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Abstract

We study an approximate version of q-query LDCs (Locally Decodable Codes) over the
real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)-
approximate LDC is a set V of n points in Rd so that, for each i ∈ [d] there are Ω(δn) disjoint
q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate

is at least α. We prove exponential lower bounds of the form n ≥ 2Ω(αδ
√
d) for the case q = 2

and, in some cases, stronger bounds (exponential in d).

1 Introduction

Error Correcting Codes (ECCs) have always played an important part in the development of the-
oretical computer science. In particular, many of the foundational results of computational com-
plexity rely in some way or another on constructions and analysis of ECCs (e.g., hardness of
approximation, hardness-randomness tradeoffs). The study of ECCs from the perspective of com-
plexity theorists sometimes has different a focus than the traditional information theory viewpoint.
One such difference is the study of special kinds of codes that are useful for theory (i.e., for proving
theorems such as the PCP theorem) but were not studied previously.

One such example are Locally-Decodable-Codes (LDCs) which were formally defined in the
seminal work of Katz and Trevisan [KT00] (but were implicit in several prior works [BK95, Lip90,
BF90]). These are codes that allow the receiver of a (possibly corrupted) encoding y = C(x) ∈
{0, 1}n of a message x ∈ {0, 1}d to probabilistically decode w.h.p a single message bit xi by reading
only q positions in y (which might contain at most δn errors). We usually think of q as either a
small constant or a very slow growing function of n and of δ as a constant.

The only case of LDCs which is mostly well understood is that of 2-query codes (it is easy to
see that 1-query codes do not exist). The Hadamard code C(x) = (〈x, a〉)a∈{0,1}d is a 2-query code
with exponential encoding length. In [GKST06, KdW04] it was shown that this is tight, that is,
we always have n ≥ 2Ω(δd) for 2-query codes. For q > 2 there are huge gaps between the known
lower and upper bounds. The best known lower bound is n = Ω̃(d1+1/(dq/2e−1)) for q > 4 [Woo07]

∗Courant Institute of Mathematical Sciences, New York University. Email: jop.briet@cims.nyu.edu. Supported
by a Rubicon grant from the Netherlands Organisation for Scientific Research (NWO).
†Department of Computer Science and Department of Mathematics, Princeton University, Princeton NJ. Email:

zeev.dvir@gmail.com. Research partially supported by NSF grants CCF-0832797, CCF-1217416 and by the Sloan
fellowship.
‡Department of Computer Science Princeton University, Princeton NJ. Email: guangdah@cs.princeton.edu.

Research partially supported by NSF grants CCF-0832797, CCF-1217416 and by the Sloan fellowship.
§Department of Computer Science and Department of Mathematics, Rutgers University. Email:

shubhangi.saraf@gmail.com.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 26 (2014)



and n = Ω(d2) for k = 3, 4 [KdW04, Woo12]. The best constructions for q > 2 are given by
Matching-Vector codes, which were introduced by Yekhanin in [Yek08] and further developed in
[Efr09, Pra07, KY09, IS10, CFL+10, DGY11, BET10]. These codes have block-length of roughly
n ≤ exp exp

(
(log d)O(log log q/ log q)(log log d)

)
.

One important sub-case of LDCs is that of linear codes (all known constructions are linear as far
as we know). That is, the encoding is a linear mapping C : Fd 7→ Fn over some field F. In this case,
one can show that w.l.o.g. the decoding is linear as well. More formally, if we let v1, . . . ,vn ∈ Fd
be the rows of the generating matrix of C (so that C(x)i = 〈x,vi〉) then we have that, for each
i ∈ [d] there must exist a matching Mi of at least Ω(δn) disjoint pairs vj1 ,vj2 that span ei (the i’th
standard basis vector). To locally decode xi one can simply pick a random pair in the matching Mi

and calculate:
xi = 〈x, ei〉 = a〈x,vj1〉+ b〈x,vj2〉

for some field elements a, b satisfying avj1 +bvj2 = ei. In [DS05] is was shown that the lower bound
of [GKST06] for binary linear codes can be extended to linear codes over any field and so, we know
that the Hadamard code cannot be beaten even if we allow for a large alphabet.

In this work we consider a new notion of linear LDCs in which the underlying field is the real
numbers and the decoding is ‘approximate’. Building on the above characterization of linear codes,
we will consider arrangements of points v1, . . . ,vn ∈ Rd in which, for every i ∈ [d] there are many
disjoint pairs that ‘almost span’ ei in some concrete way (we give exact definitions below). Overall,
our results are negative and show that, even if we allow a very loose notion of approximation, the
encoding length is still exponential (either in

√
d or in d, depending on the model). We prove

several theorems for various settings of the parameters, using a wide variety of techniques.

Motivation and related works: Our motivation for studying this problem comes from several
directions. Firstly, one could hope to use approximate codes in practice (if these had sufficiently
good parameters). As long as the approximation parameter is not too large we could hope to
recover some approximation of xi using the two queries to the code (assuming xi is some quantity
we are interested in and we don’t mind some small error). Another motivation comes from trying
to understand 3-query codes. Here, even if we restrict our attention to real codes over R, there is
still an exponential gap between lower and upper bounds. In a recent work, [DSW13], a subset of
the current authors and Avi Wigderson proved an n > d2+ε lower bound (for some positive ε) for
a closely related notion of 2-query Locally Correctable Codes (LCCs) over R, improving upon the
known quadratic bound. Originally, the proof of [DSW13] used a reduction from (exact) 3-LCCs
over R to 2-query approximate LDCs (later, a different proof was found). This raises the possibility
that, in the future, perhaps approximate codes will find more applications. We are also motivated
by connections to well studied questions in combinatorial geometry. In [BDWY12, DSW12] it
was shown that proving lower bounds on LCCs is closely related to questions in the spirit of the
Sylvester-Gallai theorem. Here, one tries to take local information about a point configuration (say,
many collinear triples) and convert this information to a global bound on the dimension spanned
by the points. We can view some of the theorems in this work in this spirit. Approximate versions
of Sylveter-Gallai type theorems and LCCs were recently explored in [ADSW12].
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1.1 Definitions and results

We begin with some notations. A q-matching M in [n] is defined to be a set of disjoint unordered
q-tuples (i.e. disjoint subsets of size q) of [n]. We denote by ei the i’th standard basis vector in Rd.
The standard inner product of two vectors x,y ∈ Rd is given by 〈x,y〉 and the `2 norm of x ∈ Rd
is ‖x‖2 =

√
〈x,x〉.

