
The Complexity of Two Register and Skew Arithmetic

Computation

V. Arvind and S. Raja
The Institute of Mathematical Sciences

C.I.T. Campus
Chennai 600 113, India

{arvind,rajas}@imsc.res.in

Abstract

We study two register arithmetic computation and skew arithmetic circuits. Our main
results are the following:

• For commutative computations, we show that an exponential circuit size lower bound
for a model of 2-register straight-line programs (SLPs) which is a universal model
of computation (unlike width-2 algebraic branching programs that are not universal
[AW11]).

• For noncommutative computations, we show that Coppersmith’s 2-register SLP
model [BOC88], which can efficiently simulate arithmetic formulas in the commu-
tative setting, is not universal. However, assuming the underlying noncommutative
ring has quaternions, Coppersmith’s 2-register model can simulate noncommutative
formulas efficiently.

• We consider skew noncommutative arithmetic circuits and show:

– An exponential separation between noncommutative monotone circuits and
noncommutative monotone skew circuits.

– We define k-regular skew circuits and show that (k + 1)-regular skew circuits
are strictly powerful than k-regular skew circuits, where k ≤ n

ω(logn) .

– We give a deterministic (white box) polynomial-time identity testing algorithm
for noncommutative skew circuits.

1 Two register arithmetic computations

An arithmetic circuit over a field F and indeterminates X = {x1, x2, · · · , xn} is a directed
acyclic graph with each node of indegree zero labeled by a variable or a scalar constant.
Each internal node g of the DAG is labeled by + or × (i.e. it is a plus or multiply gate)
and is of indegree two. A node of the DAG is designated as the output gate. Each gate
of the arithmetic circuit computes a polynomial, in the commutative ring F[X], by adding
or multiplying its input polynomials. The polynomial computed at the output gate is the
polynomial computed by the circuit.

If the indeterminates X = {x1, x2, · · · , xn} are noncommuting with no relations between
them, then the circuit is called a noncommutative circuit and it computes a polynomial in
the free noncommutative ring F〈X〉.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 28 (2014)

We can view an arithmetic circuit C as a straight-line program (called an SLP, for short),
which prescribes an order of gate evaluation for C. More precisely, a straight-line program
corresponding to circuit C is a topologically sorted listing of the nodes of the DAG defining
C. For each internal gate gi we have an instruction like gi := gj ◦ gk, where gj and gk are
the inputs to gi and ◦ ∈ {+, ∗}. Thus, a straight-line program is a list of input variables and
scalars followed by a list of assignment statements of the form x := y ◦ z, where y and z are
already computed.

The above notion of straight-line programs (SLPs) can be refined by introducing registers.
Each instruction x := y ◦ z entails that x be stored in a register. The input variables and
scalars (which occur only on the right-hand side) of the assignments are freely accessible by
the program. This naturally leads to the notion of bounded register SLPs, where the bound
is the number of registers used by the program. We give a very general definition of bounded
register SLPs that allows for models with different computational power.

Definition 1. A straight-line program using w registers R1, R2, . . . , Rw over the field F and

indeterminates from X = {x1, x2, . . . , xn} consists of a sequence of instructions. Let R
(t)
i de-

note the contents of register Ri at stage t. Then the tth instruction in the sequence transforms

the tuple of register contents (R
(t−1)
1 , R

(t−1)
2 , . . . , R

(t−1)
w) to (R

(t)
1 , R

(t)
2 , . . . , R

(t)
w), where each

R
(t)
w = f(R

(t−1)
1 , R

(t−1)
2 , . . . , R

(t−1)
w , x1, . . . , xn), where the function f comes from a fixed set of

polynomials.

In an important paper in the area of arithmetic complexity, Ben-Or and Cleve [BOC92]
showed that three registers suffice to efficiently simulate arithmetic formulas. The instructions

they use in their SLPs are of the form: R
(t)
i = l1R

(t−1)
j + l2R

(t−1)
k +Ri where l1, l2 are affine

linear forms in x1, ..., xn. In general, when we allow instructions of the form

R
(t)
i = l1R

(t−1)
j + l2R

(t−1)
k + l3Ri,

where the li are affine linear forms, the polynomial in F[X] computed by such 3-register SLPs
can be computed as the (1, 1)th entry of the product of a sequence of 3× 3 matrices, one for
each SLP instruction, where these matrices have affine linear forms in the xi’s as entries. This
is precisely the width-3 algebraic branching program (ABP) model of arithmetic computation
which, by the Ben-Or and Cleve result is equivalent to arithmetic formulas (upto polynomial
size).

A natural question is about the power of 2-register computations. Allender and Wang
[AW11] have shown that 2-register ABPs (defined similarly via the iterated product of 2× 2
matrices with affine linear form entries) are not even universal. Indeed, they show that
the quadratic polynomial x1x2 + x2x3 + ...+ xn−1xn cannot be computed by width-2 ABPs.
However, there are interesting 2-register SLP models that merit further investigation. Copper-
smith (as mentioned in [BOC88]) has already observed that 2-register SLPs, with instructions
of the form: Ri = Ri + αR2

j , α ∈ F and Ri = Ri + l where l is a affine linear form, suffice to
simulate formulas efficiently if char F 6= 2.

Notice that Definition 1 allows for SLPs that are more powerful than the Ben-Or Cleve
model because the general SLPs allow for multiplication of registers and hence can compute
polynomials of degree exponential in their size. If we restrict ourselves to polynomials in F[X]
of polynomially bounded degree, then arbitrary SLPs, indeed arbitrary arithmetic circuits of
polynomial degree, can be transformed to nO(logn) size formulas and hence width-3 ABPs.

2

This motivates us to study, in the present paper, some universal 2-register SLP models
of computation. These models are universal because we allow a reset instruction Ri = c for
any c ∈ F. However, apart from the reset instruction, even if we restrict ourselves to only
the ABP-like “skew” instructions Ri = `1Ri + `2Rj for affine linear forms `1 and `2, the
model is surprisingly quite powerful. It is at least as powerful as ΣΠΣ arithmetic circuits and
it would be interesting to prove lower bounds for it or to separate it from ΣΠΣ arithmetic
circuits. Although we are unable to show such a lower bound, we consider a somewhat weaker
2-register SLP model, which is still universal, and show exponential size lower bounds for a
polynomial that has ΣΠΣ circuits of polynomial size.

Model 1

At each time instant t, we allow instructions of the form

1. R
(t)
i = αR

(t−1)
i + βR

(t−1)
j where i, j ∈ {1, 2} and α, β ∈ F.

2. R
(t)
i = xR

(t−1)
i where x is a variable.

3. R
(t)
i = αR

(t−1)
i + l where l is any affine linear form and α ∈ F.

