

Fooling Pairs in Randomized Communication Complexity

Shay Moran* Makrand Sinha[†] Amir Yehudayoff[‡]

Abstract

Fooling pairs are one of the standard methods for proving lower bounds for deterministic two-player communication complexity. We study fooling pairs in the context of randomized communication complexity. We show that every fooling pair induces far away distributions on transcripts of private-coin protocols. We then conclude that the private-coin randomized ε -error communication complexity of a function f with a fooling set S is at least order $\log \frac{\log |S|}{\varepsilon}$. This is tight, for example, for the equality and greater-than functions.

1 Introduction

Communication complexity provides a mathematical framework for studying communication between two or more parties. It was introduced by Yao [Yao79] and has found numerous applications since. We focus on the two-player case, and provide a brief introduction to it. For more details see the textbook by Kushilevitz and Nisan [KN97].

In this model, there are two players called Alice and Bob. The players wish to compute a function $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$, where Alice knows $x \in \mathcal{X}$ and Bob knows $y \in \mathcal{Y}$. To achieve this goal, they need to communicate. The *communication complexity* of f measures the minimum number of bits the players must exchange in order to compute f. The communication is done according to a pre-determined protocol. Protocol may be deterministic or use private/public randomness. See Section 1.1 for definitions.

^{*}Max Planck Institute for Informatics, Saarbrücken, Germany, and Technion-IIT, Israel.smoran@mpi-inf.mpg.de.

[†]Department of Computer Science and Engineering, University of Washington, Seattle. makrand@cs.washington.edu. Partially supported by BSF.

[‡]Department of Mathematics, Technion-IIT, Israel. amir.yehudayoff@gmail.com. Horev fellow – supported by the Taub foundation. Supported by ISF and BSF.

A fundamental problem in this context is proving lower bounds on the communication complexity of a given function f. Lower bounds methods for deterministic communication complexity are based on the fact that any protocol for f defines a partition of $\mathcal{X} \times \mathcal{Y}$ to f-monochromatic rectangles. Thus, a lower bound on the size of a minimal partition of this kind readily translates to a lower bound on the communication complexity of f. Three basic bounds of this type are based on rectangle size, fooling sets, and matrix rank (see [KN97]). Both matrix rank and rectangle size lower bounds have natural and well-known analogues in the randomized setting: The approximate rank lower bound [LS09, Kra96] and the discrepancy lower bound [KN97]. In this note we show that fooling sets also have natural counterparts in the randomized setting. A weaker variant of the structure we present is implicit in [BYJKS02], where it is used as part of a lower bound proof for the randomized communication complexity of the disjointness function.

1.1 Communication complexity

A private-coin communication protocol for computing a function $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ is a binary tree with the following generic structure. Each node in the protocol is owned either by Alice or by Bob. For every $x \in \mathcal{X}$, each internal node v owned by Alice is associated with a distribution $P_{v,x}$ on the children of v. Similarly, for every $v \in \mathcal{Y}$, each internal node v owned by Bob is associated with a distribution $P_{v,y}$ on the children of v. The leaves of the protocol are labeled by \mathcal{Z} .

On input x, y, a protocol π is executed as follows.

- 1. Set v to be the root node of the protocol-tree defined above.
- 2. If v is a leaf, then the protocol outputs the label of the leaf. Otherwise, if Alice owns the node v, she samples a child according to the distribution $P_{v,x}$ and sends a bit to Bob indicating which child was sampled. The case when Bob owns the node is analogous.
- 3. Set v to be the sampled node and return to the previous step.

A protocol is *deterministic* if for every internal node v, the distribution $P_{v,x}$ or $P_{v,y}$ has support of size one. A *public-coin* protocol is a distribution over private-coin protocols defined as follows: Alice and Bob first sample a shared random r to choose a protocol π_r , and they execute a private protocol π_r as above.

For an input (x, y), we denote by $\pi(x, y)$ the sequence of messages exchanged between the parties. We call $\pi(x, y)$ the transcript of the protocol π on input (x, y). Another way to think of $\pi(x, y)$ is as a leaf in the protocol-tree. We denote by $L(\pi(x, y))$ the label of the leaf $\pi(x, y)$ in the tree. The *communication complexity* of a protocol π , denoted by $\mathsf{CC}(\pi)$ is the depth of the protocol-tree of π . For a private-coin protocol π , we denote by $\Pi(x, y)$ the distribution of the transcript of $\pi(x, y)$.

