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Abstract

We consider boolean circuits in which every gate may compute an arbitrary boolean function of k
other gates, for a parameter k. We give an explicit function f : {0, 1}n → {0, 1} that requires at least
Ω(log2 n) non-input gates when k = 2n/3. When the circuit is restricted to being layered and depth 2,
we prove a lower bound of nΩ(1) on the number of non-input gates. When the circuit is a formula with
gates of fan-in k, we give a lower bound Ω(n2/k logn) on the total number of gates.

Our model is connected to some well known approaches to proving lower bounds in complexity theory.
Optimal lower bounds for the Number-On-Forehead model in communication complexity, or for bounded
depth circuits in AC0, or extractors for varieties over small fields would imply strong lower bounds in
our model. On the other hand, new lower bounds for our model would prove new time-space tradeoffs
for branching programs and impossibility results for (fan-in 2) circuits with linear size and logarithmic
depth. In particular, our lower bound gives a different proof for a known time-space tradeoff for oblivious
branching programs.

1 Introduction

A boolean circuit is usually defined as a directed acyclic graph where vertices (called gates) have in-degree
(called fan-in) at most 2. Every gate with fan-in 0 corresponds to an input variable, and all other gates
compute an arbitrary boolean function of the values that feed into them. Sometimes the model is restricted
to using gates from the DeMorgan basis (i.e. AND, OR, NOT) gates, but this changes the size of the circuit
by at most a constant factor. The circuit computes a function f : {0, 1}n → {0, 1} if some gate in the circuit
evaluates to f . A formula is a circuit whose underlying graph is a tree. The depth of the circuit is the length
of the longest path in the graph.

Since every algorithm with running time T (n) can be simulated by circuits of size Õ(T (n)), one can hope
to prove lower bounds on the time complexity of algorithms by proving lower bounds on circuit size. A
super-polynomial lower bound on the circuit size of an NP problem would imply that P 6= NP. However,
we know of no explicit function (even outside NP) for which we can prove a super-linear lower bound. In
contrast, counting arguments imply that almost every function requires circuits of exponential size.

We study a stronger model of circuits. We allow the gates to have fan-in k, where k is a parameter that
depends on n, and each gate may compute an arbitrary function of its inputs. Typically, we consider the
case where k is a constant fraction of n. We write Ck(f) to denote the minimum number of non-input gates
required to compute f in this model.

These circuits are much stronger than the models usually studied in the context of proving lower bounds.
Nevertheless, we show that many attempts at proving lower bounds on other models of computation can
be seen as attempts to prove new lower bounds in our model. Truly exponential lower bounds for AC0,
optimal lower bounds for the Number-On-Forehead (or NOF) model of communication, or new extractors
for varieties over small fields, would all improve the best lower bounds we know how to prove for Ck(f).
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On the other hand, new lower bounds in our model would lead to lower bounds for branching programs
and (fan-in 2) circuits of logarithmic depth. Our Theorem 1 already leads to a different proof of the lower
bounds on oblivious branching programs given by Babai, Nisan and Szegedy [BNS92]. We elaborate on these
connections in Section 4.

Similar models have been studied in past work. Circuits with arbitrary gates and arbitrarily large fan-in
have been considered for computing several boolean functions simultaneously. If n boolean functions are
being computed, the trivial upper bound uses n2 wires (edges). Super-linear lower bounds on the number
of wires are known for circuits of bounded depth in this scenario [Che05, PRS97, RTS00, Juk01]. Beame,
Koutris and Suciu [BKS13], studied a model of communication where p processors, each with memory
n/p1−ε attempt to compute with a minimal amount of communication. This model is conceptually related
to ours, since each such processor can be thought of as a collection of gates with bounded fan-in. Goldreich
and Wigderson [GW13] investigated multilinear arithmetic circuits where the gates are allowed to compute
arbitrary multilinear functions of a bounded number of inputs. None of these results seem to give non-trivial
lower bounds on Ck(f).

Clearly, Cn(f) = 1, since f has only n variables. However, when the fan-in is restricted, the power of
circuits dramatically decreases. A counting argument shows that for almost every f , Ck(f) > 2(n−k)−o(n−k),
which is exponentially large even for k linear in n. On the other hand, one can show that Ck(f) ≤ O((n−
k)2n−k) for every f . The challenge is to obtain such a lower bound for an explicit function f . If f depends
on all its inputs, then it is easy to see that Ck(f) ≥ n/k. When k is linear in n, this trivial lower bound is
just a constant.