Here R
(t)
i denotes the contents of register Ri at time t. At each time instant t, we can

apply any instruction to R1 and R2 simultaneously. Crucially, the instruction (3) gives the
power of resetting contents of a register to a nonzero constant. This is a crucial difference
from width-2 ABPs (which cannot do such a reset). However, width-3 ABPs can simulate
Model 1 efficiently.

Lemma 2. Model 1 is universal.

Proof. For any polynomial P (X) =
∑

m αm.m, P can be computed as follows. Using the
instruction Ri = xRi repeatedly a monomial m can be computed and add it (with appropriate
coefficient αm multiplied) to Rj , reset Ri to 1 and repeat. �

We can show an exponential lower bound for Model 1. However a slight variation in which

we allow R
(t)
i = lR

(t−1)
i where l is any affine linear form is already at least as powerful as

ΣΠΣ circuits. We call this variation is Model 2.

Lemma 3. Model 2 is at least as powerful as ΣΠΣ circuits. I.e., for any ΣΠΣ circuit of size
s there is a size O(s) SLP of Model 2 type.

Proof. Using Ri = lRi, we can compute a product of affine linear forms and using Rj =

Rj + Ri, accumulate the sum of such products in Rj . By using R
(t)
i = 0R

(t−1)
i + 1, we can

reset Ri’s contents to 1. �

We do not know how to prove lower bounds for Model 2. It is not clear if the partial deriva-
tive method can give superpolynomial lower bounds because the SLP structure is sequential
and allows the partial derivative space dimension to grow exponentially.

3

2 A Lower Bound for 2-Register SLP of Model 1

In this section we show an exponential size lower bound for 2-register SLPs (of Model 1)
computing an explicit multivariate polynomial over any field F. The instructions allowed in
Model 1 are: (1) Ri = αRi + βRj , where α, β ∈ F, (2) Ri = xRi where x is a variable, and
(3) Ri = αRi + l, where l is an affine linear form and α ∈ F.

Model 1 is universal by Lemma 2. In the absence of instruction (3) (which allows resets
Ri := c for any c ∈ F), the model can be simulated by width-2 arithmetic branching programs
(ABP), which are not universal, as shown by Allender and Wang [AW11]. As mentioned
earlier, they give a sparse polynomial that is not width-2 ABP computable. In Model 1 there
is an SLPs of size O(td) to compute any t-sparse polynomial of degree d. The idea is to
compute the monomials, one at a time, in the first register, add it to the second register, and
reset the first register to continue.

Consider the polynomial Q = P1 + P2 + ... + Pk where Pi = Πn
j=1(xij + yij) for each i.

We will show an exponential size lower bound for SLPs in Model 1 computing the polynomial
Q. Let V = {xij , yij}i∈[k],j∈[n] denote the set of indeterminates of polynomial Q. Note that
|V | = 2nk. Each Pi is a homogeneous multilinear polynomial of degree n with 2n distinct
monomials. Furthermore, each Pi has an O(n) size ΠΣ arithmetic circuit, and Q has an
O(nk) size ΣΠΣ arithmetic circuit.

Let R1, R2 be the two registers used by an SLP computing polynomial Q, and let R1 be
the output register. A rough outline of the argument is as follows: based on the structure
of the SLP, we pick some indeterminates of the polynomial Q and set them to 0. We then
analyze the resulting SLP to prove lower bound.

Theorem 4. The polynomial Q = P1 + P2 + · · · + Pk, defined above, for a suitably large
constant k, requires 2Ω(n) size SLPs in the 2-register SLP of Model 1.

Proof. Consider an SLP of Model 1 computing polynomial Q that is of minimal size s.
Let V = {xij |i ∈ [k], j ∈ [n]} ∪ {yij |i ∈ [k], j ∈ [n]} denote the variable set of Q. The
SLP consists of a sequence of instructions (of type (1) – (3)). At time t, 0 ≤ t ≤ s the

SLP computes the register contents R
(t)
1 and R

(t)
2 simultaneously from R

(t−1)
1 and R

(t−1)
2 by

permissible instructions. We can assume that the contents of the registers R1 and R2 at time

0 is R
(0)
1 = R

(0)
2 = 0. The final contents of the two registers is R

(s)
1 and R

(s)
2 at time instant

s, and let R
(s)
1 be the output of the SLP. Our aim is to lower bound s.

Clearly, at any time t both R
(t)
1 and R

(t)
2 contain polynomials of degree at most t in

indeterminates from V over F. We define the set of good monomials as GOOD = {m | m
has nonzero coefficient in Q}. Every good monomial has degree n and there are k.2n good

monomials in all. Since the SLP is not monotone, the set of good monomials in R
(t)
1 and

R
(t)
2 need not increase in cardinality with t. However, the SLP satisfies the following two

properties:

• At time s the number of good monomials in R
(s)
1 is k2n.

• The number of good monomials at time t′ > t can be more than the number at time
t only by first applying Ri = xRi for some x ∈ V to some register Ri and then Rj =
αR1 + βR2. Taking only linear combinations of R1 and R2 cannot increase the set of
good monomials. On the other hand, x occurs in exactly 2n−1 good monomials in Q. In

4

other words, at each time step the total number of good monomials in the two registers
can increase by at most 2n−1.

Therefore, there must be a time instant t̂ ≤ s such that: (i) l2n ≤ |GOODt̂| ≤ (l + 1)2n

and (ii) ∀t ≥ t̂ we have |GOODt| ≥ l2n. We choose l such that k/8 < l < k/4. For t ≥ t̂, for

our convenience, we will rename the registers at each time instant so that R
(t)
1 has at least

as many good monomials as R
(t)
2 (Note that this can be effected by inserting the swap step:

R
(t+1)
1 = R

(t)
2 , R

(t+1)
2 = R

(t)
1 which would at most double the size of the SLP).

Therefore, we can assume, ∀t ≥ t̂, R
(t)
1 has at least l

2 .2
n many good monomials. This

means the SLP cannot use the instruction R
(t+1)
1 = xR

(t)
1 for all ∀t ≥ t̂. Otherwise, R

(t+1)
1

will have fewer than 2n−1 many good monomials, contradicting the above property of t̂.
Now, the number of good monomials at time t̂ is still bounded by (l+ 1)2n. There are at

least (k−l−1)2n good monomials left to be included in the registers. In order to increase their
number, we must apply the instruction R2 = xR2 for some x ∈ V . Let t1 > t̂ be the first such
time instant. We set x = 0. Without loss of generality, assume x occurs in the polynomial
Pk. We can set all variables in Pk to zero and the polynomial Q becomes P1 +P2 + ...+Pk−1

which the SLP must still compute. Although the good monomials of Pk have disappeared,

we notice that the number of good monomials in R
(t1)
1 lies between (l

2 − 1)2n and l.2n and

R
(t1)
2 = 0.

