
A Tight Lower Bound on Certificate Complexity
in Terms of Block Sensitivity and Sensitivity

Krǐsjānis Prūsis and Andris Ambainis?

Faculty of Computing, University of Latvia, Raina bulv. 19, Rga, LV-1586, Latvia

Abstract. Sensitivity, certificate complexity and block sensitivity are
widely used Boolean function complexity measures. A longstanding open
problem, proposed by Nisan and Szegedy [6], is whether sensitivity and
block sensitivity are polynomially related. Motivated by the construc-
tions of functions which achieve the largest known separations, we study
the relation between 1-certificate complexity and 0-sensitivity and 0-
block sensitivity.

Previously the best known lower bound was C1(f) ≥ bs0(f)
2s0(f)

, achieved by

Kenyon and Kutin [5]. We improve this to C1(f) ≥ 3bs0(f)
2s0(f)

. While this
improvement is only by a constant factor, this is quite important, as it
precludes achieving a superquadratic separation between bs(f) and s(f)
by iterating functions which reach this bound. In addition, this bound is
tight, as it matches the construction of Ambainis and Sun [3] up to an
additive constant.

1 Introduction

Determining the biggest possible gap between the sensitivity s(f) and block
sensitivity bs(f) of a Boolean function is a well-known open problem in the
complexity of Boolean functions. Even though this question has been known for
over 20 years, there has been quite little progress on it.

The biggest known gap is bs(f) = Ω(s2(f)). This was first discovered by Ru-

binstein [7], who constructed a function f with bs(f) = s2(f)
2 , and then improved

by Virza [8] and Ambainis and Sun [3]. Currently, the best result is a function
f with bs(f) = 2

3s
2(f)− 1

3s(f) [3]. The best known upper bound is exponential:

bs(f) ≤ s(f)2s(f)−1 [2] which improves over an earlier exponential upper bound
by Kenyon and Kutin [5].

In this paper, we study a question motivated by the constructions of functions
that achieve a separation between s(f) and bs(f). The question is as follows:
Let sz(f), bsz(f) and Cz(f) be the maximum sensitivity, block sensitivity and

? Supported by FP7 projects QALGO (Grant Agreement No. 600700) and RAQUEL
(Grant Agreement No. 255961) and ERC Advanced Grant MQC. Part of this work
was done while Andris Ambainis was visiting Institute for Advanced Study, Prince-
ton, supported by National Science Foundation under agreement No. DMS-1128155.
Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 27 (2014)

certificate complexity achieved by f on inputs x: f(x) = z. What is the best
lower bound of C1(f) in terms of s0(f) and bs0(f)?

The motivation for this question is as follows. Assume that we fix s0(f) to a
relatively small value m and fix bs0(f) to a substantially larger value k. We then
minimize C1(f). We know that s1(f) ≤ C1(f) (because every sensitive bit has to
be contained in a certificate). We have now constructed an example where both
s0(f) and s1(f) are relatively small and bs0(f) large. This may already achieve
a separation between bs0(f) and s(f) = max(s0(f), s1(f)) and, if s1(f) > s0(f),
we can improve this separation by composing the function with OR (as described
in [3]).

While this is just one way of achieving a gap between s(f) and bs(f), all the
best separations between these two quantities can be cast into this framework.
Therefore, we think that it is interesting to explore the limits of this approach.

The previous results are as follows:

1. Rubinstein’s construction [7] can be viewed as taking a function f with
s0(f) = 1, bs0(f) = k and C1(f) = 2k. A composition with OR yields [3]
bs(f) = 1

2s
2(f);

2. Later work by Virza [8] and Ambainis and Sun [3] improve this construction
by constructing f with s0(f) = 1, bs0(f) = k and C1(f) =

⌊
3k
2

⌋
+ 1. A

composition with OR yields bs(f) = 2
3s

2(f)− 1
3s(f);

3. Ambainis and Sun [3] also show that, given s0(f) = 1 and bs0(f) = k, the
certificate complexity C1(f) =

⌊
3k
2

⌋
+ 1 is the smallest that can be achieved.

This means that a better bound must either start with f with s0(f) > 1 or
use some other approach;

4. For s0(f) = m and bs0(f) = k, it is easy to modify the construction of

Ambainis and Sun [3] to obtain C1(f) =
⌊
3dk/me

2

⌋
+ 1 but this does not

result in a better separation between bs(f) and s(f);
5. Kenyon and Kutin [5] have shown a lower bound of C1(f) ≥ k

2m . If this was
achievable, this could result in a separation of bs(f) = 2s2(f).

