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Abstract

This paper studies the elementary symmetric polynomials Sk(x) for x ∈ Rn.

We show that if |Sk(x)|, |Sk+1(x)| are small for some k > 0 then |S`(x)| is also

small for all ` > k. We use this to prove probability tail bounds for the symmetric

polynomials when the inputs are only t-wise independent, that may be useful in

the context of derandomization. We also provide examples of t-wise independent

distributions for which our bounds are essentially tight.

1 Introduction

The elementary symmetric polynomials are a basic family of functions that are stable

under any permutation of the inputs. The k’th symmetric polynomial is defined as1

Sk(a) =
∑

T⊆[n]:|T |=k

∏
i∈T

ai

for all a = (a1, a2, . . . , an). They are defined over any field but we study them over

the real numbers. They appear as coefficients of a univariate polynomial with roots

−a1, . . . ,−an ∈ R. That is,

∏
i∈[n]

(ξ + ai) =
n∑
k=0

ξkSn−k(a).

This work focuses on their growth rates. Specifically, we study how local information

on Sk(a) for two consecutive values of k implies global information for all larger values
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1We omit the dependence on n from the notation. It is clear from the context.
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of k. Inequalities in these polynomials have been studied in mathematics, dating back

to classical results of Newton and Maclaurin. For a survey of such inequalities, we refer

the reader to [4].

An interesting property over the real numbers is that if p(ξ) is a real univariate

polynomial of degree n with n nonzero roots and p′(0) = p′′(0) = 0 then p ≡ 0. This

follows by simple properties of the symmetric polynomials over the real numbers: We

may write

p(ξ) =
∏
i∈[n]

(ξbi + 1) =
n∑
k=0

ξkSk(b).

The condition on the derivatives of p is equivalent to S1(b) = S2(b) = 0, and the following

fact completes the argument.

Fact A. Over the real numbers, if S1(b) = S2(b) = 0 then b = 0.

This does not hold over all fields, for example, the polynomial p(ξ) = ξ3 + 1 is of

degree three, has three nonzero complex roots and p′(0) = p′′(0) = 0.

A robust version of Fact A was recently proved in [3]: For every a ∈ Rn and k ∈ [n],

|Sk(a)| ≤
(
S2
1(a) + 2|S2(a)|

)k/2
. (1)

That is, if S1(a), S2(a) are small in absolute value, then so is everything that follows.

We provide an essentially optimal bound.

Theorem 1. For every a ∈ Rn and k ∈ [n],

|Sk(a)| ≤
(

6e(S2
1(a) + |S2(a)|)1/2

k1/2

)k
.

The parameters promised by Theorem 1 are tight up to an exponential in k which is

often too small to matter (we do not attempt to optimise the constants). For example,

if ai = (−1)i for all i ∈ [n] then |S1(a)| ≤ 1 and |S2(a)| ≤ n + 1 but Sk(a) is roughly

(n/k)k/2.

The argument is quite general, and similar bounds may be obtained for functions

that are recursively defined. Our proof is analytic and uses the method of Lagrange

multipliers, and is very different from that of [3] which relied on the Newton-Girrard

identities.

Stronger bounds are known when the inputs are nonnegative. When ai ≥ 0 for all

i ∈ [n], the classical Maclaurin inequalities imply that

Sk(a) ≤
( e
k

)k
(S1(a))k.



In contrast, when we do not assume non-negativity, one cannot hope for such bounds to

hold under the assumption that |S1(a)| or any single |Sk(a)| is small (cf. the alternating

signs example above).

A more general statement than Fact A actually holds (see Appendix A for a proof).

Fact B. Over the reals, if Sk(a) = Sk+1(a) = 0 for k > 0 then S`(a) = 0 for all ` ≥ k.

We prove a robust version of this fact as well: a twice-in-a-row bound on the increase

of the symmetric functions implies a bound on what follows.

Theorem 2. For every a ∈ Rn, if Sk(a) 6= 0 and∣∣∣∣(k + 1

k

)
Sk+1(a)

Sk(a)

∣∣∣∣ ≤ C and

∣∣∣∣(k + 2

k

)
Sk+2(a)

Sk(a)

∣∣∣∣ ≤ C2

then for every 1 ≤ h ≤ n− k,∣∣∣∣(k + h

k

)
Sk+h(a)

Sk(a)

∣∣∣∣ ≤ (6eC

h1/2

)h
.

We now discuss applications of our bounds in the context of pseudorandomness.