Chandra, Furst and Lipton [CFL83] defined the Number-on-Forehead model of communication, which we
discuss in detail in Section 2.1. They proved lower bounds on branching programs computing the majority
function by giving a reduction to the NOF model. The lower bound for the communication model is obtained
via Ramsey style argument and displays a tower-like decay. Their reduction is easily adapted to our model
as well, yielding super-constant lower bounds on C2n/3(Majority). In our work, we use NOF lower bounds
to obtain stronger results. We use a different reduction to show: 1

Theorem 1. There exists f ∈ P such that for every γ > 0 and n large enough, Cn(1−γ)(f) ≥ Ω(γ log2 n).

The proof is reminiscent of the approaches in [Oko93, Ajt02, BNS92, BRS93, BV02] concerning time-space
trade-offs for oblivious branching programs.

Next, we define a quantity which is closely related to Ck(f). Let C2
k(f) denote the smallest number m

such that there exist boolean functions g, f1, . . . , fm with f = g(f1, . . . , fm), where every fi reads at most k
inputs. We prove:

Theorem 2. There exist f ∈ P, c > 0, such that C2
(1−γ)n(f) ≥ Ω(ncγ).

The proof of Theorem 2 involves ideas inspired by Nechiporuk’s [Nec66] lower bound on boolean formula
size. We show (Proposition 4) that C2

k(f) ≤ Ck(f) · 2Ck(f) for every f , and hence Theorem 2 implies a lower
bound of Ω(γ log n) on Cn(1−γ)(f). In fact, the specific f from Theorem 2 satisfies C2n/3(f) ≤ O(log n),
showing that C2

2n/3 can be exponentially larger than C2n/3.
Finally, we observe that Nechiporuk’s original proof can be easily extended to formulas with large fan-in.

Write Lk(f) for the smallest number of leaves in a formula computing f with fan-in at most k. Nechiporuk
gave an explicit function f for which L2(f) ≥ Ω(n2/ log n). We prove:

Theorem 3. There exists f ∈ P such that Lk(f) = Ω(n2/k log n).

Note that for formulas we are counting leaves and not just the non-input gates. Of course, Theorem 3 implies
a lower bound of Ω(n2/k2 log n) on the number of non-input gates as well.

The lower bound in Theorem 1 is stronger than stated. Consider circuits where the gates can have
arbitrarily large fan-in, but each gate can read at most k input variables. Define C∗k(f) as the smallest

1Abusing notation, we write f ∈ P to mean that f is obtained by restricting a polynomial time computable function to n-bit
inputs.
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number of non-input gates which read some input variable in a circuit computing f . Then C∗k(f) ≤ Ck(f).
Our lower bound proofs actually give lower bounds on C∗k(f): both Theorem 1 and Proposition 4 work for
C∗k as well. On the other hand, we always have C∗k(f) ≤ n. Hence, proving a super-linear lower bound on
Ck(f) requires a technique which fails to work for C∗k(f).

In Section 2, we discuss the quantities Ck and C2
k in greater detail. In Section 3, we give the proofs our

lower bounds. In Section 4, we outline the connections between our model and other problems in complexity
theory.

2 Circuits of medium fan-in

As mentioned in the introduction, counting arguments show that for almost every f , Ck(f) > 2(n−k)−o(n−k).
The bound is exponential even when k is very close to n, and super-linear even when k < n − 1.1 log n. It
becomes sub-linear when k > n− log n. One can check that Cn−1.1 log logn(f) = Ω(log n) for most functions
f .

The trivial upper bound on the quantity C2
k(f) is n. The bound is tight even if k very close to n: there

exists an f for which C2
bn−logn−1c(f) = n. Indeed, the number of choices for the functions g, f1, . . . , fm is at

most

22m
((

n

k

)
22k
)m
≤ 22m+m2k+nm .

In order to realize all n-variate functions, we must have 2m + m2k + nm ≥ 2n. If m = n − 1 and k =
bn− log n− 1c, the bound is

2n−1 + (n− 1)2n−1/n+ n2 = 2n(1− 1/(2n)) + n2 < 2n.

