 1}n, and a ∈ {0, 1}n

dG (Qr+1 (2u + a)) =

{
0 if dG (Qr (u)) = 0

2ndG (Qr (u)) m(G∩Qr+1(2u+a))
m(G∩Qr(u)) otherwise .

That is, for each cube Q ∈ Qr, the values of the martingale on the immediate
subcubes of Q are proportional to the measures of the subcubes’ intersections
with G.

Theorem 1. For every nonempty set G that is open as a subset of the subspace

[0, 1)
n

of Rn and every x ∈ G, d
(r)
G (x) = 1/m (G) for all sufficiently large r.

Proof. Let G be a nonempty open set in the subspace [0, 1)n of Rn. Then
m(G) > 0, and by a routine induction argument, for any r ∈ N and u ∈
{0, ..., 2r − 1}n,

dG(Qr(u)) = 2nr
m(G ∩Qr(u))

m(G)
. (4)
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For any x ∈ G there exists ε > 0 such that Bε(x) ⊆ G∩ [0, 1)n. Let r > − log(ε)

and Q ∈ Qr such that x ∈ Q. Then d
(r)
G (x) = dG(Q), and 2−r < ε, so

Q ⊆ Bε(x) ⊆ E. Applying (4),

d
(r)
G = 2nr

m(G ∩Q)

m(G)
= 2nr

m(Q)

m(G)
=

1

m(G)
.

When G is open, we call dG the open set martingale for G.

4 Betting on a Besicovitch Set

This section reviews Falconer’s construction of the Besicovitch set B mentioned
in the introduction and proves that the set B in fact has computable measure 0.
Hence B contains a line in every direction in R2, and each of these lines misses
every computably random point in R2.

For each m, b ∈ R, let Lm,b ⊆ R2 be the line with slope m and y-intercept
b. Falconer defined the line set operator L : P

(
R2
)
→ P

(
R2
)

by

L (F ) =
⋃
{Lm,b | (m, b) ∈ F}

for all F ⊆ R2. We call L (F ) the line set of F . It is easy to verify that the
operator L is monotone and maps compact sets to closed sets.

We are interested in the line set of a particular self-similar fractal F , which
we now define. Consider the alphabet Σ = {0, 1, 2, 3}. For each i ∈ Σ define
the contraction Si : R2 → R2 by

Si (x, y) =
1

4
((x, y) + (i, ai)) ,

where a0 = 2, a1 = 0, a2 = 3, and a3 = 1. For each w ∈ Σ∗ define the set
F (w) ⊆ R2 by the recursion

F (λ) = [0, 1]
2
,

F (iw) = Si (F (w))

for all i ∈ Σ and w ∈ Σ∗. For each k ∈ N let

Fk =
⋃{

F (w) | w ∈ Σk
}
.

The sets F0 and F1, along with their line sets, are depicted in Figure 1. We
are interested in the set

F =

∞⋂
k=0

Fk .

This set F is an uncountable, totally disconnected set, informal called a “frac-
tal dust.” More formally it is the attractor of the iterated function system
(S0, S1, S2, S3), i.e., it is a self-similar fractal.
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Figure 1: F0 and F1, along with their line sets. F0 and L (F0) are shaded gray;
F1 and L (F1) are black.

Let RefY : R2 → R2 and Rotθ : R2 → R2 denote reflection across the y-axis
and rotation about the origin by the angle θ, respectively. The set

B = L (F ) ∪ Rotπ
2

(L (F )) ∪ RefY
(
L (F ) ∪ Rotπ

2
(L (F ))

)
(5)

is the Besicovitch set that we use for our main theorem.

Observation 2. The set B contains a line in every direction in R2.

Proof. Let m ∈ [0, 1]. By (5) it suffices to show that L(F ) contains a line of
slope m. But this is clear, since each Fk, and hence F , contains a point of the
form (m, b).

Using the duality principle and some nontrivial fractal geometry, Falconer
also proved the following.

Lemma 3. ([10, 11]) The set B has Lebesgue measure 0.

It is not obvious whether or how the proof of Lemma 3 can be effectivized.
Nevertheless we prove the following.

Theorem 4. (main theorem, in R2) The set B has computable measure 0.
Hence there is, in every direction in R2, a line that misses every computably
random point.
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To prove Theorem 4, we begin with a property of the line set operator.