1.1 Tail bounds under limited independence

Pseudorandomness studies the possibility of removing randomness from randomized al-

gorithms while maintaining functionality. A central notion in this study is t-wise inde-

pendence. The n random variables X1, . . . , Xn are t-wise independent if every subset

of k of them are independent. It turns out that one may produce t-wise independent

distributions using much fewer bits than are required for producing a fully independent

distribution [1, 2], and this is of course useful for derandomization.

The authors of [3] used this idea to construct pseudorandom generators for several

families of tests including read-once DNF formulas and combinatorial rectangles. A

key part of their proof was to show that the expected value of
∏

i∈[n](1 + Xi) does not

significantly change between the case the inputs are independent and the case the inputs

are only t-wise independent, under the assumption that E[Xi] = 0 for all i ∈ [n] and∑
i Var[Xi]� 1.

A standard way to estimate
∏

i∈[n](1 +Xi) is by taking a logarithm and using known

concentration bounds for sums of independent random variables. This method gives an

estimate of
∏

i∈[n](1 +Xi) that is good up to some 1± ε power rather than an additive

factor. Observing that

∏
i∈[n]

(1 +Xi) =
n∑
`=0

S`(X1, . . . , Xn),



we may obtain better approximations by understanding the symmetric polynomials. A

key ingredient of [3] is indeed about controlling

n∑
`=k

|S`(X1, . . . , Xn)|,

assuming the distribution is O(k)-wise independent (but under stronger assumptions

involving higher moments).

Let X = (X1, . . . , Xn) be a vector of real valued random variables so that

E[Xi] = 0

for all i ∈ [n], and denote

σ2 =
∑
i∈[n]

Var[Xi].

Let U denote the distribution where the coordinates of X are independent. It is easy to

show (see Lemma 4) that

EX∈U [|S`(X)|] ≤ σ`√
`!
.

In particular, if σ2 < 1 then E[|S`|] decays exponentially with `. For t > 0 and tσ ≤ 1/2,

we may also conclude (see Corollary 5)

Pr
X∈U

[
n∑
`=k

|S`(X)| ≥ 2(tσ)k

]
≤ 2t−2k. (2)

Bounding E[|S`|] for ` ≤ k for more general X only requires the distribution to be

(2k)-wise independent. It can be shown (see Section 4) that this is not enough to get

strong bounds on E[|S`|] for ` > 2k + 1. Nevertheless, we are able to show a tail bound

which holds under limited independence, due to properties of the symmetric polynomials.

Theorem 3. Let D denote a distribution over X = (X1, . . . , Xn) where X1, . . . , Xn

are (2k + 2)-wise independent. Assume E[Xi] = 0 for all i ∈ [n], and denote σ =∑
i∈[n] Var[Xi]. For t > 0 and2 16etσ ≤ 1,

Pr
X∈D

[
n∑
`=k

|S`(X)| ≥ 2(6etσ)k

]
≤ 2t−2k, (3)

2A weaker but more technical assumption on t, σ, k suffices, see Equation (16).



and if we denote p(x1, . . . , xn) =
∏

i∈[n](1 + xi) then3

Pr
X∈D

[
|p(X)− 1| ≥ 2(6etσ)k

]
≤ 2t−2k.

Comparing Equation (3) to Equation (2) we see that it has a similar asymptotic

behaviour. A key ingredient in our proof is to show that although we cannot upper

bound the expectation of |S`| for large ` under k-wise independence alone, we can still

show good tail bounds for it. Lemma 6 below shows that for t > 0 and for ` ≥ k, the

bounds

|S`(X)| ≤ (6etσ)`
(
k

`

)`/2
hold except with D-probability 2t−2k.

In Section 4, we give an example of a (2k + 2)-wise independent distribution where

E[|S`|] for ` ∈ {2k+3, . . . , n−2k−3} is much larger than under the uniform distribution.

This shows that one can only hope to show tail bounds for larger `. The same example

also shows that our tail bounds are close to tight.

To obtain their concentration bounds, the authors of [3] used Equation (1) which

required them to start with a stronger assumption on X1, . . . , Xn: They require a bound

on higher moments, i.e.,

E[X2k
i ] ≤ (2k)2kσ2k

i

for all i ∈ [n]. They additionally require σ = o(1) as opposed to being bounded by

some constant. Bounding the higher moments introduces technical difficulties and case

analyses in their proofs. In contrast, bounding the second moments (as we require here)

is immediate. Theorem 3 can be used to simplify their proofs.

