
Two Sides of the Coin Problem

Gil Cohen ∗ Anat Ganor ∗ Ran Raz †

February 19, 2014

Abstract

In the coin problem, one is given n independent flips of a coin that has bias β >
0 towards either Head or Tail. The goal is to decide which side the coin is biased
towards, with high confidence. An optimal strategy for solving the coin problem is to
apply the majority function on the n samples. This simple strategy works as long as
β > Ω(1/

√
n). However, computing majority is an impossible task for several natural

computational models, such as bounded width read once branching programs and AC0

circuits.
Brody and Verbin [FOCS 2010] proved that a length n, width w read once branch-

ing program cannot solve the coin problem for β < O(1/(log n)3w). This result was
tightened by Steinberger [CCC 2013] to O(1/(log n)w−2). As for the model of AC0

circuits, Aaronson [STOC 2010] proved that a depth d size s Boolean circuit cannot
solve the coin problem for β < O(1/(log s)d+2).

This work has two contributions:

• We strengthen Steinberger result and show that any Santha-Vazirani source with
bias β < O(1/(log n)w−2) fools length n, width w read once branching programs.
In other words, the strong independence assumption in the coin problem is com-
pletely redundant in the model of read once branching programs. That is, the
exact same result holds for a much more general class of sources.

• We tighten Aaronson result and show that a depth d, size s Boolean circuit cannot
solve the coin problem for β < O(1/(log s)d−1). Moreover, our proof technique is
different and we believe that it is simpler and more natural.
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1 Introduction

In the Coin Problem, defined by Brody and Verbin [BV10], one is given n independent flips
of a coin that has bias β > 0 towards either Head or Tail. The goal is to decide which side
the coin is biased towards, with high confidence (say, 2/3). It is not hard to see that the best
strategy for solving the coin problem is to apply the majority function on the n outcomes.
By Chernoff bound, this strategy works as long as β > c/

√
n, for some large enough constant

c. However, taking the majority on n bits is provably an impossible task for several natural
computational models, such as bounded width read once branching programs (henceforth,
ROBP) and AC0 circuits.

The coin problem is related to two other well-studied notions of approximating the ma-
jority function. The first notion is the “promise” problem of computing majority. Namely,
it asks for upper and lower bounds, in different computational models, for computing the
majority function correctly only on inputs that have bias at least ε. This central problem
received a considerable attention in the literature (see [Ajt83], [ABO84], [Sto85], [Ajt93],
[CR96], [Ama09], [Vio09], [Vio11], [KS12], [CDI+13] and references therein). In the second
notion (see, e.g., [OW07], [Ama09]) one considers functions that agree with the majority
function on all but δ fraction of the inputs (regardless of their Hamming weight). The coin
problem can be seen as a combination of these two notions. Intuitively, it is an easier problem
to solve as it allows both types of slackness, and thus poses a greater challenge for proving
lower bounds.

Motivated by the construction of pseudorandom generators for ROBP, Brody and Verbin
[BV10] considered the coin problem for the model of ROBP with bounded width. Informally
speaking, a width w ROBP is a non-uniform model of computation that gets the flip outcomes
one by one in a stream, and can “remember” at most log2w bits of information at each point
in time, concerning the past outcomes. For, say, constant w, such model cannot compute
majority.1

In [BV10] it is shown that width w length n ROBP cannot solve the coin problem for β <
1/(log n)cw, where c is some constant. This result was later tightened by Steinberger [Ste11]
to β < c/(2 log n)w−2, where c is an appropriate constant.

A different, yet essentially equivalent formulation of the coin problem, is where given a
coin that is either unbiased or has bias at least β > 0 towards Head, the goal is to distinguish
between the two cases, with high confidence. As mentioned above, Brody and Verbin [BV10],
and later on Steinberger [Ste11], proved that a product distribution of bits, with small enough
bias each, cannot be distinguished from the uniform distribution by ROBPs with bounded
width. In other words, a product distribution with small enough bias fools ROBPs with
bounded width.