The gap between the construction C1(f) = 3k
2m + O(1) and the lower bound of

C1(f) ≥ k
2m is only a constant factor but the constant here is quite important.

This gap corresponds to a difference between bs(f) = (2
3+o(1))s2(f) and bs(f) =

2s2(f), and, if we achieved bs(f) > s2(f), iterating the function f would yield
an infinite sequence of functions with a superquadratic separation bs(f) = s(f)c,
where c > 2.

In this paper, we show that

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2

for any f . This matches the best construction up to an additive constant and
shows that no further improvement can be achieved along the lines of [7, 8, 3].
Our bound is shown by an intricate analysis of possible certificate structures for
f .

Since we now know that bs0(f) ≤
(
2
3 + o(1)

)
C1(f)s0(f), it is tempting to

conjecture that bs0(f) ≤
(
2
3 + o(1)

)
s1(f)s0(f). If this was true, the existing

separation between bs(f) and s(f) would be tight.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function on n variables. The i-th variable
of input x is denoted by xi. For an index set S ⊆ [n], let xS be the input obtained
from input x by flipping every bit whose position is in S. Let a z-input be an
input on which the function takes the value z, where z ∈ {0, 1}.

We now briefly define the notions of sensitivity, block sensitivity and cer-
tificate complexity. For more information on them and their relations to other
complexity measures (such as deterministic, probabilistic and quantum decision
tree complexities), we refer the reader to the survey by Buhrman and de Wolf
[4].

Definition 1. The sensitivity complexity s(f, x) of f on an input x is defined
as |{i | f(x) 6= f(x{i})}|. The z-sensitivity sz(f) of f , where z ∈ {0, 1}, is defined
as max{s(f, x) |x ∈ {0, 1}n, f(x) = z}. The sensitivity s(f) of f is defined as
max{s0(f), s1(f)}.

Definition 2. The block sensitivity bs(f, x) of f on input x is defined as the
maximum number b such that there are b pairwise disjoint subsets B1, . . . , Bb of
[n] for which f(x) 6= f(xBi). We call each Bi a block. The z-block sensitivity
bsz(f) of f , where z ∈ {0, 1}, is defined as max{bs(f, x) |x ∈ {0, 1}n, f(x) = z}.
The block sensitivity bs(f) of f is defined as max{bs0(f), bs1(f)}.

Definition 3. A certificate c of f on input x is defined as a partial assignment
c : S → {0, 1}, S ⊆ [n] of x such that f is constant on this restriction. If f is
always 0 on this restriction, the certificate is a 0-certificate. If f is always 1, the
certificate is a 1-certificate.

We denote specific certificates as words with ∗ in the positions that the
certificate does not assign. For example, 01∗∗∗∗ denotes a certificate that assigns
0 to the first variable and 1 to the second variable.

We say that an input x satisfies a certificate c if it matches the certificate in
every assigned bit.

The number of contradictions between an input and a certificate or between
two certificates is the number of positions where one of them assigns 1 and the
other assigns 0. For example, there are two contradictions between 0010∗∗ and
100∗∗∗ (in the 1st position and the 3rd position).

The number of overlaps between two certificates is the number of positions
where both have assigned the same values. For example, there is one overlap
between 001∗∗∗ and ∗0000 (in the second position). We say that two certificates
overlap if there is at least one overlap between them.

We say that a certificate remains valid after fixing some input bits if none of
the fixed bits contradicts the certificate’s assignments.

Definition 4. The certificate complexity C(f, x) of f on input x is defined as
the minimum length of a certificate that x satisfies. The z-certificate complexity
Cz(f) of f , where z ∈ {0, 1}, is defined as max{C(f, x) |x ∈ {0, 1}n, f(x) = z}.
The certificate complexity C(f) of f is defined as max{C0(f), C1(f)}.

3 Background

We study the following question:
Question: Assume that s0(g) = m and bs0(g) = k. How small can we make

C1(g)?
Example 1. Ambainis and Sun [3] consider the following function construc-

tion. g0(x1, . . . , x2k) = 1 if and only if (x1, . . . , x2k) satisfies one of k certificates
c0, . . . , ck−1 with the certificate ci (i ∈ {0, 1, . . . , k − 1}) requiring that

(a) x2i+1 = x2i+2 = 1;
(b) x2j+1 = 0 for j ∈ {0, . . . , k − 1}, j 6= i;
(c) x2j+2 = 0 for j ∈ {i + 1, . . . , i + bk/2c} (with i + 1, . . . , i + bk/2c taken

modk).