Theorem 2 is proved by a simple reduction from the case of general k to the case

of k = 0, and then applying Theorem 1. In place of Theorem 1, one could plug in the

bound given by Equation (1). However, it seems that the resulting bound will not be

strong enough to prove Theorem 3, and the asymptotic improvement given by Theorem

1 is crucial.

2 Inequalities for symmetric polynomials

Proof of Theorem 1. It will be convenient to use

E2(a) =
∑
i∈[n]

a2i .

3Observe EX∈U [p(X)] = 1.



By Newton’s identity, E2 = S2
1 − 2S2 so for all a ∈ Rn,

S2
1(a) + E2(a) ≤ 2(S2

1(a) + |S2(a)|).

It therefore suffices to prove that for all a ∈ Rn and k ∈ [n],

S2
k(a) ≤ (16e2(S2

1(a) + E2(a)))k

kk
.

We prove this by induction. For k ∈ {1, 2}, it indeed holds. Let k > 2. Our goal will be

upper bounding the maximum of the (projectively defined) function

φk(ξ) =
S2
k(ξ)

(S2
1(ξ) + E2(ξ))k

under the constraint that S1(ξ) is fixed. Choose a 6= 0 to be a point that achieves the

maximum of φk. We assume, without loss of generality, that S1(a) is non-negative (if

S1(a) < 0, consider −a instead of a). There are two cases to consider:

The first case is that for all i ∈ [n],

ai ≤
2k1/2(S2

1(a) + E2(a))1/2

n
. (4)

In this case we do not need the induction hypothesis and can in fact replace each ai by

its absolute value. Let P ⊆ [n] be the set of i ∈ [n] so that ai ≥ 0. Then by Equation

(4), ∑
i∈P

|ai| ≤ 2k1/2(S2
1(a) + E2(a))1/2.

Note that

S1(a) =
∑
i∈P

|ai| −
∑
i 6∈P

|ai| ≥ 0.

Hence ∑
i 6∈P

|ai| ≤
∑
i∈P

|ai| ≤ 2k1/2(S2
1(a) + E2(a))1/2.

Overall we have ∑
i∈[n]

|ai| ≤ 4k1/2(S2
1(a) + E2(a))1/2.



We then bound

|Sk(a1, . . . , an)| ≤ Sk(|a1|, . . . , |an|)

≤
( e
k

)k∑
i∈[n]

|ai|

k

By the Maclaurin identities

≤
(

4e√
k

)k
(S2

1(a) + E2(a))k/2.

The second case is that there exists i0 ∈ [n] so that

ai0 >
2k1/2(S2

1(a) + E2(a))1/2

n
. (5)

In this case we use induction and Lagrange multipliers. For simplicity of notation, for a

function F on Rn denote

F (−i) = F (a1, a2, . . . , ai−1, ai+1, . . . , an)

for i ∈ [n]. So, for every δ ∈ Rn so that
∑

i δi = 0 we have φk(a + δ) ≤ φk(a). Hence4,

for all δ so that
∑

i δi = 0,

φk(a) ≥ S2
k(a+ δ)

(S2
1(a+ δ) + E2(a+ δ))k

≥ (Sk(a) +
∑

i δiSk−1(−i) +O(δ2))2

(S2
1(a) + E2(a) + 2

∑
i aiδi +O(δ2))k

≥ S2
k(a) + 2Sk(a)

∑
i δiSk−1(−i) +O(δ2)

(S2
1(a) + E2(a))k + 2k(S2

1(a) + E2(a))k−1
∑

i aiδi +O(δ2)
.

Hence, for all δ close enough to zero so that
∑

i δi = 0,

S2
k(a)

(S2
1(a) + E2(a))k

≥ S2
k(a) + 2Sk(a)

∑
i δiSk−1(−i) +O(δ2)

(S2
1(a) + E2(a))k + 2k(S2

1(a) + E2(a))k−1
∑

i aiδi +O(δ2)
,

or ∑
i

δi
(
aiSk(a)k − (S2

1(a) + E2(a))Sk−1(−i)
)
≥ 0.

4Here and below, O(δ2) means of absolute value at most C · ‖δ‖∞ for C = C(n, k) ≥ 0.



For the above equality to hold, it must be that there is λ so that for all i ∈ [n],

aiSk(a)k − (S2
1(a) + E2(a))Sk−1(−i) = λ.

Sum over i to get

λn = S1(a)Sk(a)k − (S2
1(a) + E2(a))(n− (k − 1))Sk−1(a).

