
On Learning and Testing Dynamic Environments∗

Oded Goldreich† Dana Ron‡

March 30, 2014

Abstract

We initiate a study of learning and testing dynamic environments, focusing on environment
that evolve according to a fixed local rule. The (proper) learning task consists of obtaining the
initial configuration of the environment, whereas for non-proper learning it suffices to predict
its future values. The testing task consists of checking whether the environment has indeed
evolved from some initial configuration according to the known evolution rule. We focus on the
temporal aspect of these computational problems, which is reflected in the requirement that
only a small portion of the environment is inspected in each time slot (i.e., the time period
between two consecutive applications of the evolution rule).

We present some general observations, an extensive study of two special cases, two separation
results, and a host of open problems. The two special cases that we study refer to linear rules
of evolution and to rules of evolution that represent simple movement of objects. Specifically,
we show that evolution according to any linear rule can be tested within a total number of
queries that is sublinear in the size of the environment, and that evolution according to a simple
one-dimensional movement can be tested within a total number of queries that is independent
of the size of the environment.

Keywords: Multi-dimensional cellular automata, Property Testing, PAC Learning, one-sided
versus two-sided error, nonadaptivity, Locally Testable Codes, One-Way Functions,

∗This research was partially supported by the Israel Science Foundation (grant No. 671/13).
†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.

oded.goldreich@weizmann.ac.il
‡Department of EE–Systems, Tel-Aviv University, Ramat-Aviv, Israel. danar@eng.tau.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 29 (2014)

Contents

1 Introduction 1
1.1 The basic model . 1
1.2 A taste of our results . 3
1.3 More on the ideas underlying our proofs . 6

1.3.1 On the proofs of our separation and hardness results 6
1.3.2 On testers for special cases . 9

1.4 Organization . 10

2 A simple observation and the questions it raises 11
2.1 On the computational complexity of learning and testing 11
2.2 On testing versus learning . 13

3 Two separations 15
3.1 Time-conforming testers versus general testers . 15
3.2 Adaptive versus nonadaptive testers . 20

4 Fully visible state 21
4.1 On the computational complexity of learning . 21
4.2 On testing versus learning . 23

5 Linear Rules 27
5.1 More on learning . 27
5.2 Testing is easier than learning . 28

6 Environments of Moving Objects: The Dense Case 38
6.1 A special case: Fixed one-dimensional interruptible movement 38

6.1.1 A two-sided error tester . 39
6.1.2 On the complexity of one-sided error testers 57

6.2 Variable movement in multi-dimensional environments 66

7 Environments of Moving Objects: The Sparse Case 68
7.1 The model . 68
7.2 Results . 70
7.3 A twist on the model: Environment oracles that return identities 80

8 Directions for Further Research 80

Acknowledgments 81

References 82

Appendix: Some Tedious Details 84
A.1 Some linear-time computations by one-dimensional cellular automata 84
A.2 Modeling moving objects via cellular automata . 85

i

1 Introduction

We initiate a study of sublinear algorithm for testing and learning dynamic environments that
evolve according to a local rule. That is, the content of the environment in each location and at
each time is determined by the contents of the local neighborhood of that location at the previous
time.

One archetypical example of such environments is that of a collection of elements that interact
at a local level (i.e., each element may change its local state based on the state of its neighbors).
Indeed, the model of (two-dimensional) cellular automata was invented and studied as a model for
such applications, and one may view our study as a study of sublinear algorithm for testing and
learning the evolution of cellular automata. Another archetypical example is that of a collection
of objects that move in (three-dimensional) space such that their movements may be affected by
collisions (or near collisions) with other objects. Indeed, such motion can also be represented as an
evolution of a (three-dimensional) cellular automata.

The sublinear aspect of our model is reflected in the postulate that the algorithm can only
probe a small portion of the environment in each time slot, although the environment evolves in
time (and is thus potentially different in each time slot). Yet, as stated above, the evolution of the
environment is not arbitrary, but is rather based on local rules.

1.1 The basic model

The environment is viewed as a d-dimensional grid, mainly for d ∈ {1, 2, 3}, and local rules deter-
mine the state of each location as a function of its own state and the state of its neighbors in the
previous time unit. (Indeed, time is also discrete.)

The environment’s evolution in time is captured by a d + 1 dimensional array, denoted ENV :

Z
d+1 → Σ, such that ENVj(i1, .., id)

def
= ENV(j, i1, .., id) represents the state of location (i1, ..., , id)

at time j, and ENVj is determined by ENVj−1. The set Σ is an arbitrary finite set of possible local
states, and the (instantaneous) environment is viewed as an infinite d-dimensional grid. Actually,
we shall restrict ENV to [t]× [n1]× · · · × [nd] or rather to [t]× [n]d, and postulate that ENV contains
neutral values outside this domain. (By a neutral value we mean a value that does not affect the
evolution of neighboring cells (e.g., zero or blank).)

An observer, who is trying to learn or test the environment, may query its locations at any
point in time, but at time j ∈ [t] it may only obtain values of ENVj : [n]d → Σ. That is, the
observer is modeled as an oracle machine, but this machine is restricted to make queries that are
monotonically non-decreasing with respect to the time value (i.e., the value j in queries of the
form (j, i1, ..., id)). This key feature of the model is captured by the following definition (where x
represents some auxiliary input that the machine may be given).

Definition 1.1 (time-conforming observers): An oracle machine T is said to be time-conforming
if, on input (t, n, x) and oracle access to ENV : [t] × [n]d → Σ, it never makes a query (j, i1, ..., id)
after making a query (j′, i′1, ..., i

′
d) such that j < j′.

In particular, any nonadaptive oracle machine is time-conforming, because its queries can be de-
termined beforehand and made at the appropriate order (i.e., time-wise). This does not mean that
time-conforming machines are necessarily nonadaptive (see Theorem 1.6 and Section 3.2).

In general, when the observer queries location (i1, ..., id) ∈ [n]d at time j ∈ [t], it will retrieve
the visible part of the state ENVj(i1, ..., id), rather than the entire state. That is, the model includes
an auxiliary function V : Σ → Σ′ (called a viewing function) such that V (σ) is the visible part of

1

the state σ; hence, the query (j, i1, ..., id) is answered by V (ENVj(i1, ..., id)). We may say that the
part of σ not revealed by V (σ) is the hidden part of σ. Without loss of generality, we may assume
that Σ = Q× Σ′ and V (q, σ′) = σ′ for every (q, σ′) ∈ Q× Σ′. (In this case q is the hidden part of
(q, σ′).) We also consider the special case in which the state is fully visible, which is captured by
the case that |Q| = 1. (In this case, we prefer to view V as an identity function.)

The evolution of the environment is local in the sense that the value of ENVj(i1, ..., id) is deter-
mined by the value of ENVj−1 in positions {(i1 + s1, ..., id + sd) : s1, ..., sd ∈ {−1, 0, 1}}. The

rule of determining the value, denoted Γ : Σ3d → Σ, is known (and there are a finite num-
ber of possibilities anyhow). Thus, ENVj(i1, ..., id) equals Γ(z−1,...,−1, .., z1,...,1), where zs1,...,sd

=
ENVj−1(i1 + s1, ..., id + sd) and the sequence of all (s1,, sd) ∈ {−1, 0, 1}d appears in some canon-
ical order (e.g., lexicographic order, with (0, ..., 0) in the middle). Indeed, we model the evolution
of the environment as a computation of a d-dimensional cellular automaton.

The computational problems. The computational problems that we consider are (1) testing
whether the observed evolution of the environment is actually consistent with a fixed known rule,
and (2) learning the entire evolution of the environment (i.e., recovering the states of all locations
at all times). We refer to the standard notions of property testing (cf. [GGR98, RS96, Ron10])
and PAC learning (cf. [Val84, KV94]), when applied with respect to the uniform distribution on
the domain (of the functions in question). The symbol ǫ always denotes the relevant proximity
parameter. Since the evolution is determined by the local states at the initial time (i.e., by ENV1),
testing is equivalent to asking whether the evolution is consistent with the known rule and some
initial global state (i.e., ENV1), whereas proper learning1 calls for recovering the initial global state.

Definition 1.2 (testing consistency with Γ as viewed via V): We say that an oracle machine T

tests the consistency of evolving environments with respect to Γ : Σ3d → Σ and V : Σ → Σ′ if for
every ENV : [t]× [n]d → Σ the following holds:

1. If ENV evolves from ENV1 according to Γ, then Pr[T V ◦ENV(t, n, ǫ)=1] ≥ 2/3.

2. If ENV is ǫ-far from any environment ENV′ that evolves from the corresponding ENV′1 according
to Γ, then Pr[T V ◦ENV(t, n, ǫ) = 1] ≤ 1/3, where the distance between ENV and ENV′ equals
the fraction of entries on which ENV and ENV′ disagree (i.e., |{(j, i1, ..., id) ∈ [t] × [n]d :
ENV(j, i1, ..., id) 6= ENV′(j, i1, ..., id)}|/tnd).2

If Condition 1 holds with probability 1, then we say that T has one-sided error.

Note that, on top of oracle access to V ◦ ENV : [t]× [n]d → Σ′, the tester gets the (duration and size)
parameters t, n and the proximity parameter ǫ as explicit inputs. The same applies to learners as
defined next.

Definition 1.3 (learning evolution according to Γ via V): We say that an oracle machine learns

the environment evolving according to Γ : Σ3d → Σ and viewed via V : Σ→ Σ′ if the following holds:
On input (t, n, ǫ) and oracle access to V ◦ ENV such that ENV : [t] × [n]d → Σ evolves according to
Γ, the oracle machine outputs a function F : [t]× [n]d → Σ′ that is ǫ-close to V ◦ ENV. The learner
is said to be proper if it outputs ENV′ such that ENV′ : [t]× [n]d → Σ is an environment that evolves
according to Γ and V ◦ ENV′ is ǫ-close to V ◦ ENV.3

1In general, proper learning a concept class requires obtaining a description that has the same format as functions
in the concept class. Indeed, here ENV1 serves as such a description.

2Equivalently, we may require that if F : [t]×[n]d → Σ′ is ǫ-far from V ◦ENV′ for any environment ENV′ : [t]×[n]d → Σ
that evolves (from the corresponding ENV

′
1) according to Γ, then Pr[T F (t, n, ǫ)=1] ≤ 1/3.

3Equivalently, we may require the proper learner to output (only) the corresponding ENV
′
1.

2

We seek time-conforming oracle machines that solve the corresponding tasks (of learning and test-
ing). Furthermore, we seek testers and learners that solve the corresponding tasks in sublinear
query complexity, which we interpret as making o(nd) queries at each particular time. In other
words, we seek machines of sublinear temporal query complexity.

Definition 1.4 (temporal query complexity): The temporal query complexity of an oracle machine
querying ENV : [t] × [n]d → Σ is the maximal number of queries that the machines makes to each
ENVj (∀j ∈ [t]).

Definitions 1.1 and 1.4 capture the time-evolving nature of the environment and our goals, and dis-
tinguish the current testing and learning problems from the standard testing and learning problems
regarding various structures (including these related to (d+1)-dimensional arrays). First, whenever
the oracle machine does not query the entire oracle ENV, the time-conforming condition restricts
its access pattern (i.e., the order in which the machine probes the various entries). Second, the
temporal query complexity refers to the number of queries made at each time slot (as compared to
nd), rather than the total number of queries (as compared to t · nd). This requirement reflects the
reality of actual observers of natural phenomena, who are not only forced to be time-conforming
(since they cannot inspect the past nor the future) but are restricted in the amount of inspection
they can perform at any time slot.

A natural question is whether the time-conforming requirement actually restricts the power of
testers. In Section 3.1 (see also Theorem 1.5) we show that this is indeed the case: We demon-
strate that the time-conforming requirement makes testing of evolving d-dimensional environments
fundamentally different from testing properties of the corresponding (d + 1)-dimensional array.
Specifically, there exist pairs (Γ, V) for which the time-conforming requirement causes a subexpo-
nential increase in the query complexity of testers (i.e., an increase from poly(log n) to nΩ(1)).

Recall that proper learning implies testing (cf. [GGR98, Sec. 3.1]), and note that the argument
extends to our setting (i.e., when referring to time-conforming machines and their temporal query
complexity).4 Thus, we present testing results only when they improve over the best possible
learning results (which typically require a total number of Ω(nd) queries). We note that there exist
evolution rules for which testing is not easier than learning, and this holds even if the state is fully
visible (see Theorem 1.9).

1.2 A taste of our results

We start by presenting the two separation results that were mentioned in Section 1.1. Both results
are established by using one-dimensional environments (i.e., d = 1). Recall that, throughout this
paper, the evolving environments are presented as functions from [t]× [n]d to Σ. For simplicity, we
assume in this section that t = Θ(n).

The first result establishes the non-triviality of the notion of time-conforming observers by
showing that the time-conforming requirement may cause a subexponential increase in the query
complexity of testers (i.e., an increase from poly(log n) to nΩ(1)).

Theorem 1.5 (on the time-conforming requirement, see Theorem 3.2 for a precise statement):
There exist a constant c > 0, an evolution rule Γ : Σ3 → Σ, and a viewing function V : Σ → Σ′,

4Recall that the argument in [GGR98, Sec. 3.1] suggests that the tester first learns a hypothesis, and then checks
the hypothesis’s validity by an auxiliary sample (which is uniformly distributed in the function’s domain). Note that
this auxiliary sample can be chosen a priori, and the adequate queries can be made in due time (even before the
learning stage is completed).

3

such that (1) any time-conforming tester of evolution according to Γ via V requires Ω(nc) queries,
but (2) there exists a (non-time-conforming) tester of query complexity poly(ǫ−1 log n) for this
property.