For a function f, the deterministic communication complexity of f, denoted by D(f), is the minimum of $CC(\pi)$ over all deterministic protocols π such that $L(\pi(x,y)) = f(x,y)$ for every x,y. For $\varepsilon > 0$, we denote by $R_{\varepsilon}(f)$ the minimum of $CC(\pi)$ over all public-coin protocols π such that for every (x,y), it holds that $\mathbb{P}[L(\pi(x,y)) \neq f(x,y)] \leq \varepsilon$ where the probability is taken over all coin flips in the protocol π . We call $R_{\varepsilon}(f)$ the ε -error public-coin randomized communication complexity of f. Analogously we define $R_{\varepsilon}^{pri}(f)$ as the ε -error private-coin randomized communication complexity.

Although public-coin protocols are more general than private-coin ones, Newman [New91] proved that for boolean functions every public-coin protocol can be efficiently simulated by a private-coin protocol: If $f: \mathcal{X} \times \mathcal{Y} \to \{0,1\}$ then for every $0 < \varepsilon < 1/2$,

$$R_{2\varepsilon}(f) \leq R_{2\varepsilon}^{\mathsf{pri}}(f) = O\left(R_{\varepsilon}(f) + \log \frac{\log(|\mathcal{X}||\mathcal{Y}|)}{\varepsilon}\right).$$

The additive logarithmic factor on the right-hand-side is often too small to matter, but it does make a difference in the bounds we prove below.

1.2 Fooling pairs and sets

Fooling sets are a well-known tool for proving lower bounds for D(f). A pair $(x, y), (x', y') \in \mathcal{X} \times \mathcal{Y}$ is called a *fooling pair* for $f : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ if

- f(x,y) = f(x',y'), and
- either $f(x', y) \neq f(x, y)$ or $f(x, y') \neq f(x, y)$.

Observe that if (x, y) and (x', y') are a fooling pair then $x \neq x'$ and $y \neq y'$.

It is easy to see that if (x, y) and (x', y') form a fooling pair then there is no f-monochromatic rectangle that contains both of them. An immediate conclusion is the following:

Lemma 1.1 ([KN97]). Let $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a function, let (x, y) and (x', y') be a fooling pair for f and let π be a deterministic protocol for f. Then

$$\pi(x,y) \neq \pi(x',y').$$

A subset $S \subseteq \mathcal{X} \times \mathcal{Y}$ is a *fooling set* if every $p \neq p'$ in S form a fooling pair. Lemma 1.1 implies the following basic lower bound for deterministic communication complexity.

Theorem 1.2 ([KN97]). Let $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a function and let \mathcal{S} be a fooling set for f. Then

$$D(f) \ge \log_2(|\mathcal{S}|).$$

The same properties do not hold for randomized protocol, but the following variants are true. Let π be an ε -error private-coin protocol for f, and let (x, y), (x', y') be a fooling pair for f.

Here we prove that the probabilistic analogue of $\pi(x,y) \neq \pi(x',y')$ holds: we have that $|\Pi(x,y) - \Pi(x',y')|$ is large, where $|\Pi(x,y) - \Pi(x',y')|$ is the statistical distance between the two distributions on transcripts.

Lemma 1.3 (Analogue of Lemma 1.1). Let $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a function, let (x, y) and (x', y') be a fooling pair for f, and let π be an ε -error private-coin protocol for f. Then

$$|\Pi(x,y) - \Pi(x',y')| \ge 1 - 2\sqrt{\varepsilon}.$$

Lemma 1.3 is not only an analogue of Lemma 1.1 but is actually a generalization of it. Indeed, plugging $\varepsilon = 0$ in Lemma 1.3 implies Lemma 1.1. Moreover, it implies that the bound from Theorem 1.2 holds also in the 0-error private-coin randomized case.