An exercise would show that if ` ≤ log n, C2
n−`(f) ≤ 2` + `, thus C2

k decreases when k goes above n− log n.
The following proposition relates Ck(f) to C2

k(f).

Proposition 4. C2
k(f) ≤ Ck(f) · 2Ck(f).

Proof. Let u1, . . . , us be the non-input gates in a circuit of size s = Ck(f) where the gate us evaluates to
f . For every i ∈ [s] and every σ : {u1, . . . , us} → {0, 1}, we define a function fi,σ that depends on at most
k input variables, as follows. fi,σ reads the input variables that are read by ui, and outputs 1 if and only
if there exists some setting of the remaining input variables that could result in the evaluation given in σ.
Define g to be the function that reads the outputs of the fi,σ’s and computes f by finding the unique σ for
which fi,σ = 1 for every i. Formally, f =

∨
σ:σ(us)=1

∧
i∈[s] fi,σ.

Proposition 4 together with Theorem 2 already gives an Ω(log n) lower bound on C2n/3(f). However,the
exponential loss in the transformation means that even an optimal lower bound (of n) on depth-2 circuits
would give at most a logarithmic lower bound for general circuits. Proposition 5 implies that the exponential
loss is inevitable.

2.1 Communication complexity

In the Number-On-Forehead model of communication complexity [CFL83], there are p parties that are trying
to compute a function f(x1, x2, . . . , xp), where each xi is a n/p-bit string. The i’th party can see every input
except xi. To evaluate f , the parties exchange messages (by broadcast), until one of the parties can transmit
the value of f to the others. The complexity of f is the number of bits the players need to exchange in
order to evaluate f . Every function can be computed with n/p bits of communication. The strongest lower
bounds known are due to Babai, Nisan and Szegedy [BNS92]. They proved that the generalized inner product
function defined by

GIP(x1, . . . , xp) =

n/p∑
i=1

p∏
j=1

xji mod 2
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requires Ω(n/22p) bits of communication. They also showed that computing the quadratic character on a
sum of numbers requires Ω(n/2p) communication.

The most straightforward connection between circuits and the NOF model is the following observation:

Suppose that a circuit computing f(x1, . . . , xp) has the property that for every gate u there is some i ∈ [p]
such that u reads no variable from xi. Then, if the circuit has s non-input gates, the function f can be
evaluated using s bits in the NOF model.

This does not directly imply a circuit lower bound — in a circuit of linear fan-in, gates may access a constant
fraction of each of the blocks xi. For example, GIP can be computed by a constant size circuit with fan-in
n/2 (imagine two gates, one reading the first half of every xi, and the other the second half). Nevertheless,
this issue can be partially circumvented, as in [CFL83] or in our Theorem 1, where we use the GIP function to
obtain C2n/3(f) ≥ Ω(log2 n) for a related function f . An explicit function requiring Ω(n/p) communication
in the NOF model would give an explicit function with C2n/3(f) ≥ Ω (

√
n).

3 The lower bounds

3.1 The Nechiporuk method applied to Lk(f)

The proofs of Theorems 2 and 3 are variations of Nechiporuk’s lower bound on formula size, which we now
discuss. Given a boolean function f on n variables, a subset of its variables S, and an assignment σ to the
variables outside S, we define the function fσ be the function obtained by setting the variables outside S to
σ. It is a function in the variables S. Any such function is called an S-subfunction of f . The number of

S-subfunctions of f is clearly at most min(22|S| , 2n−|S|).
Nechiporuk finds a function f whose input is partitioned into intervals x1, x2, . . . , xn/ logn, each of size

log n, such that for every i, f has 2Ω(n) {xi}-subfunctions. An example to keep in mind is the element
distinctness function:

f(x1, . . . , xn/ logn) =

{
1 if x1, . . . , xn/ logn are distinct

0 otherwise.

Observe that whenever σ2, . . . , σn/ logn are distinct, then f(x1, σ2, . . . , σn/ logn) rejects precisely on the inputs

σ2, . . . , σn/ logn. Hence f has at least
(

n
n log−1 n−1

)
= 2Ω(n/ logn) {x1}-subfunctions, and likewise for any {xi}.

A slightly more complicated example gives an explicit f with 2Ω(n) subfunctions.
We now prove Theorem 3, which is a straightforward extension of Nechiporuk’s argument for k = 2 to

general k. It is however noteworthy that the bound deteriorates only polynomially with k.

