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Abstract

Fix a prime p. Given a positive integer k, a vector of positive integers A = (A1, Az, ..., Ay) and a
function I' : Fi — F,, we say that a function P : Fy — F, is (k, A, T')-structured if there exist polynomials
P, P, ..., Py : Fy — F, with each deg(P;) < A; such that for all x € Fy,

P(z) =T(Pi(x), P2(x), ..., Pu(z)).

For instance, an n-variate polynomial over the field F, of total degree d factors nontrivially exactly when
it is (2,(d — 1,d — 1), prod)-structured where prod(a,b) = a - b.

We show that if p > d, then for any fixed k, A,I", we can decide whether a given polynomial
P(z1,x2,...,2,) of degree d is (k, A,T')-structured and if so, find a witnessing decomposition. The
algorithm takes poly(n) time. Our approach is based on higher-order Fourier analysis.

1 Introduction

(Linear) Fourier analysis over a finite field F, studies the structure of exponentials of linear functions,
i.e. functions of the form w®*) where ¢ : F) — [, is a linear function and w = e2m/P ig the p’th root
of unity. Fourier analysis over finite fields has, by now, a rich history of widespread success in theoretical
computer science. Here is a sample of applications: coding theory, computational learning theory, influence of
variables in boolean functions, probabilistically checkable proofs, cryptography, communication complexity,
and quantum computing. For more, consult the lovely survey of de Wolf [dW08].

Higher-order Fourier analysis is a novel generalization of Fourier analysis. In higher-order Fourier analysis
over finite fields, we study the structure of exponentials of low-degree polynomials, i.e. functions of the form
w9®) where Q : F) —Fyisa polynomial® of bounded degree. The theory (although conceptually originating
with the classical equidistribution results of Weyl) really got its start from the spectacular proof by Gowers of
Szemerédi’s theorem [Gow98, Gow01], where the Gowers norm was introduced. Another significant influence
was the work of Host and Kra [HKO05] in ergodic theory. Subsequently, Green, Tao and Ziegler through several
works [GT08, GT10, GTZ11, GTZ, TZ10, TZ12] largely completed the research program of understanding
the relationships between different aspects of the theory. The book [Taol2] by Tao on the subject surveys
the current state of knowledge.

Green, Tao and Ziegler applied higher-order Fourier analysis to find asymptotics for various linear patterns
in the prime numbers. In theoretical computer science, low-degree polynomials over finite fields has long
been under consideration due to the use of arithmetization. Specifically, there is a long history of testing
whether a function is correlated with a low-degree polynomial, and higher-order Fourier analysis can be
immediately phrased in this context. In fact, it was shown in [BCSX11, BGS10, BFL13, BFH"13] that
higher-order Fourier analysis can be used to analyze tests not only for low-degreeness but also for any locally

IThroughout, our functions are of n variables over Fp, where n is growing but p is fixed.
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characterized affine-invariant property (see the cited papers for definitions). Besides property testing, the
Gowers norm has also been used in computer science to show worst case to average case reductions for
polynomials [KL08] and XOR lemmas for polynomials [VWO08].

In this paper, we demonstrate a new algorithmic application of higher-order Fourier analysis. Consider
the following family of properties of functions over a finite field IF,, of fixed prime order p.

Definition 1.1. Given a positive integer k, a vector of positive integers A = (A1,Aq,...;Ag) and a
function T : IE"; — Fp, we say that a function P :Fy — F), is (k, A, T')-structured if there exist polynomials
Py, Py, ..., P i B — ), with each deg(P;) < A; such that for all x € F},

P(z) =T (P (z), Py(x),. .., P(z)).
The polynomials Py, ..., Py are said to form a (k, A,T')-decomposition.

For instance, an n-variate polynomial over the field I, of total degree d factors nontrivially exactly when
it is (2, (d — 1,d — 1), prod)-structured where prod(a,b) = a - b. Informally, a degree-structural property refers
to a property from the family of (k, A,I')-structured properties.

