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Abstract

Fooling pairs are one of the standard methods for proving lower bounds for

deterministic two-player communication complexity. We study fooling pairs in the

context of randomized communication complexity. We show that every fooling

pair induces far away distributions on transcripts of private-coin protocols. We

then conclude that the private-coin randomized ε-error communication complexity

of a function f with a fooling set S is at least order log log |S|
ε . This is tight, for

example, for the equality and greater-than functions.

1 Introduction

Communication complexity provides a mathematical framework for studying communi-

cation between two or more parties. It was introduced by Yao [Yao79] and has found

numerous applications since. We focus on the two-player case, and provide a brief in-

troduction to it. For more details see the textbook by Kushilevitz and Nisan [KN97].

In this model, there are two players called Alice and Bob. The players wish to

compute a function f : X × Y → Z, where Alice knows x ∈ X and Bob knows y ∈ Y .

To achieve this goal, they need to communicate. The communication complexity of f

measures the minimum number of bits the players must exchange in order to compute

f . The communication is done according to a pre-determined protocol. Protocol may

be deterministic or use private/public randomness. See Section 1.1 for definitions.
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A fundamental problem in this context is proving lower bounds on the communication

complexity of a given function f . Lower bounds methods for deterministic communi-

cation complexity are based on the fact that any protocol for f defines a partition of

X × Y to f -monochromatic rectangles. Thus, a lower bound on the size of a minimal

partition of this kind readily translates to a lower bound on the communication com-

plexity of f . Three basic bounds of this type are based on rectangle size, fooling sets,

and matrix rank (see [KN97]). Both matrix rank and rectangle size lower bounds have

natural and well-known analogues in the randomized setting: the approximate rank

lower bound [LS09, Kra96] and the discrepancy lower bound [KN97] respectively. In

this note we show that fooling sets also have natural counterparts in the randomized

setting. A weaker variant of the structure we present is implicit in [BYJKS02], where it

is used as part of a lower bound proof for the randomized communication complexity of

the disjointness function.

1.1 Communication complexity

A private-coin communication protocol for computing a function f : X × Y → Z is a

binary tree with the following generic structure. Each node in the protocol is owned

either by Alice or by Bob. For every x ∈ X , each internal node v owned by Alice is

associated with a distribution Pv,x on the children of v. Similarly, for every y ∈ Y , each

internal node v owned by Bob is associated with a distribution Pv,y on the children of

v. The leaves of the protocol are labeled by Z.

On input x, y, a protocol π is executed as follows.

1. Set v to be the root node of the protocol-tree defined above.

2. If v is a leaf, then the protocol outputs the label of the leaf. Otherwise, if Alice

owns the node v, she samples a child according to the distribution Pv,x and sends

a bit to Bob indicating which child was sampled. The case when Bob owns the

node is analogous.

3. Set v to be the sampled node and return to the previous step.

A protocol is deterministic if for every internal node v, the distribution Pv,x or Pv,y has

support of size one. A public-coin protocol is a distribution over private-coin protocols

defined as follows: Alice and Bob first sample a shared random r to choose a protocol

πr, and they execute a private protocol πr as above.

For an input (x, y), we denote by π(x, y) the sequence of messages exchanged between

the parties. We call π(x, y) the transcript of the protocol π on input (x, y). Another way
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to think of π(x, y) is as a leaf in the protocol-tree. We denote by L(π(x, y)) the label of

the leaf π(x, y) in the tree. The communication complexity of a protocol π, denoted by

CC(π) is the depth of the protocol-tree of π. For a private-coin protocol π, we denote

by Π(x, y) the distribution of the transcript of π(x, y).