Claim 1. Let S be a subset of variables of f . Assume that f can be computed by a formula with fan-in k in
which m leaves correspond to inputs from S. Then f has at most 2O(mk) S-subfunctions.

Proof. Given any such formula computing f , let the tree T be obtained by taking the the union of all paths
going from some variable in S to the output. If u, v, w is a path in T with v, w having in-degree 1, then the
value of w is determined by the value of u and some function of the inputs from the complement of S. We
can replace w in our formula by a single gate of fan-in 2, which takes as input u and a new gate of arbitrarily
large fan-in, which only reads inputs from the complement of S. This may increase the size of the formula,
but the number of leaves from S remains unchanged. Every gate in T still has fan-in at most k in the new
formula. Furthermore, v is removed from the tree T . We repeat this process until there are no such paths
in the tree T .

The tree T now has m leaves and at most 4m nodes, since there are no edges connecting gates of in-degree
1 in T . Every S-subfunction can be described using 4mk bits as follows. For each gate v in T , it is enough
to specify the inputs to v coming from outside of T . Since the fan-in of every such gate is at most k, there
will be at most 4mk such inputs. Thus f has at most 24mk S-subfunctions.
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Applying the claim to the function above, we obtain that every formula computing f contains Ω(n/k)
leaves labelled with a variable from xi, for every i ∈ {1, . . . , n/ log n}. This means that any such formula

contains Ω( n2

k logn ) leaves altogether.

3.2 Proof of Theorem 2

In order to prove our theorem, we will find a function f that has a stronger property with regards to its
subfunctions. Namely, f will have many S subfunctions not just for S coming from a fixed partition of the
inputs; it will have many S-subfunctions for almost every log n-element set S.

We define our hard function as follows. f(x, y) will take as inputs x ∈ {0, 1}`+log ` and a O(log2 `)-bit
string y. Thus f is a function of n = ` + O(log2 `) bits in total. We view y as representing a subset
Sy ⊂ [` + log `] of log ` variables from x. Let xSy be the projection of x to the variables in Sy. We view
the log `-bit string xSy as an element of [`]. Let Scy denote the complement of Sy. Then define the function
f(x, y) to output the xSy ’th bit of xScy .

Given a fixed y, each setting of xScy gives a distinct Sy-subfunction of f(x, y). Thus,

Claim 2. For every log `-element subset S of the variables x, f has 2` S-subfunctions.

To prove Theorem 2, it will be enough to show that any small circuit gives an upper bound on the number
of S-subfunctions of f , for some log ` element subset S of the variables in x. Suppose that

f = g(f1, . . . , fm) .

First we observe:

Claim 3. For every 0 < γ < 1, there is a constant 0 < c < 1/2 such that if ` > 100 and m < `cγ/2, then
there exists a log `-element subset S of the variables x such that each fi reads at most (1− γ/2) log ` of the
variables from S.

Proof. Pick log ` variables a1, . . . , alog ` from x, y uniformly at random. With high probabilty, they will be
distinct and they will completely miss the variables y; the probability being larger than 1/2 if ` > 100. For
a given i, let X be the random variable that counts the number of variables of S that are read by the gate
fi. The Chernoff bound gives,

Pr

[
X

log n
≥ 1− γ/2

]
≤ e−D(1−γ/2||1−γ) log ` < `−cγ ,

where D(1 − γ/2||1 − γ) = γ/2 ln(1/2) + (1 − γ/2) ln((1 − γ/2)/1 − γ) is the Kullback-Leibler divergence.
As γ approaches 0, the divergence becomes roughly γ/2 ln(1/2) + γ/2 > 0.15γ; as γ approaches 1 it goes to
infinity. Hence we indeed have D(1 − γ/2||1 − γ) ≥ c′γ for some constant c′ > 0 and every γ ∈ (0, 1). If
m < `cγ/2, the union bound gives that there is a log `-element set S as required.