Our first result shows that the independence assumption, which is necessary in many
settings, is in fact completely redundant. More formally, we show that any Santha-Vazirani
source, with small enough bias, fools ROBPs with bounded width. Recall that a Santha-

1In this context, it is interesting to note that the classical result of Barrington [Bar89] states that without
the read-once requirement, width 5 is sufficient for computing majority.
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Vazirani source [SV86] on n bits with bias β is a distribution X1, . . . ,Xn, where each bit Xi

is some adversarially chosen (probabilistic) function of X1, . . . ,Xi−1, under the promise that
bias(Xi | X1 = x1, . . . ,Xi−1 = xi−1) ≤ β, for all prefixes x1, . . . , xi−1.

Santha-Vazirani sources have been extensively studied in the pseudorandomness literature
and form a much richer class of sources than product distributions. As mentioned, the origi-
nal motivation of Brody and Verbin for studying the coin problem came from their approach
of constructing pseudorandom generators for ROBPs. This approach yields pseudorandom
generators for a natural subclass of ROBPs called regular ROBPs (see also, [BRRY10]). It
is not clear how to construct pseudorandom generators for the non-regular case, and it is
plausible that Santha-Vazirani sources are a much better starting point for such construc-
tions. In fact, one can view of the proof of Braverman et al. [BRRY10] as approximating
Santha-Vazirani sources by recursively applying the pseudorandom generator of Impagli-
azzo et al. [INW94].

Theorem 1.1 (Santha-Vazirani sources fool ROBPs, informally stated). There exists a
universal constant c > 0 such that the following holds. Any Santha-Vazirani source on n bits
with bias β < c/(2 log n)w−2 fools length n, width w ROBPs.

The proof of the above theorem is based on a reduction to the result of Steinberger [Ste11].
We move on to present our second result. As a matter of fact, the coin problem was

studied by Aaronson [Aar10] even prior to the work of Brody and Verbin. Motivated by the
seemingly unrelated problem of obtaining an exponential oracle separation between BQP
and PH, Aaronson studied the coin problem (or ε-bias detection in his notation) in the
context of AC0 circuits. Aaronson ([Aar10], Corollary 12) proved that any depth d Boolean
circuit on n inputs that distinguishes a fair coin from an ε-biased coin, with constant confi-
dence, must have size exponential in (1/ε)1/(d+2).

To prove his lower bound, Aaronson shows that a circuit that solves the coin problem
can be transformed into a circuit that accepts all n bit strings with Hamming weight n/2+1
while rejecting all strings with Hamming weight n/2. By [H̊as86], [LMN93], the latter task
is known to require large bounded depth circuits. In the reduction, Aaronson makes use of
depth 3 circuits for the problem of approximate majority [Ajt83], [Vio09].

Our second contribution is an improvement over Aaronson’s result. We give a tight lower
bound for the size of a depth d circuit that solves the coin problem.

Theorem 1.2 (Coin Problem for AC0, informally stated). There exists a universal constant
c > 0 such that the following holds. A depth d, size s Boolean circuit on n inputs cannot
solve the coin problem for

β <
1

(c log s)d−1
.

This is tight up to the multiplicative constant c [Ama09].

Moreover, our proof technique is different and we believe that it is simpler and more
natural, and it gives the tight bound. The intuition is the following: suppose one applies,
say, 10β random restriction to the input (see Section 2.3 for the precise definition). Then,
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one expects that a function f that solves the coin problem for bias β, applied to the re-
sulting restricted input, should not be constant with high probability, whereas by known
results [H̊as86], [LMN93] such random restriction typically collapses a bounded depth cir-
cuit to some constant. The formal proof formalizes this by expressing the confidence of f in
terms of the Fourier spectrum of a random restriction applied to f (see Lemma 4.2), where
the restriction parameter is related to the bias of the coin.

