Fooling Pairs in Randomized Communication Complexity

Shay Moran* Makrand Sinha ${ }^{\dagger}$ Amir Yehudayoff ${ }^{\ddagger}$

Abstract

Fooling pairs are one of the standard methods for proving lower bounds for deterministic two-player communication complexity. We study fooling pairs in the context of randomized communication complexity. We show that every fooling pair induces far away distributions on transcripts of private-coin protocols. We then conclude that the private-coin randomized ε-error communication complexity of a function f with a fooling set \mathcal{S} is at least order $\log \frac{\log |\mathcal{S}|}{\varepsilon}$. This is tight, for example, for the equality and greater-than functions.

1 Introduction

Communication complexity provides a mathematical framework for studying communication between two or more parties. It was introduced by Yao [Yao79] and has found numerous applications since. We focus on the two-player case, and provide a brief introduction to it. For more details see the textbook by Kushilevitz and Nisan [KN97].

In this model, there are two players called Alice and Bob. The players wish to compute a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$, where Alice knows $x \in \mathcal{X}$ and Bob knows $y \in \mathcal{Y}$. To achieve this goal, they need to communicate. The communication complexity of f measures the minimum number of bits the players must exchange in order to compute f. The communication is done according to a pre-determined protocol. Protocol may be deterministic or use private/public randomness. See Section 1.1 for definitions.

[^0]A fundamental problem in this context is proving lower bounds on the communication complexity of a given function f. Lower bounds methods for deterministic communication complexity are based on the fact that any protocol for f defines a partition of $\mathcal{X} \times \mathcal{Y}$ to f-monochromatic rectangles. Thus, a lower bound on the size of a minimal partition of this kind readily translates to a lower bound on the communication complexity of f. Three basic bounds of this type are based on rectangle size, fooling sets, and matrix rank (see [KN97]). Both matrix rank and rectangle size lower bounds have natural and well-known analogues in the randomized setting: the approximate rank lower bound [LS09, Kra96] and the discrepancy lower bound [KN97] respectively. In this note we show that fooling sets also have natural counterparts in the randomized setting. A weaker variant of the structure we present is implicit in [BYJKS02], where it is used as part of a lower bound proof for the randomized communication complexity of the disjointness function.

1.1 Communication complexity

A private-coin communication protocol for computing a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ is a binary tree with the following generic structure. Each node in the protocol is owned either by Alice or by Bob. For every $x \in \mathcal{X}$, each internal node v owned by Alice is associated with a distribution $P_{v, x}$ on the children of v. Similarly, for every $y \in \mathcal{Y}$, each internal node v owned by Bob is associated with a distribution $P_{v, y}$ on the children of v. The leaves of the protocol are labeled by \mathcal{Z}.

On input x, y, a protocol π is executed as follows.

1. Set v to be the root node of the protocol-tree defined above.
2. If v is a leaf, then the protocol outputs the label of the leaf. Otherwise, if Alice owns the node v, she samples a child according to the distribution $P_{v, x}$ and sends a bit to Bob indicating which child was sampled. The case when Bob owns the node is analogous.
3. Set v to be the sampled node and return to the previous step.

A protocol is deterministic if for every internal node v, the distribution $P_{v, x}$ or $P_{v, y}$ has support of size one. A public-coin protocol is a distribution over private-coin protocols defined as follows: Alice and Bob first sample a shared random r to choose a protocol π_{r}, and they execute a private protocol π_{r} as above.

For an input (x, y), we denote by $\pi(x, y)$ the sequence of messages exchanged between the parties. We call $\pi(x, y)$ the transcript of the protocol π on input (x, y). Another way
to think of $\pi(x, y)$ is as a leaf in the protocol-tree. We denote by $L(\pi(x, y))$ the label of the leaf $\pi(x, y)$ in the tree. The communication complexity of a protocol π, denoted by $\mathrm{CC}(\pi)$ is the depth of the protocol-tree of π. For a private-coin protocol π, we denote by $\Pi(x, y)$ the distribution of the transcript of $\pi(x, y)$.