For a function f , the deterministic communication complexity of f , denoted by D(f),

is the minimum of CC(π) over all deterministic protocols π such that L(π(x, y)) = f(x, y)

for every x, y. For ε > 0, we denote by Rε(f) the minimum of CC(π) over all public-coin

protocols π such that for every (x, y), it holds that P[L(π(x, y)) 6= f(x, y)] ≤ ε where

the probability is taken over all coin flips in the protocol π. We call Rε(f) the ε-error

public-coin randomized communication complexity of f . Analogously we define Rpri
ε (f)

as the ε-error private-coin randomized communication complexity.

Although public-coin protocols are more general than private-coin ones, Newman

[New91] proved that for boolean functions every public-coin protocol can be efficiently

simulated by a private-coin protocol: If f : X × Y → {0, 1} then for every 0 < ε < 1/2,

R2ε(f) ≤ Rpri
2ε (f) = O

(
Rε(f) + log

log(|X ||Y|)
ε

)
.

The additive logarithmic factor on the right-hand-side is often too small to matter, but

it does make a difference in the bounds we prove below.

1.2 Fooling pairs and sets

Fooling sets are a well-known tool for proving lower bounds forD(f). A pair (x, y), (x′, y′) ∈
X × Y is called a fooling pair for f : X × Y → Z if

• f(x, y) = f(x′, y′), and

• either f(x′, y) 6= f(x, y) or f(x, y′) 6= f(x, y).

Observe that if (x, y) and (x′, y′) are a fooling pair then x 6= x′ and y 6= y′.

It is easy to see that if (x, y) and (x′, y′) form a fooling pair then there is no f -

monochromatic rectangle that contains both of them. An immediate conclusion is the

following:

Lemma 1.1 ([KN97]). Let f : X × Y → Z be a function, let (x, y) and (x′, y′) be a

fooling pair for f and let π be a deterministic protocol for f . Then

π(x, y) 6= π(x′, y′).
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A subset S ⊆ X ×Y is a fooling set if every p 6= p′ in S form a fooling pair. Lemma

1.1 implies the following basic lower bound for deterministic communication complexity.

Theorem 1.2 ([KN97]). Let f : X ×Y → Z be a function and let S be a fooling set for

f . Then

D(f) ≥ log2(|S|).

The same properties do not hold for randomized protocol, but the following variants

are true. Let π be an ε-error private-coin protocol for f , and let (x, y), (x′, y′) be a

fooling pair for f .

Here we prove that the probabilistic analogue of π(x, y) 6= π(x′, y′) holds: we have

that |Π(x, y) − Π(x′, y′)| is large, where |Π(x, y) − Π(x′, y′)| is the statistical distance

between the two distributions on transcripts.

Lemma 1.3 (Analogue of Lemma 1.1). Let f : X ×Y → Z be a function, let (x, y) and

(x′, y′) be a fooling pair for f , and let π be an ε-error private-coin protocol for f . Then

|Π(x, y)− Π(x′, y′)| ≥ 1− 2
√
ε.

Lemma 1.3 is not only an analogue of Lemma 1.1 but is actually a generalization of

it. Indeed, plugging ε = 0 in Lemma 1.3 implies Lemma 1.1. Moreover, it implies that

the bound from Theorem 1.2 holds also in the 0-error private-coin randomized case.

An analogue of Theorem 1.2 holds as well:

Theorem 1.4 (Analogue of Theorem 1.2). Let f : X × Y → Z be a function and let S
be a fooling set for f . Let 1/|S| ≤ ε < 1/3. Then,

Rpri
ε (f) = Ω

(
log

log |S|
ε

)
.

The lower bound provided by the theorem above seems exponentially weaker than

the one in Theorem 1.2, but it is tight. The equality function EQ over n-bit strings has

a large fooling set of size 2n, but it is well-known (see [KN97]) that

Rpri
ε (EQ) = O

(
log

n

ε

)
.

Theorem 1.4 therefore provide a tight lower bound on Rpri
ε (EQ) in terms of both n and ε.

It also provides a tight lower bound for the greater-than function. Moreover, Theorem 1.4

is a generalization of Theorem 1.2 and basically implies it by choosing ε = 1/|S|.