Lemma 5. Let I and J be closed intervals of finite length, so that R = I × J
is a solid rectangle. Let R′ = (I × J◦) ∪ (I◦ × J) be R with its four corners
removed. Then

L(R′) ⊆ L(R)◦ ∪ Y,
where Y = {(0, y) | y ∈ R} is the y-axis of R2.

Proof. First let (m, b) ∈ I × J◦. Then there exists ε > 0 such that

{m} × (b− ε, b+ ε) ⊆ I × J .

Then Lm,b′ ⊆ L(I ×J) = L(R) holds for all b′ ∈ (b− ε, b+ ε), so Lm,b ⊆ L(R)◦.
This shows that L(I × J◦) ⊆ L(R)◦.

Now let (m, b) ∈ I◦ × J . Then there exists ε > 0 such that

(m− ε,m+ ε)× {b} ⊆ I × J .

Then Lm′,b ⊆ L(I, J) = L(R) holds for all m′ ∈ (m− ε,m+ ε), so

Lm,b ⊆ L(R)◦ ∪ {(0, b)} ⊆ L(R)◦ ∪ Y .

This shows that L(I◦ × J) ⊆ L(R) ∪ Y .

Lemma 5 has the following consequence for the stages Fk in the construction
of F .

Corollary 6. For every k ∈ N

L(Fk+1) ⊆ L(Fk)◦ ∪ Y.

Proof. It suffices to note that Fk+1 does not contain any of the corners of the
squares comprising Fk.

Proof of Theorem 4. Trivial martingale transformations show that the sets of
computable measure 0 in R2 are closed under 90◦ rotations, reflections about
the coordinate axes, and finite unions. Hence by (5) it suffices to prove that L(F )
has computable measure 0. We do this by presenting a computable martingale
d that succeeds at every point x ∈ L(F )#, where

L(F )# = [0, 1)2 ∩
⋃
t∈Z2

(L(F ) + t)

is defined as in (2).
For each t ∈ Z2 and k ∈ N let

Ht,k = [0, 1)2 ∩ (L(Fk)◦ + t) ,

noting that Ht,k is an open set in the subspace [0, 1)2 of R2. The sets Fk are so
simply defined that the function h : Z2 × N→ Q defined by

h(t, k) = m(Ht,k)
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is computable. For each t ∈ Z2 Lemma 3 tells us that

0 = m
(
[0, 1)2 ∩ (L(F ) + t)

)
= m

( ∞⋂
k=0

([0, 1)2 ∩ (L(Fk) + t))

)
= lim
k→∞

m
(
[0, 1)2 ∩ (L(Fk) + t)

)
= lim
k→∞

h(t, k).

Hence the function k : Z2 × N→ N defined by

k(t, j) = the least k such that g(t, k) ≤ 2−j

is also computable.
For each t = (t1, t2) ∈ Z2 and j ∈ N, define the set Gt,j and the coefficient

ct,j as follows.

(i) If Ht,k(t,|t1|+|t2|+j) 6= ∅, then

Gt,j = Ht,k(t,|t1|+|t2|+j)

and
ct,j = m(Gt,j).

(ii) Otherwise,
Gt,j = [0, 1)2

and
ct,j = 2−(|t1|+|t2|+j).

Define the special-purpose martingale dY by

dY (Qr(u)) =

{
2r if u1 = 0
0 if u1 > 0

for all r ∈ N and u = (u1, u2) ∈ {0, ..., 2r − 1}2. Finally, let

d = dY +
∑
t∈Z2

∞∑
j=0

ct,jdGt,j ,

where each dGt,j is defined from Gt,j as in Section 3. Then

d
(
[0, 1)2

)
≤ 1 +

∑
t∈Z2

∞∑
j=0

2−(|t1|+|t2|+j)

= 19 <∞,

so d is a martingale.
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To see that d is computable, define

d̂ : N× J → Q

(where J is defined as in section 2) by

d̂(s, r,u) = dY (Qr(u)) +

p∑
t1=−p

p∑
t2=−p

p∑
j=0

ct,jdGt,j (Qr(u)),

where p = s + 2r + 6. Then d̂ is computable, and it is clear that d̂(s, r,u) ≤
d(Qr(u)) holds for all (s, r,u) ∈ N × J . We now fix (s, r,u) ∈ N × J , let

p = s+ 2r + 6, and estimate the difference d(Qr(u))− d̂(s, r,u).
For each index set I ⊆ Z2 × N define the sums

σ(I) =
∑

(t,j)∈I

ct,jdGt,j (Qr(u))

and
τ(I) =

∑
(t,j)∈I

2−(|t1|+|t2|+j).