Thus, for all i ∈ [n],

aiSk(a)k − (S2
1(a) + E2(a))Sk−1(−i)

=
S1(a)Sk(a)k − (S2

1(a) + E2(a))(n− (k − 1))Sk−1(a)

n
,

or

Sk(a)k

(
ai −

S1(a)

n

)
= (S2

1(a) + E2(a))(Sk−1(−i)− Sk−1(a)) +
(k − 1)(S2

1(a) + E2(a))Sk−1(a)

n
.

This specifically holds for i0, so using (5) we have∣∣∣Sk(a)k
ai0
2

∣∣∣
<

∣∣∣∣Sk(a)k

(
ai0 −

S1(a)

n

)∣∣∣∣
≤
∣∣(S2

1(a) + E2(a))ai0Sk−2(−i0)
∣∣+

∣∣∣∣(k − 1)(S2
1(a) + E2(a))Sk−1(a)

n

∣∣∣∣ ,
or

|Sk(a)|

≤
∣∣∣∣2(S2

1(a) + E2(a))Sk−2(−i0)
k

∣∣∣∣+

∣∣∣∣2(k − 1)(S2
1(a) + E2(a))Sk−1(a)

nkai0

∣∣∣∣
<

∣∣∣∣2(S2
1(a) + E2(a))Sk−2(−i0)

k

∣∣∣∣+

∣∣∣∣(S2
1(a) + E2(a))1/2Sk−1(a)

k1/2

∣∣∣∣ .
To apply induction we need to bound S2

1(−i0) + E2(−i0) from above. Since

S2
1(a) + E2(a)− S2

1(−i0)− E2(−i0) = a2i0 + 2ai0S1(−i0) + a2i0
= 2ai0S1(a) ≥ 0.



we have the bound

S2
1(−i0) + E2(−i0) ≤ S2

1(a) + E2(a).

Finally, by induction and the upper bound above,

|Sk(a)| ≤ 2(S2
1(a) + E2(a))

k

(16e2(S2
1(−i0) + E2(−i0)))(k−2)/2

(k − 2)(k−2)/2

+
(S2

1(a) + E2(a))1/2

k1/2
(16e2(S2

1(a) + E2(a)))(k−1)/2

(k − 1)(k−1)/2

≤ (16e2(S2
1(a) + E2(a)))k/2

kk/2

(
2

16e2
(
1− 2

k

)(k−2)/2 +
1

4e
(
1− 1

k

)(k−1)/2
)

<
(16e2(S2

1(a) + E2(a)))k/2

kk/2
.

Proof of Theorem 2. The proof is by reduction to Theorem 1. Assume a1, . . . , am are

nonzero and am+1, . . . , an are zero. Denote a′ = (a1, . . . , am) and notice that for all5

k ∈ [n],

Sk(a) = Sk(a
′).

Write

p(ξ) =
∏
i∈[m]

(ξai + 1) =
m∑
k=0

ξkSk(a).

Derive k times to get

p(k)(ξ) = Sk(a)k!

((
m

k

)
Sm(a)

Sk(a)
ξm−k +

(
m− 1

k

)
Sm−1(a)

Sk(a)
ξm−k−1 + . . .

. . .+

(
k + 1

k

)
Sk+1(a)

Sk(a)
ξ + 1

)
.

Since p has m real roots, p(k) has m− k real roots. Since p(k)(0) 6= 0, there is b ∈ Rm−k

so that

p(k)(ξ) = Sk(a)k!
∏

i∈[m−k]

(ξbi + 1).

For all h ∈ [m− k],

Sh(b) =

(
k + h

k

)
Sk+h(a)

Sk(a)
.

5For k > m we have Sk(a) = 0 so there is nothing to prove.



By assumption,

|S1(b)| ≤ C and |S2(b)| ≤ C2.

Theorem 1 implies

|Sh(b)| =
∣∣∣∣(k + h

k

)
Sk+h(a)

Sk(a)

∣∣∣∣ ≤ (6eC)h

hh/2
.

3 Tail bounds under limited independence

In this section we work with the following setup: Let X = (X1, . . . , Xn) be a vector of

real valued random variables so that E[Xi] = 0 for all i ∈ [n]. Denote σ2
i = Var[Xi] and

σ2 =
∑
i∈[n]

σ2
i .

The goal is proving a tail bound on the behaviour of the symmetric functions under

limited independence.

We start by obtaining tail estimates, under full independence. Let U denote the

distribution over X = (X1, . . . , Xn) where X1, . . . , Xn are independent.

Lemma 4. EX∈U [S2
` (X)] ≤ σ2`

`!
.