2 Preliminaries

It will be convenient for us to think about coins with sides {±1}. The bias of a {±1} random
variable X, denoted by bias(X), is defined as 1

2
· |Pr[X = 1]−Pr[X = −1]|.

Definition 2.1. Let ε ∈ [0, 1
2
]. Define the product distribution Xn

ε supported on {±1}n as
follows. For x ∼ Xn

ε it holds that Pr[xi = 1] = 1
2

+ ε (and thus Pr[xi = −1] = 1
2
− ε) for all

i ∈ [n].

We note that the uniform distribution over {±1}n, denoted by Un, is the same as Xn
0 . When

n is clear from context we omit the superscript and write Xε and U.

Definition 2.2 (Santha-Vazirani Sources). A distribution X supported on {±1}n is called a
Santha-Vazirani source with bias ε, if for every i ∈ [n] and every x1, . . . , xn ∈ {±1}, it holds
that

bias (Xi | X1 = x1,X2 = x2, . . . ,Xi−1 = xi−1) ≤ ε.

Definition 2.3. For a function f : {±1}n → {±1} and a distribution D supported on {±1}n,
the distinguishability of D from U by f is given by

Distinguishability(f,D) = |E[f(D)]− E[f(U)]| .

For ε ∈ [0, 1
2
], let Distinguishability(f, ε) denote Distinguishability(f,Xε).

2.1 Read Once Branching Programs

A branching program of length n and width w is a directed (multi-) graph with n layers
V0, . . . , Vn−1 of w nodes each, called states, and a final layer Vn with two nodes, accept and
reject. The branching program has a designated start node on layer V0. For every internal
node (that is, nodes in layers V0, . . . , Vn−1), there are exactly 2 edges going out of it and
both these edges go to nodes on the next layer of the branching program. One of these
edges is labeled by 1 and the other is labeled by −1. There are no edges going out of the
accept and reject nodes. The computation of a branching program of length n on a string
x = x1, . . . , xn ∈ {±1}n is defined in the natural way, by following the edge labeled xi at step
i, starting from the start node. The computation accepts x if it reaches the accept state and
rejects otherwise. This branching program just described is a read-once branching program,
since each character of x is examined exactly once.
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For a branching program f , an internal state s and b ∈ {±1}, let sf (b) denote the state
reached by following the edge labeled b going out of s in f . When f is clear from context
we write s(b) instead of sf (b). For a string x ∈ {±1}n we define the output of f to be
f(x) := −1 if f accepts x and f(x) := 1 otherwise. For any state s, let Rf,x(s) denote the
event that the computation of f on input x reaches s. When f and x are clear from context
we write R(s) instead of Rf,x(s). Hence, for a distribution X over {±1}n, E[f(X) | R(s)] is
the expected output of f on input X, conditioned on the event that the computation reaches
s, and Pr[Xi = b | R(s)] for b ∈ {±1} and i ∈ [n], is the probability that Xi = b conditioned
on the event that f on input X reaches s. To simplify notation, for any two states s1, s2, let
R(s1, s2) denote the event that the computation of f on input x reaches both s1 and s2.

2.2 Bounded Depth Circuits

We consider circuits consisting of unbounded fan-in AND, OR gates applied to input variables
and their negation. We only consider circuits with one output. The size of a circuit is the
number of gates it contains. The depth is defined as the length of the longest path (in
edges) from any input to the output. The depth of a gate g in a circuit is the depth of the
sub-circuit with output gate g.

A circuit is called layered if for every d ≥ 1, the inputs of any depth d gate in the circuit
are the outputs of depth d− 1 gates. A layered circuit is called alternating if the inputs to
an AND gate (OR gate) with depth greater than 1 are the outputs of OR gates (AND gates).
By standard arguments, for any size s, depth d Boolean circuit C there exists an alternating
circuit C ′ with size at most d · s and depth d that computes the same function as C. The
width of a layered circuit is the maximum fan-in of the gates in the bottom layer.