By the trivial bound dGt,j (Qr(u)) ≤ 4r and the fact that ct,j ≤ 2−(|t1|+|t2|+j)

always holds, we have
σ(I) ≤ 4rτ(I)

for every I ⊆ Z2 × N. Now

d(Qr(u)) = dY (Qr(u)) + σ
(
Z2 × N

)
,

and
d̂(s, r,u) = dY (Qr(u)) + σ(I0),

where
I0 =

{
(t1, t2, j)

∣∣ − p ≤ t1 ≤ p, −p ≤ t2 ≤ p, j ≤ p} ,

so

d(Qr(u))− d̂(s, r,u) = σ
((
Z2 × N

)
r I0

)
≤ 4rτ

((
Z2 × N

)
r I0

)
.

If we let
Ia =

{
(t1, t2, j)

∣∣ |ta| > p
}

for a ∈ {1, 2} and
I+ =

{
(t1, t2, j)

∣∣ j > p
}
,

then (
Z2 × N

)
r I0 ⊆ I1 ∪ I2 ∪ I+,

so
d(Qr(u))− d̂(s, r,u) ≤ 4r

(
τ(I1) + τ(I2) + τ

(
I+
))
.
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Now

τ(I1) = τ(I2)

= 2

∞∑
t1=p+1

2−t1
∞∑

t2=−∞
2−|t2|

∞∑
j=0

2−j

= 12

∞∑
t1=p+1

2−t1

= 12 · 2−p,

and

τ(I+) =

∞∑
t1=−∞

2−|t1|
∞∑

t2=−∞
2−|t2|

∞∑
j=p+1

2−j

= 9 · 2−p,

so

d(Qr(u))− d̂(s, r,u) ≤ 4r · 33 · 2−p

= 33 · 2−(s+6)

< 2−s .

Hence d̂ testifies that d is computable.
To see that d succeeds at every point in L(F )#, let x ∈ [0, 1)2 ∩ (L(F ) + t).

By Corollary 6 we have two cases.
Case 1. x ∈ Y . Then

lim sup
r→∞

d(r)(x) ≥ lim sup
r→∞

d
(r)
Y (x)

= lim sup
r→∞

2r

=∞ ,

so d succeeds at x.
Case 2. x ∈ L(Fk) for every k ∈ N. Then x ∈ Ht,k for every k ∈ N, so clause

(i) holds in the definitions of Gt,j and ct,j for every j ∈ N, with x ∈ Gt,j . By
Theorem 1, this implies that

lim sup
r→∞

d(r)(x) ≥ lim sup
r→∞

∞∑
j=0

ct,jd
(r)
Gt,j

(x)

= lim sup
r→∞

∞∑
j=0

m(Gt,j)d
(r)
Gt,j

(x)

=∞,

whence d succeeds at x.

10



In remarks on an early draft of this paper, Turetsky and an anonymous re-
viewer pointed out an alternative proof of Theorem 4. The key fact, proved
by Wang [31, 9], is that every computably random point x is Kurtz random
(also called weakly random [20]), meaning that x is not an element of any com-
putably closed (i.e., Π0

1) set of measure 0. Furthermore, the above-mentioned
fact that the operator L maps compact sets to closed sets can be extended to
prove that L maps bounded Π0

1 sets to Π0
1 sets. Finally, it is routine to verify

that the fractal dust F is a bounded Π0
1 set. These things and Lemma 3 imply

that L(F ) contains no computably random point, whence Theorem 4 holds by
Observation 2. This elegant proof is simpler than our martingale construction,
even when Wang’s proof is included. However, we believe that the direct mar-
tingale construction may help illuminate the path to results on time-bounded
randomness, so we retain the martingale proof in this paper.

5 Betting in Doubly Exponential Time

In light of Theorem 4 it is natural to ask whether there is, in every direction
in R2, a line that misses not only every computably random point, but every
feasibly random point. We do not know the answer to this question at the time
of this writing, but we prove a weaker result of this type in this section.