Definition 1.1 (weighti). For a vector u ∈ Rd we define weighti(u) = |〈u, ei〉|/‖u‖2 (i.e., the
absolute value of the i’th coordinate of the normalized vector u/‖u‖2).

Clearly we have
∑

i∈[d] weighti(u)2 = 1. We now state our definition of approximate LDC.

Definition 1.2 (Approximate LDC). Let d, n, q be positive integers and α, δ ∈ [0, 1] real numbers.
A q-query (α, δ)-approximate LDC is a pair (V,M) with

1. V = {v1,v2, . . . ,vn} a multiset of vectors in Rd. The parameter n is the size (or block
length) of the code and the parameter d is the dimension (or message length) of the code.

2. M = (M1, . . . ,Md) with each Mi being a q-matching in [n] so that, if {j1, . . . , jq} ∈Mi, then
there exists u ∈ span{vj1 , . . . ,vjq} with weighti(u) ≥ α.

The sizes of the matchings Mi must satisfy |M1|+ |M2|+ · · ·+ |Md| ≥ δdn and the parameter δ is
called the density of the code1.

Our first theorem gives an exponential bound on the block length of approximate 2-LDCs for
any α > 0. Notice that the bound gets worse as α approaches 1/

√
d, at which point we cannot

expect any lower bound to hold (since a single vector u can have weighti(u) ≥ 1/
√
d for all i ∈ [d]).

Theorem 1.3. [General lower bound] A 2-query (α, δ)-approximate LDC of size n and dimension d

must satisfy n ≥ 2Ω(αδ
√
d).

We could hope to replace the exponential dependence on
√
d with an exponential dependence

on d (as is the case with exact 2-LDCs). In fact, we conjecture that a general bound of the
form n ≥ exp(δα2d) should hold (the quadratic dependence on α is necessary to avoid hitting the
α = 1/

√
d barrier). Currently, we are only able to prove this conjecture when α is sufficiently close

to 1. This is stated in the next theorem.

Theorem 1.4. [Lower bound for large α] Let α0 =
√

1− 1/(4π2) ≈ 0.987. A 2-query (α, δ)-
approximate LDC of size n, dimension d and α > α0 must satisfy n ≥ 2Ω(δd), where the hidden
constant in the Ω(·) depends on α− α0.

There is another special case where we can get an exponential dependence on d instead of
√
d.

It is a natural restriction of the general definition but it requires two new notions (that will be
useful in their own right down the road). The first is that of a simple code (we will only care about
2-query codes).

Definition 1.5 (Simple code). Let (V,M) be a 2-query (α, δ)-approximate LDC. We say that
(V,M) is a simple code if, for every i ∈ [d] and {j1, j2} ∈Mi we have weighti(vj2 − vj1) ≥ α.

1The traditional definition would ask for each Mi to be of size at least δn but our definition is more general, which
makes our (negative) results stronger.
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In other words, a simple code is an arrangements of points in Rd so that, for any i ∈ [d] there
are ≈ δn (on average) disjoint pairs of points that ‘point’ in a direction that has projection at
least α on the i’th axis. An example of such an arrangement is the boolean cube {0, 1}d ⊂ Rd (all
zero/one vectors), where Mi consists of all n/2 pairs that differ only in the i’th entry (so α = 1).

Another feature of the hypercube is that all the distances between pairs in M1, . . . ,Md are equal
(they all equal one), motivating the following definition.

Definition 1.6 (c-bounded). Let c ≥ 1 and let (V,M) be a 2-query (α, δ)-approximate LDC. We
say that (V,M) is c-bounded if, for every i ∈ [d] and {j1, j2} ∈Mi we have ‖vj2 − vj1‖ ∈ [1, c].

The fact that the hypercube is both c-bounded (with c = 1) and simple motivates the study
of structures that satisfy these two conditions. In particular, we ask whether there exists a point
arrangement in Rd which is ‘roughly’ like the hypercube but has far fewer than 2d points. Here, the
notion of ‘roughly’ is captured by allowing pairwise distance to be ‘close’ to 1 and the differences
between adjacent vertices to be only somewhat axis parallel. The following theorem shows that
such configurations do not exist (that is, you cannot beat the hypercube by much).

Theorem 1.7. [Lower bound for simple c-bounded LDCs] A 2-query c-bounded simple (α, δ)-
approximate LDC of size n and dimension d must satisfy n ≥ 2Ω(α2δ2d/(log c)2).

Finally, we consider arbitrary q-query approximate codes and observe that the lower bound
proof of [KT00] can be made to work also for approximate LDCs (with some additional work).
This gives the following theorem.

Theorem 1.8. Let q ≥ 1 be an integer constant. A q-query (α, δ)-approximate LDC of size n and

dimension d must satisfy n ≥ Ω((α2δ1/qd)
q
q−1 ).

1.2 Techniques

We briefly outline the techniques that appear in the proofs of our theorems.

Simple codes: An important ingredient in the proofs of Theorem 1.3 and 1.4 is a general re-
duction from any approximate 2-LDC to a simple code. The reduction follows by first normalizing
the lengths of all vectors and then observing that if some linear combination avj1 + bvj2 has large
weighti then either one of the vectors vj1 ,vj2 has large weighti or the coefficients a, b are close to
1,−1. We can thus throw away all pairs in the matching Mi in which one of the vectors has large
weighti and get a simple code (we do not throw away too many pairs since each vector has only a
few large coordinates). Since this reduction does not preserve c-boundedness, we can unfortunately
not use it to argue that Theorem 1.7 works for non-simple c-bounded codes.