The proof of Theorem 1.5 is based on notions and ideas of Gur and Rothblum [GR13]. Specifically,
we refer to their notions of general MAPs and MAPs with proof-oblivious queries, and transform
the separation between them into a separation between general testers and time-conforming ones.
Towards this end, we construct an evolution rule that first reveals an object to be tested, and then
deletes the object and reveals a corresponding proof (for a suitable MAP). While a general tester
may invoke the corresponding MAP, a time-conforming tester can be transformed into an MAP
that makes proof-oblivious queries.

The second separation result asserts that adaptivity is useful also in the context of time-
conforming testers.

Theorem 1.6 (on the benefits of adaptivity, see Theorem 3.3 for a precise statement): There exist
a constant c > 0, an evolution rule Γ : Σ3 → Σ, and a viewing function V : Σ → Σ′, such that
(1) any nonadaptive tester of evolution according to Γ via V requires Ω(nc) queries, but (2) there
exists a (time-conforming) tester of query complexity O(ǫ−1 log n) for this property.

The proof of Theorem 1.6 is based on the observation that some separations between adaptive and
nonadaptive testers that hold in the standard model can be translated to analogous results regarding
testing evolving environments. Our translation requires the existence of an efficient algorithm for
sampling the property that is used in the separation result (of the standard model). This sampler
need not produce the uniform distribution over objects having the property, but the support of its
output distribution should equal the set of all objects having this property.

Turning to the actual study of testing evolving environments, we first note that, in general (i.e.,
for arbitrary evolution rules Γ : Σ3 → Σ, even for d = 1), testing may require as many queries as
learning (cf. Theorem 1.9) and its computational complexity may be NP-Hard (cf. Theorem 2.1).
We thus focus our attention on special classes of evolution rules. In two natural cases, we obtain
testers of lower query complexity than the corresponding learners. Furthermore, these testers are
efficient (i.e., their computational complexity is closely relates to their query complexity). The first
class of evolution rules that we consider is the class of linear rules.

Theorem 1.7 (sublinear time complexity for testing linear rules): For any d ≥ 1 and any field Σ of

prime order there exists a constant γ < d such that the following holds. For any linear Γ : Σ3d → Σ
there exists a time-conforming oracle machine of (total) time complexity poly(ǫ−1) · nγ that tests

the consistency of an evolving environment with respect to Γ : Σ3d → Σ and the identity viewing
function (i.e., V (σ) = σ for every σ ∈ Σ). Furthermore, the tester is nonadaptive and has one-sided
error.

The proof of Theorem 1.7 appears in Section 5. It is based on proving that, on the average, the
value of a random location in the evolving environment (i.e., ENV : [t]× [n]d → Σ) depends only on
O(nγ) location in the initial configuration. We note that our upper bound on the time complexity
is only mildly lower than poly(1/ǫ) ·nd (e.g., for d = 1 and |Σ| = 2 we obtain the bound O(n0.8/ǫ)),
and we wonder whether poly(ǫ−1 log n) complexity is possible (for all linear rules).

The second class of evolution rules is aimed at capturing the movement of objects in a d-
dimensional grid. The following result refers to the case of d = 1 and to objects that move in a
fixed-speed but stop whenever a collision occurs (i.e., an object continues moving, one cell at a
time, until it collides with another object, and when this happens the object stops).

4

Theorem 1.8 (testing interruptible moving objects, very loosely stated): Let Γ : Σ3 → Σ be
a local rule that captures the fixed-speed movement of objects in one dimension such that colliding
objects stop forever. Then, there exists a time-conforming oracle machine of (total) time complexity
poly(1/ǫ) that tests the consistency of evolving environments with respect to Γ : Σ3 → Σ and the
identity viewing function.

The proof of Theorem 1.8 appears in Section 6.1.1. The corresponding tester makes quite a few
checks, which include checking that individual objects move in fixed speed as long as they don’t
stop, checking that these objects do not cross each other, and checking global statistics regarding
the number of moving and stopping objects within some intervals at some times. The non-triviality
of this testing task is reflected in the fact that the tester has two-sided error probability, and that
this is unavoidable for testers of query complexity that is independent of n. The latter assertion is
a corollary of Theorem 6.7, which asserts that any nonadaptive tester of one-sided error probability
for this task must have query complexity Ω(

√
n), which in turn implies an Ω(log n) bound for general

testers (of one-sided error probability). We note that the tester used in the proof of Theorem 1.8
is actually nonadaptive.

As stated above, we show that, in general, testing evolving environments may be as hard as
learning them. That is, in contrast to Theorems 1.7 and 1.8, there are evolution rules for which
testing is not easier than learning. This hardness result holds even when the state is fully visible,
which indicates that this restriction (i.e., fully visible states) does not suffice for making testing
easier than learning.

Theorem 1.9 (testing may have the same query complexity as learning, see Theorem 4.3 for a
precise statement): There exist a constant c > 0 and an evolution rule Γ : Σ3 → Σ such that both
testing evolution according to Γ via V and (proper) learning evolution according to Γ via V have
(total) query complexity Θ(nc), where in both cases we refer to a fully visible state (i.e., V is the
identity function) and to all sufficiently small constant values of ǫ > 0.

Theorem 1.9 is proved in Section 4, which deals with fully visible states. As in the proof of
Theorem 1.6, the main observation is that results that hold in the standard model (in this case
relations between the complexity of testing and learning) can be translated to analogous results
regarding testing evolving environments. However, in the current proof, we wish to carry out this
translation in the context of fully visible states. Thus, we pick a property for which probing the
process of the construction of the object (having the property) does not reveal more than probing
the object itself.

Staying within the realm of fully visible states, the following result assert that, even in this
case, the computational complexity of testing may be NP-Hard, provided that the temporal query
complexity is “significantly sublinear” (where f(m) is significantly sublinear if f(m) < m1−Ω(1)).

Theorem 1.10 (on the computational complexity of testing with sublinear temporal query com-
plexity, see Theorem 2.2 for a precise statement): Assuming NP 6⊆ BPP, there exists an evolution
rule Γ : Σ3 → Σ such that no time-conforming probabilistic polynomial-time tester for the evolution
(of n-sized environments) according to Γ and V≡ has temporal query complexity n1−Ω(1), where V≡

denotes the identity mapping.

Indeed, Theorem 1.10 stands in contrast to Theorems 1.7 and 1.8, which refer to specific evolution
rules (and a fully visible state). We mention that in the case of a viewing function that hides part
of the state, NP-Hardness of testing holds regardless of the query complexity; see Theorem 2.1.

5

1.3 More on the ideas underlying our proofs

In this section we attempt to give a flavour of the ideas underlying the proofs of our results, going
beyond the laconic comments provided in the prior section.

1.3.1 On the proofs of our separation and hardness results

Our separation and hardness results (i.e., Theorems 1.5, 1.6, 1.9, and 1.10) are all based on the fact
that (1-dimensional) cellular automata can emulate (1-tape) Turing machines (while preserving
the time complexity), and thus can generate objects that are hard to test in some sense. The
proofs differ by issues such as which computation is emulated and under which circumstances it is
emulated.

The basic approach. As a warm-up, let us consider the proof of Theorem 2.1, which asserts that
testing the consistency of an evolution with respect to a fixed rule Γ : Σ3 → Σ may be NP-hard,
regardless of the query complexity. The basic idea is to design a rule Γ such that evolutions that
are consistent with Γ reveal (via the viewing function) an error-corrected encoding of a string if
and only if the string is in the NP-set. Hence, membership in the NP-set S can be decided by
invoking the tester, while answering its queries (and relying on the fact that strings that are not in
S have encodings that are far from the encoding of any string in S). Specifically, we let Γ emulate
the verification procedure associated with an NP-witness relation of S, and output (an encoding
of) the main input (but not the NP-witness) if the procedure accepts (and output an empty string
otherwise). The emulation is carried out using the hidden part of the state, and the output is
revealed through the visible part of the state. (The output is maintained for a sufficient number
of steps so evolving environments that output encodings of different strings are far apart (i.e., at
constant relative distance of one another).)

On input x, the decision procedure for S invokes the tester, while answering queries that
correspond to the emulated computation by an empty symbol (which matches the expected output
of the viewing function) and answers the other queries by using bits in the encoding of x. The key
observation is that an evolving environment that “outputs” an encoding of x is legal if and only if
there exists an NP-witness w for x (i.e., iff x ∈ S). The distance between evolving environments
that output encodings of different strings guarantees that evolving environments that output a
string not in S are far from any legal evolution.

The simple argument outlined above relies in an essential manner on the use of a viewing
function that hides information. This function reveals the encoding of x, but it does not reveal the
emulation of the computation that maps (x,w) to this encoding. Moreover, this simple argument
does not allow to separate different query models as asserted in Theorems 1.5 and 1.6. Still, the
underlying principle of generating an object that is hard to test in some sense will be pivotal to all
subsequent proofs. But the generation process in these proofs will be less straightforward than in
the above case.

Handling the case of a fully visible state. Note that Theorem 2.1 cannot possibly hold when
the state is fully visible, since in this case testing consistency of evolutions with a fixed rule is trivial
when there are no restrictions on the query complexity. Indeed, Theorem 1.10 refers to testers of
limited query complexity (i.e., sublinear temporal query complexity), and its proof capitalizes on
this limitation. In the corresponding cellular automaton, many emulations of the above type take
place in parallel, but the temporal query complexity imposed on the tester does not allow it to
probe the “informative time” (i.e., the time when the NP-witness is visible) of almost all of these

6

emulations. Specifically, the evolution rule Γ partitions [n] into many blocks (i.e., more blocks than
the temporal query complexity), emulates the verification of an NP-witness in each block, identifies
the first non-empty output obtained in some block (if such exists), and copies its contents (which
is a codeword) to all other blocks. (Otherwise, the evolution maintains an empty output in all
blocks.)

We consider evolutions in which a single informative emulation (i.e., an emulation of the verifi-
cation of a real NP-witness) takes place in one block, selected at random, while dummy emulations
(which emulate verification with dummy values) take place in all other blocks. The point is that
a time-conforming tester is unlikely to hit the informative block at the informative (emulation)
time, whereas if the informative block produces an encoding of a string, then this encoding will
be propagated to all other blocks. Hence, the tester should determine whether an evolution that
repeats an encoding of x is legal or not, which means that this tester decides membership of x in
an NP-set, whereas the tester is highly unlikely to probe the process in which the encoding of x
was generated by verifying a valid NP-witness.

Specifically, on input x, the decision procedure invokes the tester, while answering queries that
correspond to the emulated computations (in the various blocks) according to the verification of a
dummy NP-witness for x (which indeed leads the verification procedure to reject in each block),
and answers the other queries by using bits in the encoding of x (which is being copied from
a random block that was not probed by the tester during the verification stage).5 That is, the
decision procedure emulates a seemingly illegal evolution; yet, if x is in the NP-set (and the tester
did not probe the informative block at the informative time), then the tester’s view is consistent
with a legal evolution that outputs (the encoding of) x. On the other hand, if x is not in the set,
then an evolution that outputs the encoding of x is far from being legal.

The forgoing arguments relied on the ability of an ordinary procedure (i.e., the decision proce-
dure we obtain for NP-sets) to answer queries to various fictitious evolutions (or to evolutions taken
from a restricted set of possible evolutions). That is, the decision procedure partially emulates the
execution of hypothetical testers while providing them with oracle access to fictitious (or restricted)
evolutions. This strategy is not open to us when we want to distinguish different types of machines
that query a real evolving environment (i.e., different types of testers or testers versus learners). In
this case, we must construct oracle machines that actually probe a real evolving environment, and
not merely foil hypothetical machines by presenting them with fictitious (or restricted) evolutions
that we construct.

Consider, for example, the assertion of Theorem 1.9 by which testing requires asymptotically
as many queries as (proper) learning. Here we have to present a lower bound on the complexity of
testing and match it with an upper bound on the complexity of learning. Furthermore, we claim
these bounds for the case of fully visible state. The basic idea is to consider a cellular automaton
that computes the inner product (mod 2) of two binary vectors, while placing the vectors and
the result in an error correcting form (so as to generate a distance between different input-output
pairs). Using the communication complexity method of [BBM12] (see also [Gol13]), one may
show that testing such outcomes requires linear query complexity. But, since we deal with fully
visible state, we need to establish this lower bound also with respect to testers that may query
the process of computing the outcome. We first note that the process of encoding the individual
vectors poses no additional difficulties, because probing this process only provides values that are

5Actually, the decision procedure selects the informative block at random, and aborts the emulation if the tester
probes this block during the verification stage. Otherwise, it continues the emulation as if only this block has output
the encoding of x.

7

functions of one of the vectors (rather than functions of both vectors).6 Hence, we focus on the
process of computing the inner product (mod 2) of the two vectors, and show that this process
leaks no additional information when we reduce from the communication complexity of (Unique)
Disjointness (rather than from Inner Product). Specifically, we use that fact that if a pair of
vectors has no common 1-entry, then all partial inner products are zero (whereas if the pair has a
single common 1-entry, then its inner product (mod 2) is 1).

On separation results regarding various types of testers. We now turn to the separation
results (i.e., Theorems 1.5 and 1.6), which are proved using a viewing function that hides parts
of the state. We start with Theorem 1.6, which asserts a separation between nonadaptive testers
and (time-conforming) adaptive testers. The idea here is to present a cellular automaton that can
generate (and maintain) instances of some property that is easy to test adaptively but hard to test
nonadaptively. We need a process that can generate each string that has the property, but never
generates a string that lacks the property. We do not need this process to generate these strings
with uniform distribution (over the property); any distribution that assigns non-zero weight to each
string that has the property will do. For example, we can use a process that generates a random
4-partition of [v] (or rather maps the set of all v log2 v-bit strings to the set of all such partitions),
and consider a 3-regular graph that consists of the corresponding isolated 4-cliques. This property
is easy to test in the bounded-degree graph model (i.e., a constant number of queries suffice), but
it is cannot be tested by a nonadaptive machine that makes o(

√
v) queries [RS06].