As noted in the introduction, Besicovitch constructed a Kakeya set, a Lebesgue
measure 0 plane set containing a unit line segment in every direction, in 1919.
Our objective here is to specify a Kakeya set K and prove that it has ee-measure
0 (a condition defined in Section 2). Our specification and proof take advan-
tage of Besicovitch’s original work, together with subsequent refinements by
Perron [25], Schoenberg [29], and Falconer [11].

We first describe Perron trees, the building blocks of our set K. Let

τ = 4(u,v,w)

be a triangle of height h with its base uv on the x-axis. In this discussion we
regard triangles as including their interiors. Note that τ contains a line segment
of length h in every direction between the directions of uw and vw. Given a
positive integer k, cut τ into 2k nonoverlapping triangles τ1, ..., τ2k of equal
area, as indicated in Figure 2(a). (Throughout this discussion, sets in R2 are
nonoverlapping if their interiors are disjoint.) Besicovitch showed that these 2k

smaller triangles can be slid horizontally along the x-axis in such a way that their
union, due to high overlap, has very small area. Perron simplified Besicovitch’s
overlap scheme to that depicted in Figure 2(b). Note that, notwithstanding
its small area, the set in Figure 2(b) still contains a line segment in every
direction between the directions of uw and vw. Schoenberg coined the term
Perron trees for sets of the type depicted in Figure 2(b) and gave a simpler,
recursive “sprouting construction” of the Perron tree Pk(τ) as a union of 2k+1−1
nonoverlapping triangles as in Figure 2(c).

We now specify the Perron tree Pk(τ). Throughout this discussion script

11



τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

Figure 2: (a) a triangle cut into eight pieces τ1, ...τ8; (b) a Perron tree con-
structed by sliding those pieces together; (c) the same Perron tree via Schoen-
berg’s sprouting construction.

capital letters represent collections of nonoverlapping polygons. Let

(û, v̂, ŵ) =

(
2u

h
,

2v

h
,

2w

h

)
,

so that 4 (û, v̂, ŵ) = 2
hτ is a triangle of height 2, similar to τ , with its base on

the x-axis. Let
T0 = {4 (û, v̂, ŵ)} ,

and

T1 =

{
4
(
û + ŵ

2
, ŵ,

3ŵ − v̂

2

)
,4
(
v̂ + ŵ

2
, ŵ,

3ŵ − û

2

)}
.

For i ≥ 2, let

Ti =
⋃

t∈Ti−1

{4(mt, ct, 2ct − bt),4(bt, ct, 2ct −mt)} ,

where for t ∈ Ti−1, at, bt, and ct are the vertices of t with y-coordinates i− 1,
i, and i+ 1, respectively, and mt is the midpoint of atct. Let

T =

k⋃
i=0

Ti .

Then

Pk(τ) =
h

k + 2

⋃
T

is the k-level Perron tree based on τ .
As Schoenberg noted, we can define the same Perron tree as a union of

shifted triangles τi. Let

C =
{
x
∣∣ (x, h) ∈ Pk(τ)

}
=
{
x
∣∣ ct = (x, h) for some t ∈ Tk

}
,

and index the elements of C as c1, ..., c2k , where ci < ci+1 for 1 ≤ i < 2k. Let

Pk(τ) =
{
τi + (ci, 0)

∣∣ 1 ≤ i < 2k
}
.
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Then
Pk(τ) =

⋃
Pk(τ) .

Observation 7 (Falconer [11]). Pk(τ) is contained in the trapezoid with vertex
set

{2u− v,w − v + u,w + v − u, 2v − u} .

Theorem 8 (Schoenberg [29]). m(Pk(τ)) = m(τ)
2k+4 .

We now construct a sequence {Sj}j∈N of plane sets. Each Sj is the union of
a collection Sj of triangles. Define

S0 = {4 ((0, 0), (1, 0), (1/2, 1/2))} ,

and for j ≥ 1, cut the base of each triangle in Sj−1 into 2j+1 equal pieces in the
manner of Figure 2(a) to form

pj = 2j+1|Sj−1|

triangles τ1j , ..., τ
pj
j , and let

Pij = P2j
(
τ ij
)
.