Our main result is that every degree-structural property can be decided in polynomial time:

Theorem 1.2. For every positive integer k, every vector of positive integers A = (A1, A, ..., Ag) and
every function T : F’; — Fp, there is a deterministic algorithm Ax ar that takes as input a polynomial
P Fy — Fy of degree d < p, runs in time polynomial in n, and outputs a (k, A, T)-decomposition of P if
one exists while otherwise returning NO.

1.1 Discussion

The main result is surprisingly strong in that it holds for every k, A and I'. Thus, for instance, it immediately
implies a (deterministic) poly(n)-time algorithm for factoring an n-variate polynomial of degree d over F,,
as long as p > d and p and d are fixed. Also, as we shall observe in Section 3, the proof of Theorem 1.2
implies a polynomial time algorithm for deciding whether a d-dimensional tensor over [F), has rank at most
r, where d, p and r are constants and d < p.

We must remark that these results on factoring and tensor rank are not new, in the sense that there were
already algorithms known for stronger versions of these two problems. Specifically, for deciding constant
tensor rank, Karnin and Shpilka [KS09] showed a polynomial time algorithm for the more general problem
of reconstructing multilinear XIIY circuits with a constant number of multiplication gates. And for factoring
multivariate polynomials over finite fields, it is known [vzGK85, Sud12] how to factor in time poly(n,d,p)
deterministically and in time poly(n, d,logp) probabilistically.

However, Theorem 1.2 gives polynomial time algorithms for a whole host of problems not known to have
non-trivial solutions previously, such as whether a polynomial of degree d can be expressed as Py - P, + P3 - Py
where each Py, P>, P53, P, are of degree d—1 or less. Thus, these problems become useful targets for reductions
in future. Our main result can be described as a blackbox reconstruction algorithm as in [KS09], in the sense
that the algorithm is given blackbox query access to the polynomial and it runs in time linear in the dense
representation of the polynomial (i.e., input size is measured as (";d)). The property of having (k, A,T')-
structure is also similar in spirit to a function having a concise representation, a notion introduced by
Diakonikolas et al. in [DLM*07]. We leave open as to whether there are formal connections here.

There are two main questions raised by Theorem 1.2:

1. Does Theorem 1.2 hold when p < d? The main difficulty here seems technical and stems from the fact
that the proof of the Gowers inverse theorem for polynomials is currently very non-constructive [TZ12]
when p < d, in contrast to the case of high characteristic [GT09].

2. Is there an analogous theorem when n is fixed and d and p are growing? Such questions are probably
very difficult, because over Z,,, we do not even know how to deterministically factorize the univariate
polynomial x? — a, for a given a € Z,. In fact, in recent work, Kopparty, Saraf and Shpilka [KSS14]



have shown an equivalence between deterministic factorization of multivariate polynomials and de-
randomization of polynomial identity testing, a long-standing challenge. Polynomial time randomized
algorithms exist for factorization of course but are not known to exist for arbitrary degree-structural
properties over large fields. In particular, Neeraj Kayal (personal communication) asks whether it is
possible in randomized polynomial time to decompose a univariate polynomial P : F, — F, of degree
n<pasP =P, -P,+ P3- P, where Py, P», P35, Py are of degree < n. Even an average-case algorithm
would be interesting, meaning P is known to be formed out of random polynomials Py, Ps, P3, P4, and
the task is to recover them given access to P.

1.2 Techniques

The proof of Theorem 1.2 is actually a straightforward combination of ideas from [BFH'13] and [BHT13].
In [BFHT13], it was shown that any degree-structural property is constant query testable. That is, for all
k,A, and T', one can decide correctly, with probability at least 2/3, whether a given function is (k, A,T’)-
structured or whether it is 1%-far from any (k, A, T')-structured function, by querying the input function’s
value on only a constant number of points. The main contribution of [BFH'13] is a reduction from the
testability problem to the following combinatorial problem:

Does there exist s = s(k, A, T") such that a function is (k, A, T')-structured if and only if so is the
restriction of the function to all affine subspaces of dimension s?

In other words, is it true that if a function f is not (k, A, T')-structured, there exists a subspace of dimension
s on which the restriction of f is also not (k, A,T')-structured? [BFHT'13] gave a positive answer to this
problem (thus showing, by virtue of their main reduction, that degree-structure is testable). One can view
their answer as a solution to the search problem of finding an s-dimensional subspace on which the function
is not degree-structural. However, their proof is non-constructive, in the sense that no non-trivial algorithm
is provided for finding the witnessing s-dimensional subspace.