Turning to the proof of Theorem 1.5, recall that this result asserts a gap between the power
of (adaptive) time-conforming testers and the power of testers that are not time-conforming. The
idea here is to rely on notions and ideas of Gur and Rothblum [GR13], which we re-interpret in
terms of “order of events”. Specifically, we refer to their notions of general MAPs and MAPs with
proof-oblivious queries, where MAPs are testers that obtain (short) auxiliary proofs. We view
proof-oblivious MAPs as testers that are restricted to first query the object and only later read
the auxiliary proof (without having further access to the object). In contrast, w.l.o.g., general
MAPs first read the (entire) auxiliary proof, and then query the object based on the proof just
read. Hence, in the proof-oblivious case the queries are made before the proof is read, whereas
in the general case the queries are made after the proof is read. Wishing to capitalize on the gap
(established in [GR13]) between the power of the two models, we present a cellular automaton that
first makes visible a string to be tested, and then hides (or deletes) this string and reveals the
corresponding short proof. The point is that a time-conforming tester is restricted in a manner
analogous to a proof-oblivious MAP, whereas a general tester (which is not time-conforming) can
first read the proof and then inspect the object (just as a general MAP).

We implement the above strategy by presenting a cellular automaton that proceeds as follows.
On input a string x and an index i ∈ [|x|], which are not visible, the automaton first reveals an
error correcting form of x. Next, it computes the ith bit of x (i.e., xi), and an error correcting
version of i (in a secret manner), and deletes all trace of x. Finally, it reveals the encoding of
i and the bit xi, and repeats them for enough time. The legality of an evolution is easy to test
by a logarithmic number of queries that violate the time-conforming condition. To show that a
time-conforming tester requires an exponentially larger query complexity, we use a reduction from
Disjointness (again via the method of [BBM12]). Here, we reduce a standard testing problem
that refers to a pair of strings (presented in error correcting format) to two instances of testing
the consistency of evolving environments with the foregoing evolution rule. Actually, we reduce
testing via proof-oblivious MAPs of a property related to Disjointness to testing two evolutions;

6Such a situation is easy to handle when using the formulation of [Gol13] (rather than that of [BBM12]).

8

specifically, the property is the set of all pairs of codewords that encode a pair of strings that has
a common 1-entry.

Establishing all results for t = O(n). All the above constructions can be implemented when
the evolution time (i.e., t) is polynomial in the size of the environment (i.e., n), since all of them
are based on evolutions that emulate polynomial-time computations of 1-tape Turing machines. In
order to obtain results that refer to the case that t = O(n), we emulate many computations as
above in parallel such that each computation takes place on a block of length ℓ, where the emulation
time on ℓ-bit inputs is Θ(n). The details involve performing some simple manipulations in linear
time (on a one-dimensional cellular automata); for example, the n cells of the automaton can be
partitioned into ℓ-cell blocks in O(n) time, and an ℓ-bit string can be copied to the neighboring
block in O(ℓ) steps of such an automaton.

1.3.2 On testers for special cases

We now turn to our positive testing results, which correspond to two classes of evolution rules.

Testers for linear rules. The first result (i.e., Theorem 1.7) refers to the class of all linear
rules (over a finite field of prime cardinality). The tester operates by picking a random location
i ∈ [n]d at a random time j ∈ [t] and comparing the value of ENVj(i) to a predetermined linear
combination of the values of the initial configuration (i.e., ENV1(·)). The crucial fact is that this
linear combination is typically sparse, which implies that this tester has sublinear query complexity
(i.e., it makes (nd)1−Ω(1) queries). Specifically, we prove that on the average, over all times j ∈ [t],
the contents of a cell depends on a sublinear number of locations in the initial configuration (i.e.,
(nd)1−η locations, for some η > 0). This is proved by first showing that each location i ∈ [n]d at
time j ∈ [t] depends only on 3d locations at time j − pe, where p is the cardinality of the field and
e ∈ N. Furthermore, each of these locations has the form i + pe · δ, where δ ∈ {−1, 0, 1}d (i.e., in
the case d = 1, these locations are i−pe, i and i+pe). Using this fact, we upper bound the number
of locations at times j − j′ for j′ ∈ [pe] that influence the fixed location at time j, by employing a
careful accounting of all influences.

We comment that using a similar accounting, one can show that on the average, over all times
j ∈ [t], the contents of a cell does depend on (nd)η

′
locations in the initial configuration, for some

η′ > 0, provided that t = Ω(n) and the linear rule is not degenerated (see Remark 5.5). This
means that, except for linear rules that depend on at most one variable, the above tester has query
complexity at least nΩ(1).

Testers for environments of moving objects. The second result (i.e., Theorem 1.8) refers to
a rule that describes the interruptible fixed-speed movement of objects in one dimension. The result
asserts a two-sided error tester of complexity that does not depend on the size of the environment.
This is complemented by a negative result that asserts that such a complexity is impossible in the
case of one-sided testers. Indeed, our tester performs several checks, and one of these checks refers
to a global statistics (and not to the consistency of a partial view with the rule of movement).
The core of the analysis boils down to showing that an evolution that passes all checks with high
probability must be close to a legal one. This is proved by a sequence of modifications such that
each set of modifications relies on a different check, showing that if the environment passes this
check with high probability then it is close to one that satisfies the corresponding sub-property.
Details follow.

9

We decouple the property of legal evolutions of environments according to the foregoing rule
into the following four conditions:7 (1) the movement and standing behavior of each object is
consecutive; (2) each object appears as standing just after it stopped moving; (3) objects do not
cross each other paths; and (4) objects stop due to an object that occupies the neighboring cell (in
their direction of movement). Note that Condition (1) only says that each object moves in some
time interval [1, j] and/or stand in some time interval [j′, t], but it does not say that if an object
stopped moving in location i at time j then it will appear as standing at location i in time [j +1, t].
As indicated by the one-sided error lower bound, it is infeasible to check the latter (“matching”)
condition for individual objects. Instead, the checking of Condition (2) is performed “globally”;
that is, by comparing the statistics regarding the movement-stopping times and the standing-start
times of all objects. Checks that correspond to Conditions (1) and (3) are performed in a rather
straightforward manner, and checking Condition (4) relies on a characterization of the intervals
that must be filled with standing objects, given a specific pattern of movement stopping.

It is rather easy to see that a legal evolution passes all checks with high probability, whereas
the small error probability is due to the statistical checking of Condition (2). The difficult part is
proving that if an evolution passed all checks with high probability then it is close to a legal one.
This is shown by a sequence of four modifications, which correspond to the above four checks. For
example, it is quite easy to see that if the evolution passes the first check with high probability, then
it must be close to one that satisfies Condition (1). Proving an analogous claim for the other three
checks (and corresponding conditions) is less easy, to say the least. In particular, we should make
sure that the modifications that we perform in later stages do not violate the conditions established
in prior stages. For example, the matching of movement and standing should be performed while
maintaining Condition (1) that asserts that each such behavior occurs in a consecutive interval of
time.

1.4 Organization

In Section 2 we present some generic observations regarding testing and learning with respect to a
general local rule Γ (viewed via a general viewing function V). It seems that going beyond these
generic results, one has to restrict the class of rules. Indeed, the bulk of this work focuses on two
such restrictions: (1) a restriction to linear rules (studied in Section 5), and (2) a restriction to
rules that represent environments of moving objects (studied in Section 6).

While the model studied in Section 6 is suitable when the number of objects is linear in the size
of the environment (i.e., the “dense case”), a different model is more adequate when the number
of objects is relatively very small (i.e., the “sparse case”). The latter model is studied in Section 7.
Indeed, in analogy to the study of testing bounded degree graphs (initiated in [GR02]) as compared
to the study of testing dense graphs (initiated in [GGR98]), we need to modify two aspects of the
model: The queries allowed (to the testers) and the distance measure (between environments).

Additional results are presented in Sections 2–4: In particular, in Section 3 we present the
separation results reviewed above, and in Section 4 we consider the case of fully visible states.

7Another condition (i.e., “spaced beginning”) was omitted in the current (high-level) description. In fact, the
evolution rule does not allow moving objects to start at neighboring locations, and this condition is checked too. The
reason for this augmentation is discussed in Section 6.

10

2 A simple observation and the questions it raises

Recall that we consider a fixed rule, denoted Γ : Σ3d → Σ, that determines the evolution of the
environment such that the value of ENVj(i1, ..., id) is determined by applying Γ to the 3d values
in the sequence 〈ENVj−1(i1 + s1, ..., id + sd) : s1, ..., sd ∈ {−1, 0, 1}〉, which is presented in some
canonical order.

The simple observation (eluded to in the section’s heading) is that the initial (global) state (i.e.,

ENV1) can be learned by just considering all |Σ|nd

possibilities, and testing the correctness of each
possibility by samples; that is, we shall use O(nd/ǫ) samples selected uniformly over all times and
locations, record the values of these samples, and use them in an exhaustive search that will take
place off-line.8 This means that we use O(nd/ǫt) queries to each ENVj , which for t = Ω(n) yields
O(nd−1/ǫ) queries to each ENVj.

Note that the foregoing argument did not use the fact that the evolution of the environment
is local. Nevertheless, it provides satisfactory results regarding the query complexity of learning,
which cannot be improved (asymptotically) even in the case of local evolution rules of the type
we discussed above (except for some degenerate cases). However, the exhaustive search suggested
above results in exponential time computations (i.e., exponential in nd). So one major question
is whether computationally efficient learning algorithms exist in the case of local evolution rules or
just in some natural special cases of it. Another major question is whether the query complexity of
testing may be lower than that of learning, at least in some natural special cases. We examine both
questions next.

2.1 On the computational complexity of learning and testing

In general, when the state is not fully visible (i.e., the viewing function V : Σ→ Σ′ loses informa-
tion), efficient testing (let alone efficient learning) is impossible, assuming NP 6⊆ BPP . This is the
case since one-dimensional automata can efficiently emulate a one-tape Turing machine. Further-
more, the emulation can be performed via the hidden parts of the state while only the final output
is visible to the observer (via the visible part of the state).

Theorem 2.1 (on the computational complexity of testing wrt some one-dimensional rules): There
exists a viewing function V : Σ→ Σ′ such that the following holds. For every NP-set S there exists
an evolution rule Γ : Σ3 → Σ such that deciding membership (of nΩ(1)-bit long strings) in S is
probabilistic polynomial-time reducible to testing evolution (of n-sized environments) according to Γ
via V (with respect to some constant value of ǫ). Furthermore, the result holds for any t = Ω(n).

Proof Sketch: For any NP-witness relation R and a error correcting code C of constant relative
distance, consider a one-dimensional automata, captured by a rule Γ, that emulates a computation
of a Turing machine that, on input a pair (x,w), outputs C(1, x) if (x,w) ∈ R and outputs
C(0, x) otherwise. (Note that C(1, x) is far from C(b, x′), for every bx′ ∈ {0, 1}1+|x| \ {1x}.)9 The
emulation is done using the hidden parts of the state, and only the output appears in the visible
part of the state. We also let the environment repeat the output configuration indefinitely, and so
for sufficiently large t this repeated output dominates the area of the evolving (t-by-n) environment,
forcing the tester to relate to this (encoded) output rather than to a possible substitution of it.

8In other words, we merely use a simple Occam’s Razor algorithm, while observing that this algorithm is non-
adaptive and spreads its queries (or samples) uniformly among all possible times.

9We assume, without loss of generality, that (x, w) ∈ R implies |C(1, x)| = |(x, w)| and that determining mem-
bership in R can be done in linear space (and polynomial-time). Likewise, we assume that C can be computed in
polynomial-time and in space linear in its output.

11

Hence, if x is not in this NP-set, then an evolving environment that “shows” C(1, x) (i.e., repeats
it in the visible state sufficiently many times) is far from being consistent with the evolution rule Γ.
On the other hand, if x is in the NP-set (defined by R), then an evolving environment that “shows”
C(1, x) is consistent with Γ. Thus, a tester for evolution according to Γ yields a decision procedure
for the NP-set defined by R: On input x, the procedure invokes the tester setting n = poly(|x|)
(and t = poly(n)). It answers queries directed to the “emulation” stage with the adequate “hidden”
symbol, and answers queries directed to the “repetition” stage with the adequate bit of C(1, x).
The procedure accepts x if and only if the tester decides that the environment is consistent with
an evolution according to Γ.

The furthermore claim can be proved by considering only initial configurations that are parti-
tioned into blocks (by special symbols), and applying the foregoing cellular automaton separately on
each of these blocks. Letting p1 and p2 be polynomials such that (x,w) ∈ R implies |(x,w)| = p1(|x|)
and p2 upper bounds the emulation time of the foregoing cellular automaton (in terms of |(x,w)|),
we consider initial configurations that are partitioned to blocks of length ℓ such that ℓ = p1(k)
is the largest integer satisfying p2(ℓ) ≤ n. When wishing to decide member of x ∈ {0, 1}k in the
set, we emulate a computation that outputs C(1, x) in each of the n/ℓ blocks, which means that
n = poly(|x|).