Then, we have:

– s0(g0) = 1 (it can be shown that, for every 0-input of g0, there is at most
one ci in which only one variable does not have the right value);

– s1(g0) = C1(g0) = b3k/2c + 1 (a 1-input that satisfies a certificate ci is
sensitive to changing any of the variables in ci and ci contains b3k/2c + 1
variables);

– bs0(g0) = k (the 0-input x1 = · · · = x2k = 0 is sensitive to changing any of
the pairs (x2i+1, x2i+2) from (0, 0) to (1, 1)).

This function can be composed with the OR-function to obtain the best
known separation between s(f) and bs(f): bs(f) = 2

3s
2(f) − 1

3s(f)[3]. As long
as s0(g) = 1, the construction is essentially optimal: any g with bs0(g) = k must
satisfy C1(g) ≥ s1(g) ≥ 3k

2 −O(1).
In this paper, we explore the case when s0(g) > 1. An easy modification of

the construction from [3] gives

Theorem 1. There exists a function g for which s0(g) = m, bs0(g) = k and

C1(f) =
⌊
3dk/me

2

⌋
+ 1.

Proof. To simplify the notation, we assume that k is divisible by m. Let r = k/m.
We consider a function g(xm1, . . . , xm,2r) with variables xi,j (i ∈ {1, . . . ,m}

and j ∈ {1, . . . , 2r}) defined by

g(x11, . . . , xm,2r) = ∨mi=1g0(xi,1, . . . , xi,2r). (1)

Equivalently, g(x11, . . . , xm,2r) = 1 if and only if at least one of the blocks
(xi,1, . . . , xi,2r) satisfies one of the certificates ci,0, . . . , ci,r−1 that are defined
similarly to c0, . . . , ck−1 in the definition of g0.

It is easy to see [3] that the composition of a function g0 with OR gives
s0(g) = ms0(g0), bs0(g) = mbs0(g0) and C1(g) = C1(g0). This implies the
theorem.

While this function does not give a better separation between s(f) and bs(f),
any improvement to Theorem 1 could give a better separation between s(f) and
bs(f) by using the same composition with OR as in [3].

On the other hand, Kenyon and Kutin [5] have shown that

Theorem 2. For any f with s0(g) = m and bs0(g) = k, we have C1(f) ≥ k
2m .

4 Separation between C1(f) and bs0(f)

In this paper, we show that the example of Theorem 1 is optimal.

Theorem 3. For any Boolean function f the following inequality holds:

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
. (2)

Without the loss of generality, we can assume that the maximum bs0 is
achieved on the all-0 input denoted by 0. Let B1, ..., Bk be the sensitive blocks,
where k = bs0(f). Also, we can w.l.o.g. assume that these blocks are minimal
and that every bit belongs to a block. (Otherwise, we can fix the remaining bits
to 0. This can only decrease s0 and C1, strengthening the result.)

Each block Bi has a corresponding minimal 1-certificate ci such that the
word ({0}n)Bi satisfies this certificate. Each of these certificates has a 1 in every
position of the corresponding block (otherwise the block would not be minimal)
and any number of 0’s in other blocks.

We construct a weighted graph G whose vertices correspond to certificates
c1, . . ., ck, with edges between every two vertices. Each edge has a weight that
is equal to the number of contradictions between the two certificates the edge
connects. The weight of a graph is just the sum of the weights of its edges. We
will prove

Lemma 1. Let w be the total weight of any induced subgraph of G of size m.
Then, we have

w ≥ 3

2

m2

s0(f)
− 3

2
m. (3)

Proof. The proof is by induction. As a basis we take induced subgraphs of size
m ≤ s0(f). In this case,

3

2

m2

s0(f)
− 3

2
m ≤ 0 (4)

and w ≥ 0 is always true, as the number of contradictions between two certifi-
cates cannot be negative.

Let m > s0(f). We assume that the relation holds for every induced subgraph
size < m. Let G′ be an induced subgraph of size m. Let H ⊂ G′ be its induced
subgraph of size s0(f) with the smallest total weight.