If m ≤ `cγ/2, let S be the set promised by Claim 3. For every i ∈ [m], the number of S-subfunctions

of fi is at most 22(1−γ/2) log `

= 2`
1−γ/2

, since each fi reads at most (1− γ/2) log ` variables from S. Each S-

subfunction of f is uniquely determined by the S-subfunctions of f1, . . . , fm, and so f has at most 2`
1−γ/2m

S-subfunctions. By Claim 2, this means that m ≥ `γ/2 > `cγ/2. Hence, C2
(1−γ)n(f) ≥ `cγ/2 = Ω(ncγ),

proving Theorem 2.

3.2.1 A Matching Upper Bound for f(x, y)

We will now show that the lower bound from Theorem 2 is tight for the function f(x, y) defined above2, thus
the exponential gap between Ck and C2

k from Proposition 4 is inevitable.

2In the case when γ is fixed and n grows independently.
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Proposition 5. There exists c > 0 such that for every 0 < γ < 1/2 and n sufficiently large, C2
(1−γ)nf(x, y) ≥

ncγ and C(1−γ)nf(x, y) ≤ cγ log n .

Proof. It is enough to prove the bound for C(1−γ)n and invoke Proposition 4. We will outline the construction
for γ = 1/2 and then sketch how to adapt it to the general case. Divide the variables x into two equal subsets
x1 and x2. Let g1 be the function which, on inputs x1 and y, outputs a log n-bit string whose first bits equal
x1 restricted to Sy. Define g2 similarly. This means that xSy can be recovered from x2, y and the advice
from g1; likewise for x1, y and g2. It is now easy to see that we can write f(x, y) = h1(g1, x2, y)∨h2(g2, x1, y)
with suitable h1 and h2. This gives approximately log n gates with fan-in approximately n/2.

In general, partition the variables x into r disjoint subsets a1, . . . , ar of nearly the same size. The gates
will have access to the inputs y and x \ ai for some i ∈ [r]. Note that for any log ` element subset S of x,
there will exist two distinct ai and aj with |ai ∩ S|, |aj ∩ S| ≤ 2 log `/r. We can recover xSy from x \ ai with
an advice of 2 log n/r bits, and as above, compute f(x, y) using two gates depending y, x \ ai and y, x \ aj
and 2 log n/r bits of advice each. The advice itself can be computed by gates which have access to either
y, x \ a1 or y, x \ a2. This gives a circuit with roughly 8 log n/r+ r gates of fan-in (1− 1/r)n; this is at most
10 log n/r gates for fixed r and large enough n.

3.3 Proof of Theorem 1

We will deduce a lower bound on Ck(f) from known NOF lower bounds. The main issue with the reduction
to the NOF model is that any gate in the circuit may read an arbitrary set of inputs (perhaps even one bit
from every party’s forehead).

One way to simulate any circuit with linear fan-in and m gates using m parties is to associate every gate
with a party and then greedily assign variables to parties, giving inputs of length Ω(n/m) for each of the
m parties. We manage to reduce the number parties to O(m/ log n), which helps us obtain stronger lower
bounds. This is done using the following Lemma:

Lemma 6. Let G ⊆ A× B be a bipartite graph with |A| = m, |B| = n and with every a ∈ A having degree
at least γn, where 0 < γ < 1/100 and n is sufficiently large with respect to γ−1. If log n ≤ m ≤ log2 n, then
there exists p ≤ 5m/γ and disjoint T1, . . . , Tp ⊆ A, S1, . . . , Sp ⊆ B, each Si of size at least n0.9, such that
A =

⋃
Ti and (Ti × Si) ⊆ G for every i ∈ [p].

Proof. We first prove the following:

Claim. If m ≤ log n, G contains a complete bipartite graph with at least γm/2 vertices on the left and 2n0.9

vertices on the right.

Proof. Remove from B all vertices with degree ≤ γm/2. Since the graph has at least γmn edges to begin
with, the remaining set of vertices B′ has size at least γn/2. For M ⊆ A, let B(M) be the set of b ∈ B′ such
that b is connected to every a ∈M . Hence,

B′ =
⋃

|M |=dγm/2e

B(M) .

Since m ≤ log n and γ < 1/100, the number of sets with |M | = dγm/2e is at most n0.09. So there is such an

M with B(M) ≥ γn/2
n0.09 ≥ 2n0.9, for n large enough.