Proof of general bound: The proof of Theorem 1.3 (for simple codes w.l.o.g.) is via a recursive
partitioning argument. In each step we pick a random i ∈ [d] and partition V into two sets using
a random shift of a hyperplane orthogonal to ei. We analyze the expected number of edges (pairs
in some Mi) cut in this process and show that is bounded by O(

√
d/α) · min{|S|, |S̄|} with S, S̄

representing the two parts of the cut. The same inequality holds also when partitioning any subset
V ′ ⊂ V and so we can proceed recursively and obtain a bound of O((

√
d/α)n log2 n) on the total

number of edges. Since this number is at least δdn the theorem follows. This proof is inspired by
the one appearing in [GKST06] for exact (simple) 2-LDCs.
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Proof of bound for large α: Here we rely on a recent work of [KROW12] which gives a
(randomized) tiling of Rd with cells that have volume 1 and surface area O(

√
d) (same as a sphere

up to a constant). This result gives a randomized rounding algorithm that we can leverage towards
‘rounding’ our approximate code to an exact code (very roughly speaking) when α is large. This
step is then combined with a random partitioning argument as in the proof of Theorem 1.3.

Proof for simple c-bounded codes: For this setting we use the LDC to construct a function F
from Rd to the space of complex n×n matrices given by F (x) =

(
e−i〈x,vs−vt〉

)n
s,t=1

. The crux of the

proof applies an inequality relating the trace norms of the first level (matrix) Fourier-coefficients
of a matrix-valued function to its average trace norm (see Lemma 5.3). The crucial observation is
that the norms of the first level Fourier coefficients of the above defined F can be lower bounded
using the LDC property. The result then follows by combining this with the trivial upper bound
on the average norm of F . This proof loosely follows an argument of [BARdW08] used for binary
(non linear) LDCs and is inspired by work of [BNR12] linking LDCs to geometry of Banach spaces.

Organization: We describe our reduction from general to simple 2-query codes in Section 2. In
Section 3 we prove the bound for general codes (Theorem 1.3). In Section 4 we prove the bound
for α close to 1 (Theorem 1.4). In Section 5 we prove the bound for c-bounded codes (Theorem 1.7).
Finally, in Section 6 we prove the bound for general q-query approximate codes (Theorem 1.8).

Acknowledgments: The authors would like to thank Avi Wigderson for many helpful conver-
sations.

2 Simple codes

In this section we prove the following theorem showing that any 2-query approximate LDC can be
transformed into a simple code with similar parameters.

Theorem 2.1. If there exists a 2-query (α, δ)-approximate LDC of size n dimension d, then,
for any integer k > 1/α2, there exists a simple 2-query (α′, δ′)-approximate LDC of size n′ and
dimension d, where α′ ≥

√
α2 − 1/k, δ′ ≥ δ − k/d and n′ ≤ 2n.

The main idea behind the proof of this result is as follows. Suppose that we have a pair of unit
vectors u,w ∈ Rd with weighti(au+ bw) ≥ α. It will be convenient to think of α as being close to
one (the proof will work for any α). So, after normalizing the coefficients a, b we have that the unit
vector v = au+ bw is close to ei. We separate into two cases. In the first case, both u and w are
almost orthogonal to ei. In this case, we must have that u−w ‘points’ in the direction of ei (see
diagrams in the complete proof) and so we don’t really need the coefficients a, b. In the other case,
at least one of u,w have significant inner product with ei. Notice, however, that, for each fixed u,
this can only happen with a small number of ei’s when i ∈ [n]. These ‘bad’ pairs can be removed
from the matchings without causing a big decrease in their average size.

It will be convenient to use the following corollary of Theorem 2.1 in which we set k = d2/α2e.

Corollary 2.2. Suppose d ≥ 6/α2δ. If there exists a 2-query (α, δ)-approximate LDC of size n
dimension d, then there exists a simple 2-query approximate (α′, δ′)-LDC of size n′ and dimension d,
where α′ ≥ α/

√
2, δ′ ≥ δ/2 and n′ ≤ 2n.
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We now move on to the formal proof of Theorem 2.1.

Proof of Theorem 2.1: We first modify the code in the following way. Let k > 1
α2 be a fixed integer.

1. For every matching Mi, remove the pairs {j1, j2} in which the i’th entry of vj1 is among its
k− 1 largest (in absolute value) entries or if this is the case for vj2 . Since every v ∈ V causes
at most k pairs (from all d matchings) that contain it to be removed, there are at most kn
pairs removed in this step altogether.

2. Normalize all vectors in V so that ‖vj‖2 = 1 for all j ∈ [n] and discard all zero vectors.

3. For every vj ∈ V , add −vj to V . For every original tuple {vj1 ,vj2}, we replace it with two
tuples: either {vj1 ,vj2}, {−vj1 ,−vj2} or {vj1 ,−vj2}, {−vj1 ,vj2} (to be determined later).

Let (V ′,M ′ = (M ′1, . . . ,M
′
d)) be the vectors and matchings obtained from the above procedure.

Claim 2.3. After the first step, if {j1, j2} ∈Mi is not deleted, then

|vj1i| ≤
1√
k
‖vj1‖2 and |vj2i| ≤

1√
k
‖vj2‖2.

Proof: We only consider vj1 . According to the first step, the i’th coordinate must not be among
the maximum k− 1 ones. If this coordinate has absolute value greater than ‖vj1‖2/

√
k, then there

are at least k coordinates greater than ‖vj1‖2/
√
k, which is impossible. �

Claim 2.4. After the first step, for any remaining pair {j1, j2} ∈ Mi, vj1 and vj2 are linearly
independent. This implies that no remaining pair contains 0 and so discarding all zero vectors in
step 2 above does not remove any additional pairs from the matchings.

Proof: Assume the contrary and vj1 6= 0. Then span{vj1 ,vj2} contains only multiples of vj1 . Thus,
the i’th coordinate of vj1 has magnitude at least α‖vj1‖2 > ‖vj1‖2/

√
k, violating Claim 2.3. �

For the new code (V ′,M ′) the dimension is d′ = d, the size is n′ ≤ 2n, and the number of tuples
is at least 2(δdn− kn), which implies the density δ′ ≥ δ− k/d. Notice that we might have removed
some of the matchings completely. We still, however, consider the dimension as d′ = d (since we
only use the sum of sizes of all matchings).

Next we argue that the pairs remaining after step 1 above give a simple code (up to changing
signs) and calculate the parameter α′. Fix a pair {j1, j2} ∈ Mi that remains after the first step.
We will show that either vj1 − vj2 or vj1 − (−vj2) has a large i’th coordinate. Precisely, we show
that either

weighti(vj1 − vj2) ≥
√
α2 − 1

k
or weighti(vj1 − (−vj2)) ≥

√
α2 − 1

k
.