Lemma 2. For any certificate in G′ not belonging to this subgraph ci ∈ G′ \H
the weight of the edges connecting ci to H is ≥ 3.

Proof. Let t be the total weight of the edges in H. Let us assume that there
exists a certificate cj /∈ H such that the weight of the edges connecting cj to H
is ≤ 2. Let H ′ be the induced subgraph H ∪ {cj}. Then the weight of H ′ must
be ≤ t+ 2.

We define the weight of a certificate ci ∈ H ′ in H ′ as the sum of weights of
all edges of H ′ that involve vertex ci. If there exists a certificate ci ∈ H ′ such

that its weight in H ′ is ≥ 3, then the weight of H \ {ci} would be < t, which
is a contradiction, as H was taken to be the induced subgraph of such size with
the smallest weight. Therefore the weight of every certificate in H ′ is at most 2.

In the next section, we show

Lemma 3. Let f be a Boolean function for which the following properties hold:
f({0}n) = 0 and f has such k minimal 1-certificates that each has at most 2
contradictions with the others. Furthermore, for each input position, exactly one
of these certificates assigns the value 1. Then, s0(f) ≥ k.

Therefore, the 0-sensitivity of the function is the size of H ′ which is not
possible because |H ′| = s0(f) + 1.

We now examine the graph G′ \H. It consists of m− s0(f) certificates and
by the inductive assumption has a weight of at least

3

2

(m− s0(f))2

s0(f)
− 3

2
(m− s0(f)). (5)

But there are at least 3(m− s0(f)) contradictions between H and G′ \H, thus
the total weight of G′ is at least

3

2

(m− s0(f))2

s0(f)
− 3

2
(m− s0(f)) + 3(m− s0(f)) = (6)

3

2

(m2 −ms0(f) + s0(f)2

s0(f)
+

3

2
m− 3

2
s0(f) = (7)

3

2

m2

s0(f)
− 3

2
m+

3

2
s0(f) +

3

2
m− 3

2
s0(f) = (8)

3

2

m2

s0(f)
− 3

2
m. (9)

This completes the induction step.

By taking the whole of G as G′, we find a lower bound on the total number
of contradictions in the graph:

3

2

k2

s0(f)
− 3

2
k. (10)

But each contradiction requires one 0 in one of the certificates and each 0 con-
tributes to exactly one contradiction, therefore, by the pigeonhole principle, there
exists a certificate with at least

3

2

k

s0(f)
− 3

2
(11)

zeroes. As each certificate contains at least one 1, we get a lower bound on the
size of one of these certificates and C1(f):

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
. (12)

5 Functions with s0(f) Equal to Number of 1-certificates

In this section we prove Lemma 3.

5.1 General Case: Functions with Overlaps

Let c1, . . . , ck be the k certificates. We start by reducing the general case of
Lemma 3 to the case when there are no overlaps between any of c1, . . . , ck.

W.l.o.g., we assume that every input bit belongs to one of minimal blocks
B1, . . . , Bk that correspond to these certificates. (Otherwise, we could fix the
bits not belonging to those blocks to 0. The conditions of the lemma would still
be satisfied. First, since c1, . . . , ck can only assign the value 1 to the positions in
the corresponding blocks, they all remain valid certificates. If some of them are
no longer minimal, we can minimize them by removing variables and this can
only decrease the number of contradictions between them. Second, since every
Bi is minimal, for every unfixed position exactly one of c1, . . . , ck assigns the
value 1. Third, the remaining function is still 0 on the all-0 input.)

Note that certificate overlaps can only occur when two certificates assign 0
to the same position. Then a third certificate assigns 1 to that position. This
produces 2 contradictions for the third certificate, therefore it has no further
overlaps or contradictions. For example, here we have this situation in the 3rd
position (with the first three certificates) and in the 6th position (with the last
three certificates):

1 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 1 1 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 1 1 1 ∗ ∗
0 ∗ ∗ ∗ ∗ 0 ∗ ∗ 1 1

 . (13)

Let t be the total number of such overlaps. Let D be the set of certificates
assigning 1 to positions with overlaps, |D| = t. We fix every position where
overlaps occur to 0. Since the remaining function contains the word {0}n, it
is not identically 1. Every certificate not in D is still a valid 1-certificate, as
they assigned either nothing or 0 to the fixed positions. If they are no longer
minimal, we can minimize them, which cannot produce any new overlaps or
contradictions.