2.3 Fourier Analysis

Definition 2.4. For a parameter ρ ∈ [0, 1] and x ∈ {±1}n, define the distribution Nρ(x)
supported on {±1}n as follows. For y ∼ Nρ(x), for all i ∈ [n] independently, with probability
ρ the variable yi is being set to xi, and with probability 1 − ρ the variable yi is sampled
uniformly at random from {±1}.

Definition 2.5. Let ρ ∈ [0, 1]. The noise operator Tρ, acting on the set of functions
{f : {±1}n → R}, is defined as

Tρf(x) = E[f(Nρ(x))].

The following well-known claim relates the Fourier representation of Tρf to that of f .

Claim 2.6. For any f : {±1}n → R and ρ ∈ [0, 1],

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x).
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For ρ ∈ [0, 1], a ρ random restriction is the following probabilistic process. For each
i ∈ [n], independently, leave it unset with probability ρ, and with probability 1− ρ set it to
±1 uniformly and independently at random. We denote a restriction by (J |z) where J ⊆ [n]
is the set of indices of unset variables and z ∈ {±1, ∗}n is the values assigned to the variables,
where the variables in J are assigned the symbol ∗. More precisely, zi = ∗ if and only if
i ∈ J , and otherwise zi is the value assigned to the ith variable.

Let f : {±1}n → R, and let (J |z) be a restriction. We define the restricted function
f(J |z) : {±1}n → R as follows: For x ∈ {±1}n, f(J |z)(x) = f(y), where y ∈ {±1}n is defined
as follows:

yi =

{
xi, i ∈ J ;

zi, i 6∈ J .

The following claim can be found in [O’D].

Claim 2.7. Let f : {±1}n → R. Let (J |z) be a ρ random restriction. Then for S ⊆ [n],

E(J |z)

[
f̂(J |z)(S)

]
= ρ|S| · f̂(S).

3 Santha-Vazirani Sources Fool Read Once Branching

Programs

The following is the main theorem of this section, which is a formal restatement of Theo-
rem 1.1.

Theorem 3.1. For any n,w such that 2 ≤ w ≤ logn
log logn

the following holds. Let f be a width

w, length n ROBP. Then, for any ε ∈ [0, 1] and any Santha-Vazirani source X with bias ε,

Distinguishability (f,X) ≤ ε · (2 log n)w−2 · (1 + o(1)).

The proof of Theorem 3.1 is via a reduction to the lower bound for ROBP solving the coin
problem given by Brody and Verbin [BV10] and later improved by Steinberger [Ste11]. The
following theorem is an adjustment of the lower bound of [Ste11] (see Theorem 1 therein) to
our notation.

Theorem 3.2 ([Ste11]). For any n,w such that 2 ≤ w ≤ logn
log logn

the following holds. Let f

be a width w, length n ROBP. Then, for any ε ∈ [0, 1],

Distinguishability(f, ε) ≤ ε · (2 log n)w−2 · (1 + o(1)).

The following lemma, which formalizes the reduction, together with Theorem 3.2 complete
the proof of Theorem 3.1.

Lemma 3.3. Let f be a width w, length n ROBP. Let X be a Santha-Vazirani source with
bias ε. Then, there exists a width w, length n ROBP g such that

Distinguishability (f,X) ≤ Distinguishability(g, ε). (3.1)
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Proof: Assume, without loss of generality, that E[f(U)] ≤ E[f(X)]. Note that we may
assume that for every layer i ∈ [n] and every internal state s on Vi−1, it holds that

Pr[Xi = −1 | R(s)] ≤ Pr[Xi = 1 | R(s)]. (3.2)

If this is not the case, we flip the ith coordinate of X in the event that f reaches s on input
X1, . . . ,Xi−1. Note that X remains a Santha-Vazirani source with bias ε. We change f
accordingly, by switching the edges going out of s in f . Doing so, the expected output of
(the resulted) f , both under the uniform distribution and under (the resulted distribution)
X, does not change.