Every monomial of degree > n is called a bad monomial. For a nonconstant monomial m

let BADm,t be the set of nonzero bad monomials in R
(t)
1 for t of the form migg, g ∈ GOOD,

where ig is the highest exponent such that migg occurs in R
(t)
1 .

Since k
8 < l < k

4 , there are at least k−2l−1 polynomials Pi in {P1, P2, ..., Pk−1} such that

R
(t1)
i contains fewer than 2n−1 good monomials of Pi. Without loss of generality, let these

polynomials be {P1, P2, ..., Pq} where q ≥ k − 1− 2l. Let V ar(Pj) denote the variable set of
the polynomial Pj .

For the SLP to include new good monomials in R1 of, say, polynomial Pj , j ∈ [q], after
time t1, the instruction R2 = xR2 has to be used for some x ∈ V ar(Pj) to generate new good
monomials in R2 which can then be added to R1. We can distinguish two possible ways in
which good monomials from Pj get added to R1:

(1) The SLP uses R2 alone to produce an s-sparse polynomial and adds to R1. But this
can only add s good monomials of Pj to R1 overall. As the SLP needs to add at least 2n−1

good monomials of Pj , using only such instructions would lower bound s by 2n−1.

(2) The content of R
(t1)
1 is added to R

(t1)
2 and R2 is multiplied by variables and then added

back to R1. This results in a first time instant t2 > t1 where the contents of R
(t2)
1 and R

(t2)
2

are expressible as:

R
(t2)
1 = αR

(t1)
1 + γm(R

(t1)
1 +m′P) + Sparse, (1)

R
(t2)
2 = α′R

(t1)
1 + γ′m(R

(t1)
1 +m′P) + Sparse, (2)

where m and m′ are nontrivial monomials, P is some (possibly zero) polynomial, γ 6= 0,
γ′ 6= 0, and Sparse denotes any s-sparse polynomial, and α 6= 0 but α′ may be 0.

5

Claim 5. Since R
(t2−1)
1 has at least (l

2 − 2)2n many good monomials, the number of bad

monomials in R
(t2)
1 is at least (l

2 − 2)2n. More precisely, the set BADm,t2 is of at least this
cardinality.

Proof. If P = 0 consider the set {mg | g a good monomial of R
(t1)
1 }. If mg does not occur in

R
(t1)
1 then mg is a nonzero bad monomial in R

(t2)
1 . Otherwise, there is a least index i such

that mig occurs in mR
(t1)
1 and does not occur in R

(t1)
1 . Thus, there is an migg in BADm,t2

for each good monomial in R
(t1)
1 .

Otherwise, if P 6= 0, in the polynomial R
(t1)
1 + m′P we have at least (l

2 − 2)2n good

monomials of R
(t1)
1 since m′ is nontrivial and at most 2n−1 of its multiples are good monomials.

We can apply the same argument as above with mg for these good monomials g. Thus, we
have the claimed number of bad monomials in BADm,t2 . �

Now, we claim that the number of bad monomials in R1 must remain 2Ω(n) − s for the
remainder of the SLP which will force s to be exponential in n.

Claim 6. At any time t > t2 the number of bad monomials in R
(t)
1 is at least 2Ω(n) − t.

Proof. We will prove this claim by induction on t ≥ t2. At time t2 we have already seen that
BADm,t2 is of size (l

2 − 2)2n and the status of the two registers is in Equation 1.
We will show, inductively, that at each time t > t2 there is a monomial mt such that

BADmt,t is present in R
(t)
1 and is of size at least (l

2 − 2)2n − t.
As induction hypothesis assume for all time instants t2 ≤ t′ < t that in R

(t′)
1 the set

BADmt′ ,t
′ is nonzero and has cardinality at least (l

2 − 2)2n − t′. We now consider R
(t)
1 and

analyze the possible cases. If R
(t)
1 is obtained from R

(t−1)
1 by adding a linear form then the

claim follows from the induction hypothesis for R
(t−1)
1 . Now consider the general case:

R
(t)
1 = µR

(t−1)
1 + νR

(t−1)
2 .

If R
(t−1)
2 is Sparse then again the induction assumption for R

(t−1)
1 implies the claim.

Suppose R2 is never multiplied by a variable in the time interval (t2, t). In that case R
(t)
1

is just a linear combination of R
(t2)
1 , R

(t2)
2 and Sparse. This case is already argued in Claim 5.

A crucial point here is that this linear combination might undo the computation done at time

t2 and R
(t)
1 reverts to R

(t2−1)
1 + Sparse. However, in this case we can easily modify the SLP

to obtain a new equivalent SLP whose size is strictly less than s, contradicting the minimality
of s.

Otherwise, there is a last time instant t3 such that t > t3 ≥ t2 when R2 is multiplied by
an indeterminate x. Subsequently, there are only linear combinations with R1 stored in R2.
Therefore, we can write

R
(t)
1 = µ′R

(t3)
1 + ν ′xR

(t3)
2 + Sparse, (3)

where ν ′ 6= 0. Notice that µ′ also is not zero because xR
(t3)
2 has at most 2n−1 good monomials

and R
(t)
1 must have over (l

2 − 2)2n good monomials.

6

Now, let us analyze the contents of R
(t3)
2 . Suppose R1 is never added to R2 at any time

instant t4 in the interval (t2, t3). In that case from Equation 1 we can see that R
(t)
1 is of the

form
R

(t)
1 = βR

(t1)
1 +m(αR

(t1)
1 +m′P + m̂P̂) + Sparse,

where β 6= 0, m,m′ and P are from Equation 1, m̂ is a nontrivial monomial, and P̂ is some

polynomial. Then, as argued before, αR
(t1)
1 +m′P + m̂P̂ has at least (l

2 −2)2n many nonzero

good monomials of R
(t1)
1 because m′ and m̂ are nontrivial monomials. It follows, as in proof of

Claim 5, that for each such good monomial g there is a mig in BADm,t that remains nonzero

in R
(t)
1 .

Otherwise, suppose the last time instant less than t3 when R1 is added to R2 is t4 < t3.
The following two cases arise.
Case 1. Suppose α′ = 0 in Equation 1. Let t5 ∈ [t2, t4) be largest time instant such that

R
(t5)
2 = yP̂ +Sparse for some arbitrary variable y and polynomial P̂ . As R

(t2)
2 can be written

like this, t5 does exist.