An analogue of Theorem 1.2 holds as well:

Theorem 1.4 (Analogue of Theorem 1.2). Let $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ be a function and let \mathcal{S} be a fooling set for f. Let $1/|\mathcal{S}| \leq \varepsilon < 1/3$. Then,

$$R_{\varepsilon}^{\mathsf{pri}}(f) = \Omega\left(\log \frac{\log |\mathcal{S}|}{\varepsilon}\right).$$

The lower bound provided by the theorem above seems exponentially weaker than the one in Theorem 1.2, but it is tight. The equality function EQ over n-bit strings has a large fooling set of size 2^n , but it is well-known (see [KN97]) that

$$R_{\varepsilon}^{\mathsf{pri}}(\mathsf{EQ}) = O\left(\log \frac{n}{\varepsilon}\right).$$

Theorem 1.4 therefore provide a tight lower bound on $R_{\varepsilon}^{\mathsf{pri}}(\mathsf{EQ})$ in terms of both n and ε . It also provides a tight lower bound for the greater-than function. Moreover, Theorem 1.4 is a generalization of Theorem 1.2 and basically implies it by choosing $\varepsilon = 1/|\mathcal{S}|$.

The proof of the lower bound uses a general lower bound on the rank of perturbed identity matrices by Alon [Alo09]. Interestingly, although not every fooling set comes

from an identity matrix (e.g. in the greater-than function), there is always some perturbed identity matrix in the background (the one used in the proof of Theorem 1.4).

We remark that for any constant $0 < \varepsilon < 1/3$, a version of Theorem 1.4 has been known for a long time. In particular, Håstad and Wigderson [HW07] give a proof of the following result¹ which appears in [Yao79] without proof: for every function f with a fooling set \mathcal{S} and for every $0 < \varepsilon < 1/3$,

$$R_{\varepsilon}^{\mathsf{pri}}(f) = \Omega\left(\log\log|\mathcal{S}|\right).$$
 (1.1)

The right-hand side above does not depend on ε . The same lower bound as in (1.1) also directly follows from Theorem 1.2 and from the following general result [KN97]: for every function f and for every $0 \le \varepsilon < 1/2$,

$$R_{\varepsilon}^{\mathsf{pri}}(f) = \Omega(\log D(f)).$$

1.3 Two types of fooling pairs

Let (x, y), (x', y') be a fooling pair for a boolean function f. For simplicity, consider the case (x, y) = (0, 0) and (x', y') = (1, 1). There are essentially two types of fooling pairs:

- The AND type for which $f(1,0) \neq f(0,1)$.
- The XOR type for which f(1,0) = f(0,1).

A partial proof of Lemma 1.3 is implicit in [BYJKS02]. The case considered in [BYJKS02] corresponds to a fooling pair of the AND type. Let π be a private-coin ε error protocol for f that is the AND of two bits. In this case, by definition it must hold that $\Pi(0,0)$ is far away from $\Pi(1,1)$. The cut-and-paste property (see Corollary 2.2) implies that the same holds for $\Pi(0,1)$ and $\Pi(1,0)$.

The case of a fooling pair of the XOR type was not analyzed before. If π is a private-coin ε -error protocol for XOR of two bits, then it does not immediately follow that $\Pi(0,0)$ is far away from $\Pi(1,1)$, nor that $\Pi(0,1)$ is far away from $\Pi(1,0)$. Lemma 1.3 implies that in fact both are true, but the argument can not use the cut-and-paste property. Our argument actually gives a better quantitative result for the XOR function as compared to the AND function.

The importance of the special case of Lemma 1.3 from [BYJKS02] is related to proving a lower bound on the randomized communication complexity of the disjointness

¹In fact, the theorem in [Yao79, HW07] is more general than the one stated here. We state the theorem in this form since it fits well the focus of this text.

function DISJ defined over $\{0,1\}^n \times \{0,1\}^n$: DISJ(x,y) = 1 if for all $i \in [n]$ it holds that $x_i \wedge y_i = 0$. They reproved that $R_{1/3}(\mathsf{DISJ}) \geq \Omega(n)$. This lower bound is extremely important and useful in many contexts and was first proved in [KS92].