We define hybrid distributions X(n),X(n−1), . . . ,X(0) as follows. For every i ∈ [n+ 1], let
X(i−1) be a distribution where the first i− 1 bits are distributed according to X and the rest
of the bits are distributed according to Xε, independently of all other bits. Note that X(0)

is exactly Xε and X(n) is exactly X. We define f (n) = f and given f (i) for some i ∈ [n], we
define f (i−1) as follows. Let t1, t2, . . . , t|Vi| be an order of the states on layer Vi such that for
every 1 ≤ j < |Vi|,

E[f (i)(Xε) | R(tj)] ≥ E[f (i)(Xε) | R(tj+1)].

We start with f (i−1) = f (i). Fix some state s on layer Vi−1 and let j1, j−1 be the indices such
that sf (i−1)(1) = tj1 and sf (i−1)(−1) = tj−1 . If j1 > j−1 then we switch the edges going out

of s in f (i−1). Clearly, the expected output of f (i−1) under the uniform distribution does not
change. Moreover, since we change only edges that are going out of layer i− 1, we get that

E[f (i−1)(Xε) | R(sf (i−1)(−1))] ≤ E[f (i−1)(Xε) | R(sf (i−1)(1))]. (3.3)

First, we analyze how the expectation under the distribution X(i) changes when we switch
from f (i) to f (i−1). By the definition of X(i), for every b ∈ {±1} it holds that

E[f (i−1)(X(i)) | R(s, sf (i−1)(b))] = E[f (i−1)(Xε) | R(sf (i−1)(b))]

and
Pr[X

(i)
i = b | R(s)] = Pr[Xi = b | R(s)].

Therefore,

E[f (i−1)(X(i)) | R(s)] =
∑

b∈{±1}

E[f (i−1)(X(i)) | R(s, sf (i−1)(b))] ·Pr[X
(i)
i = b | R(s)]

=
∑

b∈{±1}

E[f (i−1)(Xε) | R(sf (i−1)(b))] ·Pr[Xi = b | R(s)].

In the same way,

E[f (i)(X(i)) | R(s)] =
∑

b∈{±1}

E[f (i)(Xε) | R(sf (i)(b))] ·Pr[Xi = b | R(s)]

=
∑

b∈{±1}

E[f (i−1)(Xε) | R(sf (i)(b))] ·Pr[Xi = b | R(s)].
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When we switch from f (i) to f (i−1), we ensure that Equation (3.3) holds, and thus, assuming
that Equation (3.2) also holds, the expectation can only increase. That is,

E[f (i)(X(i)) | R(s)] ≤ E[f (i−1)(X(i)) | R(s)]. (3.4)

Next, we analyze how the expectation of f (i−1) changes when we switch from X(i) to X(i−1).
By the definition of X(i−1), for every b ∈ {±1} it holds that

E[f (i−1)(X(i−1)) | R(s, sf (i−1)(b))] = E[f (i−1)(Xε) | R(sf (i−1)(b))]

and
Pr[X

(i−1)
i = b | R(s)] = Pr[(Xε)i = b | R(s)].

Therefore,

E[f (i−1)(X(i−1)) | R(s)] =
∑

b∈{±1}

E[f (i−1)(Xε) | R(sf (i−1)(b))] ·Pr[(Xε)i = b | R(s)].

Since Pr[Xi = 1 | R(s)] ≤ 1
2

+ ε = Pr[(Xε)i = 1 | R(s)], and since Equation (3.3) holds,
when we switch from X(i) to X(i−1), the expectation can only increase. That is,

E[f (i−1)(X(i)) | R(s)] ≤ E[f (i−1)(X(i−1)) | R(s)]. (3.5)

Combining Equations (3.4) and (3.5), we get that

E[f (i)(X(i)) | R(s)] ≤ E[f (i−1)(X(i−1)) | R(s)].