Let ρ′R
(t4)
1 + ρ′′R

(t5)
2 be the contents of R

(t4+1)
2 . Now, the contents of R

(t3)
2 and R

(t3)
1 can

be expressed as follows:

R
(t3)
1 = θR

(t4)
1 + (

k∑
i=1

ρimi)R
(t4+1)
2 + Sparse, (4)

R
(t3)
2 = ρmkR

(t4+1)
2 + Sparse, (5)

where ρ′ 6= 0 and ρ 6= 0. Furthermore, θ 6= 0, ρmk 6= 0. The monomials mi divide mi+1

for each i < k.
Plugging these into Equation 3 for R

(t)
1 we obtain

R
(t)
1 = µ′θR

(t4)
1 + µ′(

k∑
i=1

ρimi + ν ′ρxmk)R
(t4+1)
2 + Sparse.

Notice that R
(t4+1)
2 = ρ′R

(t4)
1 + ρ′′R

(t5)
2 contains at least (l

2 − 2)2n many good monomials,

since R
(t5)
2 is yP̂ + Sparse. Now, the monomial xmk is of higher degree than mi for all i

and ν ′ρ 6= 0. Thus, µ′(
∑k

i=1 ρimi + ν ′ρxmk)R
(t4+1)
2 is nonzero. For any good monomial g

in R
(t4+1)
2 the monomial xmkg cannot be cancelled in µ′(

∑k
i=0 ρimi + ν ′ρxmk)R

(t4+1)
2 . If it

is cancelled in R
(t4)
1 , then by the argument in proof of Claim 5 we get BADxmk,t4 of size

(l
2 − 2)2n in R

(t)
1 . This proves the claim in this case.

Case 2. Suppose α′ 6= 0 in Equation 1 and that there is no multiplication by variable to R2

in the interval (t2, t4). For, if there was a multiplication, we can choose the last one as t5 and
the argument in the above case will again apply without any modification.

Consequently, both R
(t4)
1 and R

(t4)
2 are linear combinations of R

(t1)
1 and m(R

(t1)
1 +m′P).

Again, let R
(t4+1)
2 be aR

(t1)
1 + bm(R

(t1)
1 + m′P). As before, Equation 4 holds. Hence, an

equation of the form R
(t)
1 = µ′θR

(t4)
1 + µ′(

∑k
i=1 ρimi + ν ′ρxmk)R

(t4+1)
2 + Sparse holds for

R
(t)
1 , where now R

(t4)
1 is a linear combination of R

(t1)
1 and m(R

(t1)
1 +m′P), with the coefficient

of R
(t1)
1 nonzero in it. Since xmk is not cancelled in

∑k
i=1 ρimi + ν ′ρxmk we can show

7

following the argument of Claim 5 again that R
(t)
1 will contain many bad monomials of the

form (xmk)ig, where g is a good monomial of R
(t1)
1 . �

Putting it together, we conclude that the polynomial Q requires 2Ω(n) size SLPs in the
2-register SLP of Model 1. �

We note that Model 1 cannot efficiently simulate width-2 ABPs. This can be shown by
modifying the proof of Theorem 4.

2.1 Noncommutative 2-register arithmetic computations

We now briefly consider 2-register noncommutative arithmetic computations. Here we are
working in the free noncommutative ring F〈X〉 where X = {x1, ..., xn} is a set of noncom-
muting free variables and F is any field. Thus monomials are words in the noncommutative
free monoid X∗, and polynomials are F-linear combinations of monomials. Nisan [Nis91] has
shown that noncommutative ABPs can simulate noncommutative formulas efficiently. An
examination of Ben-or and Cleve [BOC92] result shows that width-3 noncommutative ABPs
can efficiently simulate noncommutative arithmetic formulas and are, in fact, equivalent to
them. This has been observed before (e.g. see [AJS09]). Therefore, it is interesting to examine
the power of 2-register noncommutative arithmetic computations. Width-2 noncommutative
ABPs are also not universal [AW11]. However, the noncommutative version of Model 1 is
universal. We can consider a noncommutative generalization of Model 1 in which we allow
both left and right multiplication by an indeterminate: Rt

i = xRt−1
i and Rt

i = Rt−1
i x.

Lemma 7. Noncommutative 2-register SLPs of Model 1 type have O(n) size SLPs for the
Palindrome polynomial Pn(x0, x1) =

∑
w∈{x0,x1}n w.w

R.

We omit the easy proof of the above lemma. In the noncommutative setting, Q = P1 +
P2 + ... + Pk, where Pi = Πn

j=1(xij + yij), has linear size ΣΠΣ circuits. But by Theorem 4
any 2-register SLP of Model 1 for Q requires exponential size. The palindrome polynomial
cannot be computed by polynomial size noncommutative ΣΠΣ circuits [Nis91] but we have
linear sized 2-register SLP of Model 1 by Lemma 7.

Corollary 8. In the noncommutative setting, 2-register SLPs of Model 1 are incomparable
to ΣΠΣ circuits (or even ABPs).

Next, we show that Coppersmith’s model [BOC88] is not universal for noncommutative
polynomials. Recall that the model is Ri = Ri + αR2

j , Ri = Ri + l where α ∈ F and l is a
affine linear form.

Proposition 9. The Coppersmith model is not universal in the noncommutative ring of
polynomials Fx, y for any field F.

Proof. We show that the polynomial xy cannot be computed by this model. We will show by

induction on t that the register contents R
(t)
1 and R

(t)
2 has the property that both xy and yx

have the same coefficient.

Base Case: t=1 At time instant 0, let R
(0)
1 = c1 and R

(0)
2 = c2 for constants c1, c2. Clearly

the above property holds at time instant t = 1.
Induction Hypothesis: Suppose for all t′ < t, the monomials xy and yx have the same

coefficient in R
(t′)
1 and R

(t)
2 .

8

Induction Step: Consider R
(t)
1 and R

(t)
2 . If R

(t)
1 = R

(t−1)
1 + l for an affine linear form l,

the coefficients of xy and yx in R
(t)
1 are the same as in R

(t−1)
1 and hence the property holds.

Otherwise, the instruction R
(t)
1 = R

(t−1)
1 + α(R

(t−1)
2)2 is used. We can write

Rt−1
2 = f≥3 + f2 + f1 + f0,

where fj denotes the homogeneous degree-j component of R
(t−1)
2 . Now, expanding the

square (R
(t−1)
2)2 we have

R
(t)
2 = R

(t−1)
1 + f ′>2 + (2f0f2 + f2

1) + 2f0f1 + f2
0 ,

where f ′>2 denotes the part of (R
(t−1)
2)2 consisting of terms of degree greater than 2. Notice

that the coefficients of xy and yx are identical in the following polynomials:

• In R
(t−1)
1 by induction hypothesis.

• In f2 by induction hypothesis for R
(t−1)
2 .

• In f2
1 (by verification) as f1 is a linear form.

Thus, the coefficient of xy and yx remain identical in R
(t−1)
1 + (2f0f2 + f2

1) + 2f0f1 + f2
0 .