The certificates in D are, however, no longer valid. Let us examine one such
certificate c ∈ D. We denote the set of positions assigned to by c by S. The
certificate c assigns only the value 1 to |S| positions, one of which is now fixed
to 0, say i. If |S| = 1, then the remaining function is always sensitive to i on
0-inputs, as flipping it satisfies c.

If |S| > 1, we examine the 2|S|−1 subfunctions obtainable by fixing the re-
maining positions of S. We fix these positions to the subfunction that is not
identically 1 with the highest number of bits fixed to 1. If that subfunction fixes
1 in every position, it is sensitive to i on 0-inputs, as flipping it produces a word
which satisfies c. Otherwise it is sensitive on 0-inputs to every other bit fixed to
0 in S besides i, as flipping them would produce a word from a subfunction with

a higher amount of bits fixed to 1. But that subfunction is identically 1 or we
would have fixed it instead.

In either case we obtain at least one sensitive bit in S on 0-inputs in the
remaining function. Furthermore, every certificate not in D is still valid, if not
minimal. But we can safely minimize them again.

We can repeat this procedure for every certificate in D.The resulting function
is not always 1 and, on every 0-input, it has at least t sensitive bits among the
bits that we fixed. Furthermore, we still have k−t non-overlapping valid minimal
1-certificates with no more than 2 contradictions each. In the next section, we
show that this implies that it has 0-sensitivity of at least k − t (Lemma 4).
Therefore, the original function has a 0-sensitivity of at least k − t+ t = k.

5.2 Functions with No Overlaps

Lemma 4. Let f be a Boolean function f , for which the following properties
hold: f is not always 1 and f has such k non-overlapping minimal 1-certificates
that each has at most 2 contradictions with the others. Then, s0(f) ≥ k.

Proof. To prove this lemma, we consider the weighted graph G on these k certifi-
cates where the weight of an edge in this graph is the number of contradictions
between the two certificates the edge connects.

We examine the connected components in this graph, not counting edges
with weight 0. There can be only 4 kinds of components – individual certifi-
cates, two certificates with 2 contradictions between them, paths of 2 or more
certificates with 1 contradiction between every two subsequent certificates in
the path and cycles of 3 or more certificates with 1 contradiction between every
two subsequent certificates in the cycle. As there are no overlaps between the
examined certificates, each position is assigned to by certificates from at most
one component.

We will now prove by induction on k that we can obtain a 0-input with as
many sensitive bits in the positions of each component as there are certificates
in it.

As a basis we take k = 0. Since f is not always 1, s0(f) is defined, but
obviously s0(f) ≥ 0.

Then we look at each graph component type separately.

Individual Certificates. We first examine individual certificates. Let us denote
the examined certificate by c and the set of positions it assigns by S. We fix all
bits of S except for one according to c and we fix the remaining bit of S opposite
to c. The remaining function cannot be always 1, as otherwise the last bit in
S would not be necessary in c, but c is minimal. Therefore on 0-inputs the
remaining function is also sensitive to this last bit, as flipping it produces a
word which satisfies c.

Afterward the remaining certificates might no longer be minimal. In this
case we can minimize them. This cannot produce any more contradictions and
no certificate can completely disappear, as the function is not always 1. Therefore
the remaining function still satisfies the conditions of this lemma and contains

k−1 minimal 1-certificates, with each certificate having at most 2 contradictions
with the others.

Then by induction the remaining function has a 0-sensitivity of k−1. Together
with the sensitive bit among the fixed ones, we obtain s0(f) ≥ k.

Certificate Paths. We can similarly reduce certificate paths. A certificate path
is a structure where each certificate has 1 contradiction with the next one and
there are no other contradictions. For example, here is an example of a path of
length 3:

i
1 1 0 ∗ ∗ ∗ ∗
∗ ∗ 1 1 0 ∗ ∗
∗ ∗ ∗ ∗ 1 1 1

 . (14)

We note that every certificate in a path assigns at least 2 positions, otherwise
its neighbours would not be minimal.

We then take a certificate c at the start of a path, which is next to a certificate
d. Let S be the set of positions c assigns. Let i be the position where c and d
contradict each other.

We then fix every bit in S but i according to c, and we fix i according to
d. The remaining function cannot be always 1, as otherwise i would not be
necessary in c, but c is minimal. But on 0-inputs the remaining function is also
sensitive to i because flipping it produces a word which satisfies c.