Then define

Sj =

pj⋃
i=1

Pij ,

and
Sj =

⋃
Sj .

For E ⊆ R2 and ε > 0, define

Gε(E) =
⋃

δ∈(−ε,ε)

E◦ + (δ, 0) .

We will repeatedly make use of the fact that for any E1, E2 ⊆ R2 and ε > 0,

Gε(E1 ∪ E2) = Gε(E1) ∪Gε(E2) .

For j ∈ N, let

εj =
1

2j+1|Sj |
,

and define
Gj = Gεj (Sj) .

Lemma 9. For j ∈ N, Gj+1 ⊆ Gj.

13



Proof. Since the base of each τ ij+1 has length 1
pj+1

= εj/2, Observation 7 tells

us for i = 1, ..., pj+1 that

P ij+1 ⊆ Gεj/2
(
τ ij+1

)
.

Since εj+1 < εj/2, this implies that

Gεj+1

(
P ij+1

)
⊆ Gεj

(
τ ij+1

)
.

Thus

Gj+1 = Gεj+1
(Sj+1)

= Gεj+1

(
pj+1⋃
i=1

P ij+1

)

=

pj+1⋃
i=1

Gεj+1

(
P ij+1

)
⊆
pj+1⋃
i=1

Gεj
(
τ ij+1

)
= Gεj

(
pj+1⋃
i=1

τ ij+1

)
= Gεj (Sj)

= Gj .

Let
F =

⋂
j∈N

Gj

and
K0 =

⋃
c∈N

cF .

Then let
K = K0 ∪ Rotπ/4(K0) .

Proposition 10. K contains arbitrarily long line segments in every direction
in R2.

Proof. It suffices to show that F contains a closed segment of length 1
3 in every

direction θ ∈
[
π
4 ,

3π
4

]
. Fix θ ∈

[
π
4 ,

3π
4

]
. For each j ∈ N, fix a closed segment

Lj ⊆ Gj of length 1
3 in direction θ. By compactness there is an infinite set

I ⊆ N such that the sequence (Li | i ∈ I) converges (in Hausdorff distance) to
a segment L. It is clear that L is a segment of length 1

3 in direction θ. Using

compactness again, we have L ⊆ Gj for each j, whence L ⊆ F .
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Theorem 11. The set K has ee-measure 0. Hence there exist, in every direction
in R2, arbitrarily long line segments that miss every ee-random point.

Proof. We first show by induction that |Sj | ≤ 22
j+2

. This holds for j = 0. Fix
j ≥ 1 and suppose the claim holds for j − 1. Then we have

|Sj | =
pj∑
i=1

∣∣Pij∣∣
= pj · 22

j

= 2j+1|Sj−1| · 22
j

≤ 2j+1+2j+1+2j

≤ 22
j+2

,

so the claim holds for every j ∈ N.
Now consider Gij = Gεj

(
P ij
)
. By Theorem 8,

m
(
P ij
)

=
1

(4pj) (2 · 2j + 4)

<
1

2j+3pj
,

and

m
(
Gij r P ij

)
≤
∑
t∈Pij

m
(
Gεj (t) r t

)
≤
∣∣Pij∣∣ εj

=
|Sj |εj
pj

=
1

2j+1pj
,

so

m
(
Gij
)
<

1

2jpj
.

Define the martingale d : Q → [0,∞) by

d(Q) =

∞∑
j=0

2−j
pj∑
i=1

dGij (Q)

pj
,

where dGij is the open set martingale, as defined in Section 3, for Gij . Then by

Theorem 1, for every x ∈ Gij ,

lim
r→∞

d
(r)

Gij
(x) =

1

m
(
Gij
)

> 2jpj .
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Thus since

Gj =

pj⋃
i=1

Gij ,

we have
lim sup
r→∞

d(r)(x) ≥ |{j | x ∈ Gj}| ,

which is infinite for x ∈ F , i.e., d succeeds on every x ∈ F .
We now turn to proving that d is ee-computable. Let J be as in Section 2,

and define the function
d̂ : N× J → Q ∩ [0,∞)

by

d̂(s, r,u) =

2r+s∑
j=0

2−j
pj∑
i=1

dGij (Qr(u))

pj
.