Then if the first one holds, we choose to use {vj1 ,vj2} and {−vj1 ,−vj2} at the third step; otherwise
if the second one holds, we select {vj1 ,−vj2} and {−vj1 ,vj2}. Thus the code is reduced to a simple
code with α′ ≥

√
α2 − 1/k.

We consider the plane determined by vj1 and vj2 , and set up Cartesian axes at the origin. Let
the projection of ei on this plane be in the direction of the y axis and choose one of two possible
directions for the x axis arbitrarily. Let τ be the angle between the plane and ei. This setting is
shown in figure (a).
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Since {j1, j2} ∈Mi, we see that
cos τ ≥ α. (1)

Let θ1 ∈ [0, 2π) be the angle between vj1 and the x axis, and θ2 ∈ [0, 2π) be the angle between vj2
and the x axis. This is shown as in figure (b). vj1 and vj2 correspond to points (cos θ1, sin θ1) and
(cos θ2, sin θ2) on the plane.

By Claim 2.3, the i’th coordinates of vj1 and vj2 are at most 1/
√
k. Therefore

| sin θ1| cos τ ≤ 1√
k

and | sin θ2| cos τ ≤ 1√
k
.

We can see that the angles of ±vj1 and ±vj2 , which are ±θ1 and ±θ2, must fall into two regions[
− arcsin

1√
k cos τ

, arcsin
1√

k cos τ

]
and

[
π − arcsin

1√
k cos τ

, π + arcsin
1√

k cos τ

]
.

These are shown as two gray circular sectors (the left one and the right one) in figure (c).
We pair vj1 to the one of ±vj2 that lies in the same sector with vj1 , and do the same for −vj1 .

It is easy to see our pairing is either {vj1 ,vj2}, {−vj1 ,−vj2} or {vj1 ,−vj2}, {−vj1 ,vj2}. We now
argue that subtraction of vectors in a one of the new pairs (which belong to the same sector) must
have a large i’th coordinate. Without loss of generality, we assume vj1 and vj2 are paired and only
consider this pair.

The vector vj2−vj1 is parallel to the tangent line to the unit circle at angle (θ1 +θ2)/2. One can
verify that a unit vector parallel to vj2 − vj1 must have y coordinate ± cos(θ1 + θ2)/2. Therefore

|〈vj1 − vj2 , ei〉|
‖vj1 − vj2‖2

= cos
θ1 + θ2

2
· cos τ =

√
1− sin2 θ1 + θ2

2
· cos τ.

Since vj1 and vj2 are in the same circular sector, | sin(θ1 + θ2)/2| ≤ 1/(
√
k cos τ). It follows that

|〈vj1 − vj2 , ei〉|
‖vj1 − vj2‖2

≥
√

cos2 τ − 1

k
≥
√
α2 − 1

k
.

Here we used cos τ ≥ α (Inequality (1)). This completes the proof. �
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3 Lower Bound for General Simple Codes

We associate with a simple code C = (V,M) a labeled graph GC on vertex set V with edges given
by all pairs in M1, . . . ,Md. We label each edge in Mi with the label i and allow for parallel edges
(with different labels). We refer to the label of an edge e as the direction of the edge and denote it
by dir(e) ∈ [d]. The proof will follow by analyzing cuts in the graph GC , which we assume contains
at least δdn edges.

For S ⊆ V , let Edge(S) be the set of edges of GC with both end points in S. We say that
(S1, S2) is a cut if S1 ∪ S2 = S and S1 ∩ S2 = ∅. The cut is non-trivial if S1, S2 6= ∅. We use
Edge(S1, S2) to denote the set of edges with one endpoint in S1 and the other in S2.

The next lemma of [GKST06, Appendix] relates the sizes of cuts in the graph with the total
number of edges (the lemma holds for any graph). We include its proof for completeness.

Lemma 3.1. Suppose that for every S ⊆ V with |S| ≥ 2, there exists a non-trivial cut (S1, S2)
satisfying |Edge(S1, S2)| ≤ c ·min{|S1|, |S2|}, then GC has at most c

2 |V | log2 |V | edges.

Proof: The given condition is equivalent to

|Edge(S)| ≤ c ·min{|S1|, |S2|}+ |Edge(S1)|+ |Edge(S2)|. (2)

We induct on |S| to show Edge(S) ≤ c
2 |S| log2 |S| for every non-empty S ⊆ V . For |S| = 1, this is

trivial. Assume this is true for |S| < k, k ≥ 2, and consider a subset S of size |S| = k. Let S1 ⊆ S
be a proper and nonempty subset of S and let S2 = S\S1 be its complement in S. Then, by the
above condition 2 and the induction hypothesis,

|Edge(S)| ≤ c ·min{|S1|, |S2|}+
c

2
|S1| log2 |S1|+

c

2
|S2| log2 |S2|

Assume (w.l.o.g) that min{|S1|, |S2|} = |S1| and let η = |S1|/k. Notice that η belongs to [0, 1/2].
Then the above right-hand side can be re-written as (ck/2)

(
2η − H2(η)

)
+ (ck/2) log k, where

H2(τ) = −τ log2 τ − (1 − τ) log2 τ is the binary entropy function. The function H2 is concave on
[0, 1/2] and satisfies H2(0) = 0 and H2(1/2) = 1. Hence, the term 2η −H2(η) is non-positive and
we get the result |Edge(S)| ≤ (ck/2) log k, as claimed. �

We now proceed to prove Theorem 1.3. We will show n = 2αδ
√
d for any (α, δ) simple code (the

general case will follow using Corollary 2.2). This will follow by combining the following lemma
and Lemma 3.1.

Lemma 3.2. Let C = (V,M) be an (α, δ) simple code and let GC be the associated graph described
above. Then, for any S ⊆ V with |S| ≥ 2, there exists a non-trivial cut (S1, S2) such that

|Edge(S1, S2)| ≤ 2
√
d

α
·min{|S1|, |S2|}.

Proof: If S contains no edges, an arbitrary cut will satisfy the requirement. We thus assume that S
contains at least one edge. We now analyze the size of a random cut chosen in a specific way.