For a function f, the deterministic communication complexity of f, denoted by $D(f)$, is the minimum of $\mathrm{CC}(\pi)$ over all deterministic protocols π such that $L(\pi(x, y))=f(x, y)$ for every x, y. For $\varepsilon>0$, we denote by $R_{\varepsilon}(f)$ the minimum of $\mathrm{CC}(\pi)$ over all public-coin protocols π such that for every (x, y), it holds that $\mathbb{P}[L(\pi(x, y)) \neq f(x, y)] \leq \varepsilon$ where the probability is taken over all coin flips in the protocol π. We call $R_{\varepsilon}(f)$ the ε-error public-coin randomized communication complexity of f. Analogously we define $R_{\varepsilon}^{\text {pri }}(f)$ as the ε-error private-coin randomized communication complexity.

Although public-coin protocols are more general than private-coin ones, Newman [New91] proved that for boolean functions every public-coin protocol can be efficiently simulated by a private-coin protocol: If $f: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}$ then for every $0<\varepsilon<1 / 2$,

$$
R_{2 \varepsilon}(f) \leq R_{2 \varepsilon}^{\mathrm{pri}}(f)=O\left(R_{\varepsilon}(f)+\log \frac{\log (|\mathcal{X}||\mathcal{Y}|)}{\varepsilon}\right)
$$

The additive logarithmic factor on the right-hand-side is often too small to matter, but it does make a difference in the bounds we prove below.

1.2 Fooling pairs and sets

Fooling sets are a well-known tool for proving lower bounds for $D(f)$. A pair $(x, y),\left(x^{\prime}, y^{\prime}\right) \in$ $\mathcal{X} \times \mathcal{Y}$ is called a fooling pair for $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ if

- $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$, and
- either $f\left(x^{\prime}, y\right) \neq f(x, y)$ or $f\left(x, y^{\prime}\right) \neq f(x, y)$.

Observe that if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are a fooling pair then $x \neq x^{\prime}$ and $y \neq y^{\prime}$.
It is easy to see that if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ form a fooling pair then there is no f monochromatic rectangle that contains both of them. An immediate conclusion is the following:

Lemma 1.1 ([KN97]). Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function, let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be a fooling pair for f and let π be a deterministic protocol for f. Then

$$
\pi(x, y) \neq \pi\left(x^{\prime}, y^{\prime}\right)
$$

A subset $\mathcal{S} \subseteq \mathcal{X} \times \mathcal{Y}$ is a fooling set if every $p \neq p^{\prime}$ in \mathcal{S} form a fooling pair. Lemma 1.1 implies the following basic lower bound for deterministic communication complexity.

Theorem 1.2 ([KN97]). Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function and let \mathcal{S} be a fooling set for f. Then

$$
D(f) \geq \log _{2}(|\mathcal{S}|)
$$

The same properties do not hold for randomized protocol, but the following variants are true. Let π be an ε-error private-coin protocol for f, and let $(x, y),\left(x^{\prime}, y^{\prime}\right)$ be a fooling pair for f.

Here we prove that the probabilistic analogue of $\pi(x, y) \neq \pi\left(x^{\prime}, y^{\prime}\right)$ holds: we have that $\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right|$ is large, where $\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right|$ is the statistical distance between the two distributions on transcripts.

Lemma 1.3 (Analogue of Lemma 1.1). Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function, let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be a fooling pair for f, and let π be an ε-error private-coin protocol for f. Then

$$
\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right| \geq 1-2 \sqrt{\varepsilon}
$$

Lemma 1.3 is not only an analogue of Lemma 1.1 but is actually a generalization of it. Indeed, plugging $\varepsilon=0$ in Lemma 1.3 implies Lemma 1.1. Moreover, it implies that the bound from Theorem 1.2 holds also in the 0 -error private-coin randomized case.