The main reason for this non-constructivity is that the proof in [BFH™ 13| uses a notion called the rank
of an n-variate polynomial over F, (see Section 2.2.3) which we do not know how to compute in time
polynomial in n. However, in [BHT13], it was noticed that when the polynomial degree is smaller than
the field characteristic, instead of the rank of a polynomial, one could equally well work with the Gowers
uniformity norm (see Section 2.2.2) of the polynomial, and the Gowers norm can be estimated upto constant
additive error with good probability by evaluating the polynomial on a constant number of random samples.
Via this approach, [BHT13] found an algorithmic regularity lemma for degree-d n-variate polynomials (see
Section 2.3) that runs in time O(n?) when d < p.

The main contribution of this work is observing that a decision algorithm, not just a property test,
follows if one plugs in the algorithmic regularity lemma into the analysis of [BFHT13]. The algorithm
proceeds by restricting the input function to a carefully chosen constant dimensional subspace, solving the
(finite) decomposition problem on that subspace, and then “lifting” the solution back to 7. At a high-level,
this algorithm is very similar to Kaltofen’s factorization algorithm [Kal95], where the polynomial is first
restricted to a random two-dimensional subspace, then factored using bivariate factorization algorithms, and
then lifted back to the original space. From this perspective, we show that the “restrict-solve-lift” paradigm
can be used for any degree-structural decomposition problem, not just factorization (at least when the field
order is a constant prime but larger than the degree of the input polynomial).

We hope that this work brings the techniques of higher-order Fourier analysis to the attention of a wider
audience in computer science.

1.3 Organization

In Section 2, we lay out the results from higher-order Fourier analysis which will be needed in the proof of
Theorem 1.2. We use this toolkit to finish the proof in Section 3.



2 Technical Preliminaries

From a bird’s eye viewpoint, higher-order Fourier analysis is a study of how the analytic properties of a
collection of polynomial relate to the collection’s algebraic/combinatorial structure. We make precise all the
needed notions in the subsections below.

2.1 Polynomial Factors

Given an integer d > 0, we say that a function P : Fj) — F, is a polynomial of degree d if Dy, Dp, - Dp, P =0
for all hy, ha, ..., hq € Fy, where Dy P : F)) — F) is defined as:

DpP(x) = P(x+ h) — P(x).

It is easy to check that P is a polynomial of degree d exactly when it can be written as:

§ : o i b2 i
Ciy jig,..., inl1 Lo Ty
0<Ki1,i9,...,in <p:

Sij<d

Thus, polynomials of degree 1 correspond to all the linear polynomials over F} and so on.

Given a set X, a factor is a partition of X into finitely many subset called atoms. A finite collection of
functions ¢1,...,¢c from X to some other space Y naturally defines a factor B = By, .. 4, whose atoms
are sets of the form {x : (¢1(x), p2(2),...,¢c(7)) = (y1,v2,---,yc)} for some (y1,...,yc) € Y. By an
abuse of notation, we also use B to denote the map « — (¢1(z), ..., dc(x)). Thus, the atom containing z is

identified with B(z) = (¢1(x), ..., dc(x)).

Definition 2.1. If P1,...,Pc : Fy — F is a sequence of polynomials, then the factor B = Bp, . p. is called
a polynomial factor. The complexity of B, denoted |B|, is the number of defining polynomials, C. The degree
of B is the mazimum degree among its defining polynomials Py, ..., Pc. Also, ||B|| = p® is called the order
of B; the number of nonempty atoms of B is bounded by ||B||.

We will often drop the adjective polynomial, and use “factors” to mean “polynomial factors”.

2.2 Three notions of polynomial pseudorandomness

The main results of higher-order Fourier analysis revolve around three measures of pseudorandomness for
polynomial factors. Each is a statistical test that is perfectly met by truly random polynomial factors, and
the question is how well are they met by factors of degree d.