Assume all points in V are in a (d-dimensional) box of edge length L. We pick a random
direction i ∈ [d] and then pick a plane perpendicular to ei at a random position intersecting the
box. The plane cuts the box into two parts. We define S1 to be the set of points in one part and S2
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to be the set of points in the other part (the probability of having a point on the hyperplane is
zero). We analyze the edges in this cut (S1, S2). We say that an edge e ∈ Edge(S1, S2) is cut in
the right direction if the plane is perpendicular to the direction of e, i.e. dir(e) = i.

We consider a specific edge. Let e0 = {vj1 ,vj2} with {j1, j2} ∈ Mi0 be an edge in direction
dir(e0) = i0 and denote vj1 − vj2 = (u1, u2, . . . , ud).

For each i′ ∈ [d] the probability that e0 is cut by a plane perpendicular to ei′ is

Pr[i = i′] · Pr[the plane falls between vj1i′ and vj2i′ ] =
1

d
· |ui

′ |
L
.

Therefore,

Pr[e0 ∈ Edge(S1, S2)] =

d∑
i′=1

1

d
· |ui

′ |
L

=
|u1|+ |u2|+ · · ·+ |ud|

dL
.

Moreover, by the definition of an approximate code (|ui0 | ≥ α‖vj1−vj2‖2) and the Cauchy-Schwarz
inequality, edge e0 is cut in the right direction with probability

|ui0 |
dL

≥ 1

dL
· α
√
u2

1 + u2
2 + · · ·+ u2

d

≥ 1

dL
· α√

d

(
|u1|+ |u2|+ · · ·+ |ud|

)
=

α√
d

Pr[e0 ∈ Edge(S1, S2)].

Since vj1 − vj2 has at least one non-zero coordinate, Pr[e0 ∈ Edge(S1, S2)] must be strictly
positive. It follows that edge e0 is cut in the right direction with probability strictly greater than

α

2
√
d

Pr[e0 ∈ Edge(S1, S2)].

Hence, the expected number of edges that are cut in the right direction is strictly greater than
αE

[
|Edge(S1, S2)|

]
/(2
√
d). There must therefore exist an i ∈ [d], a plane perpendicular to ei

and a corresponding cut (S1, S2) which cuts strictly more than α|Edge(S1, S2)|/(2
√
d) in the right

direction. Since this number is non-negative, there must be at least one edge cut in the right
direction. This implies that S1 and S2 are not empty.

All edges cut in the right direction must have the same direction i. Hence, these edges are
disjoint (they form a matching in V ), implying that the total number of cut edges is at most
min{|S1|, |S2|}. It follows immediately that

|Edge(S1, S2)| ≤ 2
√
d

α
min{|S1|, |S2|}.

Therefore the cut (S1, S2) satisfies the requirement. �

Now using Lemma 3.1 we can conclude that δdn ≤ (2
√
d/α)n · log2 n, which gives n ≥ 2αδ

√
d as

required. This completes the proof of Theorem 1.3.
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4 Lower Bound for Simple Codes with Large α

In this section we prove Theorem 1.7. By Theorem 2.1 it is enough to consider simple codes (the
general case will follow by applying Theorem 2.1 with k a sufficiently large constant). We will
use the definition and terminology of the graph GC defined in the last section for simple codes.
Hence, we think of pairs in Mi as edges in ‘direction’ dir(e) = i. We define the length of an edge
e = {vj1 ,vj2} to be ‖vj1 − vj2‖2.

We will use a recent result of [KROW12] concerning a partitioning (or tiling) of Rd. Let
G = {gz | z ∈ Zd} be the set of grid points with grid distance g ∈ R+. Suppose we have a cell
containing the origin and no other points of G. We can attempt to tile the space by taking all the
shifts of this cell by all vectors in G. Clearly, one can do this using square tiles. However, it was an
open problem to find the ‘most efficient’ way of tiling Rd (in some well defined geometric sense of
‘efficient’). [KROW12] gives a randomized algorithm outputting the shape of the cell so that the
entire space is fully covered and no two cells overlap (thus, it is a tiling) and each cell corresponds
to one grid point. Let C(x) ∈ G (x ∈ Rd) denote the grid point in the cell containing x (so we can
think of C(x) as a ‘rounding’ of x). [KROW12] proved the following2:

Theorem 4.1 ([KROW12]). There is a randomized algorithm partitioning the whole space Rd into
cells such that

1. For every x ∈ Rd and s ∈ G, C(x+ s) = C(x) + s.

2. For every two points x,y ∈ Rd, Pr[C(x) 6= C(y)] ≤ 2π‖y − x‖2/g.

Let ε ∈ (0, 1) and t ∈ Z+ be two parameters to be determined later. We partition R+ into sets
R+ = I0 ∪ I1 ∪ · · · ∪ It−1, where

Ij =
⋃
k∈Z

[
(1 + ε)kt+j , (1 + ε)kt+j+1

)
.

For I ⊆ R+, we say an edge is contained in I if its length falls in I. Without loss of generality
we assume I0 is the one among {I0, I1, . . . , It−1} that contains the most edges. We remove all edges
not contained in I0. The density δ is decreased by a factor of at most t.

Recall that I0 =
⋃
k∈Z

[
(1 + ε)kt, (1 + ε)kt+1

)
. We say that the level of an edge is k if it is

contained in
[
(1 + ε)kt, (1 + ε)kt+1

)
. For an edge e, we use lev(e) to denote its level. Let kmin and

kmax to be the minimum level and the maximum level of all edges respectively.
For every integer k ∈ [kmin, kmax] we use Theorem 4.1 to generate an (independent) random

partition with grid distance

gk =
(1 + ε)kt + (1 + ε)kt+1

2α
=

(2 + ε)(1 + ε)kt

2α
,

and use Ck(x) to denote the corresponding rounding function.
Consider an edge e = {vj1 ,vj2} and say dir(e) = i0. We assume 〈vj2−vj1 , ei0〉 > 0. (Otherwise

we switch the order of vj1 and vj2 .) We say the edge is good if the following properties are satisfied:

1. For k = lev(e), Ck(vj1 + gkei0) = Ck(vj2). Since Ck(vj1 + gkei0) = Ck(vj1) + gkei0 , this
means that the two cells containing vj1 and vj2 are adjacent along the direction ei0 .