The proof of the lower bound uses a general lower bound on the rank of perturbed

identity matrices by Alon [Alo09]. Interestingly, although not every fooling set comes
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from an identity matrix (e.g. in the greater-than function), there is always some per-

turbed identity matrix in the background (the one used in the proof of Theorem 1.4).

We remark that for any constant 0 < ε < 1/3, a version of Theorem 1.4 has been

known for a long time. In particular, H̊astad and Wigderson [HW07] give a proof of the

following result1 which appears in [Yao79] without proof: for every function f with a

fooling set S and for every 0 < ε < 1/3,

Rpri
ε (f) = Ω (log log |S|) . (1.1)

The right-hand side above does not depend on ε. The same lower bound as in (1.1)

also directly follows from Theorem 1.2 and from the following general result [KN97]: for

every function f and for every 0 ≤ ε < 1/2,

Rpri
ε (f) = Ω(logD(f)).

1.3 Two types of fooling pairs

Let (x, y), (x′, y′) be a fooling pair for a boolean function f . For simplicity, consider the

case (x, y) = (0, 0) and (x′, y′) = (1, 1). There are essentially two types of fooling pairs:

• The AND type for which f(1, 0) 6= f(0, 1).

• The XOR type for which f(1, 0) = f(0, 1).

A partial proof of Lemma 1.3 is implicit in [BYJKS02]. The case considered in

[BYJKS02] corresponds to a fooling pair of the AND type. Let π be a private-coin ε-

error protocol for f that is the AND of two bits. In this case, by definition it must hold

that Π(0, 0) is far away from Π(1, 1). The cut-and-paste property (see Corollary 2.2)

implies that the same holds for Π(0, 1) and Π(1, 0).

The case of a fooling pair of the XOR type was not analyzed before. If π is a private-

coin ε-error protocol for XOR of two bits, then it does not immediately follow that Π(0, 0)

is far away from Π(1, 1), nor that Π(0, 1) is far away from Π(1, 0). Lemma 1.3 implies

that in fact both are true, but the argument can not use the cut-and-paste property. Our

argument actually gives a better quantitative result for the XOR function as compared

to the AND function.

The importance of the special case of Lemma 1.3 from [BYJKS02] is related to

proving a lower bound on the randomized communication complexity of the disjointness

1In fact, the theorem in [Yao79, HW07] is more general than the one stated here. We state the
theorem in this form since it fits well the focus of this text.
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function DISJ defined over {0, 1}n × {0, 1}n: DISJ(x, y) = 1 if for all i ∈ [n] it holds

that xi ∧ yi = 0. They reproved that R1/3(DISJ) ≥ Ω(n). This lower bound is extremely

important and useful in many contexts and was first proved in [KS92].

On a high level, the proof of [BYJKS02] can be summarized in today’s language as

follows: Let π be a private-coin protocol with (1/3)-error for DISJ. We want to show that

CC(π) = Ω(n). The argument has two different parts: The first part of the argument

essentially relates the internal information cost (as was later defined in [BBCR13]) of

computing one copy of the AND function with the communication of the protocol π for

DISJ. This is a direct-sum-esque result. More concretely, if µ is a distribution on {0, 1}2
such that µ(1, 1) = 0 then

ICµ(AND) ≤ CC(π)

n
,

where ICµ(AND) is the infimum over all (1/3)-error private-coin protocols τ for AND of

the internal information cost of τ . The second part of the argument shows that if µ is

uniform on the set {(0, 0), (0, 1), (1, 0)} then ICµ(AND) > 0. The challenge in proving

the second part stems from the fact that µ is supported on the zeros of AND, so it is

trivial to compute AND on inputs from µ. However, the protocols τ in the definition

of ICµ(AND) are guaranteed to succeed for every x, y and not only on the support of µ.

The authors of [BYJKS02] use the cut-and-paste property (see Corollary 2.2 below) to

argue that indeed ICµ(AND) > 0.