The computational difficulty asserted in Theorem 2.1 is unrelated to the number of queries that
may be made to a specific ENVj . It rather holds regardless of the number of queries made (i.e., it
holds also if the entire array ENV is read), and it arises from the fact that the state is only partially
visible. Nevertheless, difficulties arise also in the case that the state is fully visible (i.e., V (σ) = σ
for every σ ∈ Σ), but in that case they may only arise from the bound on the number of queries
to each ENVj. To illustrate the issue we state the following result, where V≡ denotes the identity
function.

Theorem 2.2 (on the computational complexity of testing with sublinear temporal query com-
plexity): For every NP-set S there exists an evolution rule Γ : Σ3 → Σ such that, for every constant
c > 0, deciding membership (of nΩ(1)-bit long strings) in S is probabilistic polynomial-time reducible
to testing evolution (of n-sized environments) according to Γ and V≡ within temporal query com-
plexity n1−c, where testing is time-conforming and with respect to some constant value of ǫ > 0.
Furthermore, the result holds for any t = Ω(n).

Proof Sketch: We start with the construction used in the proof of (the furthermore claim) of
Theorem 2.1, which means that we consider initial configurations that are partitioned into blocks
(by special symbols), where the cellular automaton maintains this partition. We only consider
initial configurations that are partitioned into blocks of length ℓ such that the emulation time on
any input of length ℓ, denoted p2(ℓ), is approximately nc/2 (i.e., ℓ is the largest integer such that
p2(ℓ) ≤ nc/2). Although the state is fully visible, a tester of temporal query complexity at most
n1−c cannot probe most of the ℓ-bit long blocks in any of the first p2(ℓ) time-slots. This is the case
because the total number of blocks probed at any time-slot is at most n1−c, whereas the number
of blocks is n/ℓ and p2(ℓ) · n1−c ≪ n/ℓ.

The above describes the first stage in the evolution of the the cellular automaton. In the second
stage, this cellular automaton checks whether a codeword of the form C(1, x), where x ∈ {0, 1}k , is
written in any block, and if so it propagates the first such codewords to all blocks. (This stage can
be performed in O(n) steps; see Appendix A.1 for details, and note that determining the first bit
encoded in a codeword is easy if we use a systematic code.) In the third stage (which takes most
of the time), the cellular automaton just maintains its current configuration (just as in the proof
of Theorem 2.1).

12

We decide whether x ∈ {0, 1}k is in the NP-set (defined by R) by invoking the tester and
answering its queries as follows, where ℓ = p1(k) and n = p2(ℓ). (We may assume, that (x, 0ℓ−|x|) 6∈
R, since otherwise we can immediately decide that x is in the NP-set.) First, we select i ∈
[n/ℓ] uniformly at random. If the tester queries the ith block during the first stage, then we
abort, but this happens with small probability (since p2(ℓ) · n1−c ≪ n/ℓ). Otherwise, we answer
all queries in the first stage as if (x, 0ℓ−|x|) is encoded in the initial configuration in each block.
We then answer all subsequent queries as if the configutaion at the end of the first stage equals
C(0, x)i−1C(1, x)C(0, x)(n/ℓ)−i. In particular, this means that all queries made in the third stage
are answered according to C(1, x)n/ℓ. (By the time-conforming hypothesis, the tester cannot make
queries to the first stage after making queries to the second stage, which may reveal i.) When the
tester halts, we output its verdict.

Note that if x is in the NP-set, then the answers are according to an evolution that is consistent
with the foregoing rule (or automaton); specifically, ignoring the rare event of abort, the answers are
according to a legal evolution that starts from an initial configuration in which a valid NP-witness
appears (with x) in the ith block and (x, 0ℓ−|x|) appears in all other blocks, where i is uniformly
distributed in [n/ℓ]. Hence, in this case, the tester must accept with high probability. In contrast,
if x is not in the NP-set, then (unless we aborted) the answers are according to an evolution that
is far from being legal, since the evolution repeats C(1, x)n/ℓ in its third stage (whereas x has no
NP-witness). Hence, in this case, the tester must reject with high probability.

The forgoing discussion refers to the general case of a local rule (i.e., Γ) of evolution of d-
dimensional environments. However, in special cases (i.e., specific classes of Γ’s), there is hope to
avoid exponential time computations. Two such special case are that of linear rules and of rules
that capture simple types of moving objects (see next).

2.2 On testing versus learning

We observe that for almost all local rules of evolution of d-dimensional environments, Γ, learning
the environment require Ω(nd) queries (in total). On the other hand, in some natural cases (i.e.,
for some natural rules Γ), testing can be done using o(nd) queries (in total). (We stress that the
Ω(nd) lower bound on learning holds for these classes too.) One class of rules that supports the
foregoing observation is the class of linear rules. Let us start by considering this class.

Linear rules. Here we assume that Γ is a linear function10 (over the field Σ) and that the
state is fully visible (i.e., V is the identity function). It follows that each entry in ENV is a linear
expression in the entries of ENV1. Thus, testing reduces to sampling sufficiently many values, viewing
each as a linear equation in the variables that correspond to the entries of ENV1, and checking
consistency. Indeed, if consistency holds, then we can also find a solution to the corresponding
system of equations, thus efficiently solving the learning problem. The question is how many values
(or equations) do we need to sample in order to check consistency of the linear system and ditto
for finding a solution to the system. In both cases, the answer depends on Γ.

Let us start by considering the very special case in which Γ depends on a single variable.
In this case the testing question reduces to testing nd disjoint arrays (and making sure that the
elements in them are properly related). For example, if Γ(z−1,−1,−1, .., z1,1,1) = 5z0,0,0, then for
every i1, i2, i3 ∈ [n] we need to check that the values in ENV(·, i1, i2, i3) are properly related (i.e.,
ENVj(i1, i2, i3) = 5j−1 · ENV1(i1, i2, i3) for every j ∈ [t]). Hence, in this case O(1/ǫ) samples would

10In this write-up, the term linear functions also includes affine ones.

13

suffice for testing (i.e., we shall check O(1/ǫ) random equations of the foregoing type).11 Note that
even in this case Ω(n3) queries are required for learning.

In general (for t = O(n/ǫ)), any learning algorithm must make Ω(nd) queries, and one can
improve over this only in degenerated cases (i.e., when Γ is a constant function).12 On the other
hand, as indicated by the case of Γ that depends on a single variable, more query-efficient testers
are possible in some cases. In fact, o(nd/poly(ǫ))-query testers exist for any linear Γ over a finite
field F of prime order: See Theorem 1.7.

Detour: A connection to locally testable codes. Rules Γ : Σ3d → Σ for which the environment can be
tested in o(nd) queries (in total) yield weak cases of locally testable codes (cf. [Gol]), which may be
non-trivial. We refer to the code that arises by mapping the initial global state (i.e., ENV1) to its
entire evolution over time (i.e., ENV). Such a code maps nd symbols to t · nd symbols, and it may
be of interest only if its relative distance significantly exceeds 1/t. The connection holds also for
non-linear Γ (yielding non-linear codes), but seems more appealing in the linear case.

Environments of moving objects. A very simple environment of moving object consists of
one in which, starting from their initial position, various objects move in fixed speed in some fixed
direction. Such (d-dimensional) evolving environments can be modeled by (d-dimensional) cellular
automata in which the states encode the presence of objects in the location as well as the direction
in which they are moving. The simplest such model allows several objects to be present in the same
location at the same time (but not at the initial time).

We observe that learning such d-dimensional environments requires Ω(nd) queries, whereas
testing is possible by poly(2d/ǫ) queries (and poly(2d/ǫ)-time computations). Essentially, the tester
consists of querying O(1/ǫ) random locations in ENV1, and querying poly(2d/ǫ) random locations in
ENV that correspond to possible movements starting from each of these initial locations. That is, we
uniformly select a set S of O(1/ǫ) locations in [n]d and a set T of O(1/ǫ) indices in {2, ..., t}. Next,
for each location (i1, ..., id) ∈ S queried in ENV1, each possible direction δ = (δ1, ..., δd) ∈ {−1, 0, 1}d ,
and each j ∈ T , we query ENVj at (i1 + (j − 1)δ1, ..., id + (j − 1)δd). For each such (i1, ..., id) and
δ, either for each j ∈ {1} ∪ T the value ENVj(i1 + (j − 1)δ1, ..., id + (j − 1)δd) should indicate
the presence of an object moving in direction δ or none of these values should indicate it. Note
that if the tester sees no violation of the foregoing condition, then ENV must be ǫ-close to a legal
evolving environment (because all but at most ǫ/2 of the possible movements starting from some
(i1, ..., id) ∈ [n]d and proceeding in direction δ ∈ {−1, 0, 1}d are ǫ/2-close to being consistent, or
else our sample would have caught such an inconsistence). Hence:

Theorem 2.3 (testing uninterrupted moving objects, very loosely stated): Let Γ : Σ3d → Σ be a
local rule that captures the uninterrupted fixed-speed movement of objects in a d-dimensional grid.
Then, there exists a time-conforming oracle machine of (total) time complexity poly(2d/ǫ) that

tests the consistency of evolving environments with respect to Γ : Σ3d → Σ and the identity viewing
function (i.e., V (σ) = σ for every σ ∈ Σ).

In Section 6.1 we consider a slightly more complicated model in which objects are not allowed
to reside in the same location in the same time. Instead, when two objects wish to enter the

11If all checked pass (with high probability), then for all but at most ǫ fraction of (j, i1, i2, i3) ∈ [t]×[n]3 it holds that
ENVj(i1, i2, i3) = 5j−1

ENV1(i1, i2, i3), which means that ENV is ǫ-close to being consistent with the evolution of ENV1

according to Γ. In contrast, note that the more straightforward idea of checking ENVj+1(i1, i2, i3) = 5ENVj(i1, i2, i3),
for uniformly selected (j, i1, i2, i3) ∈ [t − 1] × [n]3, will not do (e.g., equality may be violated only at one j, whereas
the corresponding ENV may be very far from being consistent with the evolution of ENV1 according to Γ).

12See Section 5.

14

same location (or cross one another), they stop at their current place forever. The analysis of this
evolution rule seems much more complicated, due to the interaction between the various moving
objects. Confining ourselves to the one-dimensional case, we prove that consistency with respect
to this evolution rule can also be tested by using poly(1/ǫ) queries: See Theorem 1.8.

A more general (and complex) model refers to the case of objects that change their direction of
movement (in a multi-dimensional environment) according to their internal state. In Section 6.2 we
show that, in general, testing consistency of such d-dimensional moving objects is not easier that
testing consistency of the evolution of d-dimensional environments with fully visible state. This
is the case because such (stateful) moving objects can emulate the evolution of any environment
having fully visible state.

3 Two separations

In Section 3.1, we demonstrate that the time-conforming requirement makes testing of evolving
d-dimensional environments fundamentally different from testing properties of the corresponding
(d + 1)-dimensional array. In Section 3.2, we demonstrate that adaptivity can significantly reduce
the query complexity also in the context of time-conforming testers. Both separations are proved
for the case that the state is not fully visible (i.e., V : Σ → Σ′ is not 1-1) and when the initial
configuration satisfies some local condition (i.e., in the initial configuration each cells is in a state
that belong to a set of initial states). The latter condition is captured by the following adaptation
of Definition 1.2.

Definition 3.1 (testing evolution from some initial configurations): For a set of initial states

Ξ ⊂ Σ, we say that an oracle machine T tests the consistency of environments that evolve from Ξnd

according to Γ : Σ3d → Σ and viewed via V : Σ → Σ′ if for every ENV : [t]× [n]d → Σ the following
holds:

1. If ENV evolves from ENV1 : [n]d → Ξ according to Γ, then Pr[T V ◦ENV(t, n, ǫ)=1] ≥ 2/3.

2. If ENV is ǫ-far from any environment ENV′ that evolves from the corresponding ENV′1 : [n]d → Ξ
according to Γ, then Pr[T V ◦ENV(t, n, ǫ)=1] ≤ 1/3.

In such a case we say that T tests evolution from Ξ∗ according to Γ via V .

This restriction on the initial configuration is quite natural. In fact we use this restriction also
in our study of moving objects (presented in Section 6).13 Note that initial configurations that
are characterized as in Definition 3.1 are expressive enough to enforce any local condition (i.e.,
any predicate regarding the states of neighboring cells (or cells at constant distance) that must be
satisfied in the initial configuration).

3.1 Time-conforming testers versus general testers

A natural question is whether the time-conforming requirement actually restricts the power of
testers. Recalling that any nonadaptive tester is (or can be made) time-conforming, a separation
may exist only via adaptive testers.

13A cellular automaton formulation of the model studied in Section 6 may assert that when being in a state that
belongs to the initial states, the object is eliminated if it neighbors any other object. This enforces the requirement
that no two objects are adjacent in the initial configuration.

15

Theorem 3.2 (on the time-conforming requirement wrt some one-dimensional rules): There exists
a constant c > 0, an evolution rule Γ : Σ3 → Σ, a viewing function V : Σ → Σ′, and Ξ ⊂ Σ such
that the following holds:

1. Evolution from Ξ∗ according to Γ via V can be tested using poly(ǫ−1 log n) queries.

2. Evolution from Ξ∗ according to Γ via V can not be tested by a time-conforming oracle machine
that makes o(nc) queries.

The result holds for any t = Ω(n).

Needless to say, the tester in Item 1 is not time-conforming. Theorem 3.2 is proved by relying on
recent results of Gur and Rothblum [GR13].

Proof: Let us first outline the high level structure of our construction of an adequate pair (Γ, V).
We shall consider environments of length n, which are partitioned into three n/3-bit long regions.
For a constant c > 0 to be determined later, let k = nc. The first region will hold an encoding of
some input x ∈ {0, 1}k , the second region will hold an encoding of some index i ∈ [k], and the third
region will hold an encoding of xi. The initial configuration contains a hidden n-bit long string,
and the evolution of the environment will consists of four stages, each of duration Θ(n), as depicted
in Figure 1.