This proves the induction step for R
(t)
1 . The same argument applies for R

(t)
2 . �

However, if we assume the presence of quaternions in the ring F〈x1, ..., xn〉 we can show
that Coppersmith’s 2-register model is universal and even efficiently simulates noncommuta-
tive arithmetic formulas.

Lemma 10. Let R = F〈x1, ..., xn, i, j, k〉 be a noncommutative ring where charF 6= 2, and
x1, ..., xn are free noncommuting variables and i, j, k satisfy the relations: i2 = j2 = k2 = −1,
ij = k,ji = −k,jk = i,kj = −i,ki = j,ik = −j, ∀y ∈ {i, j, k} ∀x ∈ {x1, ..., xn} yx = xy. For
any noncommuting arithmetic formula of size s we can give an equivalent 2-register SLP of
size sO(1).

Proof. The construction is by induction on the formula size. If the output gate is addition,
it is handled in the same way as explained in [BOC88]. We explain the product gate case.
Recall that the model is Ri = Ri +αR2

j , Ri = Ri + l where α ∈ F and l is a affine linear form.
In the original Coppersmith proof for the commutative case [BOC88] the general inductive
step is to obtain an offset of the polynomial product f.g assuming we can obtain offsets of
f and g. I.e., assuming we have 2-register SLPs that can transform (R1, R2) contents from
(a, b) to (f + a, b) and (a, b) to (g+ a, b), we need to give an SLP that can transform (a, b) to
(fg + a, b). As in the Proposition 9, by the “Coppersmith identity”:

f.g = −1

2
.b2 +

1

2
(f − b)2 − 1

2
(g − f + b)2 +

1

2
(g + b2),

we get (a, b)→ (gf+fg
2 +a, b), where the noncommutativity of the ring prevents obtaining fg.

Instead, we obtain (a, b)→ (if+fi
2 +a, b) = (if+a, b), and similarly obtain (a, b)→ (jg+a, b).

Now, by applying (1) we can obtain an SLP that transforms

(a, b)→ (
ijfg − ijgf

2
+ a, b) = (

kfg − kgf
2

+ a, b).

9

By applying (2) and multiplying by −k we can get: (a, b) → (fg−gf2 + a, b). We now obtain

an offset of fg+gf
2 as in (1) to get

(a, b)→ (
fg + gf

2
+
fg − gf

2
+ a, b) = (fg + a, b).

�

3 Skew Noncommutative Computation

An arithmetic circuit is skew if for every multiplication gate one of its inputs is a scalar or
an indeterminate xi ∈ X. This model of arithmetic circuits has been studied in [AJMV98],
especially in connection with depth reduction for noncommutative circuits. Although com-
mutative skew circuits are equivalent to ABPs, in the noncommutative setting, skew circuits
are known to be strictly more powerful than noncommutative ABPs [Nis91, AJMV98]. This
is because multiplications could be either to the left or right. For instance, consider the
palindrome polynomial P (x0, x1) =

∑
w∈{x0,x1}n ww

R, where wR denotes the reverse of w can
be computed by an O(n) size noncommutative skew circuit (using both left and right skew
multiplications), but requires 2Ω(n) size ABPs as show by Nisan [Nis91].

Remark 11. It is an interesting question whether we can prove superpolynomial size lower
bounds for noncommutative skew circuits computing the noncommutative Permanent or De-
terminant. A lower bound argument given in [AJMV98, Theorem 7.12] is unfortunately not
correct. The idea there was to convert a given skew circuit into a left skew circuit (which is
just a noncommutative ABP) by moving all right skew multiplications to the left, and then to
apply Nisan’s rank argument, to the resulting ABP. However, the modified circuit, in general,
does not compute a polynomial weakly equivalent (in the sense of [Nis91]) to the one computed
by the original circuit. Recently Limaye, Malod, and Srinivasan [LMS14] have shown a 2Ω(n)

lower bound for general noncommutative skew circuits.
Although our results fall short of proving a lower bound for general noncommutative skew

circuits, we show some exponential lower bounds separations. Specifically, we define a nat-
ural subclass of skew circuits, which we call k-regular skew circuits, and show exponential
separations between k-regular and k + 1-regular skew circuits for each k, resulting in an in-
finite hierarchy of separations above noncommutative algebraic branching programs. Indeed,
noncommutative ABPs form a proper subclass of 1-regular skew circuits.

However, for general skew circuits we give a deterministic (white-box) polynomial-time
identity testing algorithm.

We also compare the power of monotone noncommutative skew circuits with unrestricted
noncommutative monotone circuits. Exponential size lower bounds for arbitrary monotone
circuits computing the Permanent in both commutative and noncommutative settings are
already well known (e.g. see [Nis91] for one proof). Here, we show an exponential separation
between noncommutative monotone circuits and noncommutative monotone skew circuits.

Lower bounds for k-regular skew circuits

Let C be a noncommutative skew circuit of size s computing a homogeneous polynomial in
F〈X〉, where X = {x1, x2, . . . , xn} are noncommuting free variables. We can first convert C

10

into a layered circuit of size poly(n, s) such that (i) all gates at layer i compute polynomials of
degree i, (ii) all edges are between gates at layer i and i+ 1 for each i, (iii) each layer consists
of either all + gates or all × gates and the + and × gate layers alternate. Furthermore, we let
the + gates be of arbitrary fanin. The (skew) multiplication gates have fanin 2 and for scalar
multiplications we label the edges by elements from the field. If the polynomial f computed
by C is not homogeneous we can compute each homogeneous part of f by a layered skew
circuit as described above. Suppose C is a layered skew circuit that computes a homogeneous
polynomial f ∈ F〈X〉 of degree d.

A path ρ from a gate g in layer i to the output gate is said to be an (a, b)-type if there are
exactly a left-skew multiplications and b right-skew multiplications in ρ, where a+ b = d− i.

Definition 12. A layered skew circuit C is said to be k-regular if for each multiplication
layer i, we can associate a set of types Si = {(c, d) | c, d ≥ 0 and c + d = d − i} such that
|Si| ≤ k and for each gate g in layer i, if there is a path of (a, b)-type from gate g, where
a+ b = d− i, then (a, b) ∈ Si.

Note that in a k-regular skew circuit, the number of gates in each layer can be unbounded.
Furthermore, the type sets Si are not fixed and can depend on the computed polynomial. Of
course the set Si and the circuit structure between the ith and i + 1st multiplication layers
will determine Si+1. Given a layered skew circuit C we can check if it is k-regular for a given
k, and also efficiently compute the minimum k for which C is k-regular.