The argument as described above is very specific to the AND function. Here we show

that it follows from a more general fooling-set based method.

We conclude this discussion with another observation concerning the difference be-

tween the two types of fooling pairs. For any positive integer k, let EQk : [k]×[k]→ {0, 1}
be the equality function on elements of the set [k]. Consider the following two seemingly

similar functions on a pair of n-tuples of elements:

f2(x, y) =
n∨
i=1

EQ2(xi, yi) and f3(x, y) =
n∨
i=1

EQ3(xi, yi).

Since all the fooling pairs of EQ2 are of the XOR type, the (1/3)-error private-coin com-

munication complexity and internal information cost of f2 are O(log n) (f2 is basically

equality on n-bit strings). On the other hand, since EQ3 contains a fooling pair of the

AND type, the (1/3)-error private-coin complexity and internal information cost of f3
are Ω(n).
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2 Fooling pairs and sets

2.1 Preliminaries

Communication. In the case of deterministic protocols, the set of inputs reaching a

particular leaf forms a rectangle (a product set inside X ×Y). In the case of private-coin

randomized protocols, the following holds (see for example Lemma 6.7 in [BYJKS02]).

Lemma 2.1 (Rectangle property for private-coin protocols). Let π be a private-coin

protocol over inputs from X × Y, and let L denote the set of leaves of π. There exist

functions α : L × X → [0, 1], β : L × Y → [0, 1] such that for every (x, y) ∈ X × Y and

every ` ∈ L,
P[π(x, y) reaches `] = α(`, x) · β(`, y).

Here too the lemma is in fact a generalization of what happens in the deterministic

case where α, β take values in {0, 1} rather than in [0, 1].

The above implies the following property of private-coin protocols that is more com-

monly known as the cut-and-paste property [PS86, CK91]. The Hellinger distance

between two distributions p, q over a finite set U is defined as

h(p, q) =

√
1−

∑
u∈U

√
p(u)q(u).

Corollary 2.2 (Cut-and-paste property). Let (x, y) and (x′, y′) be inputs to a random-

ized private-coin protocol π. Then

h(Π(x, y),Π(x′, y′)) = h(Π(x′, y),Π(x, y′)).

The next proposition immediately follows from the definitions.

Proposition 2.3. Let f : X × Y → Z be a function and let (x, y) and (x′, y′) be such

that f(x, y) 6= f(x′, y′). Then, for any ε-error private-coin protocol π for f ,

|Π(x, y)− Π(x′, y′)| ≥ 1− 2ε.

Distances. We use the following relationship between Statistical and Hellinger Dis-

tances.

Lemma 2.4 (Statistical and Hellinger Distances). Let p and q be distributions such that

the statistical distance |p− q| ≥ 1− ε for 0 ≤ ε ≤ 1. Then, h2(p, q) ≥ 1−
√

2ε.
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Proof. In general, h2(p, q) ≤ |p− q| ≤
√
h2(p, q)(2− h2(p, q)).

A geometric claim. We use the following technical claim that has a geometric flavor.

For two vectors a,b ∈ Rm, we denote by 〈a,b〉 the standard inner product between a,b.

Denote by R+ the set of non-negative real numbers.

Claim 2.5. Let ε1, ε2, δ1, δ2 > 0 and let a,b, c,d ∈ Rm
+ be vectors such that

〈a,b〉 ≥ 1− ε1, 〈c,d〉 ≥ 1− ε2,
〈a, c〉 ≤ δ1, 〈b,d〉 ≤ δ2.

Then, ∑
i∈[m]

|a(i)b(i)− c(i)d(i)| ≥ 2− (ε1 + ε2 + δ1 + δ2).