We iteratively apply the Claim to prove the Lemma. If m > log n, choose an arbitrary log n-element
subset of A and let T1 × S1 be the complete graph guaranteed by the Claim. If m ≤ log n, apply the Claim
directly to G. Remove from G all the vertices T1 and S1, obtaining a new graph G2 ⊆ A2 × B2. Repeat
this process p times to obtain graphs G2, . . . , Gp until Ap = ∅. We claim that p ≤ 5m/(γ log n). For such a
small p, we have altogether removed o(n) vertices from B and so |Bi| ≥ n(1− o(1)) for every i = 1, 2, . . . , p.
Similarly, the degree of any a ∈ Ai is at least γ|Bi|/2. Hence, as long as |Ai| ≥ log |Bi|, we remove at least
γ log n/4 vertices from Ai. After at most 4m/(γ log n) steps, we then must have |Ai| < log |Bi|. After this
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point, Ai decreases by at least the factor of (1−γ/2), and so the size drops below 1 in roughly log log n/γ steps,
which is much smaller that m/γ. Finally, the size of every Si is at least |Bi|0.9 = 2(n(1− o(1)))0.9 ≥ n0.9, if
n is large enough.

Our hard function f(x, y) is defined as follows. It takes as inputs x ∈ {0, 1}` and an auxiliary string y.
We think of y as defining p ≤ log ` disjoint subsets S1

y , . . . , S
p
y of [`], of equal size not exceeding `0.9. Hence,

y can be taken as roughly `0.9 log2 `-bit string. We define

f(x, y) := GIP(xS1
y
, . . . , xSpy ) .

f(x, y) has n = `+O(`0.9 log2 `) variables. As before, xSiy is the projection of x to Siy.

Suppose that for a fixed 0 < γ and n sufficiently large, f(x, y) can be computed using m < γ log2 n/50
non-input gates with fan-in n(1−γ). Take the graph G whose left vertices are the m gates of the circuit and
the right vertices the ` variables of x. There is an edge between a gate and a variable whenever the gate does
not read the variable. Since y is much shorter than x, the degree of a gate in G is at least γ`/2. To apply the
Lemma, we will assume γ < 1/100 (otherwise the circuit is weaker) and that m ≥ log `. The Lemma shows
that there exist disjoint sets of variables S1, . . . , Sp with p ≤ log n/5 and Si = b`0.9c such that each gate
completely misses at least one set Si. We can fix y so that y represents S1, . . . Sp and hence f(x, y) computes
GIP(xS1

, . . . , xSp). As observed in Section 2.1, the circuit gives an m-bit protocol for GIP(xS1
, . . . , xSp).

By the results of [BNS92], this implies m ≥ Ω(`0.92−2 log `/5) = Ω(
√
`), contradicting the assumption that

m < γ log2 n/50. This proves Theorem 1.

4 Connections to Other Models

Here we show how is our model is connected to several disparate problems in complexity theory.

4.1 Circuits of Linear Size and Logarithmic Depth

Obviously, Ck(f) ≤ C2(f), so any super-linear lower bound in our model would give a super-linear lower
bound for circuits of fan-in 2. However, even a linear lower bound on our model would give a function that
cannot be computed by a linear sized logarithmic depth circuit:

Proposition 7. If f has a fan-in 2 circuit of linear size and logarithmic depth, then for any ε > 0, Cnε(f) <

O
(
n log(1/ε)
log logn

)
.

Valiant [Val77] showed that any (fan-in 2) circuit of linear size and logarithmic depth contains a set T

of O
(
n log(1/ε)
log logn

)
gates such that every path of length ε log n in the circuit must touch a gate from the set.

Since every such gate in T can be computed from at most nε other gates from T and the inputs, we obtain
Proposition 7.

4.2 Oblivious Branching Programs

An oblivious branching program of width w and length ` is a directed graph with vertices partitioned into
` layers L1, . . . , L`. Each layer is associated with an input variable. Every vertex in Li has out-degree 2,
with the edges labeled 0, 1. Every vertex of L` is labeled with an output value. The program is executed by
starting at the first vertex of L1, and reading the variables in turn to find a path through the program until
the output is determined.

Barrington [Bar89] showed that every logarithmic depth circuit (of fan-in 2) can be simulated by a
branching program with w = 5, ` = poly(n). Thus it is very interesting to prove super-polynomial lower
bounds on such programs. A line of work has proved time-space tradeoffs on such programs. Alon and
Maass [AM86] used reductions to Ramsey theory to show that any program for computing the majority
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function must have ` logw ≥ ω(n log n). Babai, Nisan and Szegedy [BNS92] proved a lower bound of
` logw ≥ Ω(n log2 n) by reductions to the Number-on-Forehead communication model. Beame and Vee
[BV02] simplified the proof of this last bound. No better lower bound on ` logw is known, to our knowledge.