2.2.1 Bias

The first pseudorandomness measure is the familiar notion of bias, generalizing the definition of Naor and
Naor [NN93] over Fs.

Definition 2.2 (Unbiased). The bias of a function F': Fy — T, is:

bias(F') =

B, (F0)]

z€Fy

Given a function 8 : ZT — (0,1) and a polynomial factor B defined by a sequence of polynomials
Py,...,Pc:Fy — F, the factor B is said to be f-unbiased if for every (a1, ...,ac) € {0,...,p— 139\ {0¢},

C
bias (Z aiPi> < ﬁ(C)



The following facts are straightforward and folklore.

Lemma 2.3 (Equidistribution). Given 8 :Z" — (0,1), let B be a B-unbiased polynomial factor of complexity
C. For any b € F¢:

1
Corollary 2.4 (Atom Dispersal). If B(k) = ﬁ and B is a S-unbiased polynomial factor, then all of the

||1B]| atomns of B are nonempty.

Moreover, if deg(B) < p, then polynomials defining an unbiased factor B can be composed with affine
forms to yield another unbiased factor, unless the compositions cause a trivial linear dependency among the
polynomials. Precisely:

Lemma 2.5 (Unbiased affine composition, Lemma 5.1 of [HL11]). Suppose d < p. Let B be a polynomial
factor of degree d defined by the sequence of polynomials Py, ..., Pc : Fy — Fy. Suppose B is B-unbiased for
some 3 : ZT — (0,1). For an integer k > 1, consider any set of coefficients A = {\; s : i € [C],S C [k]},
and define Py : (F2)*1 — F, as:

C

PA(:Evyla"'ayk):ZZ)‘i,SPi x"‘zyj
SCIk]

i—1 jes
Then, either Py =0 or bias(Py) < 5(C).

The following theorem?, proved in [BFH'13], uses the above Lemma 2.5 to show that a function of an
unbiased factor of degree d has the degree which one would expect from a generic collection of polynomials
of degree d.

Theorem 2.6 (Degree Preservation, Theorem 4.1 of [BFHT13]). For any positive integer d < p, there is
a function 0456 : ZF — (0,1) such that the following is true. Let B be any factor defined by polynomials
Py,...,Pc:Fy — Ty of degree < d. Suppose B is a%. -unbiased. Let T : IFI? — IFp be an arbitrary function.
Define the polynomial F : F} — F), by F(z) = ['(B(x)).

Then, for any factor B' of degree < d, if G : Fy — Ty is the polynomial G(x) = T'(B'(x)), it holds that
deg(G) < deg(F).

2.2.2 Uniformity

Bias is often a very weak measure of pseudorandomness: the bias of any linear function is 0, even though
it is clearly not a random function. We could strengthen low bias by additionally requiring that all the
Fourier coefficients be small, which would ensure that the function is not (correlated with) a linear function.
Continuing down this path leads us to the notion of uniformity, which measures the correlation of a function
with polynomials of bounded degree.

Definition 2.7 (Multiplicative Derivative). Given a function f : F) — C and an element h € F}, the

multiplicative derivative of f in direction h is the function Apf : Fy — C satisfying Ap f(z) = f(z +h)f(z)
for all x € F.

Definition 2.8 (Uniformity). Given a function f : F} — C and an integer d > 1, the Gowers uniformity
norm of order d for f is given by:

1/2¢

e =], B B (BB A ) (o)

2Versions of Lemma 2.5 and Theorem 2.6 are true when p < d also, as shown in [BFHT13], but in that case, they require
the stronger assumption of uniformity (see next section) instead of unbiasedness.



Given a function v : Z* — (0,1) and a polynomial factor B defined by a sequence of polynomials
Py,...,Pc:Fy — T, the factor B is said to be y-uniform if for every (ai,...,ac) € {0,...,p— 139\ {0¢},

Note that bias(P) = [le (P)[|y1 for any P : Fj — F. Moreover, it holds that || f|[y« < [|f[|ga+1 for any
J[:Fy — Candd > 1 [Gow98]. So:

<7(0)
Ud

where d = max; deg(a; ;).

Lemma 2.9 (Uniformity implies unbiased). If B is a polynomial factor that is y-uniform for some function
v : Zt = (0,1), then B is also y-unbiased.