0

1st stage

1st region 2nd region 3rd region

2nd stage

3rd stage

4th stage

x (hidden)

C(x) (hidden) C(i) (hidden)

i (hidden)

C(x) repeated

C(x) revealed

C(i) revealed

deleting C(x)

0

i

ix revealed

C(i) repeated x repeatedi

x (hidden)

Figure 1: The evolution of the environment of the proof of Theorem 3.2. The shaded areas represent
regions and times in which the state of the corresponding cells are totally hidden.

In the first stage, the first region is transformed into an encoding of the k-bit long string, denoted
x, that is initially hidden in its first k cells; the second region is transformed into an encoding of
the log2 k-bit long string, denoted i, that is initially hidden in its first log2 k cells; and the third

16

region is transformed into an encoding of xi. The entire transformation as well as its end result
remain hidden at this stage. Indeed, we need to show that one-dimensional cellular automata can
implement this stage in O(n) time. (This would have been much easier if we were allowed time
t = poly(n).)14

In the second stage, the contents of the first region is revealed and remains revealed for Θ(n)
time slots, whereas the contents of the other regions remains hidden. In the third stage, the contents
of the first region is deleted, and at the last (i.e., fourth) stage the contents of the other two regions
is revealed and remains revealed for Θ(n) time slots. These three stages can be implemented by
a one-dimensional cellular automaton in O(n) time, where the crucial observation is that we can
count n time slots by having a “signal” move from one end of the environment to its other end.

We note that a general tester (which is not time-conforming) can retrieve i and xi from the
second and third regions at times that correspond to the last stage, and then recover the ith bit
of x from the second stage. For an appropriate choice of the encoding (i.e., a locally decodable
code with rather weak parameters), these values can be recovered by making poly(log n) queries.
The tester also checks that all revealed encodings are legal codewords of the corresponding codes,
which for appropriate codes (i.e., locally testable codes with rather weak parameters) can be done
by making poly(log n) queries. Thus, such a tester can test the consistency of the evolution with
the pair (Γ, V).

In contrast, no time-conforming machine can test the consistency of the evolution with the pair
(Γ, V) by making o(k) = o(n1/c) queries. Intuitively, this is the case because by the time that i
and xi are visible, the encoding of x is no longer available. Needless to say, this intuition should
be turned into an actual proof. Before getting there, let us be a bit more specific about the codes
in use and the implementation of the various computations.

For starters, for any k ∈ N, setting n′ = poly(k), we will use an error correcting code C ′ :
{0, 1}k → {0, 1}n′

, that has constant relative distance, a polynomial-time encoding algorithm, and
possesses relatively weak local testability and decodability features. In particular, we only need a
(strong) codeword test (as per [GS06, Def. 3.2]) that has query complexity poly(ǫ−1 log n′), and a
local decoder that recovers any desired bit of the information encoded in a string that is close to
the code by using poly(log n′) many queries (cf., e.g., [KT00]). Such codes are easy to obtain, and
the standard example is a low-degree extension: For m = (log2 k)/ log2 log2 k, a finite field F of
size (log2 k)3, and H ⊂ F of size log2 k, the information viewed as f : Hm → F is encoded as a
polynomial p : Fm → F of individual degree |H| − 1 that extends f (i.e., p agrees with f on Hm).

We cannot use C ′ itself as our encoding scheme, because the encoding process cannot be im-
plemented in linear (in n′) time by a one-dimensional cellular automaton. Assuming that such

an implementation runs in time n
def
= kc, we use (n/3n′) repetitions of C ′(x) as our final encod-

ing; that is, we let C(x) = C ′(x)n/3n′
. We claim that C(x) can be computed in O(n) time by a

one-dimensional cellular automaton with n cells, where the k bits of x are encoded in the initial
states of the first k cells. The details (presented in Section A.1) include computing n, k and n′,
and copying n′ bits to the adjacent n′-bit block in O(n′) steps of the automaton.15 We can use
repetitions of C ′ also for encoding i ∈ [k], and can just use plain repetitions of the bit xi, which
can also be computed by the automaton in O(n) steps.

14In such a case, each stage would have had a duration of Θ(t), and contents would have remained revealed for
Θ(t) time slots.

15Actually, we compute 2⌊log
2

n⌋ and use this value rather than n. The basic step here is computing log2 n by
repeated bisections. Regarding the copying task, a crucial task is to locate the distant endpoint of the adjacent n′-bit
block.

17

As stated above, a general tester (which is not time-conforming) can test the consistency of
the environment with the evolution rule Γ (and the viewing function V) by making poly(ǫ−1 log n)
queries. This tester uses the local testability procedure of the code C ′, checks various repetitions,
and retrieves few bits via the local decodability procedure of C ′ (and of the repetition code). A
crucial point here is that this tester can first retrieve i and xi from ENVj, where j is a random time
in the fourth stage, and only later retrieve the ith bit of x (which can be recovered from C(x),
which is visible in ENVj′ for a random j′ in the second stage, where j′ < j). (Of course, this avenue
is not open to a time-conforming machine.) Hence, we get

Claim 3.2.1 (fast but non-time-conforming testing): The consistency of the environment with
(Γ, V) can be tested using poly(ǫ−1 log n) queries, by a machine that is not time-conforming.

We next prove that any time-conforming machine that tests the consistency of the environment
with the evolution rule Γ (and the viewing function V) must make Ω(nc) queries. This proof uses
ideas and notions from [GR13], which are reviewed first.

Loosely speaking, a MA proof of proximity (MAP) for a property Π with proof length ℓ : N → N

is an oracle machine M that is given auxiliary information of length ℓ = ℓ(|x|), in addition to the
input x to which it has oracle access. It is required that if x ∈ Π then there exists w ∈ {0, 1}ℓ
(which may be viewed as a short proof) such that Pr[Mx(w) = 1] ≥ 2/3, whereas if x is far from Π
then for every w ∈ {0, 1}ℓ it holds that Pr[Mx(w) = 1] ≤ 1/3. A MAP is said to use proof-oblivious
queries if its queries are independent of the auxiliary information w. In other words, first w is fixed
as a function of x, then the machine gets oracle access to x, next this oracle access is disconnected
and w is given to the machine, which now has to output its verdict.

Claim 3.2.2 (a reduction): If there exists a time-conforming machine that tests the consistency
of the environment with (Γ, V) while making q queries, then there exists a MAP with proofs of
logarithmic length that uses O(q) proof-oblivious queries for the property

Π = {(C(y), C(z)) : y, z∈{0, 1}k ∧ ∃i ∈ [k] s.t. yi =zi =1}. (1)

Furthermore, one-sided error is preserved.

Note that Π has a general MAP with proofs of logarithmic length that makes poly(ǫ−1 log n) queries
(using i as a proof). However, Π has no MAP with proofs of logarithmic length that uses o(k/ log n)
proof-oblivious queries. This follows by combining two known results:

1. By Gur and Rothblum [GR13], a MAP with proofs of length ℓ that uses q′ proof-oblivious
queries implies a standard tester of query complexity O(ℓq′).

2. Using the method of [BBM12] (see also [Gol13]), any tester of the foregoing property Π
must use Ω(k) queries. (This is shown by a reduction from the communication problem set

disjointness and similar proofs appear in [GR13].)16

Hence, any time-conforming tester for the consistency of the environment with (Γ, V) must have
query complexity Ω(nc/ log n). So it is just left to prove Claim 3.2.2.

Proof: Given a time-conforming tester T for the consistency of the environment with (Γ, V), we
construct a proof-oblivious querying MAP M as follows. For input (C(y), C(z)) ∈ Π such that

16Given y and z, which represent subsets of [k], the first party computes C(y) and the second party computes C(z).
The two parties now emulate the tester of Π such that when the tester queries the ith bit of C(y) (resp., C(z)), the
first (resp., second) party provides this bit to the other party.

18

yi = zi = 1 for some i ∈ [k], we shall consider the proof string i. On input (u, v) (which is
supposedly in Π), the proof-oblivious querying MAP will emulate two (possibly illegal) evolutions
of the environment, one that corresponds to an encoding of the triplet (u, i, 1), and the other to
an encoding of the triplet (v, i, 1). The proof-oblivious querying MAP invokes the time-conforming
tester twice, using the first (resp., second) evolution in the first (resp., second) invocation. These
two invocations will be performed in parallel.

Let us consider a generic invocation that corresponds to an encoding of the triplet (w, i, 1), and
let t3 denote the time slot at the end of the third stage when the deletion of the first region is
completed. In this invocation w is revealed in the second stage (as the contents of the first region),
and C(i) and 1 are revealed in the last stage (as the contents of the second and third region,
respectively). The proof-oblivious querying MAP M can emulate the queries of a time-conforming
tester T by accessing its own oracle whenever asked about the contents of the first region, and
by using the proof i when asked about the contents of the second region. The crucial point is
that the queries made till time-slot t3 do not depend on the value of i, which is not visible in the
environment at this period. Furthermore, the answers to queries made after time t3 can carry no
information on w, because all such information was deleted by that time. Thus, machine M can
emulate all queries till time-slot t3 by emulating the evolution of the environment on the (partially
dummy) triplet (w, 1, 1). Specifically, when a query is made that requires some bit in w, machine
M queries the relevant part of its input-oracle.17

When the emulation passes beyond time-slot t3, machine M waits for the other emulation to
do so, and when both emulations pass beyond time-slot t3, machine M stops making queries to its
oracle (or is “disconnected from it” and is presented with the proof-string i). Machine M emulates
all subsequent queries of T by only using the proof-string i. Since these queries refer to time-slots
of index larger than t3, they can all be answered by just using i. Specifically, when such a query is
made, machine M determines whether the contents in that location is already visible, and answers
accordingly (using an encoding of i or of the bit 1). Machine M accepts iff T accepts in both
invocations. Thus, indeed M uses proof-oblivious queries.

If the M is indeed invokes with input (C(y), C(z)) ∈ Π and given the proof-string i such that
yi = zi = 1, then M will accept (with high probability or always, depending on whether T has
two-sided error or one-sided error). Suppose that (u, v) is ǫ-far from Π, and that M is presented
with a (false) proof i. Then, either one of the two parts is ǫ-far from being a C-codeword or they
are ǫ-close to C(y) and C(z), respectively. In the first case, the relevant invocation of T will reject
with high probability, because these codewords occupy a constant fraction of the evolution of the
environment (which always produces codewords). Otherwise, either yi 6= 1 or zi 6= 1, and again the
relevant invocation of T will reject with high probability, because the (repeated error correcting)
encoding of i and 1 guarantees that the evolving environment emulated by M is far from one that
is consistent with (Γ, V).

Recall that Claim 3.2.2 implies that any time-conforming tester for the consistency of the environ-
ment with (Γ, V) must have query complexity Ω(nc/ log n). On the other hand, by Claim 3.2.1,
the consistency of the environment with (Γ, V) can be tested using poly(ǫ−1 log n) queries, by a
machine that is not time-conforming. This completes the proof of the theorem (by substituting c
with any constant in (0, c)).

17Recall that w is either u or v, whereas M has oracle access to (u, v). Indeed, we assume that it is easy to
determine when a bit in the first region is visible, and the emulation answers accordingly.

19

3.2 Adaptive versus nonadaptive testers

Re-confining ourselves to the context of time-conforming testers, we observe that also in this setting
adaptive testers may be much more efficient than nonadaptive ones.

Theorem 3.3 (on the benefits of adaptivity wrt some one-dimensional rules): There exists a
constant c > 0, an evolution rule Γ : Σ3 → Σ, a viewing function V : Σ→ Σ′, and Ξ ⊂ Σ such that
the following holds:

1. Evolution from Ξ∗ according to Γ via V can be tested by a time-conforming oracle machine
that makes O(ǫ−1 log n) queries.

2. Evolution from Ξ∗ according to Γ via V can not be tested by a nonadaptive oracle machine
that makes o(nc) queries.

The result holds for any t = Ω(n).

Proof: The main observation is that separations between adaptive and nonadaptive testers that
hold in the standard model can be translated to analogous results regarding testing evolving en-
vironments. Our translation requires the existence of an efficient algorithm for sampling (objects
having) the property that is used in the separation in the standard model. This sampler need not
produce the uniform distribution over objects having the property, but the support of its output
distribution should equal the set of all objects having this property.

We find it simplest to use a result of [RS06] that implies that the nonadaptive query complexity
of testing any non-trivial property of d-regular graphs is Ω(

√
n), where testing refers to the bounded

degree model of [GR02] and a property is called non-trivial if for any n there exists an n-vertex
d-regular graph that has the property and an n-vertex d-regular graph that is Ω(1)-far from having
the property.18

We shall use the following property, denoted Πd, which consists of all d-regular graphs that
are composed of isolated (d + 1)-vertex cliques. Any constant d ≥ 2 will do. Note that Πd is
non-trivial and that it can be tested (in the bounded-degree model) in complexity O(d2/ǫ) (by
selecting O(1/ǫ) random vertices and exploring their depth-2 neighborhood). The property Πd is
quite easy to sample (by selecting a random n/(d + 1)-way partition of [n], which will serve as the
collection of cliques, and outputting the corresponding sequence of adjacency lists). Note that this
sampler generates an n′-vertex graph by using n = O(n′ log n′) random coins.

We shall describe the construction for some t = poly(n), but it can be adapted to the case of
t = O(n) by using ideas as in the proof of Theorem 3.2. (Note that no fancy error correcting code
is required here; we merely use repetitions.)