An analogue of Theorem 1.2 holds as well:
Theorem 1.4 (Analogue of Theorem 1.2). Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function and let \mathcal{S} be a fooling set for f. Let $1 /|\mathcal{S}| \leq \varepsilon<1 / 3$. Then,

$$
R_{\varepsilon}^{\text {pri }}(f)=\Omega\left(\log \frac{\log |\mathcal{S}|}{\varepsilon}\right)
$$

The lower bound provided by the theorem above seems exponentially weaker than the one in Theorem 1.2, but it is tight. The equality function EQ over n-bit strings has a large fooling set of size 2^{n}, but it is well-known (see [KN97]) that

$$
R_{\varepsilon}^{\text {pri }}(\mathrm{EQ})=O\left(\log \frac{n}{\varepsilon}\right)
$$

Theorem 1.4 therefore provide a tight lower bound on $R_{\varepsilon}^{\text {pri }}(\mathrm{EQ})$ in terms of both n and ε. It also provides a tight lower bound for the greater-than function. Moreover, Theorem 1.4 is a generalization of Theorem 1.2 and basically implies it by choosing $\varepsilon=1 /|\mathcal{S}|$.

The proof of the lower bound uses a general lower bound on the rank of perturbed identity matrices by Alon [Alo09]. Interestingly, although not every fooling set comes
from an identity matrix (e.g. in the greater-than function), there is always some perturbed identity matrix in the background (the one used in the proof of Theorem 1.4).

We remark that for any constant $0<\varepsilon<1 / 3$, a version of Theorem 1.4 has been known for a long time. In particular, Håstad and Wigderson [HW07] give a proof of the following result ${ }^{1}$ which appears in [Yao79] without proof: for every function f with a fooling set \mathcal{S} and for every $0<\varepsilon<1 / 3$,

$$
\begin{equation*}
R_{\varepsilon}^{\text {pri }}(f)=\Omega(\log \log |\mathcal{S}|) . \tag{1.1}
\end{equation*}
$$

The right-hand side above does not depend on ε. The same lower bound as in (1.1) also directly follows from Theorem 1.2 and from the following general result [KN97]: for every function f and for every $0 \leq \varepsilon<1 / 2$,

$$
R_{\varepsilon}^{\text {pri }}(f)=\Omega(\log D(f))
$$

1.3 Two types of fooling pairs

Let $(x, y),\left(x^{\prime}, y^{\prime}\right)$ be a fooling pair for a boolean function f. For simplicity, consider the case $(x, y)=(0,0)$ and $\left(x^{\prime}, y^{\prime}\right)=(1,1)$. There are essentially two types of fooling pairs:

- The AND type for which $f(1,0) \neq f(0,1)$.
- The XOR type for which $f(1,0)=f(0,1)$.

A partial proof of Lemma 1.3 is implicit in [BYJKS02]. The case considered in [BYJKS02] corresponds to a fooling pair of the AND type. Let π be a private-coin ε error protocol for f that is the AND of two bits. In this case, by definition it must hold that $\Pi(0,0)$ is far away from $\Pi(1,1)$. The cut-and-paste property (see Corollary 2.2) implies that the same holds for $\Pi(0,1)$ and $\Pi(1,0)$.

The case of a fooling pair of the XOR type was not analyzed before. If π is a privatecoin ε-error protocol for XOR of two bits, then it does not immediately follow that $\Pi(0,0)$ is far away from $\Pi(1,1)$, nor that $\Pi(0,1)$ is far away from $\Pi(1,0)$. Lemma 1.3 implies that in fact both are true, but the argument can not use the cut-and-paste property. Our argument actually gives a better quantitative result for the XOR function as compared to the AND function.

The importance of the special case of Lemma 1.3 from [BYJKS02] is related to proving a lower bound on the randomized communication complexity of the disjointness

[^1]function DISJ defined over $\{0,1\}^{n} \times\{0,1\}^{n}: \operatorname{DISJ}(x, y)=1$ if for all $i \in[n]$ it holds that $x_{i} \wedge y_{i}=0$. They reproved that $R_{1 / 3}$ (DISJ) $\geq \Omega(n)$. This lower bound is extremely important and useful in many contexts and was first proved in [KS92].