Finally, note that PrX(i−1) [R(s)] = PrX(i) [R(s)]. Therefore, by repeating the above argu-
ments for every s ∈ Vi−1, and summing over them, we get that E[f (i)(U)] = E[f (i−1)(U)]
and E[f (i)(X(i))] ≤ E[f (i−1)(X(i−1))]. Since this holds for every i ∈ [n], we get that

Distinguishability(f (n),X(n)) ≤ Distinguishability(f (0),X(0)),

as stated.

4 The Coin Problem for AC0

The following is the main theorem of this section, which is a formal restatement of Theo-
rem 1.2.

Theorem 4.1. Let f be a function computable by a size s, depth d Boolean circuit. Then,
for all δ ∈ (0, 1

2
]

Distinguishability

(
f,

δ

(120 · log (12s/δ))d−1

)
≤ δ.

7



We note that this result is tight [Ama09]. To prove Theorem 4.1, we start by proving a
lemma that expresses the distinguishability of a function in terms of the behavior of the
function under random restrictions.

Lemma 4.2. Let f : {±1}n → {±1} and let ε ∈ [0, 1
2
]. If (J |z) is a 2ε random restriction

then

Distinguishability(f, ε) =

∣∣∣∣∣∣E(J |z)

 ∑
∅6=S⊆[n]

f̂(J |z)(S)

∣∣∣∣∣∣ .
Proof: We first note that the distributions Xn

ε and N2ε(1
n) are the same. Indeed, both are

product distributions, and for any x ∼ Xn
ε and i ∈ [n], Pr[xi = 1] = 1

2
+ ε by definition. On

the other hand, if x ∼ N2ε(1
n) then

Pr[xi = 1] = 2ε · 1 + (1− 2ε) · 1

2
=

1

2
+ ε.

Thus
E[f(Xn

ε )] = E[f(N2ε(1
n))].

According to Definition 2.5, we can write the RHS of the above equation as

T2εf(1n) =
∑
S⊆[n]

(2ε)|S|f̂(S)χS(1n) =
∑
S⊆[n]

(2ε)|S|f̂(S),

where the first equality follows by Claim 2.6. This, together with Claim 2.7, implies that for
(J |z), a 2ε random restriction, we have that

E[f(Xn
ε )] =

∑
S⊆[n]

E(J |z)

[
f̂(J |z)(S)

]
= E(J |z)

∑
S⊆[n]

f̂(J |z)(S)

.
On the other hand,

E[f(U)] = f̂(∅) = E(J |z)

[
f̂(J |z)(∅)

]
,

where the last inequality follows by Claim 2.7. Thus,

Distinguishability(f, ε) = |E[f(Xε)]− E[f(U)]| =

∣∣∣∣∣∣E(J |z)

 ∑
∅6=S⊆[n]

f̂(J |z)(S)

∣∣∣∣∣∣
as claimed.

We also need the following well-known theorem, which is implicit in the result of [LMN93]
(see also [O’D], Chapter 4). For completeness, we give a proof of this theorem in Appendix A.
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Theorem 4.3. For any δ ∈ (0, 1) the following holds. Let f : {±1}n → {±1} be a function
computable by an alternating circuit with size s, depth d ≥ 3 and width w. Let ` = log(2s

δ
)

and let ρ = 1
10w
·
(

1
10`

)d−3 · δ
10`

. If (J |z) is a ρ random restriction then

Pr
(J |z)

[
f(J |z) is non-constant

]
≤ δ.

Lastly, the proof of Theorem 4.1 makes use of the following lemma.

Lemma 4.4. Let δ > 0. Let f be a function computable by an alternating circuit with size
s and depth d. Assume further that the bottom layer is an AND layer. Then, there exists
a function g computable by an alternating circuit with size s, depth d and width 3 log (2s/δ)
such that for every ε ≤ 1/4

|Ex∼Xε [(f − g)(x)]| ≤ δ.

Proof of Lemma 4.4: Consider an alternating circuit with size s and depth d that com-
putes f , with bottom layer consists of AND gates. By cutting all AND gates in the bottom
layer with fan-in larger than 3 log (2s/δ) we get a function g computable by an alternating
circuit, consists of AND gates at the bottom layer, with size s, depth d and width 3 log (2s/δ).