Proof. Since the expectation of Xi is zero for all i ∈ [n],

E[S2
` (X)] =

∑
T,T ′⊂[n]:|T |=|T ′|=`

E

[∏
t∈T

Xt

∏
t′∈T ′

Xt′

]

=
∑

T⊂[n]:|T |=`

E

[∏
t∈T

X2
t

]
=

∑
T⊂[n]:|T |=`

∏
t∈T

σ2
t

≤ 1

`!

∑
i∈[n]

σ2
i

`

=
σ2`

`!
.

Corollary 5. For t > 0 and ` ∈ [n], by Markov’s inequality,

Pr
X∈U

[
|S`(X)| ≥

(
e1/2tσ

`1/2

)`
≥ (tσ)`√

`!

]
≤ 1

t2`
. (6)



If 2e1/2tσ ≤ k1/2 then by the union bound

Pr
X∈U

[
n∑
`=k

|S`(X)| ≥ 2

(
e1/2tσ

k1/2

)k]
≤ 1

t2k − t2(k−1)
. (7)

We now consider limited independence.

Lemma 6. Let D denote a distribution over X = (X1, . . . , Xn) where X1, . . . , Xn are

(2k + 2)-wise independent. Let t ≥ 1. Except with D-probability at most 2t−2k, the

following bounds hold for all ` ∈ {k, . . . , n}:

|S`(X)| ≤ (6etσ)`
(
k

`

)`/2
. (8)

Proof. In the following the underlying probability distribution over X is D. By Lemma

4, for i ∈ {k, k + 1},

E[S2
i (X)] ≤ σ2i

i!
.

Hence by Markov’s inequality,

Pr

[
|Si(X)| ≥ (tσ)i√

i!

]
≤ t−2i.

From now on, condition on the event that

|Sk(X)| ≤ (tσ)k√
k!

and |Sk+1(X)| ≤ (tσ)k+1√
(k + 1)!

, (9)

which occurs with probability at least 1−2t−2k. Fix x = (x1, . . . , xn) such that Equation

(9) holds.

We claim that there must exist k0 ∈ {0, . . . , k − 1} for which the following bounds

hold:

|Sk0(x)| ≥ (tσ)k0√
k0!

, (10)

|Sk0+1(x)| ≤ (tσ)k0+1√
(k0 + 1)!

, (11)

|Sk0+2(x)| ≤ (tσ)k0+2√
(k0 + 2)!

. (12)



To see this, mark point j ∈ {0, . . . , k + 1} as high if

|Sj(x)| ≥ (tσ)j√
j!

and low if

|Sj(x)| ≤ (tσ)j√
j!
.

A point is marked both high and low if equality holds. Observe that 0 is marked high

(and low) since S0(x) = 1 and k and k+1 are marked low by Equation (9). This implies

the existence of a triple k0, k0 + 1, k0 + 2 where the first point is high and the next two

are low.

Let γ > 0 be the smallest number so that the following inequalities hold:

|Sk0+1(x)| ≤ |Sk0(x)| γ√
k0 + 1

, (13)

|Sk0+2(x)| ≤ |Sk0(x)| γ2√
(k0 + 1)(k0 + 2)

. (14)

By definition, one of Equations (13) and (14) holds with equality so

|Sk0(x)| = max

{
|Sk0+1(x)|

√
k0 + 1

γ
,
|Sk0+2(x)|

√
(k0 + 1)(k0 + 2)

γ2

}
.

Observe further that γ ≤ tσ by Equations (10), (11) and (12). Combining this with the

bounds in Equations (11) and (12)

|Sk0(x)| ≤ max

{
(tσ)k0+1

γ
√
k0!

,
(tσ)k0+2

γ2
√
k0!

}
=

(tσ)k0+2

γ2
√
k0!

. (15)

Equations (13) and (14) let us apply Theorem 2 with C = γ
√
k0 + 1 and h ≥ 3 to

get ∣∣∣∣Sk0+h(x)

Sk0(x)

∣∣∣∣ ≤ (6eγ)h
(k0 + 1)h/2

hh/2
(
k0+h
k0

) .
Bounding |Sk0| by Equation (15), we get

|Sk0+h(x)| ≤ (6eγ)h
(k0 + 1)h/2

hh/2
(
k0+h
k0

) (tσ)k0+2

γ2
√
k0!
≤ (6etσ)k0+h

(k0 + 1)h/2

hh/2
√
k0!
(
k0+h
h

) .