2.2.3 Regularity

A third measure of pseudorandomness was introduced by Green and Tao [GT09] as a bridge between the
algebraic structure of polynomials and the analytic notions of bias and uniformity.

Definition 2.10 (Regularity). Given a function F : F}; — ), and an integer d > 1, the d-rank of F', denoted
ranky(F), is defined to be the smallest integer r such that there exist polynomials Q1,...,Q, : Fy — Fp of
degree < d — 1 and a function ' : F, — F, satisfying P(z) = T'(Q1(x),...,Qx(z)). If d =1, the 1-rank is
defined to be 0o if F' is non-constant and 0 otherwise.

Given a function R : ZT — Z% and a polynomial factor B defined by a sequence of polynomials
Py,...,Pc:Fy — Ty, the factor B is said to be R-regular if for every ay,...,ac € {0,1,...,p— 139\ {0¢},

C
ranky (Z aiPi> > R(C)
i=1

where d = max; deg(a; P;). Also, under these conditions, the rank of B is at least R(C).

Regularity and uniformity turn out to be essentially equivalent, due to the following two remarkable
theorems. The first theorem is folklore and essentially due to (linear) Fourier analysis.

Theorem 2.11 (Uniformity implies regularity). Suppose that p > d and let R : Z+ — ZT be any non-
decreasing function. Then, there is a function 'yg’lfl : Zt — (0,1) such that the following holds. Any

polynomial factor of degree d that is 'yg’lfl -uniform is also R-regular.
The second theorem is really the key piece of higher-order Fourier analysis for polynomials.

Theorem 2.12 (Regularity implies uniformity, Proposition 6.1 of [GT09]). Suppose that p > d, and let
v :Z* — (0,1) be any non-increasing function. Then, there is a function R%"b : ' — Z such that the

following holds. Any polynomial factor of degree d that is R%’ 12-regular is also y-uniform.

Remark 2.13. Importantly, when d < p, fyg’}l?’l is explicitly known, given d and R. In other words, given

access to an evaluation oracle for R, 'yg’lf’l is polynomial-time computable. Similarly, R%’”b is explicitly
known. ' '

While unbiasedness and uniformity are analytic properties of a factor, regularity is an algebraic notion
and is hence more amenable to algebraic operations on the function. For instance, we have:

Lemma 2.14 (Subspace Restriction, Lemma 2.13 of [BFH'13]). Suppose P : Fy — Fp is a polynomial of

degree d and rank r, where r > p+1. Let A be a hyperplane in Fy, and denote by P’ the restriction of P to

A. Then, P' is a polynomial of degree d and rank > r — p, unless d =1 and P is constant on A.



2.3 Algorithmic Regularity Lemma

The celebrated Szemerédi graph regularity lemma [Sze78] permits the decomposition of an arbitrary graph
into bipartite subgraphs which are regular (in the graph-theoretic sense). Actually, more strongly, given any
partitioning of the vertices, Szemerédi’s regularity lemma, roughly speaking, yields a refined partitioning
such that most of the bipartite graphs between the new parts are regular.

One can carry out an analogous type of refinement for our notions of regularity also. First, let us specify
what we mean by refinements of a factor.

Definition 2.15 (Semantic and syntactic refinements). B’ is called a semantic refinement (or simply, a
refinement ) if the partition induced by B' is a combinatorial refinement of the partition induced by B. In
other words, if for every x,y € Fyy, B'(z) = B'(y) implies B(x) = B(y). B is called a syntactic refinement of
B if the sequence of polynomials defining B’ extends that of B. A syntactic refinement is clearly a semantic

refinement but not necessarily, vice versa.