The initial configuration of the cellular automaton will encode the randomness used by the above
sampler, and this initial configuration will be hidden (by use of an adequate V). The evolution of
the environment will consist of two stages, each of duration t/2. In the first stage, the automaton
will emulate the execution of the above sampler, while keeping all information hidden. In the
second stage, the contents of the output of the emulation will be revealed and maintained for the
rest of this stage (i.e., for t/2−O(n) > t/3 time slots).

The adaptive tester just checks that (1) nothing is visible in the first stage, (2) a single string is
revealed and maintained in the second stage, and (3) this string encodes a graph that has property
Πd. The checks in Items (1) and (2) are performed by simple sampling, and O(1/ǫ) samples suffice
for this, while Item (3) is checked by emulating a tester for Πd. Note that any query of the latter

18The result in [RS06] is more general.

20

tester is emulated by log2 n′ queries to the string that encodes an n′-vertex graph. Hence, testing
consistency of the evolving environments with (Γ, V) is reduced to testing Πd, while increasing
the query complexity by a factor of log n. Using the O(d2/ǫ)-query adaptive tester for Πd (and
observing that all queries can be made to any time in [0.667t, t]), Part 1 follows.

To prove Part 2, we reduce the task of testing Πd to the task of testing consistency of the evolving
environments with (Γ, V), while preserving the nonadaptivity of the tester. Specifically, given a
tester T for environments, we obtain a tester for Πd by invoking T and emulating an environment
that corresponds to our own input. That is, if T asks for a location that should contain a bit in the
encoding of some vertex, then we query our input-oracle for the identity of this vertex, and return
the adequate bit. Note that if the input to T is in Π, then the emulated evolving environment is
consistent with (Γ, V), whereas if the input is ǫ-far from Π, then the emulated evolving environment
is Ω(ǫ)-far from being consistent with (Γ, V). Invoking the Ω(

√
n
′
) lower bound of [RS06], Part 2

follows.

4 Fully visible state

In this section we revisit the two questions raised in Section 2, while confining ourselves top en-
vironments in which the state is fully visible. That is, we consider the case in which the viewing
function, V , is the identity function.

4.1 On the computational complexity of learning

We first address the question of whether the straightforward learning algorithm (presented the very
beginning of Section 2) can be improved in terms of computational complexity. That is, we wish to
avoid the exhaustive search (of possible values of ENV1) that takes place in this learning algorithm.

Indeed, in the case of fully visible states, we can avoid this search by obtaining all values of
ENV1, but this violates the requirement that the temporal query complexity be sublinear (i.e., that
only o(nd) queries are made to each ENVj). So the question is whether we can avoid the (full)
exhaustive search without making Ω(nd) queries to ENV1. The answer is yes. In fact, we present a
trade off between the number of queries made to each ENVj and the time complexity.

9

j=1

17 25

i=8

Figure 2: The saw for k = 16 and n = 32. (Only 10 time units are shown.)

It is instructive to start by considering the one-dimensional case. Let k be a free parameter
(which governs the trade-off). In this case, rather than querying all values of ENV1, we query ENV

at a “saw” (see Figure 2); that is, for every i of the form (i′ − 0.5) · k + 1, where i′ ∈ [n/k], every
j ∈ [k/2] and every σ, τ ∈ {0, 1}, we query ENV at the point (j, i + (−1)τ · (k/2 − j + σ)). The
number of queries made to each ENVj is at most 4n/k. This allows us to efficiently derive the value

21

of ENV at any point that comes after this “saw” (in time), and in particular on all points (i, j)
for j ≥ k/2. To obtain the values of the points that precede the saw (in time), we just perform
exhaustive search on each block of length k, but this is an exhaustive search on |Σk| values (rather
than on |Σn| values).19 Hence, this learning algorithm offers a trade-off between the number of
queries made to each ENVj and the time complexity. (A natural problem, which is postponed for a
moment, is whether we can avoid the exhaustive search on blocks of length k.)

The “saw”-construction generalizes to any number of dimensions. Specifically, in the case of
three dimensions, let Cδ(i1, i2, i3) denote the set of all grid points that are at max-norm distance
at most δ from (i1, i2, i3) ∈ [n]3; that is,

Cδ(i1, i2, i3) = {(p1, p2, p3)∈ [n]3 : |pℓ − iℓ|≤δ (∀ℓ)}.

Then, for every i1, i2, i3 ∈ {(i′ − 0.5) · k + 1 : i′ ∈ [n/k]} and every j = 1, ..., k/2, we query ENVj

at all points in Ck/2−j+1(i1, i2, i3) \ Ck/2−j−1(i1, i2, i3). (In the two-dimensional case, these points
can be depicted as the exterior walls of a pyramid, of base length k and height k/2.) Hence, we
make (n/k)3 · ((k − 2j + 3)3 − (k − 2j − 1)3) = O(n3 · (k − 2j + 1)2/k3) = O(n3/k) queries to
ENVj . In this case, we perform exhaustive searches on |Σk3| values, and so this learning algorithm
offers a trade-off between the number of queries made to each ENVj and the time complexity. This
trade-off improves over the performance of the straightforward learning algorithm. Specifically,
using k = 3

√
log n, we get a polynomial-time algorithm that makes O(n3/k) = o(n3) queries to each

ENVj . In general, we get:

Theorem 4.1 For every evolution rule Γ : Σ3d → Σ and every k : N → N such that k(n) < t(n),
there exists an exp(kd + log n)-time algorithm for (properly) learning environments that evolve
according to Γ via the identity viewing function that has temporal query complexity O(nd/k).

We now return to the question of whether the exhaustive search on blocks of length k can be
avoided. This may be possible in the one-dimensional case, but may be hard because the task at
hand is at least as hard as reversing a single evolution step (i.e., from ENV1 to ENV2)), where the
latter task is infeasible if one-way functions can be computed by a single step of d-dimensional
cellular automata (which is quite plausible for d ≥ 2, see [AIK10]).20 Analogous considerations can
be applied to efficient testing, but here the relevant hardness assumption seems to call for functions
(computable by d-dimensional cellular automata) that have a range that is hard to recognize.

Non-proper learning. We note that the ideas outlined above suffice for obtaining an efficient
non-proper learning algorithm that makes O(nd−1/ǫ) queries to each ENVj . To see this, set k = ǫn,
and note that for non-proper learning there is no need to obtain the values of ENV that reside
“above” the “saw” (i.e., precede it in time). In particular, we can efficiently recover ENVj for all
j ≥ ǫn/2, and use dummy values for the rest of ENV. (In contrast, proper learning requires obtaining
ENV1.) Indeed, this non-proper learning algorithm does not seem to imply a tester.

19Specifically, for each i′ ∈ [n/k], we conduct an exhaustive search for values of ENV1((i
′ − 1)k + 1), ..., ENV1((i

′ −
1)k + k) that are consistent with the values of ENVj at the points ((i′ − 0.5)k + 1 + (−1)τ (j − σ)), for every j ∈ [k/2]
and every σ, τ ∈ {0, 1}.

20Under reasonable assumptions, one-way functions can be computed by a single step of two-dimensional cellular
automata [AIK10]. In contrast, as noted in Footnote 21, one-dimensional cellular automata cannot compute one-way
functions in a single step. This does not mean that successive applications of an evolution rule can be efficiently
reversed, but there seem to be hope for efficient learning (and more for testing) of one-dimensional environments.

22

One-dimensional environments. In the one-dimensional case, we have ENV : [t] × [n] → Σ
and a fixed local rule Γ : Σ3 → Σ. Here, there is hope to avoid the exhaustive search on blocks
of length k performed above, since no one-way function can be computed by a single step of a
one-dimensional cellular automaton (since a single step of such an automaton on an n-symbol long
environment can be randomly reversed in time poly(|Σ|) · n).21 Still, ability to randomly reverse
one step does not imply ability ability to reverse several steps, and so it is not clear whether we
can avoid the aforementioned exhaustive search. The question at hand is closely related to the
following: Given the result of the evolution of k steps of a one-dimensional cellular automata on
an environment of length k, can we recover the initial configuration in exp(o(k))-time?22

Open Problem 4.2 (can Theorem 4.1 be improved for d = 1?) Is it the case that for every
evolution rule Γ : Σ3 → Σ and every k : N → N such that k(n) = o(n), there exists an exp(o(k) +
log n)-time algorithm for (properly) learning environments that evolve according to Γ via the identity
viewing function that has temporal query complexity o(n/k)?

Note that, in view of Theorem 2.2, we should not expect running time exp(ko(1) + log n).

4.2 On testing versus learning

Here we prove Theorem 1.9, which we first restate as follows.

Theorem 4.3 (testing may have the same query complexity as learning): Let V≡ : Σ → Σ be the
identity viewing function. Then, there exists a constant c > 0, an evolution rule Γ : Σ3 → Σ and a
set of initial states Ξ ⊂ Σ such that the following holds:

1. Testing evolution from Ξ∗ according to Γ via V≡ has (total) query complexity Ω(nc).

(We stress that this holds even for testers that are not time-conforming.)

2. Proper learning evolution from Ξ∗ according to Γ via V≡ with respect to constant ǫ has (to-
tal) query complexity O(nc). Moreover, the learner is non-adaptive and has temporal query
complexity 1.

Furthermore, the result holds for any t = Ω(n).

Proof: As in the proof of Theorem 3.3, the main observation is that results that hold in the
standard model (in this case relations between the complexity of testing and learning) can be
translated to analogous results regarding testing evolving environments. However, in the current
proof, we wish to carry out this translation in the context of fully visible states. Thus, we pick a

21The following description follows [AIK10, Prop. 3.2]. Construct a graph with n layers, such that the ith layer
contains the vertex set Li = {a−1a0a1 ∈ Σ3 : Γ(a−1a0a1) = yi} and there is an directed edge from vertex a−1a0a1 ∈ Vi

to vertex b−1b0b1 ∈ Vi+1 if and only if a0a1 = b−ib0. (For i = 1 use a−1 = 0 and likewise for i = 1 and a1.) We may
add an auxiliary source vertex (at layer zero) and connect it to the vertices in L1 that start with a zero. A valid
solution corresponds to a path from this source to some vertex in Ln, and we can find it in iterations such that at
the ith iteration we find all vertices in Li that are reachable from the source. We may also find the number of such
paths, and so select one at random.

22Note that a t-step evolution of a one-dimensional cellular automata on an environment of length n can be
reversed in exp(min(n, t + log n))-time, where the exp(t) · n time-bound can be obtained by applying the procedure
of Footnote 21 with Σ replaced by Σt. If exponentially strong one-way functions exist, then for some t = poly(n)
reversal cannot be performed in exp(o(n))-time. But it seems unlikely that such functions can be computed in n
steps of a one-dimensional cellular automata. So this leaves room for hope (regarding the case of t = O(n), which
seems most interesting).

23

property for which probing the process of the construction of the object (having the property) does
not reveal more than probing the object itself. The property that we shall use is

Π
def
=




(
C(x), C(y), σk′

)
: x, y ∈ {0, 1}k ∧ σ =

∑

i∈[k]

xiyi mod 2



 (2)

where C : {0, 1}k → {0, 1}k′
is an explicitly constructed and good error correcting code (i.e.,

k′ = O(k) and the code has constant relative distance). For starters, we show that Π is hard to test
by combining the (“communication complexity”) methodology of [BBM12] with the lower bound
of [CG88].

Claim 4.3.1 (warm-up): Testing Π requires Ω(k) queries.

Proof: Using the methodology of [BBM12] (see also [Gol13]),23 we reduce the communication com-
plexity problem of computing the inner product mod 2 of two k-bit long strings (which, by [CG88,
Sec. 4.2], has communication complexity Ω(k)) to testing Π. Consider parties A and B having
inputs x and y, respectively. Then, the parties (in the joint randomness model) emulate a tester
for Π by answering its queries as follows: Query i ∈ [k′] is answered by A with the ith bit of C(x),
which is sent by A to B; query i ∈ [k′ + 1, 2k′] is answered by B with the (i − k′)th bit of C(y),
which is sent by B to A; and query i ∈ [2k′ + 1, 3k′] is answered by 0 (by each party). The parties
output 0 if the tester accepts and 1 otherwise. Note that if the inner product of x and y is 0
(mod 2), then (C(x), C(y), 0k′

) ∈ Π and the tester accepts with probability at least 2/3; but if the
inner product of x and y is 1 (mod 2), then (C(x), C(y), 0k′

) is Ω(1)-far from Π and the tester
rejects with probability at least 2/3.

We shall consider environments of length n that evolve in four stages, where each stage takes
Θ(n) steps. For k = nc and k′ = O(k) as above, the environment consists of n/3k′ regions, each
consisting of 3k′ cells, as depicted in Figure 3.

• In the first stage, the automaton reset the states of the cells in all regions except the first one
(after approximating n and determining k = nc and k′ = O(k) accordingly).

This is done in order to allow the learning algorithm to focus on obtaining the initial values
of the remaining 3k′ cells. (Setting the other initial values to zero yields an evolution that is
O(n2/nt)-close to the correct one.)

We denote the contents encoded by the first k cells by x, and the contents encoded in cells
k′ + 1, ..., k′ + k by y.

• In the second stage, the automaton computes σ ← b(x, y)
def
=
∑

i∈[k] xiyi mod 2, where this

computation is performed by k iterations such that in the ith iteration the automaton com-
putes xiyi and adds it to the currently accumulating sum

∑
j∈[i−1] xjyj mod 2.

We mention these details, because they mean that an oracle machine that queries the evolving
environment at this stage may obtain, in addition to individual bits of x and y (and products
xjyj), only each of these partial sums (i.e.,

∑
j∈[i] xjyj mod 2) by making one suitable query.

Hence, we may assume, without loss of generality, that queries at this stage return such partial
sums.