Remark 13. We note here that even 1-regular skew circuits are strictly more powerful than
ABPs. For, ABPs are just 1-regular skew circuits in which all multiplications are right skew,
and there is an O(n) size 1-regular skew circuit (which is also monotone) for the palindrome
polynomial which requires exponential size ABPs [Nis91].

It is convenient to first convert a given noncommutative skew circuit into one which is
homogeneous in a specific sense that we call type homogeneous. Something more general is
known for general noncommutative circuits [HWY10]. This conversion can be carried out in
deterministic polynomial time.

Type homogenization of skew circuits

Let C be a noncommutative skew circuit of size s computing a polynomial in F〈X〉, where
X = {x1, x2, . . . , xn} are noncommuting free variables. We can first convert C into a layered
circuit of size poly(n, s) such that:

(i) All gates at layer i compute polynomials of degree i,

(ii) All edges are between gates at layer i and i+ 1 for each i,

(iii) An edge from a gate u in layer i to a gate v layer i+1 is labeled by a homogeneous linear
form and the symbol l or r (indicating whether the linear form is to be multiplied to
the left or right of the polynomial produced at gate u). This product of the linear form
and the polynomial at gate u is the contribution of u to v. The polynomial computed
at gate v is the sum of contributions over all incoming edges to v from layer i.

Suppose C is a layered skew circuit that computes a homogeneous polynomial f ∈ F〈X〉
of degree d. A gate g in layer i is said to be an (a, b)-type gate if for all paths from g to

11

the output gate there are exactly a left-skew multiplications and b right-skew multiplications,
where a+ b = d− i. Hence, all monomials at an (a, b)-type gate g are of degree d− (a+ b).
Furthermore, crucially, each monomial produced at gate g can occupy positions in the interval
[a+ 1, d− b] in a monomial of degree d in the output polynomial.

Notice that the total number of types (a, b) that are possible in layer i is d − i + 1. We
say that g is type homogeneous if it is of (a, b) type for some (a, b) and we say that the skew
circuit C is type homogeneous if every gate g in it is type homogeneous. Clearly, the output
gate is always type homogeneous. Starting from the output gate and proceedings downward
in a given layered skew circuit C of size s we can convert it, layer by layer, into a type
homogeneous layered skew circuit of size poly(d, s) size.

Lemma 14. A layered skew circuit C of size s computing a homogeneous polynomial of degree
d in F〈X〉 can be transformed in polynomial time (in s and n) into a layered type homogeneous
skew circuit CT of size poly(d, s) computing f .

In general the gates in layer i of a type homogeneous skew circuit C can have any of the
d− i+ 1 possible types. Notice that, crucially, type homogenization of skew circuit does not
alter the set of types of the paths at any layer. Specifically, if C is k-regular then CT remains
k-regular.

Now, we show that for each fixed k > 0, an exponential size separation between k-regular
and (k + 1)-regular skew circuits. We define the following homogeneous degree 2(k + 1)n
polynomial Pi,k(X,Y, Z) where the 2(k+1)n variables are partitioned as X ∪Y ∪Z such that
|X| = |Y | = n and |Z| = 2kn.

Pi,k(X,Y, Z) =
∑
w∈S

z1z2...z2(i−1)n.w.w
R.z2(i−1)n+1.z2(i−1)n+2...z2kn

where S = {x1, y1} × {x2, y2} × ...× {xn, yn}.

Theorem 15. Let P =
∑

i∈[k+1] Pi,k(Xi, Yi, Zi) where variable sets Xi, Yi, Zi are disjoint
∀i ∈ [k+1]. Any k-regular skew circuit for P requires size at least 2n. But there is polynomial
sized (k + 1)-regular skew circuit for P .

Proof. Let d = 2(k+1)n denote the degree of polynomial P and C be a k-regular skew circuit
of size s computing P . Applying Lemma 14 we can compute in polynomial time a circuit CT

from C that computes P such that CT is a type-homogeneous layered circuit.
We show an exponential lower bound for size(CT) which imply an exponential lower bound

for size(C). Consider the first multiplication layer of CT . Let the k possible gate types at this
layer be (a1, b1), (a2, b2), . . . , (ak, bk), where we know that ai + bi = 2(k + 1)n − 1. Now, for
each i ∈ [k+ 1], notice that the monomials of the summand polynomial Pi,k has the variables
from Xi ∪ Yi located precisely in the interval [2(i − 1)n + 1, 2in]. We say that a gate type
(aj , bj) touches the summand polynomial Pi,k if aj is in the interval [2(i− 1)n+ 1, 2in]. Since
the intervals for the k+1 summand polynomials are all mutually disjoint, for some u ∈ [k+1]
the summand polynomial Pu,k is not touched by any gate type in this layer.

Now, ∀i 6= u if we set the variables in Xi ∪ Yi ∪ Zi to 0 and all the variables in Zu to 1
in the circuit CT , we obtain a layered skew circuit, we call this modified circuit also by CT ,
computing the polynomial P ′u = Pu,k(Xu, Yu, 1) =

∑
w∈Su

w.wR where Su = {x1,u, y1,u} ×
{x2,u, y2,u} × ...× {xn,u, yn,u}.

12

In the circuit CT , by the choice of u, the types of all surviving gates in the first multipli-
cation layer is either of the form (a, 0) or (0, b) for some values of a and b. We can collect all
gates of type (a, 0) and the paths from them to the output gate into a circuit CT

1 that has
only left skew multiplications. Similarly, the gates of type (0, b) and the paths from them to
the output gate yield a circuit CT

2 that has only right skew multiplications. The sum of CT
1

and CT
2 computes the polynomial P ′u. Now, clearly both CT

1 and CT
2 can be simulated by

noncommutative ABPs of the same size, which means we obtain a noncommutative ABP of
size at most s for the palindrome polynomial P ′u, where s is the size of the original k-regular
skew circuit for P . By Nisan’s rank argument [Nis91], it now follows that size(CT) = s = 2n.

We can give a polynomial size (k+1)-regular skew circuit for P as follows: we can compute
each Pi,k with an O(k2n) size 1-regular skew circuit Ci of O(kn) size, as Pi,k is an easy variant

of the palindrome polynomial. Thus, overall P can be computed as the sum
∑k+1

i=1 Ci, which
is a (k + 1)-regular skew circuit. �

Examining the above proof we note that in the definition of polynomial P if we set k = n
(hence k is not constant) then the polynomial P can be computed by a polynomial size
layered skew circuit but any n

ω(logn) -regular skew circuit that computes P is of exponential
size. Putting it together we have the following.

Corollary 16. There is an explicit noncommutative polynomial in n variables that has
polynomial-size skew circuits but any n

ω(logn) -regular skew circuit that computes it is of size

nω(1).