We note that in the remaining function the rest of d (not all of d was fixed
because d assigns at least 2 positions) is still a valid certificate, since it only
assigns one of the fixed bits and it was fixed according to d. Similarly to the first
case we can minimize the remaining certificates and obtain a function with k−1
certificates satisfying the lemma conditions.

Then by induction the remaining function has a 0-sensitivity of k−1. Together
with the sensitive bit i, we obtain s0(f) ≥ k.

Two Certificates with Two Contradictions. Let us denote these 2 certifi-
cates as c and d and the two positions where they contradict as i and j. For
example, we can have 2 certificates like this: i j

1 1 1 0 ∗
∗ ∗ 0 1 1

 . (15)

Let S be the set of positions c assigns and T be the set of positions d assigns.
We then fix every bit in S except j according to c but we fix j according to d.
The remaining function cannot be always 1 because, otherwise, j would not be
necessary in c, but c is minimal. But on 0-inputs the remaining function is also
sensitive to j, as flipping it produces a word which satisfies c.

If |T | = 2, then on 0-inputs the remaining function is also sensitive to i
because flipping the ith variable produces a word which satisfies d.

If |T | > 2, we examine the 2|T |−2 subfunctions obtainable by fixing the
remaining positions of T . We can w.l.o.g. assume that d assigns the value 0 to
each of those positions. Among the subfunctions which are not identically 1 we
choose one which fixes the biggest number of bits to 0. If this subfunction fixes
0 in every position, it is sensitive to i on 0-inputs, as flipping it produces a word
which satisfies d. Otherwise it is sensitive on 0-inputs to every other fixed 1 in
T besides i and j, as flipping them would produce a word from a subfunction
with a higher amount of bits fixed to 0. But that subfunction is identically 1 or
we would have chosen it instead.

Therefore we can always find at least one additional sensitive bit among T .
Similarly to the first two cases we can minimize the remaining certificates

and obtain a function with k − 2 certificates satisfying the conditions of the
lemma.

Then by induction the remaining function has a 0-sensitivity of k−2. Together
with the two additional sensitive bits found, we obtain s0(f) ≥ k.

Certificate Cycles. A certificate cycle is a sequence of at least 3 certificates
where each certificate has 1 contradiction with the next one and the last one has
1 contradiction with the first one. For example, here is a cycle of length 5:

j5,1 j1,2 j2,3 j3,4 j4,5
1 1 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 1 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ 0 0 ∗
0 ∗ ∗ ∗ ∗ ∗ 1 1

 . (16)

Note that every certificate in a cycle assigns at least 2 positions, otherwise
its neighbours in the cycle would overlap. We denote the length of the cycle by
m. Let c1, . . . , cm be the certificates in this cycle, let S1, . . . , Sm be the positions
assigned by them, and let j1,2, . . . , jm,1 be the positions where the certificates
contradict.

We assign values to variables in c2, . . . , cm in the following way. We first
assign values to variables in S2 so that the variable j2,3 contradicts c2 and is
assigned according to c3, but all other variables are assigned according to c2.

We have the following properties. First, the remaining function cannot be
always 1, as otherwise j2,3 would not be necessary in c2, but c2 is minimal.
Second, any 0-input that is consistent with the assignment that we made is
sensitive to j2,3 because flipping this position produces a word which satisfies c2.
Third, in the remaining function c3, . . ., cm are still valid 1-certificates because we
have not made any assignments that contradict them. Some of these certificates
ci may no longer be minimal. In this case, we can minimize them by removing
unnecessary variables from ci and Si.

We then perform a similar procedure for ci ∈ {3, . . . ,m}. We assume that
the variables in S2, . . ., Si−1 have been assigned values. We then assign values
to variables in Si. If ci and ci+1 contradict in the variable ji,i+1, we assign it
according to ci+1. (If i = m, we define i + 1 = 1.) If ci and ci+1 no longer

contradict (this can happen if ji,i+1 was removed from one of them), we choose
a variable in Si arbitrarily and assign it opposite to ci. All other variables in Si

are assigned according to ci.
We now have similar properties as before. The remaining function cannot

be always 1 and any 0-input that is consistent with our assignment is sensitive
to changing a variable in Si. Moreover, ci+1, . . . , cm are still valid 1-certificates
and, if they are not minimal, they can be made minimal by removing variables.

At the end of this process, we have obtained m−1 sensitive bits on 0-inputs:
for each of c2, . . ., cm, there is a bit, changing which results in an input satisfying
ci. We now argue that there should be one more sensitive bit. To find it, we
consider the certificate c1.