On a high level, the proof of [BYJKS02] can be summarised in today's language as follows: Let π be a private-coin protocol with (1/3)-error for DISJ. We want to show that $CC(\pi) = \Omega(n)$. The argument has two different parts: The first part of the argument essentially relates the *internal information cost* (as was later defined in [BBCR13]) of computing one copy of the AND function with the communication of the protocol π for DISJ. This is a direct-sum-esque result. More concretely, if μ is a distribution on $\{0,1\}^2$ such that $\mu(1,1) = 0$ then

$$\mathsf{IC}_{\mu}(\mathsf{AND}) \leq \frac{\mathsf{CC}(\pi)}{n},$$

where $IC_{\mu}(AND)$ is the infimum over all (1/3)-error private-coin protocols τ for AND of the internal information cost of τ . The second part of the argument shows that if μ is uniform on the set $\{(0,0),(0,1),(1,0)\}$ then $IC_{\mu}(AND)>0$. The challenge in proving the second part stems from the fact that μ is supported on the zeros of AND, so it is trivial to compute AND on inputs from μ . However, the protocols τ in the definition of $IC_{\mu}(AND)$ are guaranteed to succeed for every x,y and not only on the support of μ . The authors of [BYJKS02] use the cut-and-paste property (see Corollary 2.2 below) to argue that indeed $IC_{\mu}(AND) > 0$.

The argument as described above is very specific to the AND function. Here we show that it follows from a more general fooling-set based method.

We conclude this discussion with another observation concerning the difference between the two types of fooling pairs. Let $\mathsf{EQ}_k:[k]\times[k]\to\{0,1\}$ be the equality function on k elements. Consider the following two seemingly similar functions on a pair of n-tuples of elements of [k] for $k\in\{2,3\}$:

$$f_2(x,y) = \bigvee_{i=1}^n \mathsf{EQ}_2(x_i,y_i) \ \ \text{and} \ \ f_3(x,y) = \bigvee_{i=1}^n \mathsf{EQ}_3(x_i,y_i).$$

Since all the fooling pairs of EQ_2 are of the XOR type, the private-coin communication complexity and internal information cost of f_2 are constants (f_2 is basically equality on n-bit strings). On the other hand, since EQ_3 contains a fooling pair of the AND type, the private-coin complexity and internal information cost of f_3 are $\Omega(n)$.

2 Fooling pairs and sets

2.1 Preliminaries

Communication. In the case of deterministic protocols, the set of inputs reaching a particular leaf forms a rectangle (a product set inside $\mathcal{X} \times \mathcal{Y}$). In the case of private-coin randomized protocols, the following holds (see for example Lemma 6.7 in [BYJKS02]).

Lemma 2.1 (Rectangle property for private-coin protocols). Let π be a private-coin protocol over inputs from $\mathcal{X} \times \mathcal{Y}$, and let \mathcal{L} denote the set of leaves of π . There exist functions $\alpha : \mathcal{L} \times \mathcal{X} \to [0,1]$, $\beta : \mathcal{L} \times \mathcal{Y} \to [0,1]$ such that for every $(x,y) \in \mathcal{X} \times \mathcal{Y}$ and every $\ell \in \mathcal{L}$,

$$\mathbb{P}[\pi(x,y) \text{ reaches } \ell] = \alpha(\ell,x) \cdot \beta(\ell,y).$$

Here too the lemma is in fact a generalization of what happens in the deterministic case where α, β take values in $\{0, 1\}$ rather than in [0, 1].

The above implies the following property of private-coin protocols that is more commonly known as the cut-and-paste property [PS86, CK91]. The *Hellinger* distance between two distributions p, q over a finite set \mathcal{U} is defined as

$$h(p,q) = \sqrt{1 - \sum_{u \in \mathcal{U}} \sqrt{p(u)q(u)}}.$$

Corollary 2.2 (Cut-and-paste property). Let (x, y) and (x', y') be inputs to a random-ized private-coin protocol π . Then

$$h(\Pi(x,y),\Pi(x',y')) = h(\Pi(x',y),\Pi(x,y')).$$

The following immediately following from definitions.

Proposition 2.3. Let (x,y) and (x',y') be such that $f(x,y) \neq f(x',y')$. Then, for any ε -error private-coin protocol π for f,

$$|\Pi(x,y) - \Pi(x',y')| \ge 1 - 2\varepsilon.$$

Distances. We use the following relationship between Statistical and Hellinger Distances.

Lemma 2.4 (Statistical and Hellinger Distances). Let p and q be distributions such that the statistical distance $|p-q| \ge 1 - \varepsilon$ for $0 \le \varepsilon \le 1$. Then, $h^2(p,q) \ge 1 - \sqrt{2\varepsilon}$.

Proof. In general,
$$h^{2}(p,q) \leq |p-q| \leq \sqrt{h^{2}(p,q)(2-h^{2}(p,q))}$$
.