Remark 17. Chien and Sinclair [CS07] considered the question of lower bounds for the De-
terminant polynomial whose entries are 2×2 matrices over a field F, where char F 6= 2. Based
on Nisan’s rank argument they showed that any ABP computing the order n Determinant,
DETn, whose entries are 2× 2 matrices requires 2Ω(n) size.

As in the proof of Theorem 15, we can show that any k-regular skew circuit computing
DETn can be transformed into an ABP computing the n

k+1 ×
n

k+1 determinant. It now follows
from Chien and Sinclair’s result that for any constant k, k-regular skew circuits computing
DETn over 2× 2 matrices are of size 2Ω(n).

A rank based approach to lower bounds for skew circuits

Let P ∈ F〈X〉 be a homogeneous noncommutative polynomial of degree d on the variables
X = {x1, x2, . . . , xn}. For each 0 ≤ k ≤ d, we can associate a matrix Mk(P) over the field
F with nk rows and (d − k + 1)n(d−k) columns. Each row of Mk(P) is labeled by a distinct
monomial m of degree k. Each column is labeled by a pair of monomials (m1,m2) such that
the sum of their degrees is d− k. A monomial m̂ of degree d can be factored as m̂ = m1mm2

in d − k + 1 different ways, where m is of degree k. The property we demand of the matrix
Mk(P) is that the coefficient P (m̂) of the monomial m̂ in P can be written as

P (m̂) =
∑

m̂=m1mm2

MK(m, (m1,m2)), (6)

where m is a degree k monomial.

Remark 18. Note that unlike for ABPs, the matrix Mk(P) is not uniquely defined for the
polynomial P . In a skew circuit a monomial m̂ can occupy more than one entry in Mk(P),

13

but we require that these entries sum to the coefficient of m̂. In particular, it is clear that
in a skew circuit computing a homogeneous degree d polynomial, each monomial can occupy
O(d) nonzero entries in Mk(P).

However, we can still relate the minimum size of a skew circuit computing a homogeneous
degree d polynomial P to the rank of Mk(P). Let S(P) denote the minimum size of a layered
skew circuit computing the polynomial P . Similar to Nisan’s [Nis91] ABP size characterization
we have the following.

For 0 ≤ k ≤ d, let rankk(P) denote the minimum rank attained by a matrix Mk(P)
satisfying Equation 6.

Theorem 19. For any homogeneous polynomial P of degree d, S(P) ≥
∑d

k=0 rankk(P).

Proof. Let C be a minimum size layered skew circuit computing the polynomial P . We define
two matrices Lk and Rk as follows. Let v1, v2, ..., vtk be the gates in the kth multiplicative
layer of circuit C. The rows of matrix Lk are labeled by distinct monomial of degree k and
columns by v1, v2, ..., vtk . The entry Lk[m, vi] is defined as the coefficient of monomial m
in the polynomial computed at the gate vi in C. The rows of Rk are labelled v1, v2, ..., vtk
and columns by a pair (m1,m2) of monomials whose degrees sum to d − k. The entry
Rk[vi, (m1,m2)] is defined as follows: for every path in C from the gate vi to the output
gate that appends m1 as prefix by left multiplication and m2 as suffix by right multiplication
compute the product of the scalars on these multiplication edges to obtain a scalar, and them
sum up these scalars over all such paths.

If follows by construction that we can define Mk(P) to be the matrix LkRk, as it satisfies
Equation 6. The claim now follows, since for each 0 ≤ k ≤ d, we have tk ≥ rank(Lk) ≥
min{rank(Lk), rank(Rk)} ≥ rank(Mk(P)) and

∑d
k=0 tk is the size of the skew circuit C. �

Theorem 19 seems difficult to use for general skew circuits as we need to lower bound
rankk(P). However, we can use it for the monotone case for the following reason. Suppose
P ∈ R〈X〉 is a monotone noncommutative homogeneous polynomial of degree d and C is
a monotone layered skew circuit computing P . As the circuit C is monotone, the matrices
Lk and Rk in the proof of Theorem 19 will both be monotone. Let mrankk(P) denote the
minimum rank of a monotone matrix Mk(P) corresponding to P and let mS(P) denote the
minimum size of a monotone skew circuit for P . It follows from the proof of Theorem 19 that

mS(P) ≥
d∑

k=0

mrankk(P). (7)

Let Q = P1(x1, x2)P2(x3, x4) where Pi are the palindrome polynomials of degree 2n.
Clearly, Q has polynomial size monotone noncommutative circuits: we can compute P1 and
P2 with O(n) size monotone skew circuits and multiply their outputs. We will show that
Q requires exponential size monotone skew circuits. Note that Q is a homogeneous degree
4n polynomial with 22n monomials. Let Mk(Q) be a nonnegative matrix corresponding to

polynomial Q with rows labeled by degree k monomials. By Ma,b
k (Q) we mean the submatrix

of Mk(Q) with all columns (m1,m2) of Mk(Q) such that |m1| = a, |m2| = b.

Theorem 20. Let Q = P1(x1, x2)P2(x3, x4), where Pi are palindrome polynomials of degree
2n each. Suppose M3n(Q) is a nonnegative matrix. Then rank(M3n(Q)) = 2Ω(n) and hence
mS(Q) = 2Ω(n).

14

Proof. Since Q has 22n monomials, there is an (a, b) such that the submatrix Ma,b
3n (Q) has

at least 22n

n+1 non-zero entries. Fix such a submatrix Ma,b
3n (Q). We will lower bound its rank.

The number of nonzero columns in Ma,b
3n (Q) is ≥ 22n

(n+1)2n . Since a + b = n, we can assume

without loss of generality a ≥ n
2 . There are 2n columns in Ma,b

3n (Q) and columns are labelled
by monomial pairs (m1,m2) such that m1 has degree a and m2 has degree b. We consider a
column for each m1. In the (m1,m2) column, the number of nonzero entries is at most 2n

because of the way Q is defined. For a fixed m1, the number of columns (m1,m2) is 2b ≤ 2
n
2 .

For each m1, we call the set {(m1,m2)|m2 ∈ {x3, x4}b} of columns a block Bm1 . Since Ma,b
3n (Q)

has at least 22n

(n+1) nonzero entries, there are a set of columns {(mi1,mi2) | 1 ≤ i ≤ N} where

N ≥ 2
n
2
−O(logn) such that the mi1, 1 ≤ i ≤ N are distinct and each such column is nonzero.