23Indeed, the actual claim is closely related to a special case of [Gol13, Thm. 4.1].

24

x

C(x)

y

C(y)

b(x,y)

b(x,y)

1st stage

2nd stage

3rd stage

1st region

C(y)C(x) b(x,y) C(y)C(x) b(x,y)

last region

4th stage

deleting contents of all other regions

copying

Figure 3: The evolution of the environment of the proof of Theorem 4.3. Only the first and last
regions are shown; the other regions are identical to the last region.

The second stage is completed by storing the final outcome (i.e., σ) in each of the last k′ cells
of the first region. The total number of steps in this stage is O(k2), but this is O(n) by our
choice of c > 0.

• In the third stage, the automaton computes u← C(x) and w ← C(y), and stores the results
in the first 2k′ cells of the first region.

This computation takes poly(k) steps, but this is O(n) by our choice of c > 0. We note
that an oracle machine that queries the evolution of this stage may obtain arbitrary Boolean
functions of either x or y, but nothing else (assuming without loss of generality that it has
already obtained the value of σ and thus does not query for it at the current stage).

• In the last (i.e., fourth) stage, the automaton replicates the contents of the first region (i.e.,
(u,w, σk′

)) in space and time. That is, the automaton copies the contents of the first region
to all other regions, and propagate this contents for the rest of the evolution. Thus, the value
(C(x), C(y), b(x, y)k

′
) is replicated (n/k′) · (t − O(n)) times, and makes up most of the area

of the evolving (t-by-n) environment.

It follows that proper learning is possible by 2k queries, by merely querying the values of the bits
of x and y, and relying on the fact that these values determine all but a O(n)/t fraction of the
(t-step) evolving environment. Note that different bits can be read (non-adaptively) at different
times (within the first stage). As mentioned above, the learner may set all other values of the initial
environment to zero, yielding an evolution that is O(n2/tn)-close to the actual one. (Note that the
effect of this resetting of the values of the initial environment is restricted to the first stage, since
any trace of these values is erased during that stage.) Part 1 follows.

We focus on showing that testing this evolution requires Ω(k) queries. The key observation
is that each query made to the evolving environment may yield either a Boolean function of x

25

or a Boolean function of y or the value
∑

j∈[i] xjyj mod 2 for some i ∈ [k]. Furthermore, the

aforementioned Boolean functions belong to a predetermined set of m
def
= O(kn) functions, denoted

f1, ..., fm. (The latter fact is not essential, but it makes the formulation of the next result easier.)24

Claim 4.3.2 (a standard testing lower bound): For every i ∈ [k], let bi(x, y)
def
=
∑

j∈[i] xjyj mod 2.

Then, testing Π′ requires Ω(k) queries, where

Π′ def
=
{(

F (x), F (y), B(x, y)O(k), C(x)n
2/k′

, C(y)n
2/k′

, b(x, y)tn/4
)

: x, y ∈ {0, 1}k
}

(3)

such that F (z) = (f1(z), ..., fm(z)) and B(x, y) = (b1(x, y), ..., bk(x, y)).

Note that the bits of the tested string correspond to the various queries that the evolution tester
can make to the evolving environment. The tn/4 repeats of b(x, y) represent the third of the area
of the last stage (which is occupied by the value b(x, y)).

Proof: Using the methodology of [BBM12], we reduce the communication complexity of Disjointness
to testing Π′. Recall that in Disjointness the two parties are given the inputs x and y such that

I
def
= {i∈ [k] :xi = yi = 1} has cardinality at most 1, and need to decide whether or not I = ∅. Note

that under the promise (that the size is at most 1), the question reduces to computing b(x, y), since
I = ∅ implies b(x, y) = 0 whereas |I| = 1 implies b(x, y) = 1. (Indeed, in general |I| = ∑

i∈[k] xiyi

(over the integers).) Recall that the communication complexity of Disjointness is Ω(k); cf. [KS92].
The reduction of the communication complexity of Disjointness to testing Π′, proceeds as

follows, where the parties A and B hold the inputs x and y, respectively. The parties emulate a
tester for Π′ by answering its queries such that queries of the form fi(x) (or C(x)i) are answered
by A, queries of the form fi(y) (or C(y)i) are answered by B, and queries of the form bi(x, y) are
answered by 0 (by both parties). (That is, each party handles queries that are functions of its own
input only, and the only allowed queries that refer to both inputs are answered by a predetermined
default value.) The parties output 1 (indicating that I = ∅) if the tester accepts and 0 otherwise.

Note that if b(x, y) = 0, then bi(x, y) = 0 for all i ∈ [k], and it follows that

(F (x), F (y), 0O(k2), C(x)n
2/k′

, C(y)n
2/k′

, 0tn/4) ∈ Π′ .

In this case the tester, which was given oracle access to this very input, accepts with probability
at least 2/3, and the parties will output 1 (indicating that I = ∅). On the other hand, if b(x, y) =
1, then (F (x), F (y), 0O(k2), C(x)n

2/k′
, C(y)n

2/k′
, 0tn/4) is Ω(1)-far from Π′, since the distance is

dominated by the replicated codewords C(x) and C(y) and the replicated value of zero that appears
instead of the replications of b(x, y) = 1. In this case the tester, which was given oracle access to
this very input, rejects with probability at least 2/3, and the parties will output 0 (indicating that
I 6= ∅).
Using the correspondence between testing Π′ and testing the evolution according to (Γ, V≡), Part 2
follows.

24An alternative presentation may avoid the presentation of an explicit property testing problem, and apply the
methodology of [BBM12] without sticking to its specific formulation (as done in [Gol13]).

26

5 Linear Rules

In this section we consider the evaluation of the environment under an arbitrary d-dimensional
linear rule Γ : F 3d → F , where F is a finite field (and d ≥ 1 (e.g., d ∈ {1, 2, 3})); that is, we have

Γ(z−1d , .., z1d) =
∑

σ∈{−1,0,+1}d

ασzσ, (4)

where the ασ’s are in F .
We shall focus on the case that the state is fully visible; that is, assume that V : Σ→ Σ′ is the

identity mapping (i.e., V (σ) = σ for every σ ∈ Σ). Hence, in the rest of this section we typically
do not mention V .

5.1 More on learning

As stated in Section 2.2, in general (i.e., for t = O(n/ǫ)), any learning algorithm must make
Ω(nd) queries, and one can improve over this only in degenerated cases (i.e., when Γ is a constant
function). This will be shown in Proposition 5.1, but before we note that for t > n/ǫ there exist non-
degenerate rules for which the environment vanishes and so can be trivially learned (e.g., consider

Γ(z−1,...,−1, .., z1,...,1) = z1,...,1, which implies ENVj ≡ 0nd
for every j > n).

Proposition 5.1 For any t = O(n/ǫ) and non-constant linear Γ : F 3d → F , any algorithm for
learning environments that evolve according to Γ must make Ω(nd) queries.

Proof: For sake of simplicity, we consider the case t = n; the argument generalizes for any
t = O(n/ǫ). Let Γ(z−1,...,−1, .., z1,...,1) =

∑
s1,...,sd∈{−1,0,1} cs1,...,sd

zs1,...,sd
+ b, and consider some

(s1, ..., sd) ∈ {−1, 0, 1}d with a minimal number of zeros such that cs1,...,sd
6= 0. The reader may

find it instructive to think of the case of (s1, ..., sd) ∈ {−1, 1}d (or even s1 = · · · = sd = 1). For every
i1, ..., id ∈ [n], consider the j-parameterized line Li1,...,id(j) = (j, i1 + (j − 1)s1, ..., id + (j − 1)sd).
Note that the value of ENV on this line depends on the value of ENV1(i1, ..., id). However, for every
i′1, ..., i

′
d ∈ [n] such that ski

′
k > skik holds for some k ∈ [d], the value of ENV on the line Li′1,...,i′

d
does

not depend on the value of ENV1(i1, ..., id). This is easiest to see when (s1, ..., sd) ∈ {−1, 1}d, but
in the general case one needs to use the hypothesis that (s1, ..., sd) ∈ {−1, 0, 1}d is minimal w.r.t
number of zeros (which implies that cs′1,...,s′

d
= 0 for every (s′1, ..., s

′
d) 6= (s1, ..., sd) such that s′i = si

for every i with si 6= 0). The same can be proved for every i′1, ..., i
′
d ∈ [n] such that i′k 6= ik and

sk = 0 hold for some k ∈ [d]. It follows that the values of these nd lines (i.e., the values at any
set of nd positions that reside on different lines), expressed as a linear combination of the values of
ENV1, are linearly independent. Since a constant fraction c > 0 of the volume of [n]× [n]d is covered
by these nd lines, a learning algorithm must query points on cn3/d of these lines in order to infer
the value of a random point in [n]× [n]d with probability at least 1− c/2.

Tightness of Proposition 5.1. The lower bound stated in Proposition 5.1 is tight: Indeed, for
any linear Γ (and the identity viewing function, representing a fully visible state), we can obtain
an efficient learning algorithm that makes O(nd/ǫt) queries to each ENVj. Let ζi ≤ nd be a random
variable that denotes the number of independent linear expressions (in the ENV1-variables) that we
see when we sample i random locations in [t] × [n]d, where each location corresponds to a linear
expression. Letting p(i) denote the probability that the i + 1st sample yields an expression that is
linearly independent of the previous i (sampled) expressions, note that E[ζi+1 − ζi] = p(i). Using

27

the linearity of expectation it follows that
∑3nd/ǫ

i=1 p(i) ≤ nd, and so p(i) < ǫ for at least a 2/3
fraction of the i ∈ [3nd/ǫ]. Hence, the learning problem may be solved by picking i uniformly in
[3nd/ǫ], making i uniformly selected queries to ENV, and solving the corresponding linear system.
(Indeed, if p(i) < ǫ, then the solution found will fit at least a 1− ǫ fraction of the domain of ENV.)

The above ideas may be applied also in the case that the state is not fully visible, provided that
the viewing function V is linear when Σ is an extension field of some smaller field (and V is linear
over the small field). All that is needed is to apply the foregoing considerations to the smaller field;
that is, note that each value in V ◦ ENV is a linear combination (over the small field) of the values
in the sequences in ENV1, where each element of ENV1 is viewed as a sequence of elements in the
small field.

5.2 Testing is easier than learning

In this section we prove Theorem 1.7, which asserts that for any d ≥ 1 and any linear Γ : Σ3d → Σ,
there exists a constant γ < d and an oracle machine of total time complexity poly(ǫ−1) · nγ that

tests the consistency of evolving environments with Γ : Σ3d → Σ and the identity mapping. Hence,
for any non-constant linear rule Γ, testing evolution according to Γ is easier than learning this
evolution.

We shall proceed in three steps, starting from the special case of d = 1 and |F | = 2, moving
to a general finite field F (of prime order, still with d = 1), and finally treating any d ≥ 1. Recall
that we already showed (in Section 2.2) that evolution according to a linear rule that depends on
a single variable can be tested using O(1/ǫ) queries.

A generic tester for one-dimensional environments. The following tester refers to environ-
ments that are supposed to be determined by a linear rule Γ : F 3 → F . Actually, we shall present
a proximity-oblivious tester (cf. [GR11]), which rejects any environment that is ǫ-far from being
consistent with Γ with probability at least ǫ/2. A standard tester can be derived by invoking this
proximity-oblivious tester O(1/ǫ) times. The proximity-oblivious tester depends on a (constant)
parameter γ, which will be determined later (e.g., for |F | = 2 we may use γ = 0.8). On oracle
access to ENV : [t]× [n]→ F , the tester proceeds as follows:

1. The tester selects (j, i) ∈ ([t]× [n]) uniformly at random;

2. If location (j, i) in ENV is determined by at most 2nγ/ǫ locations in the first row (i.e., ENV1),
then the tester queries these locations in ENV1 and accepts iff their value fit ENV(j, i), which
it queries too. Otherwise, the tester accepts without making any queries.

In the analysis we assume for simplicity that t = n; the general case will be handled at the very
end of this section. Clearly, if ENV is consistent with Γ, then the tester accepts with probability 1.
Suppose that ENV is ǫ-far from being consistent with Γ. Then, more than an ǫ fraction of the
locations in ENV are inconsistent with the Γ-evolution of the first row of ENV. As we shall show
(in Claim 5.4 below), the expected number of locations in the first row that determine a random
location in ENV is at most nγ . Therefore, the probability that ENV(j, i) depends on more than 2nγ/ǫ
locations in the first row of ENV is smaller than ǫ/2. It follows that the tester rejects ENV with
probability at least ǫ− ǫ/2.

Fixing the finite field F and the linear rule Γ, let us denote by Di(t0, ℓ) the set of locations in
time t0 that influence the value of a specific location ℓ in time t0+i. Note that |Di(t0, ℓ)| is invariant
under t0 and ℓ, and, since we only care of the cardinality of Di(t0, ℓ), we allow ourselves to omit

28

(t0, ℓ) from the notation. Also note that 1
n

∑n−1
i=0 |Di(1, ·)| equals the expected number of locations

in the first row that determine a random location in ENV, which is the quantity that governs the
query complexity of our tester.

Step 1: The binary field. As a warm-up, we first consider the binary field and the rule
Γ(z−1, z0, z1) = z−1 + z0 + z1 mod 2. The reader may verify that better bounds can be obtained for
the other linear rules (over the binary field).25

Claim 5.2 (warm-up): For Γ(z−1, z0, z1) = z−1 + z0 + z1 mod 2, it holds that
∑n

i=1 |Di| < n1.8.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

2
k-1

2
k-2

2
k-2

Figure 4: Demonstrating that Ak < Ak−1 + 8Ak−2 (for the proof of Claim 5.2). Only the shaded
triangles contain locations that may influence the value of the bottom location.