A geometric claim. We use the following technical claim that has a geometric flavor. For two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^m$, we denote by $\langle \mathbf{a}, \mathbf{b} \rangle$ the standard inner product between \mathbf{a}, \mathbf{b} . Denote by \mathbb{R}_+ the set of non-negative real numbers.

Claim 2.5. Let $\varepsilon_1, \varepsilon_2, \delta_1, \delta_2 > 0$ and let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}_+^m$ be vectors such that

$$\langle \mathbf{a}, \mathbf{b} \rangle \ge 1 - \varepsilon_1,$$
 $\langle \mathbf{c}, \mathbf{d} \rangle \ge 1 - \varepsilon_2,$ $\langle \mathbf{a}, \mathbf{c} \rangle \le \delta_1,$ $\langle \mathbf{b}, \mathbf{d} \rangle \le \delta_2.$

Then,

$$\sum_{i \in [m]} |\mathbf{a}(i)\mathbf{b}(i) - \mathbf{c}(i)\mathbf{d}(i)| \ge 2 - (\varepsilon_1 + \varepsilon_2 + \delta_1 + \delta_2).$$

Proof.

$$\begin{split} & \sum_{i \in [m]} |\mathbf{a}(i)\mathbf{b}(i) - \mathbf{c}(i)\mathbf{d}(i)| \\ & \geq \sum_{i \in [m]} \left(\sqrt{\mathbf{a}(i)\mathbf{b}(i)} - \sqrt{\mathbf{c}(i)\mathbf{d}(i)} \right)^2 \qquad (\forall t, s \geq 0 \ |t - s| \geq \left(\sqrt{t} - \sqrt{s} \right)^2) \\ & = \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{c}, \mathbf{d} \rangle - \sum_{i \in [m]} 2\sqrt{\mathbf{a}(i)\mathbf{b}(i)\mathbf{c}(i)\mathbf{d}(i)} \\ & = \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{c}, \mathbf{d} \rangle - \sum_{i \in [m]} 2\sqrt{\mathbf{a}(i)\mathbf{c}(i) \cdot \mathbf{b}(i)\mathbf{d}(i)} \\ & \geq \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{c}, \mathbf{d} \rangle - \sum_{i \in [m]} (\mathbf{a}(i)\mathbf{c}(i) + \mathbf{b}(i)\mathbf{d}(i)) \qquad (\text{AM-GM inequality}) \\ & = \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{c}, \mathbf{d} \rangle - (\langle \mathbf{a}, \mathbf{c} \rangle + \langle \mathbf{b}, \mathbf{d} \rangle) \\ & \geq 2 - (\varepsilon_1 + \varepsilon_2 + \delta_1 + \delta_2). & \Box \end{split}$$

2.2 Fooling pairs induce far away distributions

Proof of Lemma 1.3. Let the fooling pair be (x, y) and (x', y') and assume without loss of generality that f(x, y) = f(x', y') = 1. We distinguish between the following two cases.

(a)
$$f(x, y') \neq f(x, y')$$
.

(b)
$$f(x', y) = f(x, y') = 0$$
.

In the first case, Proposition 2.3 implies that $|\Pi(x',y) - \Pi(x,y')| \ge 1-2\varepsilon$. Proposition 2.2 implies that $h(\Pi(x,y),\Pi(x',y')) = h(\Pi(x',y),\Pi(x,y'))$. Lemma 2.4 thus implies that $|\Pi(x,y) - \Pi(x',y')| \ge 1-2\sqrt{\varepsilon}$.

Let us now consider the second case. Let \mathcal{L} be the set of all leaves of π and let \mathcal{L}_1 denote those leaves which are labeled by 1. For $x \in \mathcal{X}$, $y \in \mathcal{Y}$, define the vectors $\mathbf{a}_x \in \mathbb{R}_+^{\mathcal{L}_1}$ as $\mathbf{a}_x(\ell) = \alpha(\ell, x)$, and the vectors $\mathbf{b}_y \in \mathbb{R}_+^{\mathcal{L}_1}$ as $\mathbf{b}_y(\ell) = \beta(\ell, y)$ where α and β are the functions from Lemma 2.1. Since f(x, y) = 1 and π is an ε -error protocol for f,

$$\langle \mathbf{a}_x, \mathbf{b}_y \rangle = \sum_{\ell \in \mathcal{L}_1} \alpha(\ell, x) \cdot \beta(\ell, y) = \mathbb{P}[L(\pi(x, y)) = 1] \ge 1 - \epsilon.$$