On a high level, the proof of [BYJKS02] can be summarized in today's language as follows: Let π be a private-coin protocol with (1/3)-error for DISJ. We want to show that $C C(\pi)=\Omega(n)$. The argument has two different parts: The first part of the argument essentially relates the internal information cost (as was later defined in [BBCR13]) of computing one copy of the AND function with the communication of the protocol π for DISJ. This is a direct-sum-esque result. More concretely, if μ is a distribution on $\{0,1\}^{2}$ such that $\mu(1,1)=0$ then

$$
\mathrm{IC}_{\mu}(\mathrm{AND}) \leq \frac{\mathrm{CC}(\pi)}{n}
$$

where $\mathrm{IC}_{\mu}($ AND $)$ is the infimum over all (1/3)-error private-coin protocols τ for AND of the internal information cost of τ. The second part of the argument shows that if μ is uniform on the set $\{(0,0),(0,1),(1,0)\}$ then $\mathrm{IC}_{\mu}(\mathrm{AND})>0$. The challenge in proving the second part stems from the fact that μ is supported on the zeros of AND, so it is trivial to compute AND on inputs from μ. However, the protocols τ in the definition of $\mathrm{IC}_{\mu}(\mathrm{AND})$ are guaranteed to succeed for every x, y and not only on the support of μ. The authors of [BYJKS02] use the cut-and-paste property (see Corollary 2.2 below) to argue that indeed $\mathrm{IC}_{\mu}(\mathrm{AND})>0$.

The argument as described above is very specific to the AND function. Here we show that it follows from a more general fooling-set based method.

We conclude this discussion with another observation concerning the difference between the two types of fooling pairs. For any positive integer k, let $\mathrm{EQ}_{k}:[k] \times[k] \rightarrow\{0,1\}$ be the equality function on elements of the set $[k]$. Consider the following two seemingly similar functions on a pair of n-tuples of elements:

$$
f_{2}(x, y)=\bigvee_{i=1}^{n} \mathrm{EQ}_{2}\left(x_{i}, y_{i}\right) \text { and } f_{3}(x, y)=\bigvee_{i=1}^{n} \mathrm{EQ}_{3}\left(x_{i}, y_{i}\right)
$$

Since all the fooling pairs of EQ_{2} are of the XOR type, the (1/3)-error private-coin communication complexity and internal information cost of f_{2} are $O(\log n)\left(f_{2}\right.$ is basically equality on n-bit strings). On the other hand, since EQ_{3} contains a fooling pair of the AND type, the ($1 / 3$)-error private-coin complexity and internal information cost of f_{3} are $\Omega(n)$.

2 Fooling pairs and sets

2.1 Preliminaries

Communication. In the case of deterministic protocols, the set of inputs reaching a particular leaf forms a rectangle (a product set inside $\mathcal{X} \times \mathcal{Y}$). In the case of private-coin randomized protocols, the following holds (see for example Lemma 6.7 in [BYJKS02]).

Lemma 2.1 (Rectangle property for private-coin protocols). Let π be a private-coin protocol over inputs from $\mathcal{X} \times \mathcal{Y}$, and let \mathcal{L} denote the set of leaves of π. There exist functions $\alpha: \mathcal{L} \times \mathcal{X} \rightarrow[0,1], \beta: \mathcal{L} \times \mathcal{Y} \rightarrow[0,1]$ such that for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$ and every $\ell \in \mathcal{L}$,

$$
\mathbb{P}[\pi(x, y) \text { reaches } \ell]=\alpha(\ell, x) \cdot \beta(\ell, y)
$$

Here too the lemma is in fact a generalization of what happens in the deterministic case where α, β take values in $\{0,1\}$ rather than in $[0,1]$.