2[KROW12] only considered g = 1 but the general result follows by simple scaling.
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2. For k > lev(e), Ck(vj1) = Ck(vj2). In other words, the two ends are in the same cell.

vj1 + gkei0

vj2
vj1

ei0

Claim 4.2. Every edge is good with probability at least

1−

2π

√
1− α2 +

(
αε

2 + ε

)2

+
4πα(1 + ε)

(2 + ε) ((1 + ε)t − 1)

 .

Proof: We consider the edge e = {vj1 ,vj2} with direction i0, and assume 〈vj2−vj1 , ei0〉 > 0. Then
〈vj2 − vj1 , ei0〉 ≥ α‖vj2 − vj1‖2 and

‖vj2 − vj1‖2
glev(e)

∈
[ 2α

2 + ε
,
2α(1 + ε)

2 + ε

)
=

[
α− αε

2 + ε
, α+

αε

2 + ε

)
,

We consider the probability that e is not a good edge.

1. For k = lev(e), we have

Pr [Ck(vj1 + gkei0) 6= Ck(vj2)] ≤ 2π‖vj2 − (vj1 + gkei0)‖2/gk

≤ 2π/gk ·
√
‖vj2 − vj1‖22 + g2

k − 2αgk‖vj2 − vj1‖2

= 2π

√
(‖vj2 − vj1‖2/gk − α)2 + 1− α2

≤ 2π

√
1− α2 +

(
αε

2 + ε

)2

.

2. For k > lev(e), we have

Pr [Ck(vj1) 6= Ck(vj2)] ≤ 2π‖vj2 − vj1‖2/gk

≤ 2π · 2α(1 + ε)

2 + ε
·
glev(e)

gk

=
4πα(1 + ε)

2 + ε
· 1

(1 + ε)(k−lev(e))t
.

By union bound, the probability that e is not a good edge is at most

2π

√
1− α2 +

(
αε

2 + ε

)2

+

kmax∑
k=lev(e)+1

(
4πα(1 + ε)

2 + ε
· 1

(1 + ε)(k−lev(e))t

)

< 2π

√
1− α2 +

(
αε

2 + ε

)2

+
4πα(1 + ε)

(2 + ε) ((1 + ε)t − 1)
.

Thus the claim is proved. �
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For any α >
√

1− 1/(4π2), we can always pick ε sufficiently small and t sufficiently large so
that each edge is good with positive probability. For example, if α = 0.99, we can take ε = 0.01
and t = 500, in which case each edge is good with probability at least 0.069. For simplicity, we
use O(·) and Ω(·) to suppress the exact values of constants α, ε and t. The above claim tells us
every edge is good with probability Ω(1). By a simple expectation argument, there exists a series
of space partitions (for every k ∈ [kmin, kmax]) such that Ω(1) fraction of all edges are good. We fix
these partitions and remove all edges that are not good. In the remaining code the density is Ω(δ).

Next, we prove the lower bound n = 2Ω(δd). This follows immediately from the following lemma
and Lemma 3.1.

Lemma 4.3. For any S ⊆ V with |S| ≥ 2, there exists a non-trivial cut (S1, S2) such that
|Edge(S1, S2)| ≤ min{|S1|, |S2|}.

Proof: If S contains no edges, an arbitrary partition will satisfy the requirement. Otherwise, we
consider the edges in S and pick an edge with the maximum level. Say this edge is e = {vj1 ,vj2},
and dir(e) = i0, lev(e) = k. We assume 〈vj2 − vj1 , ei0〉 > 0. Then since this edge is good, Ck(vj1)
and Ck(vj2) are adjacent grid points,

Ck(vj1) + gkei0 = Ck(vj1 + gkei0) = Ck(vj2).

For any point v ∈ R and i ∈ [d], we use Ck(v)i to denote the i’th coordinate of Ck(v). Let
h = [Ck(vj1)i0 + Ck(vj2)i0 ] /2. We define S1 and S2 as follows.

S1 = {v ∈ S | Ck(v)i0 < h},
S2 = {v ∈ S | Ck(v)i0 > h}.

We can see that S1 and S2 are not empty because vj1 ∈ S1 and vj2 ∈ S2. There is no point v
satisfying Ck(v)i0 = h, because Ck(v) is a grid point and h is not a multiple of gk. Hence (S1, S2)
is a non-trivial cut of S.

We consider the edges in Edge(S1, S2), and show that every edge in Edge(S1, S2) must have
direction i0. Assume this is not true, and let e′ = {v′j1 ,v

′
j2
} be such an edge. Say dir(e′) = i′

(i′ 6= i0). There are two cases.

1. lev(e′) = k. By the first requirement in the definition of good edges,

Ck(v
′
j1) + gkei′ = Ck(v

′
j1 + gkei′) = Ck(v

′
j2).

2. lev(e′) < k. By the second requirement in the definition of good edges,

Ck(v
′
j1) = Ck(v

′
j2).

In both cases we have Ck(v
′
j1

)i0 = Ck(v
′
j2

)i0 . Hence the edge e′ /∈ Edge(S1, S2).
Therefore all edges in Edge(S1, S2) have direction i0. Since the edges of the same direction are

disjoint, we have |Edge(S1, S2)| ≤ min{|S1|, |S2|}. �
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5 Lower Bound for c-bounded Simple Codes

In this section we prove n = 2Ω(α2δ2d/(log c)2) for c-bounded (α, δ) simple codes. The following simple
lemma shows that it suffices to consider the 2-bounded codes.

Lemma 5.1. A c-bounded (α, δ) simple code is a 2-bounded (α, δ′) simple code for δ′ ≥ δ/dlog2 ce.

Proof: We partition the interval [1, c] into dlog2 ce intervals

[1, c] = [20, 21) ∪ [21, 22) ∪ · · · ∪ [2dlog2 ce−1, c].

By the Pigeonhole Principle, there is an interval that 1/dlog2 ce fraction of the edges have lengths
in it. We only consider these edges, and scale the points in V to make all these edge lengths in [1, 2].
The code becomes 2-bounded and the density is at least δ/dlog2 ce. �

5.1 Preliminaries and warm-up

We let N = {0, 1, 2, . . . } and for a vector σ ∈ Nd we write |σ| = σ1 + · · ·+σd. We denote by Ex∈γRd
the expectation with respect to a random d-dimensional vector x whose entries are independent
standard Gaussian random variables.