The algorithmic regularity lemma of [BHT13] (analogous to the algorithmic version [ADLT94] of Sze-
merédi’s regularity lemma) is as follows:

Theorem 2.16 (Uniform refinement, Lemma 4.1 of [BHT13]). Suppose d < p is a positive integer, p € (0,1),
and v : ZT — (0,1) is a non-increasing function. There is a function ng(iG 1 ZT — Z* and an algorithm
that takes as input a factor B of ¥, of degree d, runs in time O(n?) and with probability 1 — p, outputs a
~y-uniform factor B where B is a refinement of B, is of degree d, and |l§’| < C%({G(\B\)

Combining with Theorem 2.11 immediately implies:

Corollary 2.17 (Regular refinement). Suppose d < p is a positive integer, p € (0,1) and R : ZT — Z* is
a non-decreasing function. There is a function C;f? : Zt — Z% and an algorithm that takes as input a
factor B of ) of degree d, runs in time O(n4) and with probability 1 — p, outputs a R-regular factor B where
B is a refinement of B, is of degree d, and |B| < C’g’d7(|l3|). Additionally, if B is defined by polynomials
Py, Py, ..., P, then we can find functions I'y,..., T, : IF‘LBl — T, such that P;(x) = Ty(B(z)) for every
i€ [m].

Moreover, if B is itself a syntactic refinement of some B’ that is of rank at least R(|B|) + 1, then B will
also be a syntactic refinement of B'.

The second-to-last sentence of Corollary 2.17 comes from observing that the proof of Lemma 4.1 in
[BHT13] explicitly constructs the functions I';. The last sentence of Corollary 2.17 follows from Lemma 3.17
of [BFL13].

3 The main proof

First, we prove that every degree-structural property is in randomized polynomial time.

Theorem 3.1. If p > d, then for any fized k, A and T, there is a randomized algorithm which given a
polynomial P : ¥ — F;, of degree d runs in time O(nt1) and has the following behavior:

1. If P is (k, A, T)-structured, with probability 2/3, it finds a (k, A, T')-decomposition of P.
2. Otherwise, it always outputs NO.

Proof. Let R : Zt — Z* be defined as R(m) = T(Cé’i7(m+k))+C’§’.dl7(m+k)+p for a function r : Z+ — Z+
to be fixed later. First, we apply Corollary 2.17 to the factor defined by { P} so that with probability 9/10,
we find an R-regular polynomial factor B of degree d defined by polynomials Py, P, ..., Pc : Fjy — F), such
that P(z) = G(B(x)) for some G : F§ — F,. Here, C < Cf4(1) = O(1).

If n < Cd, then we can decide whether f is (k, A,T')-structured by brute force in O(1) time.



Otherwise, we are in the case n > Cd. From each P;, pick a monomial m; with degree equal to deg(F;).
Since n > Cd, there exists g € [n] such that z;, does not appear in any of the m;’s. Let P{, P;,..., P} be
P1|xi0 —0, PQ\MO —05--- ,PC|IZ.0 —o respectively, and let B’ be the factor defined by these polynomials. Clearly,
deg(P}) = deg(P;) for each ¢ € [C]. Moreover, by Subspace Restriction Lemma 2.14, B" is (R — p)-regular.

Recursively, decide (k, A, T')-structure for the polynomial pp \z —o on n — 1 variables. Note that:

P'(&) = G(P|(x), Py(a), .., Po(a)).

If P’ is not (k, A,T')-structured, then clearly P cannot be, and the algorithm can output NO. Otherwise,

suppose that:
P'(z) =T(S1(z), S2(z),...,Sk(z))

where deg(S7),...,deg(Sk) are at most Ay, ..., Ag respectively. We need to show how to extract (k, A,T)-
structure for P from this decomposition for P’.

Use Corollary 2.17 to find, with probability at least 9/10, an r-regular refinement B’ of the factor defined
by {P{,...,P.,51,...,Sk}. Note that the rank of B’ is at least T(|B’|), while the rank of the factor defined
by {Pf,...,P¢} is at least R(C) —p = r(Cy 17(0 + k) +Cy 17(0 + k) = r(|B']) + |B/|. Because of the
last part of Corollary 2.17, B’ is a syntactic refinement of of {Pj,..., P5}. That is, we obtain a polynomial
factor B' = {Py,..., P, S},...,Sp} which has degree d and rank > r(C'+ D), where C+ D < Cy' 17(C—|—k’)
and where S;(x) = Gi(P{(z),...,Pt(x),5](x),...,5p(x)) for some function G; : FSTP — F,. Thus, we
have that for all z:

G(Pi(x),...,Po(2))

Note that by Corollary 2.17, we find the functions Gy, ..., Gy explicitly.
Let y(m) = 21%"” and suppose r(m) > R%”b(m). Then, by Theorem 2.12, Lemma 2.9 and Corollary 2.4,

we see that B'(x) acquires every possible value in its range. Thus, we have the identity:
G(al,...,ac) = F(Gl(al,...,ac,bl,...,bD)7...,Gk(al,...,ac,bl,...,bD))

for all aq,...,ac,bi,...,bp € Fp. In particular:

P(z) = G(Pi(),...,Pc(x))
=T(G1(P(),...,Pc(),0,...,0),...,Ge(Pi(2),..., Pe(x),0,...,0)

Define Q;(z) = Gi(Pi(x),...,Pco(x),0,...,0) for each i € [k]. Now, suppose r(m) > R 226(m). By
Lemma 2.9 and Theorem 2.6, since deg(P;) = deg(FP/), it follows that deg(Q;) < deg(S;) < A; for each
i € [k]. Then, our (k, A,T')-decomposition is given by:

P(z) =T(Q1(x), ..., Qr(x))

Hence, set r = maX(R2 197 R 12 6).

In order to see the guarantees in the theorem statement, consider repeating the above algorithm infinitely
until a (k, A,I')-decomposition is discovered for P. If P is not (k, A,T')-structured, then any candidate
(k, A, T')-decomposition discovered (due to the error probability in Corollary 2.17) can be ruled out in O(n?)
time. Otherwise, if P is (k, A, T')-structured the expected time before a valid (k, A,T')-decomposition is
discovered will be the expected time for discovering a decomposition for P’ plus expected O(n?) time for
finding valid regular refinements. Thus, the expected time to find a (k, A, I')-decomposition for P is O(nd+1).
Therefore, if we stop repeating the algorithm after O(n%*!) time steps, our desired result is true by Markov’s
theorem. ]



Theorem 3.1 can be derandomized using existing pseudorandom generators for low-degree polynomials
[Vio09] to yield Theorem 1.2. This idea was suggested by Shachar Lovett.

Proof of Theorem 1.2. If we unravel the proof of Theorem 3.1, we find that the only uses of randomness
are in choosing a constant number of random points uniformly from Fj and querying the value of degree-d
polynomials on them. In particular, there are three instantiations of sampling:

1. In Lemma 2.1 (Algorithmic Bogdanov-Viola Lemma) of [BHT13], for a degree-d polynomial P : F} —
F,, the distribution of P(x) is estimated upto constant statistical distance by sampling P at a constant
number of points.

2. In Lemma 2.1 (Algorithmic Bogdanov-Viola Lemma) of [BHT13], for a degree-d polynomial P, it is
shown that with probability > 1/3, a tuple h = (hy, ha, ..., h¢) of C = O(1) many uniformly chosen
random points from F}; has the property that for at least (1 — o)p™ many x € Fy, it holds that for
every t € I

0
lewh) t— PI‘[P( )=1]| < -
i=1 p
3. In Lemma 4.1 (Uniform Refinement) of [BHT13], for a degree-d polynomial @ : F;y — F,, the quantity
lle (Q(z))||y» is estimated upto constant additive error by sampling a constant number of points.

Our key tool to derandomize these sampling steps will be existing pseudorandom generators that fool
polynomials over finite fields [BV07, Lov09, Vio09]. First, we formalize what we require of these PRGs:

Definition 3.2. A distribution Z on IF}; e-fools degree-d polynomials in n variables over Iy, if for every such
polynomial P, we have:

| E[e(P(2))] — Ele(PU))]| <€

where U is the uniform distribution over F.