The above implies the following property of private-coin protocols that is more commonly known as the cut-and-paste property [PS86, CK91]. The Hellinger distance between two distributions p, q over a finite set \mathcal{U} is defined as

$$
h(p, q)=\sqrt{1-\sum_{u \in \mathcal{U}} \sqrt{p(u) q(u)}}
$$

Corollary 2.2 (Cut-and-paste property). Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be inputs to a randomized private-coin protocol π. Then

$$
h\left(\Pi(x, y), \Pi\left(x^{\prime}, y^{\prime}\right)\right)=h\left(\Pi\left(x^{\prime}, y\right), \Pi\left(x, y^{\prime}\right)\right) .
$$

The next proposition immediately follows from the definitions.
Proposition 2.3. Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ be a function and let (x, y) and (x^{\prime}, y^{\prime}) be such that $f(x, y) \neq f\left(x^{\prime}, y^{\prime}\right)$. Then, for any ε-error private-coin protocol π for f,

$$
\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right| \geq 1-2 \varepsilon
$$

Distances. We use the following relationship between Statistical and Hellinger Distances.

Lemma 2.4 (Statistical and Hellinger Distances). Let p and q be distributions such that the statistical distance $|p-q| \geq 1-\varepsilon$ for $0 \leq \varepsilon \leq 1$. Then, $h^{2}(p, q) \geq 1-\sqrt{2 \varepsilon}$.

Proof. In general, $h^{2}(p, q) \leq|p-q| \leq \sqrt{h^{2}(p, q)\left(2-h^{2}(p, q)\right)}$.

A geometric claim. We use the following technical claim that has a geometric flavor. For two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{m}$, we denote by $\langle\mathbf{a}, \mathbf{b}\rangle$ the standard inner product between \mathbf{a}, \mathbf{b}. Denote by \mathbb{R}_{+}the set of non-negative real numbers.

Claim 2.5. Let $\varepsilon_{1}, \varepsilon_{2}, \delta_{1}, \delta_{2}>0$ and let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}_{+}^{m}$ be vectors such that
$\langle\mathbf{a}, \mathbf{b}\rangle \geq 1-\varepsilon_{1}$,
$\langle\mathbf{c}, \mathbf{d}\rangle \geq 1-\varepsilon_{2}$,
$\langle\mathbf{a}, \mathbf{c}\rangle \leq \delta_{1}$,
$\langle\mathbf{b}, \mathbf{d}\rangle \leq \delta_{2}$.

Then,

$$
\sum_{i \in[m]}|\mathbf{a}(i) \mathbf{b}(i)-\mathbf{c}(i) \mathbf{d}(i)| \geq 2-\left(\varepsilon_{1}+\varepsilon_{2}+\delta_{1}+\delta_{2}\right)
$$

Proof.

$$
\begin{aligned}
& \sum_{i \in[m]}|\mathbf{a}(i) \mathbf{b}(i)-\mathbf{c}(i) \mathbf{d}(i)| \\
& \quad \geq \sum_{i \in[m]}(\sqrt{\mathbf{a}(i) \mathbf{b}(i)}-\sqrt{\mathbf{c}(i) \mathbf{d}(i)})^{2} \quad\left(\forall t, s \geq 0 \quad|t-s| \geq(\sqrt{t}-\sqrt{s})^{2}\right) \\
& \quad=\langle\mathbf{a}, \mathbf{b}\rangle+\langle\mathbf{c}, \mathbf{d}\rangle-\sum_{i \in[m]} 2 \sqrt{\mathbf{a}(i) \mathbf{b}(i) \mathbf{c}(i) \mathbf{d}(i)} \\
& \quad=\langle\mathbf{a}, \mathbf{b}\rangle+\langle\mathbf{c}, \mathbf{d}\rangle-\sum_{i \in[m]} 2 \sqrt{\mathbf{a}(i) \mathbf{c}(i) \cdot \mathbf{b}(i) \mathbf{d}(i)} \\
& \quad \geq\langle\mathbf{a}, \mathbf{b}\rangle+\langle\mathbf{c}, \mathbf{d}\rangle-\sum_{i \in[m]}(\mathbf{a}(i) \mathbf{c}(i)+\mathbf{b}(i) \mathbf{d}(i)) \quad \quad \text { (AM-GM inequality) } \\
& \quad=\langle\mathbf{a}, \mathbf{b}\rangle+\langle\mathbf{c}, \mathbf{d}\rangle-(\langle\mathbf{a}, \mathbf{c}\rangle+\langle\mathbf{b}, \mathbf{d}\rangle) \\
& \quad \geq 2-\left(\varepsilon_{1}+\varepsilon_{2}+\delta_{1}+\delta_{2}\right) .
\end{aligned}
$$