Since (
k0 + h

h

)
≥ max

{(
k0 + h

k0

)k0
,

(
k0 + h

h

)h}
≥ (k0 + h)(k0+h)/2

k
k0/2
0 hh/2

,

we have

(k0 + 1)h/2

hh/2
√
k0!
(
k0+h
h

) ≤ (k0 + 1

h

)h/2
k
k0/2
0 hh/2

(k0 + h)(k0+h)/2
≤
(
k0 + 1

k0 + h

)(k0+h)/2

.

Therefore, denoting ` = k0 + h, since k0 + 1 ≤ k,

|S`(x)| ≤ (6etσ)`
(
k

`

)`/2
.

Proof of Theorem 3. As in Lemma 6, fix x = (x1, . . . , xn) such that Equation (9) holds

(the random vector X has this property with D-probability at least 1− 2t−2k). By the

proof of lemma, since by assumption 6etσ < 1/2,

n∑
`=k

|S`(x)| ≤ (tσ)k

k!
+

(tσ)k+1√
(k + 1)!

+
n∑

`=k+2

(6etσ)`
(
k

`

)`/2
≤ 2(6etσ)k. (16)

4 On the tightness of the tail bounds

We conclude by showing that (2k + 2)-wise independence is insufficient to fool |S`| for

` > 2k + 2 in expectation. We use a modification of a simple proof due to Noga Alon

of the Ω(nk/2) lower bound on the support size of a k-wise independent distribution on

{−1, 1}n, which was communicated to us by Raghu Meka.

For this section, let X1, . . . , Xn be so that each Xi is uniform over {−1, 1}. Thus

σ2 =
∑

i Var[Xi] = n. By Lemma 4, we have

EX∈U [|S`(X)|] ≤
(
EX∈U [S2

` (X)]
)1/2 ≤ n`/2√

`!
. (17)

In contrast we have the following:

Lemma 7. There is a (2k + 2)-wise independent distribution on X = (X1, X2, . . . , Xn)



in {−1, 1}n such that for every ` ∈ [n],

Pr
X∈D

[
|S`(X)| ≥

(
n

`

)]
≥ 1

3nk+1
.

Specifically,

EX∈D[|S`(X)|] ≥
(
n
`

)
3nk+1

. (18)

Proof. Let D be a (2k + 2)-wise independent distribution on {−1, 1}n that is uniform

over a set D of size 2(n + 1)k+1 ≤ 3nk+1. Such distributions are known to exist [1].

Further, by translating the support by some fixed vector if needed, we may assume that

(1, 1, . . . , 1) ∈ D. It is easy to see that every such translate also induces a (2k + 2)-wise

independent distribution. The claim holds since S`(1, . . . , 1) =
(
n
`

)
.

When e.g. k = O(log n), which is often the case of interest, for 2k + 3 ≤ ` ≤
n−(2k+3), the RHS of (18) is much larger than the bound guaranteed by Equation (17).

The tail bound provided by Lemma 6 can not therefore be extended to a satisfactory

bound on the expectation. Furthermore, applying Lemma 6 with

t =
1

6e

√
n

`k

implies that for any (2k + 2)-wise independent distribution,

Pr

[
|S`(X)| ≥

(
n

`

)]
≤ Pr

[
|S`(X)| ≥ (6et

√
n)`
(
k

`

)`/2]
≤ 2

(
36e2k`

n

)k
.

When k` = o(n), this is at most O(n−k+o(1)). Comparing this to the bound given in

Lemma 7, we see that the bound provided by Lemma 6 is nearly tight.
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A Proof of Fact B

For a univariate polynomial p(ξ) and a root y ∈ R of p, denote by mult(p, y) the multi-

plicity of the root y in p. We use the following property of polynomials p(ξ) with real

roots [5], which can be proved using the interlacing of the zeroes of p(ξ) and p′(ξ): If

mult(p′, y) ≥ 2 then mult(p, y) ≥ mult(p′, y) + 1.

Proof of Fact B. Let

p(ξ) =
∏
i∈[n]

(ξ + bi) =
n∑
k=0

ξkSn−k(b).

Consider p(n−k−1)(ξ) which is the (n−k−1)th derivative of p(ξ). Since Sk(b) = Sk+1(b) =

0 for k > 0, it follows that ξ2 divides p(n−k−1)(ξ) and hence mult(p(n−k−1), 0) ≥ 2.

Applying the above fact n− k− 1 times, we get mult(p, 0) ≥ n− k + 1 so Sn(b) = . . . =

Sk(b) = 0.
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