Similarly, we have $\langle \mathbf{a}_{x'}, \mathbf{b}_{y'} \rangle \geq 1 - \varepsilon$, $\langle \mathbf{a}_{x}, \mathbf{b}_{y'} \rangle \leq \varepsilon$ and $\langle \mathbf{a}_{x'}, \mathbf{b}_{y} \rangle \leq \varepsilon$. Observe

$$2|\Pi(x,y) - \Pi(x',y')| \ge \sum_{\ell \in \mathcal{L}_1} |\mathbf{a}_x(\ell)\mathbf{b}_y(\ell) - \mathbf{a}_{x'}(\ell)\mathbf{b}_{y'}(\ell)|.$$

Applying Proposition 2.5 with the vectors \mathbf{a}_x , \mathbf{b}_y , $\mathbf{a}_{x'}$, $\mathbf{b}_{y'}$ yields that $|\Pi(x,y) - \Pi(x',y')| \ge 1 - 2\varepsilon$.

2.3 A lower bound based on fooling sets

The following result of Alon [Alo09] on the rank of perturbed identity matrices is a key ingredient.

Lemma 2.6. Let $\frac{1}{2\sqrt{m}} \leq \varepsilon < \frac{1}{4}$. Let M be an $m \times m$ matrix such that $|M(i,j)| \leq \varepsilon$ for all $i \neq j$ in [m] and $|M(i,i)| \geq \frac{1}{2}$ for all $i \in [m]$. Then,

$$\operatorname{rank}(M) \ge \Omega\left(\frac{\log m}{\varepsilon^2}\right).$$

Proof of Theorem 1.4. Let \mathcal{L} denote the set of leaves of π . Let $A \in \mathbb{R}^{S \times \mathcal{L}}$ be the matrix defined by

$$A_{(x,y),\ell} = \sqrt{\mathbb{P}[\pi(x,y) = \ell]}.$$

Let

$$M = AA^T$$

where A^T is A transposed. First,

$$M_{(x,y),(x,y)} = 1.$$

Second, if $(x,y) \neq (x',y')$ in $\mathcal S$ then by Lemma 1.3 we know $|\Pi(x,y) - \Pi(x',y')| \geq 1 - 2\sqrt{\varepsilon}$

so by Lemma 2.4

$$h^{2}(\Pi(x,y),\Pi(x',y')) > 1 - 2\varepsilon^{1/4}$$

which implies

$$M_{(x,y),(x',y')} = 1 - h^2(\Pi(x,y),\Pi(x',y')) \le 2\varepsilon^{1/4}.$$

Lemma 2.6 implies that the rank of M is at least $\Omega\left(\frac{\log |\mathcal{S}|}{\sqrt{\varepsilon}}\right)$. On the other hand,

$$2^{CC(\pi)} \geq |\mathcal{L}| \geq \operatorname{rank}(M).$$

References

[Alo09] Noga Alon. Perturbed identity matrices have high rank: Proof and applications. Comb. Probab. Comput., 18(1-2):3–15, March 2009.

[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. SIAM J. Comput., 42(3):1327–1363, 2013.

[BYJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics Approach to Data Stream and Communication Complexity. In *FOCS*, pages 209–218, 2002.

[CK91] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete Math., 4(1):36–47, 1991.

[HW07] J. Hastad and A. Wigderson. The randomized communication complexity of set disjointness. *Theory of Computing*, 3(1):211–219, 2007.

[KN97] Eyal Kushilevitz and Noam Nisan. *Communication complexity*. Cambridge University Press, New York, NY, USA, 1997.

[Kra96] Matthias Krause. Geometric Arguments Yield Better Bounds for Threshold Circuits and Distributed Computing. *Theor. Comput. Sci.*, 156(1&2):99–117, 1996.

We may assume that say $\varepsilon < 2^{-12}$ by repeating the given randomized protocol a constant number of times.

- [KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.
- [LS09] Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science, 3(4):263–398, 2009.
- [New91] Ilan Newman. Private vs. common random bits in communication complexity. *Information Processing Letters*, 39(2):67–71, 1991.
- [PS86] Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. *J. Comput. Syst. Sci.*, 33(1):106–123, 1986.
- [Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary report). In *STOC*, pages 209–213, 1979.