2.2 Fooling pairs induce far away distributions

Proof of Lemma 1.3. Let the fooling pair be (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ and assume without loss of generality that $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)=1$. We distinguish between the following two cases.
(a) $f\left(x^{\prime}, y\right) \neq f\left(x, y^{\prime}\right)$.
(b) $f\left(x^{\prime}, y\right)=f\left(x, y^{\prime}\right)=z$ where $z \neq 1$.

In the first case, Proposition 2.3 implies that $\left|\Pi\left(x^{\prime}, y\right)-\Pi\left(x, y^{\prime}\right)\right| \geq 1-2 \varepsilon$. Proposition 2.2 implies that $h\left(\Pi(x, y), \Pi\left(x^{\prime}, y^{\prime}\right)\right)=h\left(\Pi\left(x^{\prime}, y\right), \Pi\left(x, y^{\prime}\right)\right)$. Lemma 2.4 thus implies that $\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right| \geq 1-2 \sqrt{\varepsilon}$.

Let us now consider the second case. Let \mathcal{L} be the set of all leaves of π and let \mathcal{L}_{1} denote those leaves which are labeled by 1 . For $x \in \mathcal{X}, y \in \mathcal{Y}$, define the vectors $\mathbf{a}_{x} \in \mathbb{R}_{+}^{\mathcal{L}_{1}}$ as $\mathbf{a}_{x}(\ell)=\alpha(\ell, x)$, and the vectors $\mathbf{b}_{y} \in \mathbb{R}_{+}^{\mathcal{L}_{1}}$ as $\mathbf{b}_{y}(\ell)=\beta(\ell, y)$ where α and β are the functions from Lemma 2.1. Since $f(x, y)=1$ and π is an ε-error protocol for f,

$$
\left\langle\mathbf{a}_{x}, \mathbf{b}_{y}\right\rangle=\sum_{\ell \in \mathcal{L}_{1}} \alpha(\ell, x) \cdot \beta(\ell, y)=\mathbb{P}[L(\pi(x, y))=1] \geq 1-\epsilon
$$

Similarly, we have $\left\langle\mathbf{a}_{x^{\prime}}, \mathbf{b}_{y^{\prime}}\right\rangle \geq 1-\varepsilon,\left\langle\mathbf{a}_{x}, \mathbf{b}_{y^{\prime}}\right\rangle \leq \varepsilon$ and $\left\langle\mathbf{a}_{x^{\prime}}, \mathbf{b}_{y}\right\rangle \leq \varepsilon$. Observe

$$
2\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right| \geq \sum_{\ell \in \mathcal{L}_{1}}\left|\mathbf{a}_{x}(\ell) \mathbf{b}_{y}(\ell)-\mathbf{a}_{x^{\prime}}(\ell) \mathbf{b}_{y^{\prime}}(\ell)\right|
$$

Applying Proposition 2.5 with the vectors $\mathbf{a}_{x}, \mathbf{b}_{y}, \mathbf{a}_{x^{\prime}}, \mathbf{b}_{y^{\prime}}$ yields that $\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right| \geq$ $1-2 \varepsilon$.

2.3 A lower bound based on fooling sets

The following result of Alon [Alo09] on the rank of perturbed identity matrices is a key ingredient.