We note that g−1(1) ⊆ f−1(1). On the other hand, consider a fan-in k AND gate that we
cut. The probability, under Xε, that this AND gate outputs 1 is at most (1

2
+ ε)k. Since we

only cut AND gates with fan-in at least 3 log (2s/δ)(
1

2
+ ε

)k
≤
(

1

2
+ ε

)3 log (2s/δ)

≤ δ

2s
,

where the last inequality follows by our assumption that ε ≤ 1
4

(which yields
(
1
2

+ 1
4

)3
< 1

2
).

Thus, by taking a union bound over all, at most s, AND gates with fan-in at least 3 log (2s/δ)
we get that

Pr
x∼Xε

[f(x) 6= g(x)] ≤ δ

2
.

Since f, g have range {±1} the above equation implies that |Ex∼Xε [(f − g)(x)]| ≤ δ as
stated.

Proof of Theorem 4.1: By the assumption of the theorem, there exists a size s, depth d
circuit C that computes f . By standard arguments (see Section 2.2), there exists a size d · s,
depth d alternating circuit C ′ that computes f . We may assume, without loss of generality,
that the bottom layer of C ′ consists of AND gates. If this is not the case then we can replace
every OR gate at the bottom layer with an AND gate applied to the negation of the literals
which are wired to the original OR gate. By DeMorgen, it follows that the output of this new
AND gate is the negation of the output of the original OR gate. We can thus continue with
this process, layer by layer from bottom to top, switching the type of gates in each layer. At
the end of the process we get an alternating circuit, with size d ·s and depth d, that computes
the negation of f . Clearly, a function and its negation have the same distinguishability.
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By Lemma 4.4, there exists a function g, computable by an alternating circuit with size
d · s, depth d and width w = 3 log (12ds/δ) such that

|Ex∼Xε [(f − g)(x)]| ≤ δ

6
(4.1)

for all ε ≤ 1/4. Let ` = log(12ds/δ) and let (J |z) be a ρ = 1
30`
·
(

1
10`

)d−3 · δ
60`

random
restriction. Since g is computable by a width w = 3` alternating circuit, Theorem 4.3
implies that

Pr
(J |z)

[
g(J |z) is non-constant

]
≤ δ

6
. (4.2)

By Lemma 4.2,

Distinguishability
(
g,
ρ

2

)
=

∣∣∣∣∣∣E(J |z)

 ∑
∅6=S⊆[n]

ĝ(J |z)(S)

∣∣∣∣∣∣ .
In the event that g(J |z) is a constant function, the entire Fourier mass of g(J |z) lies in the
empty coefficient, and in such case, the sum within the expectation in the above equation is
0. On the other hand, by Equation (4.2), g(J |z) is non-constant with probability at most δ/6
and so,

Distinguishability
(
g,
ρ

2

)
≤ δ

6
·

∣∣∣∣∣∣E(J |z)

 ∑
∅6=S⊆[n]

ĝ(J |z)(S)

∣∣∣∣ g(J |z) is non-constant

∣∣∣∣∣∣ .
Note that ∑

∅6=S⊆[n]

ĝ(J |z)(S) = g(J |z)(1
n)− ĝ(J |z)(∅),

which is some number in [−2,+2] as g(J |z) has range {±1}. Thus,

Distinguishability
(
g,
ρ

2

)
≤ 2 · δ

6
=
δ

3
.

The above equation together with Equation (4.1) implies that

Distinguishability
(
f,
ρ

2

)
=
∣∣E[f(Xρ/2)]− E[f(U)]

∣∣
≤
∣∣E[f(Xρ/2)]− E[g(Xρ/2)]

∣∣+∣∣E[g(Xρ/2)]− E[g(U)]
∣∣+

|E[g(U)]− E[f(U)]|

≤ δ

6
+
δ

3
+
δ

6
< δ.