The lemma below showing that such a distribution Z can fool multiple polynomials simultaneously will
be useful:

Lemma 3.3. If Z e-fools degree-d polynomials, then for any k degree-d polynomials Py, ..., Py:
jPZr[Pl(Z) =t A A PUZ) = ty] = PEIPU(U) =ty A+ A Py(U) = tk]’ < phe
t1,...,tx €Fp

Proof. Observe that:

Pr(Pi(Z) =ti Ao APu(Z) = ti] = Z (M(PL(Z —tl))---% > e(M(Pe(2) — ti))

% | =

AL€EF,

k
ik > e( ZAt)E (ZA@(Z))
p A, A €Fp Z i=1

Thus:
3 ’PZr[Pl(Z) =t A APUZ) = t] = PEIPL(U) =ty A+ A Py(U) = tk}‘

t1,..,tk €Fp

5 T e

t1,. 0tk €Fp | A1, , AL EFY

1
<7k.pk.pk5:pk5
p

where we used the fact that linear combinations of degree-d polynomials are also degree-d polynomials. [



We can now invoke the following positive result of Viola.

Theorem 3.4 ([Vio09]). There is an explicit generator g : Fy — F} whose output distribution e-fools degree-d
polynomials with seed length s = dlog,n+ O(d - 2% - log(1/e)).

Let us see now how to derandomize the three sampling steps listed above, while blowing up the running time
only polynomially.

1. This step is easy to handle. For the generator g from Theorem 3.4, look at (P(g(z)) : x € F;). By
definition of g, we obtain the required approximation of P(U). This takes time O(p®) = O(n?).

2. The proof of Lemma 2.1 in [BHT13] shows that:

Z 1p(zin)= [P(y) = 1]

z,hy,... hc<—U

Now, for any given z, consider the k polynomials Q1,...,Qk : IFI?” — F, defined as: Q;(ha,...,h¢c) =
P(x + h;). Invoking Lemma 3.3 on the degree-d polynomials Q1,...,Q¢, we have that if Z e-fools
degree-d polynomials on FS”, then the L; distance between the distributions (Q1(Z2),...,Qr(Z)) and
(Q1(U),...,Qr(U)) is at most p®e. Since this is true for every x, we have that:

r c
é 20
P 1 — Pr[P ] >—| <= +p°
e s ; P(a+hi)=t r[ (y) =t]| > m] <5 tpe
By choosing ¢ sufficiently small, we can therefore ensure there exist some hq, ..., hc in the support of
7 such that
1)

P — 1 -P t — 1

2 X;Pm-i-h)t r[() ]>m <o (1)
To search for hq,...,hc, we can simply iterate through all possible selections of C' elements from the
support of Z, where Z = g(s) from Theorem 3.4 and s = dlog, Cn + O(1). The above argument
guarantees that there will be one selection of hq, ..., he where (1) holds. This iteration multiplies the

running time of the algorithm by an overhead factor of (p*)¢ = poly(n).

3. For each I C [k], let Q : IFZ(,kH)" — ), be defined as Qr(z,y1,¥2,...,yx) = Q(x + 3_,c; vi). Invoking

Lemma 3.3, letting U be the uniform distribution on IF(kH , and letting Z be a distribution that
e-fools degree-d polynomials on IF](DHI)", we have that (Qr(z,y1,---,¥k) @ T,y1,---,Ykx — Z) and

(Qr(z,y1,--,Yk) T, Y1, ..,y < U) are pzks—close in Li-distance. Thus:

E H e ((*1)‘I|Q1(I,y17--~7yk)>

T Y1, Y2
Y1 Yk ICik]

is away from ||Q||?]kk only by an additive constant controlled by €. Using Z from Theorem 3.4, this
expectation can be computed in poly(n) time.

O

Tensor Rank Although tensor rank is not degree-structural by definition, it has a similar flavor and

indeed can be decided by the same algorithm presented above. Given a tensor A : [n]” — F,, and r variables
XO X0 over [, consider the natural set-multilinear polynomial f4 : F)" — Fy:

FaXO XMy = N A, HX(J

i1,i2,...,ir€[N]

10



Then A has tensor rank s exactly when there are rs linear forms £11,...,015,.. ., br1,. .. b s Fp —

such that: -
fA(X(l),...,X(’”)) - ZH&J(X(Z'))

j=1i=1

This is close to being degree-structural except that every ¢; ; is only allowed to depend on X () and not on
the rest of the input. However, upon examining the proof of Theorem 3.1, it can be checked that if in the
base case, the decomposition respects this partitioning of variables, then so will be the case at the end of
the algorithm.
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