We collect some basic facts of the Hermite polynomials (see e.g., [AAR99, Section 6.1]). These
polynomials form a complete orthonormal basis for the Hilbert space of square integrable func-
tions f : Rn → C endowed with the inner product (f, g) = Ex∈γRd

[
f(x)g(x)

]
. The polynomials

can be obtained by Gram-Schmidt orthogonalization on the monomials xσ11 · · ·x
σd
d for σ ∈ Nd. Each

Hermite polynomial hσ ∈ R[x1, . . . , xd] can thus be uniquely represented by a nonnegative integer
vector σ and the linear ones are hei(x) = 〈ei,x〉 = xi. We define the Fourier-Hermite coefficients

of a function f by f̂(σ) = (hσ, f). Orthonormality easily gives Parseval’s identity :∑
σ∈Nd

f̂(σ)2 = E
x∈γRd

[
|f(x)|2

]
. (3)

We exploit a connection between particular functions related to the Hermite polynomials and
the Fourier transform over Rd. Recall that the Fourier transform of a function f at a point y ∈ Rd
is given by (

F(f)
)
(y) = (2π)−d/2

∫
Rd
f(x) e−i〈x,y〉 dx.

The fact we use is that the functions Hσ(x) = e−‖x‖
2
2/2 hσ(x) (known as the Hermite functions)

are eigenfunctions of the Fourier transform: they satisfy F(Hσ) = (−i)|σ|Hσ. In particular this
gives the useful identity

E
x∈γRd

[
hei(x) e−i〈x,y〉

]
=
(
F(Hei)

)
(y) = −iHei(y) =

−i 〈ei,y〉
e‖y‖

2
2/2

. (4)

As a ‘warm-up’ to the 2-query case, we show how one can prove the following simple bound on
1-query LDCs using these tools.

Lemma 5.2. Let (v1, . . . ,vn) ∈ (Rd)n be a 1-query (α, δ)-approximate LDC. Then, d ≤ e/(α2δ).
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Proof: Without loss of generality we may assume that the vectors vs, s ∈ [n], have unit 2-norm.
Define the vector-valued function f : Rd → Cn by f(x) = (e−i〈vs,x〉)ns=1. Define the (vector-valued)

Fourier-Hermite coefficients of f in the obvious way by f̂(σ) = Ex∈γRd [hσ(x)f(x)]. Parseval’s
identity 3 applied to the coordinates of f gives

d∑
i=1

‖f̂(ei)‖22 ≤
∑
σ∈Nd

‖f̂(σ)‖22 = E
x∈γRd

[
‖f(x)‖22

]
. (5)

The right-hand side of (5) clearly equals n. By (4) the left-hand side is at least

d∑
i=1

‖f̂(ei)‖22 =
d∑
i=1

n∑
s=1

∣∣ E
x∈γRd

[
hei(x)e−i〈vs,x〉

]∣∣2 =
d∑
i=1

n∑
s=1

|〈ei,vs〉|2

e
≥ δdnα2

e
, (6)

where the last inequality follows from the definition of a 1-query approximate LDC. Putting things
together gives α2δdn/e ≤ n, which implies the result. �

5.2 A matrix valued function from a 2-query code

Let {v1,v2, . . . ,vn} be a (2-query) 2-bounded (α, δ) simple code. We define the vector-valued
function f : Rd → Cn given by f(x) = (e−i〈x,vs〉)ns=1. And from f we define the matrix-valued
function F (x) = f(x)f(x)∗, so

F (x) =
(
e−i〈x,vs−vt〉

)n
s,t=1

.

Note that each F (x) is a Hermitian matrix with rank 1. We define the matrix-valued Fourier-
Hermite coefficients F̂ (σ) in the obvious way by F̂ (σ)s,t = (hσ, Fs,t), where Fs,t is the function
corresponding to the (s, t)-coordinate of F .

By (4) F̂ (ei) therefore has as (s, t)-entry given by

F̂ (ei)s,t = E
x∈γRd

[
hei(x)e−i〈x,vs−vt〉

]
(4)
=
−i〈ei,vs − vt〉
e‖vs−vt‖

2
2/2

.

Since the code is simple and 2-bounded there are |Mi| disjoint {s, t}-pairs such that the (s, t)-
entry of F̂ (ei) has magnitude

|F̂ (ei)s,t| ≥
|〈ei,vs − vt〉|
e‖vs−vt‖

2
2/2

≥ α

e
. (7)

The matrix F̂ (ei) thus has large entries (in absolute values) on the coordinates corresponding to
the matching Mi.

5.3 A Fourier inequality for the trace norm

We now establish a matrix analog of (5) (Lemma 5.3 below), which is expressed in terms of the
Schatten-1 norm (or trace norm). The Schatten-1 norm ‖A‖S1 of a complex matrix A is defined as
the sum of its singular values. We also use the following dual characterization of this norm. For
a pair of matrices A,X ∈ Cn×n let 〈A,X〉 = tr[A∗X] denote their trace inner product, where A∗
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denotes the conjugate transpose of A. The spectral norm ‖X‖S∞ of a matrix X is defined as its
maximum singular value. We have the well-known duality characterization

‖A‖S1 = max{|〈A,X〉| : ‖X‖S∞ ≤ 1}. (8)

The analog of (5) that allows us to prove the lower bound on 2-bounded simple codes is as follows.

Lemma 5.3. Let F : Rd → Cn×n be a Hermitian matrix-valued function. Then,(
d∑
i=1

∥∥F̂ (ei)
∥∥2

S1

)1/2

≤
√

2 log(2en)

(
E

x∈γRn

[
‖F (x)‖2S1

])1/2

.

The proof of this lemma relies on the following non-commutative version of the Khintchine
inequality [Tro12, Section 4.4].

Theorem 5.4 (Non-commutative Khintchine inequality [Tro12]). For any collection of Hermitian
matrices A1, . . . , Ad ∈ Cn×n and i.i.d. standard Gaussian random variables x1, . . . , xd, we have(

E

[∥∥∥ d∑
i=1

xiAi

∥∥∥2

S∞

])1/2

≤
√

2 log(2en)
∥∥∥ d∑
i=1

A2
i

∥∥∥1/2

S∞
.