Our results give lower bounds that match those of [BNS92] via the following proposition:

Proposition 8. If f can be computed by an oblivious branching program of width w < 2εn/2 and length `,
then Cεn(f) ≤ 2` logw

εn .

The first logw gates of the circuit read the first εn/2 variables read by the program and together compute
the name of the vertex reached after those layers. The next logw gates read the outputs of the previous
gates and the next εn/2 variables, to compute the name of the vertex in layer Lεn. Continue in this way
until all of the program has been simulated. Thus we obtain a lower bound of ` logw ≥ Ω(n log2 n) on the
length of the program using Proposition 8 and Theorem 1. Any lower bound of the type Cεn(f) = ω(log2 n)
would give new time-space tradeoffs for branching programs.

4.3 AC0

An AC0 circuit is a circuit of constant depth that uses AND, OR-gates of unbounded fan-in and NOT-gates.
As negations can be moved to the leaves, the depth of AC0 circuit is defined as the largest number of AND,
OR-gates on a path in the circuit. Any size s AC0 circuit can be simulated by a size s2 circuit with gates of
fan-in 2.

Beautiful methods have been developed to prove lower bounds on these circuits [Has86, Raz87, Smo87].

The best known lower bounds for a depth d circuit are of the type 2Ω(n1/(d−1)). The following proposition
shows that truly exponential lower bounds would give linear lower bounds in our model.

Proposition 9. There is a depth-3 AC0 circuit of size O(kCk(f) · 2Ck(f)+k) computing f .

To see this, observe that the function g defined in the proof of Proposition 4 can be computed by a
monotone formula in disjunctive normal form, with Ck(f) · 2Ck(f) leaves. Furthermore, each fi,σ depends on
k variables, and hence it can be computed by a formula in conjuctive normal form, with k · 2k leaves. This
gives depth-3 AC0 formula with kCk(f) · 2Ck(f)+k leaves.

Propositions 7 and 9 together imply that if f cannot be computed by a depth-3 AC0 circuit of size 2k,
then Ck(f) ≥ Ω(k). If k �

√
n, this connection gives non-trivial lower bounds on Ck(f). In addition,

truly exponential lower bounds on the circuit size of a depth-3 AC0 circuit computing f would imply that
Ck(f) ≥ Ω(n), and so f does not have linear sized circuit of logarithmic depth, an observation already made
by Valiant [Val77].

4.4 Extractors for Varieties

Given a field F, a variety is a set of the form {x ∈ Fn : f1(x) = f2(x) = . . . fm(x) = 0}, where f1, . . . , fm are
polynomials. For a finite field F, an extractor for varieties is a function f : Fn → {0, 1} which is non-constant
on any sufficiently large variety defined by low-degree polynomials.

Dvir [Dvi12] showed how to use bounds on exponential sum estimates by Deligne [Del74] to obtain
extractors for varieties. Working over a prime field of size p, he shows that if ρ > 1/2 is a constant, and
V ⊆ Fn is a variety of size pρn defined by polynomials of degree ρn, then there is an efficiently computable
extractor for such varieties, as long as p is polynomially large in n. Here we show that such a result for p = 2
would imply non-trivial circuit lower bounds.

Proposition 10. Let p = 2. If f is an extractor for varieties of size 2ρn defined by degree k polynomials,
then Ck(f) > (1− ρ)n.

Proof. Suppose there is a circuit computing f with m gates of fan-in k. By averaging, there must exist
some evaluation of the gates which is consistent with 2n−m input strings. We now define a variety using m
polynomials as follows. Each polynomial checks that the input is consistent with the evaluations of a single
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gate. Since every such polynomial depends on at most k variables, and it can be taken multilinear, it has
degree at most k. Thus we obtain a variety of size 2n−m defined by degree k polynomials on which f is
constant. So it must be that n−m < ρn⇒ m > (1− ρ)n.

By Proposition 7, any such extractor cannot be computed by linear sized logarithmic depth circuits of
fan-in 2.
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