Lemma 2.6. Let $\frac{1}{2 \sqrt{m}} \leq \varepsilon<\frac{1}{4}$. Let M be an $m \times m$ matrix such that $|M(i, j)| \leq \varepsilon$ for all $i \neq j$ in $[m]$ and $|M(i, i)| \geq \frac{1}{2}$ for all $i \in[m]$. Then,

$$
\operatorname{rank}(M)=\Omega\left(\frac{\log m}{\varepsilon^{2} \log \left(\frac{1}{\varepsilon}\right)}\right) .
$$

Proof of Theorem 1.4. Let \mathcal{L} denote the set of leaves of π. Let $A \in \mathbb{R}^{\mathcal{S} \times \mathcal{L}}$ be the matrix defined by

$$
A_{(x, y), \ell}=\sqrt{\mathbb{P}[\pi(x, y)=\ell]} .
$$

Let

$$
M=A A^{T}
$$

where A^{T} is A transposed. First,

$$
M_{(x, y),(x, y)}=1
$$

Second, if $(x, y) \neq\left(x^{\prime}, y^{\prime}\right)$ in \mathcal{S} then by Lemma 1.3 we know $\left|\Pi(x, y)-\Pi\left(x^{\prime}, y^{\prime}\right)\right| \geq 1-2 \sqrt{\varepsilon}$
so by Lemma 2.4

$$
h^{2}\left(\Pi(x, y), \Pi\left(x^{\prime}, y^{\prime}\right)\right) \geq 1-2 \varepsilon^{1 / 4}
$$

which implies

$$
M_{(x, y),\left(x^{\prime}, y^{\prime}\right)}=1-h^{2}\left(\Pi(x, y), \Pi\left(x^{\prime}, y^{\prime}\right)\right) \leq 2 \varepsilon^{1 / 4}
$$

Lemma 2.6 implies that ${ }^{2}$ the rank of M is at least $\Omega\left(\frac{\log |\mathcal{S}|}{\sqrt{\varepsilon} \log \left(\frac{1}{\varepsilon^{1 / 4}}\right)}\right)=\Omega\left(\left(\frac{\log |\mathcal{S}|}{\varepsilon}\right)^{1 / 4}\right)$. On the other hand,

$$
2^{C C(\pi)} \geq|\mathcal{L}| \geq \operatorname{rank}(M) .
$$

References

[Alo09] Noga Alon. Perturbed identity matrices have high rank: Proof and applications. Comb. Probab. Comput., 18(1-2):3-15, March 2009.
[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. SIAM J. Comput., 42(3):1327-1363, 2013.
[BYJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics Approach to Data Stream and Communication Complexity. In FOCS, pages 209-218, 2002.
[CK91] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete Math., 4(1):36-47, 1991.
[HW07] J. Hastad and A. Wigderson. The randomized communication complexity of set disjointness. Theory of Computing, 3(1):211-219, 2007.
[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, New York, NY, USA, 1997.
[Kra96] Matthias Krause. Geometric Arguments Yield Better Bounds for Threshold Circuits and Distributed Computing. Theor. Comput. Sci., 156(1\&2):99117, 1996.

[^2][KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set intersection. SIAM J. Discrete Math., 5(4):545-557, 1992.
[LS09] Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science, 3(4):263-398, 2009.
[New91] Ilan Newman. Private vs. common random bits in communication complexity. Information Processing Letters, 39(2):67-71, 1991.
[PS86] Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. J. Comput. Syst. Sci., 33(1):106-123, 1986.
[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary report). In STOC, pages 209-213, 1979.

[^0]: *Max Planck Institute for Informatics, Saarbrücken, Germany, and Technion-IIT, Israel. smoran@mpi-inf.mpg.de.
 ${ }^{\dagger}$ Department of Computer Science and Engineering, University of Washington, Seattle. makrand@cs.washington.edu. Partially supported by BSF.
 ${ }^{\ddagger}$ Department of Mathematics, Technion-IIT, Israel. amir.yehudayoff@gmail.com. Horev fellow supported by the Taub foundation. Supported by ISF and BSF.

[^1]: ${ }^{1}$ In fact, the theorem in [Yao79, HW07] is more general than the one stated here. We state the theorem in this form since it fits well the focus of this text.

[^2]: ${ }^{2}$ We may assume that say $\varepsilon<2^{-12}$ by repeating the given randomized protocol a constant number of times.