Proof. ∑
i∈[m]

|a(i)b(i)− c(i)d(i)|

≥
∑
i∈[m]

(√
a(i)b(i)−

√
c(i)d(i)

)2
(∀t, s ≥ 0 |t− s| ≥

(√
t−
√
s
)2

)

= 〈a,b〉+ 〈c,d〉 −
∑
i∈[m]

2
√

a(i)b(i)c(i)d(i)

= 〈a,b〉+ 〈c,d〉 −
∑
i∈[m]

2
√

a(i)c(i) · b(i)d(i)

≥ 〈a,b〉+ 〈c,d〉 −
∑
i∈[m]

(a(i)c(i) + b(i)d(i)) (AM-GM inequality)

= 〈a,b〉+ 〈c,d〉 − (〈a, c〉+ 〈b,d〉)
≥ 2− (ε1 + ε2 + δ1 + δ2).

2.2 Fooling pairs induce far away distributions

Proof of Lemma 1.3. Let the fooling pair be (x, y) and (x′, y′) and assume without loss

of generality that f(x, y) = f(x′, y′) = 1. We distinguish between the following two

cases.

(a) f(x′, y) 6= f(x, y′).

(b) f(x′, y) = f(x, y′) = z where z 6= 1.
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In the first case, Proposition 2.3 implies that |Π(x′, y)−Π(x, y′)| ≥ 1−2ε. Proposition

2.2 implies that h(Π(x, y),Π(x′, y′)) = h(Π(x′, y),Π(x, y′)). Lemma 2.4 thus implies that

|Π(x, y)− Π(x′, y′)| ≥ 1− 2
√
ε.

Let us now consider the second case. Let L be the set of all leaves of π and let

L1 denote those leaves which are labeled by 1. For x ∈ X , y ∈ Y , define the vectors

ax ∈ RL1+ as ax(`) = α(`, x), and the vectors by ∈ RL1+ as by(`) = β(`, y) where α and β

are the functions from Lemma 2.1. Since f(x, y) = 1 and π is an ε-error protocol for f ,

〈ax,by〉 =
∑
`∈L1

α(`, x) · β(`, y) = P[L(π(x, y)) = 1] ≥ 1− ε.

Similarly, we have 〈ax′ ,by′〉 ≥ 1− ε, 〈ax,by′〉 ≤ ε and 〈ax′ ,by〉 ≤ ε. Observe

2|Π(x, y)− Π(x′, y′)| ≥
∑
`∈L1

|ax(`)by(`)− ax′(`)by′(`)|.

Applying Proposition 2.5 with the vectors ax,by, ax′ ,by′ yields that |Π(x, y)−Π(x′, y′)| ≥
1− 2ε.

2.3 A lower bound based on fooling sets

The following result of Alon [Alo09] on the rank of perturbed identity matrices is a key

ingredient.

Lemma 2.6. Let 1
2
√
m
≤ ε < 1

4
. Let M be an m×m matrix such that |M(i, j)| ≤ ε for

all i 6= j in [m] and |M(i, i)| ≥ 1
2
for all i ∈ [m]. Then,

rank(M) = Ω

(
logm

ε2 log(1
ε
)

)
.

Proof of Theorem 1.4. Let L denote the set of leaves of π. Let A ∈ RS×L be the matrix

defined by

A(x,y),` =
√

P[π(x, y) = `].

Let

M = AAT

where AT is A transposed. First,

M(x,y),(x,y) = 1.

Second, if (x, y) 6= (x′, y′) in S then by Lemma 1.3 we know |Π(x, y)−Π(x′, y′)| ≥ 1−2
√
ε
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so by Lemma 2.4

h2(Π(x, y),Π(x′, y′)) ≥ 1− 2ε1/4

which implies

M(x,y),(x′,y′) = 1− h2(Π(x, y),Π(x′, y′)) ≤ 2ε1/4.

Lemma 2.6 implies that2 the rank of M is at least Ω

(
log |S|

√
ε log

(
1

ε1/4

)
)

= Ω

((
log |S|
ε

)1/4)
.

On the other hand,

2CC(π) ≥ |L| ≥ rank(M).
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