During the process described above, the position j1,2 where c1 and c2 contra-
dict was fixed opposite to the value assigned by c1. The position jm,1 where c1
and cm contradict is either unfixed or fixed according to c1. All other positions
of c1 are unfixed.

If there are no unfixed positions of c1, then changing the position j1,2 in a
0-input (that satisfies the partial assignment that we made) leads to a 1-input
that satisfies c1. Hence, we have m sensitive bits.

Otherwise, let T ⊂ S1 be the set of positions in c1 that have not been assigned
and let p = |T |. W.l.o.g, we assume that c1 assigns the value 0 to each of those
positions. We examine the 2p subfunctions obtainable by fixing the positions of T
in some way. Among the subfunctions which are not identically 1, we choose one
that was obtained by fixing the biggest number of bits to 0. If this subfunction
fixes 0 in every position, it is sensitive to j1,2 on 0-inputs, as flipping it produces a
word which satisfies c1. Otherwise it is sensitive on 0-inputs to every bit in T that
is fixed to 1 because flipping this bit would produce a word from a subfunction
with a higher amount of bits fixed to 0 (and this subfunction must be identically
1). Hence, we have m sensitive bits in this case.

Similarly to the first three cases, we can minimize the remaining certificates
and obtain a function with k − m certificates satisfying the conditions of the
lemma. By induction, the remaining function has a 0-sensitivity of k −m. To-
gether with the m additional sensitive bits we found, we obtain s0(f) ≥ k.

6 Conclusions

In this paper, we have shown a lower bound on 1-certificate complexity in relation
to the ratio of 0-block sensitivity and 0-sensitivity:

C1(f) ≥ 3

2

bs0(f)

s0(f)
− 1

2
. (17)

This bound is tight, as the function constructed in Theorem 1 achieves the
following equality:

C1(f) =
3

2

bs0(f)

s0(f)
+

1

2
. (18)

The difference of 1 appears because the proof of Theorem 3 requires only a
single 1 in each certificate but the construction of Theorem 1 has two ones in
each certificate.

Thus, we have completely solved the problem of finding the optimal relation-
ship between s0(f), bs0(f) and C1(f). For functions with s1(f) = C1(f), such
as those constructed in [3, 7, 8], this means that

bs0(f) ≤
(

2

3
+ o(1)

)
s0(f)s1(f). (19)

That is, if we use such functions, there is no better separation between s(f) and
bs(f) than the currently known one.

For the general case, it is important to understand how big the gap between
s1(f) and C1(f) can be. Currently, we only know that

s1(f) ≤ C1(f) ≤ 2s0(f)−1s1(f), (20)

with the upper bound shown in [2]. In the general case (17) together with this
bound implies only

bs0(f) ≤
(

2

3
+ o(1)

)
2s0(f)−1s0(f)s1(f). (21)

However, there is no known f that comes even close to saturating the upper
bound of (20) and we suspect that this bound can be significantly improved.

There are some examples of f with gaps between C1(f) and s1(f), though.
For example, the 4-bit non-equality function of [1] has s0(NE) = s1(NE) = 2
and C1(NE) = 3 and it is easy to use it to produce an example s0(NE) = 2,
s1(NE) = 2k and C1(NE) = 3k. Unfortunately, we have not been able to
combine this function with the function that achieves (18) to obtain a bigger
gap between bs(f) and s(f).

Because of that, we conjecture that (19) might actually be optimal. Proving
or disproving this conjecture is a very challenging problem.

References

1. A. Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst.
Sci., 72(2):220–238, 2006.

2. A. Ambainis, M. Bavarian, Y. Gao, J. Mao, X. Sun, and S. Zuo. New decision tree
complexity upper bounds in terms of sensitivity. submitted to ICALP’2014.

3. A. Ambainis and X. Sun. New separation between s(f) and bs(f). CoRR,
abs/1108.3494, 2011.

4. H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002.

5. C. Kenyon and S. Kutin. Sensitivity, block sensitivity, and l-block sensitivity of
Boolean functions. Inf. Comput., 189(1):43–53, 2004.

6. N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

7. D. Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica,
15(2):297–299, 1995.

8. M. Virza. Sensitivity versus block sensitivity of Boolean functions. Inf. Process.
Lett., 111(9):433–435, 2011.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