We consider the rows labelled by monomials m such that mi1mmi2 is a nonzero monomial
of Q for some i. The number of such rows is 22n. For column (mi1,mi2) let Si be the set of
monomials m, labeling rows such that the monomial mi1mmi2 is non-zero in Q. We claim that
Si ∩ Sj = φ for i 6= j. Suppose otherwise. For different columns (mi1,mi2) and (mj1,mj2),
we have ensured mi1 6= mj1. If m ∈ Si ∩ Sj then mi1mmi2 and mj1mmj2 are both valid
monomials of Q. This forces m = n1m

R
i1n2 = n1m

R
j1n2, for some monomials n1 and n2, which

is not possible as mi1 6= mj2. Thus, the columns labeled {(mi1,mi2) | 1 ≤ i ≤ N} are linearly
independent which proves that rank(M3n(Q)) = N ≥ 2Ω(n). The lower bound for mS(Q)
follows from Equation 7. �

Notice that in the proof of Theorem 15, the upper bounds are by monotone skew circuits.
Thus we also have an exponential separation between the size of monotone k-regular skew
circuits and monotone k + 1-regular skew circuits.

Corollary 21. There is an exponential size separation between the following monotone cir-
cuit classes via explicit monotone noncommutative polynomials: (i) monotone circuits and
monotone skew circuits, (ii) monotone skew circuits and k-regular monotone skew circuits,
(iii) k + 1-regular and k-regular monotone skew circuits.

4 Identity Testing for Noncommutative Skew Circuits

In this section we give a polynomial-time deterministic identity testing algorithm (white box)
for noncommutative skew circuits. This extends a well-known result due to Raz and Shpilka
[RS05] who gave a polynomial-time deterministic identity test for noncommutative algebraic
branching programs. We use a similar approach.

The Identity Test

Theorem 22. There is a deterministic algorithm that takes as input a noncommutative skew
circuit C of size s computing a polynomial in F〈X〉 and decides if C is identically zero in
time polynomial in n and s.

Proof. Let C be a skew circuit computing a polynomial f of degree at most s. Without loss
generality, we can assume C is a type homogeneous skew circuit. For 1 ≤ d ≤ s let fd denote
the homogeneous degree-d part of f . It suffices to describe the identity testing algorithm for
Cd computing fd.

15

Let Li be the set of all gates at the layer i. The idea of the algorithm is simple. For each
degree i monomial m over X we can associate its coefficient vector vm at the set of gates
g ∈ Li. The vector vm is a |Li|-dimensional vector over F whose coordinates are indexed by
the gates g ∈ Li from left to right. Since |Li| ≤ s, we will keep track of only at most |Li|
pairs (vm,m) such that the F-linear span of these vm contains the coefficient vectors of all
monomials of degree i at the gate set Li. Let us denote this set of vector-monomial pairs for
Li by Si.

Clearly, at layer 1 we can explicitly compute these pairs (vm,m). We will inductively
show that if we are given these sets Si for layer i, in deterministic polynomial time we can
compute the sets Si+1 in layer i+ 1. Now, consider any gate v of Li+1 (in layer i+ 1).

Let |Li| = r′ and |Li+1| = r. Corresponding to the edges from Li to Li+1, for each variable
x ∈ X we define an r× r′ matrix ML

x over F such that, for v ∈ Li+1, the vth row of ML
x is the

vector of coefficients of x on edges from u to v for u ∈ Li such that these edges are labelled
(L,αuvx) for some αuv ∈ F. Now, for each (vm,m) ∈ Si we collect the vector-monomial
pair (ML

x vm, xm). Similarly we define MR
x and for each (vm,m) ∈ Si we collect the vector-

monomial pair (MR
x vm,mx). ¿From their union over x ∈ X, we pick only those pairs into the

set Si+1,c,d such that the corresponding vectors are (maximally) linearly independent. Let
Vi+1 = {vm | (vm,m) ∈ Si+1}.

Claim 23. For any degree i+ 1 monomial m̂ its coefficient vector at the gates in Li+1 is in
the linear span of the vectors in the set Vi+1.

Proof. Assume the coefficient vector vm̂ of m̂ is nonzero (otherwise there is nothing to prove).
We can write m̂ = xm′ = m′′y for monomials m′ and m′′ of degree i. By the structure of the
circuit Cd, the coefficient vector vm̂ of m̂ is generated at Li+1 is as

vm̂ = ML
x vm′ +MR

y vm′′ (8)

Now, by induction hypothesis, the vector vm′ is in the span of vectors from Vi, and the vector
vm′′ is in the span of vectors from Vi. Since the vector vm̂ is given by the linear expression
in the above equation 8, and since the vectors in Vi+1 span the vectors in {ML

x vm | x ∈
X and (vm,m) ∈ Si} ∪ {MR

x vm | x ∈ X and (vm,m) ∈ Si}, it follows that vm̂ is also in the
span of Vi+1 which completes the proof of the claim. �

Returning to the proof of the theorem, we notice that at the output layer ld, vectors in
Vd are 1-dimensional. If the polynomial computed by Cd is nonzero then at the dth layer we
will have a pair (vm,m) where vm is a nonzero scalar and is the coefficient of the degree d
monomial m in fd. This completes the overall proof. �

Acknowledgments. We thank Meena Mahajan and Yadu Vasudev for discussions and
comments.

References

[AJMV98] E. Allender, J. Jiao, M. Mahajan, and V. Vinay, Non-commutative arithmetic
circuits: Depth reduction and size lower bounds, Theor. Comput. Sci. 209 (1998),
no. 1-2, 47–86.

16

[AW11] E. Allender and F. Wang, On the power of algebraic branching programs of width
two, Proc. 38th International Colloquium on Automata, Languages, and Program-
ming (ICALP), Springer, 2011, pp. 736–747.

[AJS09] V. Arvind, P. S. Joglekar, and S. Srinivasan, Arithmetic circuits and the hadamard
product of polynomials, FSTTCS, 2009, pp. 25–36.

[BOC88] M. Ben-Or and R. Cleve, Computing algebraic formulas with a constant number
of registers, Proceedings of the twentieth annual ACM Symposium on Theory of
Computing (STOC), ACM, 1988, pp. 254–257.

[BOC92] M. Ben-Or and R. Cleve, Computing algebraic formulas using a constant number
of registers, SIAM Journal on Computing 21 (1992), no. 1, 54–58.

[CS07] S. Chien and A. Sinclair, Algebras with polynomial identities and computing the
determinant, SIAM Journal on Computing 37 (2007), no. 1, 252–266.

[Nis91] N. Nisan, Lower bounds for non-commutative computation (extended abstract),
STOC, 1991, pp. 410–418.

[RS05] R. Raz and A. Shpilka, Deterministic polynomial identity testing in non-
commutative models, Computational Complexity 14 (2005), no. 1, 1–19.

[HWY10] P. Hrubes and A. Wigderson and A. Yehudayoff. Noncommutative arithmetic cir-
cuits and the sum-of-squares problem, STOC 2010.

[LMS14] N. Limaye, G. Malod, and S. Srinivasan. Talk at an arithmetic circuits workshop,
Feb, 2014.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