Proof of Lemma 5.3: By homogeneity we may assume that ‖F̂ (e1)‖2S1
+ · · · + ‖F̂ (ed)‖2S1

= 1.

Let X1, . . . , Xd ∈ Cn×n be such that ‖Xi‖S∞ ≤ 1 and 〈F̂ (ei), Xi〉 = ‖F̂ (ei)‖S1 for every i ∈ [d].
Let Yi = ‖F̂ (ei)‖S1 Xi and notice that

d∑
i=1

‖Yi‖2S∞ ≤
d∑
i=1

‖F̂ (ei)‖2S1
= 1. (9)

We consider the quantity

E
x∈γRd

[〈
F (x),

d∑
i=1

xi Yi

〉]
. (10)

First, by linearity of the trace function, it equals

d∑
i=1

〈
E

x∈γRd

[
xi F (x)

]
, Yi

〉
=

d∑
i=1

〈
F̂ (ei), Yi

〉
=

d∑
i=1

∥∥F̂ (ei)
∥∥2

S1
= 1.

Second, by Hölder’s inequality for the trace and spectral norms [Bha97] (which follows from (8))
and the Cauchy-Schwarz inequality, (10) is at most

E
x∈γRd

[
‖F (x)‖S1

∥∥∥ d∑
i=1

xiYi

∥∥∥
S∞

]
≤

(
E

x∈γRd

[
‖F (x)‖2S1

])1/2
(

E
x∈γRd

[∥∥∥ d∑
i=1

xi Yi

∥∥∥2

S∞

])1/2

.

By Theorem 5.4, the triangle inequality and the fact ‖Y 2
i ‖S∞ ≤ ‖Yi‖2S∞ , the last factor is at most

√
2 log(2en)

∥∥∥ d∑
i=1

Y 2
i

∥∥∥1/2

S∞
≤
√

2 log(2en)

(
d∑
i=1

‖Yi‖2S∞

)1/2

≤
√

2 log(2en).

�
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5.4 Lower bound on 2-bounded codes

We now combine fact (7) and Lemma 5.3 to lower bound the length of 2-bounded simple codes.
Recall that we defined the matrix-valued function F (x) = f(x)f(x)∗ where f(x) =

(
e−i〈x,vs〉

)n
s=1

.
Then F (x) has f(x) as an eigenvector with eigenvalue n (its other eigenvalues being zero). Hence,

‖F (x)‖S1 = n. (11)

Recall from (7) that for every i ∈ [d] there are |Mi| disjoint {s, t}-pairs such that |F̂ (ei)s,t| ≥ α/e.
From [BARdW08, p. 14–15] it directly follows that

‖F̂ (ei)‖S1 ≥
α

e
|Mi|. (12)

Putting the above facts together gives

αδ
√
dn

e
≤ α

e

1√
d

d∑
i=1

|Mi| ≤

(
α2

e2

d∑
i=1

|Mi|2
)1/2

(12)

≤

(
d∑
i=1

‖F̂ (ei)‖2S1

)1/2

Lemma 5.3
≤

√
2 log(2en)

(
E

x∈γRd

[
‖F (x)‖2S1

])1/2
(11)
=
√

2 log(2en)n,

where the second inequality follows from Cauchy-Schwarz. Hence, n = 2Ω(α2δ2d).

6 Approximate q-query Code for General q

In this section we prove Theorem 1.8 by showing that n = Ω((α2δ1/qd)
q
q−1 ) for general q-query

approximate code. The proof is similar to [KT00]: we select a random subset of V with size

Θ(δ
− 1
qn

q−1
q ), and show that w.h.p it contains a q-tuple from at least Ω(d) matchings (or directions).

This will imply the size of the subset is Ω(α2d). The lower bound of n follows immediately.
We first note that a subset containing tuples from many different matchings must be large.

Lemma 6.1. If a set S ⊆ V contains at least one tuple from k different matchings (k ≤ d), then
|S| ≥ α2k.

Proof: By the definition of an approximate LDC, for every tuple {j1, . . . , jk} ∈ Mi, there ex-
ists a unit vector u ∈ span{vj1 , . . . ,vjk} with the i’th coordinate at least α in absolute value.
We also assume w.l.o.g. that ui ≥ α (otherwise take −u). Therefore, there exists unit vectors
u1,u2, . . . ,uk ∈ span{S} such that each of them has a different coordinate at least α. Without
loss of generality we assume u11, u22, . . . , ukk ≥ α.

To show |S| ≥ α2k, it suffices to show rank{u1,u2, . . . ,uk} ≥ α2k. Let U be the matrix
consisting of u1,u2, . . . ,uk as its row vectors. For simplicity we remove the last n− k columns in
U if n > k. Now U is a square matrix with diagonal elements at least α. Let r be the rank of
U . We only need to show r ≥ α2k. This is a variant of the well-known theorem saying that the
rank of a matrix is large if its diagonal elements are larger than the off-diagonal ones. We give the
following proof, which is based on the idea of Lemma 3.5 in [BDWY12] (similar lemmas can be
found in most standard texts on matrix analysis).
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Let U = QΣP ∗ be the singular value decomposition of U , where Q,P are unitary matrices. Let
σ1, σ2, . . . , σr > 0 be the non-zero singular values of U , i.e. Σ = diag{σ1, σ2, . . . , σr, 0, 0, . . . , 0}. We
have

(αk)2 = tr(U)2 = tr(QΣP ∗)2 = tr((P ∗Q)Σ)2 ≤ tr(Σ)2.

The last inequality holds since P ∗Q is a unitary matrix and every element has absolute value at
most 1. On the other hand,

tr(Σ)2 = (σ1 + σ2 + · · ·+ σr)
2 ≤ r · (σ2

1 + σ2
2 + · · ·+ σr)

2 = r · ‖U‖F ≤ r · k.

Combine these two inequalities we have r ≥ α2k. �

Now we can prove the theorem in the same way as in [KT00]. We pick a random set S ⊆ V

of size Θ(δ
− 1
qn

q−1
q ). By Lemma 5 in [KT00], S contains tuples in Ω(d) different directions in

expectation. We fix an S that contains tuples in Ω(d) directions. By Lemma 6.1, we have

δ
− 1
qn

q−1
q = Ω(α2d).

The lower bound n = Ω((α2δ1/qd)
q
q−1 ) follows immediately.
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