Then ∣∣∣d(Qr(u))− d̂(s, r,u)
∣∣∣ =

∞∑
j=2r+s+1

2−j
pj∑
i=1

dGij (Qr(u))

pj

≤ 4r
∞∑

j=2r+s+1

2−j

= 2−s .

It remains to be shown that d̂(s, r,u) is computable in time 22
O(r+s)

. For this

it is to show that dGij (Qr(u)) is computable in time 22
O(r+s)

for each 1 ≤ i ≤ pj
and 0 ≤ j ≤ 2r + s. By (4),

dGij (Qr(u)) = 4r
m
(
Gij ∩Qr(u)

)
m
(
Gij
) .

Now

Gij = Gεj
(
P ij
)

= Gεj

(⋃
Pij
)

=
⋃
t∈Pij

Gεj (t)

is the union of ν = 22
j

trapezoids. The vertices of the triangles t come from
the definition of Pj(t), and the vertices of the trapezoid follow immediately.
This gives 4ν segments whose intersections can be found efficiently. In total,
the figure Gij has at most 4ν +

(
4ν
2

)
= poly(ν) vertices, each of which can be

found in poly(ν) time. So it can be triangulated in poly(ν) time into a set
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N of nonoverlapping triangles with |N | = poly(ν), where the vertices of every
triangle in N an be found in poly(ν) time. Then

m
(
Gij
)

=
∑
t∈N

m(t) ,

and for any Q ∈ Q,

m
(
Gij ∩Q

)
=
∑
t∈N

m(t ∩Q) .

Hence we can compute dGij in time poly(ν) = 22
O(r+s)

.

6 Higher Dimensions

For every n ∈ N, the set B × Rn contains a line in every direction in Rn+2,
and Fubini’s theorem implies that this set has Lebesgue measure 0 [12]. In this
section we show that B × Rn also has computable measure 0.

For any set E ⊆ Rn and y ∈ Rm, for 1 ≤ m < n, define

Ey =
{

(x1, ..., xn−m) ∈ Rn−m | (x1, ..., xn−m, y1, ..., ym) ∈ E
}
.

The following computable Fubini theorem may be known, but we do not know
a reference at the time of this writing.

Theorem 12. Let E ∈ Rn. If there is a computable martingale d on [0, 1)
n−m

such that the set

NE (d) =
{
y ∈ [0, 1)

m | ∃ x ∈ E#
y such that d does not succeed at x

}
has computable measure 0, then E has computable measure 0.

Proof. Let d1 be such a martingale for E and let d2 be a computable martingale
on [0, 1)m that succeeds at every y ∈ NE(d1). Define two martingales on [0, 1)n,
d′1 and d′2, by

d′1(Qr(u1, ..., un)) = d1(Qr(u1, ..., un−m));

d′2(Qr(u1, ..., un)) = d2(Qr(un−m+1, ..., un)).

Note that both are computable.
Now let x = (x1, ..., xn) ∈ E#. If (xn−m+1, ..., xn) ∈ NE(d1), then d′2

succeeds at x; otherwise, d′1 succeeds at x. We conclude that the computable
martingale d = d′1 + d′2 succeeds at every x ∈ E#, whence E has computable
measure 0.

Corollary 13. For every computable measure 0 set E and n ∈ N, the set E×Rn
has computable measure 0.

Theorem 14. (main theorem, in Rn) For every n ≥ 2 there is, in every direc-
tion in Rn, a line that misses every computably random point.
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Proof. By Theorem 4, B has computable measure 0. Thus by Corollary 13,
B × Rn−2 has computable measure 0 for every n ≥ 3.

It is routine to prove double exponential time versions of Theorem 12 and
Corollary 13, and hence to extend Theorem 11 to Rn in a similar fashion.

7 Open Problems

As noted in the introduction, we conjecture that there is a line in every direction
missing every feasibly random point in Euclidean space. Proving or disproving
this conjecture may require a significant advance beyond current understanding
of the algorithmic geometric measure theory of Besicovitch and Kakeya sets.
In the meantime, more modest goals may be achieved. Can Theorem 11 be
improved to singly exponential time, or to lines instead of segments?

Besicovitch’s duality idea for constructing the set B came soon after, and was
perhaps prompted by, the Mathematical Association of America’s production
of a film in which he explained his 1919 solution of the Kakeya needle problem.
(The article [4] is based on this film.) Does a copy of this film still exist?
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