Thus, by the choice of ρ we have

Distinguishability

(
f,

δ

(60 · log (12ds/δ))d−1

)
≤ δ.

The proof then follows since d ≤ s.
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A Proof of Theorem 4.3

The proof of Theorem 4.3 relies on H̊astad Switching Lemma [H̊as86] (see also [O’D], Chapter
4).

Lemma A.1 (H̊astad switching lemma). Let f : {±1}n → {±1} be a function computable
by a width w DNF or width w CNF. Let (J |z) be a ρ random restriction. Then, for every
k ∈ N it holds that

Pr
[
DTdepth(f(J |z)) ≥ k

]
≤ (5ρw)k.

Proof of Theorem 4.3: Let C be an alternating circuit with size s, depth d and width
w that computes f . For i = 1, . . . , d denote the number of gates at level i by si (and so
s1 + · · · + sd = s and sd = 1). For j = 1, . . . , s2 denote by gj the jth gate at level 2, and
denote by Cj the circuit with top gate gj. Note that all circuits {Cj}j are either CNF or
DNF with width w. Assume without loss of generality that they are DNF.
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Let ρ1 = 1
10w

. Consider a ρ1 random restriction (J1|z1). By H̊astad switching lemma
(Lemma A.1), for all j ∈ [s2],

Pr
(J1|z1)

[
DTdepth(Cj|(J1|z1)) ≥ `

]
≤ (5ρ1w)` = 2−`,

and so, by union bound

Pr
(J1|z1)

[
∃j ∈ [s2] such that DTdepth(Cj|(J1|z1)) ≥ `

]
≤ s2 · 2−`.

Consider the event in which ∀j ∈ [s2] DTdepth(Cj|(J1|z1)) ≤ `. It is well known that if a
function can be computed by a depth ` decision tree then it can be computed both by a
width ` CNF and by a width ` DNF. We can therefore replace each Cj with a width `
CNF. Both the second and third layers in the resulted circuit consisting of AND gates. We
can therefore collapse these two layers into one layer consists of s3 AND gates. Denote by
g′1, . . . , g

′
s3

the AND gates in the second layer of this new circuit. For j = 1, . . . , s3 denote by
C ′j the width ` CNF with top gate g′j.

Let ρ2 = 1
10`

and let (J2|z2) be a ρ2 random restriction. By H̊astad switching lemma
(Lemma A.1), for j3 = 1, . . . , s3,

Pr
(J2|z2)

[
DTdepth(C ′j|(J2|z2)) ≥ `

]
≤ (5ρ2`)

` = 2−`,

and so, by union bound,

Pr
(J2|z2)

[
∃j ∈ [s3] such that DTdepth(C ′j|(J2|z2)) ≥ `

]
≤ s3 · 2−`.

We restrict ourselves again to the event in which ∀j ∈ [s3] DTdepth(C ′j|(J2|z2)) ≤ `, use this
fact to replace all C ′j with a width ` DNF and collapse the new second and third layer. We
continue performing ρ2 random restrictions until we are left with a depth 2 circuit, that is,
either with a CNF or a DNF. Note that we perform a total of d− 3 ρ2 random restrictions
(on top of the first ρ1 random restriction). Denote the composed random restriction by
(J ′|z′). Then, except with probability s · 2−` we end up with a width ` depth 2 circuit C ′′.
We restrict ourselves to the event in which C ′′ has width at most `.

Let ρ3 = δ
10`

. Consider a ρ3 random restriction (J3|z3). By H̊astad switching lemma,

Pr
(J3|z3)

[
DTdepth(C ′′|(J3|z3)) ≥ 1

]
≤ 5ρ3` =

δ

2
.

Thus, if we denote by (J |z) the ρ1ρ
d−3
2 ρ3 composed random restriction over all the random

process described above, then

Pr
(J |z)

[
f(J |z) is non-constant

]
≤ s · 2−` +

δ

2
≤ δ,

where the last inequality follows by the choice of `.
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