Proof: It will be most convenient to consider Di = Di(0, 0), which means that we consider an
infinite table T : Z×Z→ {0, 1} (with locations and time slots that are associated with all integers);
that is, T (t′, ℓ) represents the contents of location ℓ at time t′. Hence, for every i ∈ N, it holds
that T (t′, ℓ) equals

∑
ℓ′∈Di

T (t′ − i, ℓ + ℓ′). Again, it will be convenient to let Tt′(ℓ) = T (t′, ℓ).
Note that D1 = {−1, 0,+1}, and we shall show (by induction) that for every i > 0 it holds that
D2i = {−2i, 0,+2i}. Using mod 2 arithmetic, in the induction step, we have

T0(0) =
∑

ℓ∈D
2i−1

T−2i−1(ℓ)

= T−2i−1(−2i−1) + T−2i−1(0) + T−2i−1(2i−1)

=
∑

ℓ∈D2i−1

T−2i(−2i−1 + ℓ) +
∑

ℓ∈D2i−1

T−2i(ℓ) +
∑

ℓ∈D2i−1

T−2i(2i−1 + ℓ)

=
(
T−2i(−2i) + T−2i(−2i−1) + T−2i(0)

)

+
(
T−2i(−2i−1) + T−2i(0) + T−2i(2i−1)

)

+
(
T−2i(0) + T−2i(2i−1) + T−2i(2i)

)

25Recall that we already showed that evolution according to a linear rule that depends on a single variable can
be tested using O(1/ǫ) queries. For linear rules that depend on two variables, one can first show that |D2i | = 2 for
every i ∈ N. Next, denoting Ak =

P

i∈[2k] |Di|, one can show that Ak ≤ Ak−1 + |D2k−1 | · Ak−1, and it follows that

Ak ≤ 3Ak−1 ≤ 3k, which implies that Ak ≤ (2k)log2
3. The proof of Claim 5.2 is merely a more refined analysis of a

similar nature.

29

= T−2i(−2i) + T−2i(0) + T−2i(2i),

which establishes D2i = {−2i, 0,+2i}.
Now, let Ak

def
=
∑2k

i=1 |Di|. Using induction, we shall show that Ak < 2 · (2k)1.76. The base case
(i.e., k = 1, 2) follows since A1 = 3 + 3 = 6 < 2 · 21.76 and A2 = A1 + 5 + 3 = 14 < 2 · 22·1.76.

For the inductive step we use Ak < Ak−1 + 8Ak−2, which is proved by writing Ak = Ak−1 +∑2k

i=2k−1+1 |Di| and looking closely at the latter sum (see Figure 4). Specifically, Figure 4 shows
regions that contain locations in ∪i∈[2k]Di with respect to the bottom location. The key observation
is that D2k−1 contains only three locations and that D2k−1+i is contained in D2k−1 + Di = {ℓ + ℓ′ :
ℓ ∈ D2k−1 , ℓ′ ∈ Di}, which implies |D2k−1+i| ≤ 3 · |Di|. Furthermore, for i > 2k−2, it holds that
D2k−1+i is contained in D2k−1+2k−2 + Di−2k−2 , which implies |D2k−1+i| ≤ |D2k−1+2k−2 | · |Di−2k−2 |.
A non-crucial improvement (which relies on the specific linear rule analyzed here) is obtained by
noting that D2k−1+2k−2 contains five locations (rather than seven).26 Hence,

Ak =

2k−1∑

i=1

|Di|+
2k−2∑

i=1

|D2k−1+i|+
2k−1∑

i=2k−2+1

|Di−2k−1 |

≤ Ak−1 +

2k−2∑

i=1

3 · |Di|+
2k−2∑

j=1

5 · |Dj |

= Ak−1 + (3 + 5) · Ak−2

follows. The crucial point is that Ak < Ak−1 + c · Ak−2, for some c < 12.
Now, combining Ak < Ak−1 + 8Ak−2 with the induction hypothesis (i.e., Ak′ < 2 · (2k′

)1.76

for k′ < k), we get Ak/2 < (2k−1)1.76 + 8 · (2k−2)1.76, and the induction step is completed since
(2k−1)1.76 + 8 · (2k−2)1.76 < (2k)1.76, which holds since 21.76 + 8 < 41.76.

Remark 5.3 For Γ as in Claim 5.2, it holds that
∑n

i=1 |Di| > n1.5. This holds since Ak >
Ak−1 + (4 + 4 · 0.5) ·Ak−2, which implies Ak > 3k.

Step 2: Extending the argument to any finite field of prime order. Staying with the
one-dimensional case, we now turn to the general case of a linear rule over a finite field (of prime
order). Throughout the rest of this section, the arithmetics is that of the finite field.

Claim 5.4 (the one-dimensional case): For Γ(z−1, z0, z1) = α−1z−1 + α0z0 + α1z1, where the
arithmetics is of the finite field F of prime order p, there exists γ < 1 such that

∑n
i=1 |Di| < n1+γ.

Proof: We first prove the following fact.

Fact 5.4.1 For i = 1, ..., p, and every integer ℓ, let

x
(i)
ℓ = α−1x

(i−1)
ℓ−1 + α0x

(i−1)
ℓ + α1x

(i−1)
ℓ+1 . (5)

Then, it holds that x
(p)
ℓ = α−1x

(0)
ℓ−p + α0x

(0)
ℓ + α1x

(0)
ℓ+p.

26This improvement is non-crucial given that we already established that, for i ∈ [2k−2], it holds that |D2k−1+i| is
bounded by three times the size of Di (rather than five times that amount).

30

Using Fact 5.4.1, we get D1 ⊆ {−1, 0,+1} and for every k > 0 it holds that Dpk = pk · D1 (by

induction on k): Both facts are proved by letting x
(i)
ℓ = Tℓ·pk−1((i−p) ·pk−1) (where T is as defined

in the proof of Claim 5.2), and using Fact 5.4.1. We now turn to prove Fact 5.4.1.

Proof: Applying straightforward recursive substitution to Eq. (5), we get

x
(p)
ℓ =

∑

σ1,...,σp∈{−1,0,+1}

ασ1 · · ·ασp · x(0)
ℓ+σ1+···+σp

=
∑

τ∈[−p,p]

d(τ) · x(0)
ℓ+τ (6)

where d(τ)
def
=

∑

σ1,...,σp∈{−1,0,+1}: Σiσi=τ

ασ1 · · ·ασp (7)

We start by analyzing Eq. (7). Letting Sp(τ)
def
= {(σ1, ..., σp) ∈ {−1, 0,+1}p :

∑
i σi = τ}, note

that Sp(p) (resp., Sp(−p)) contains only the all-one (resp., all-minus-one) sequence. Thus, for every
σ ∈ {±1}, we have d(σ · p) = ασ · · ·ασ = αp

σ, which equals ασ (mod p). This handles the case of
τ ∈ {−p, p}. Turning to the case of τ ∈ [−(p − 1), (p + 1)], let Sp(τ, j) denote the sequences in Sp

that have exactly j zero-entries. Then, for τ ∈ [−(p− 1), (p + 1)], we have

d(τ) =
∑

(σ1,...,σp)∈Sp(τ)

ασ1 · · ·ασp

=

p∑

j=0

|Sp(τ, j)| · αj
0 · α

(p−j+τ)/2
1 · α(p−j−τ)/2

−1 (8)

Note that |Sp(τ, j)| =
(
p
j

)
·
(p−j
(p−j+τ)/2

)
if p− j − |τ | is non-negative and even, and Sp(τ, j) is empty

otherwise. Also, for every j ∈ [p − 1], it holds that
(p
j

)
≡ 0 (mod p), whereas for j = 0 (and

τ ∈ [−(p − 1), (p − 1)] such that p − |τ | is even) it holds that
(p−j
(p−j+τ)/2

)
≡ 0 (mod p). Hence,

for every τ ∈ [−(p − 1), (p − 1)], the sum in Eq. (8) contains only the term that corresponds to
j = p, which is zero if τ 6= 0 (since in that case p − j − |τ | is negative), and equals α0 (mod p)
otherwise (since in that case (i.e., τ = 0), it holds that d(0) ≡ |Sp(0, p)| · αp

0 ≡ α0 (mod p)). It
follows that d(0) = α0, whereas d(τ) = d(−τ) = 0 for every τ ∈ [p − 1]. Recalling that d(p) = α1

and d(−p) = α−1, and plugging everything into Eq. (6), the fact follows.

Recall that Fact 5.4.1 implies that, for every k ≥ 0, it holds that Dpk ⊆ {−pk, 0, pk}. Now, let

Ak =
∑pk

i=1 |Di|. Using induction, we shall show that there exists β < 2 such that Ak < 2p4+β·(k−2).

The base case (i.e., k = 1, 2) is trivial, since Ak ≤
∑pk

i=1(2i+1) < 2p2k always holds. We next show
that

Ak ≤ Ak−1 +


3 +

p∑

j=2

(2p + 2j − 1)


 ·Ak−2 +

p∑

j=3

(2j − 1) · Ak−1

= (p2 − 3) · Ak−1 + (3p2 − 2p + 2) · Ak−2

where the inequality is shown in Figure 5: In the figure, large triangles (of height pk−1) are used for
all levels except the second one, where smaller triangles (of height pk−2) are used, and the saving

31

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
����������������������

�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�����������������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Figure 5: The case of p = 3 (for the proof of Claim 5.4). Smaller triangles replace the three big
triangles that would have appeared in the second level. As in Figure 4, only the shaded triangles
contain locations that may influence the value of the bottom location.

comes from there (i.e., from the second level).27 In the first sub-level of the second level, three
triangles were used (rather than 2p+1), whereas in the jth sub-level 2p+2j−1 triangles were used
(for any j > 1). Thus, the total number of small trainless used is 3+

∑p
j=2(2p+2j−1) = 3p2−2p−2.

The number of large triangles used is 1 +
∑p

j=3(2j − 1) = p2 − 3, since 2j − 1 large triangles are

used in the jth level.
To complete the argument, we set β < 2 such that (p2−3) ·p4+β·(k−3) +(3p2−2p+2) ·p4+β·(k−4)

is smaller than p4+β·(k−2). This is possible since there exists an X < p2 such that (p2 − 3) · X +
(3p2 − 2p + 2) < X2 (and setting β = logp X we are done).28

Remark 5.5 We comment that for Γ as in Claim 5.4, if |D1| > 1, then there exists γ > 0 such
that

∑n
i=1 |Di| > n1+γ. For |D1| = 3, this holds since Ak > Ak−1 +

∑p
j=2(2j − 1) · Ak−2, where

the Ak−1 is due to the large triangle at the first level of Figure 5 and the Ak−2’s are due to the
small triangles that appear in the first sub-level of each other level. Actually, some of these small
triangle may not be influential, which happens when the location of their head is not influential,
but in this case we may compensate by the area of some of the large triangles in this level, which
is much larger (i.e., |Ak−1| > p · |Ak−2|). Hence, Ak > Ak−1 + (p2 − 1) ·Ak−2, and Ak > p(1+Ω(1))·k

follows. For |D1| = 2, the argument is even simpler; we may rely solely on the Ak−1’s, and obtain
Ak ≥ (2p − 1) ·Ak−1.

Step 3: Extending the argument to any d ≥ 1. Finally, we turn to the d-dimensional case,
for d ≥ 2 (e.g., d = 2, 3). Firstly, we generalize the definition of Di such that Di ⊂ Z

d is the set of
locations in time −i that influence location 0d in time 0.

27In general, we have p levels such that for every j ∈ [p] \ {2} we use 2j − 1 large triangles in the jth level. Figure 4
corresponds to the case of p = 2 and so a large triangle was used only in the first level. Recall that additional saving
was obtained in Figure 4 by using five small triangles (rather than seven) in the second sub-level of the second level.
This cannot be done (and is not done) in Figure 5.

28The equation X2 − (p2 − 3)X − (3p2 − 2p + 2) = 0 has one negative solution and one solution in the interval
(0, p2), since 2X = (p2 − 3)±

p

(p2 − 3)2 + 4 · (3p2 − 2p + 2) and (p2 − 3)2 + 4 · (3p2 − 2p + 2) = (p2 + 3)2 − 8(p− 1).
For p = 3, the positive solution is X ≈ 8.657, and log3 X ≈ 1.965.

32

Claim 5.6 (the d-dimensional case): Let d ≥ 2 and Γ : F {−1,0,+1}d → F such that Γ(z−1d , ..., z1d) =∑
σ∈{−1,0,+1}d ασzσ, where the arithmetics is of the finite field F of prime order p. Then, there exists

γ < d such that
∑n

i=1 |Di| < n1+γ .

By a straightforward generalization of the algorithm presented for the one-dimensional case, Claim 5.6
yields an algorithm that establishes Theorem 1.7.

Proof: We generalize the proof of Claim 5.4. Here for i = 1, ..., p and every d-dimensional location
v ∈ Z

d, we consider

x(i)
v =

∑

σ∈{−1,0,+1}d

ασx
(i−1)
v+σ (9)

As in the proof of Fact 5.4.1, we get

x(p)
v =

∑

σ1,...,σp∈{−1,0,+1}d

ασ1 · · ·ασp · x(0)
v+σ1+···+σp

=
∑

τ∈[−p,p]d

d(τ) · x(0)
v+τ

where d(τ)
def
=

∑

σ1,...,σp∈{−1,0,+1}d: Σiσi=τ

ασ1 · · ·ασp

Let ∆
def
= {−1, 0,+1}d. For an arbitrary p-long sequence (σ1, ..., σp) ∈ ∆p, we let P (σ1, ..., σp)

denote the set of sequences that are permutations of the sequence (σ1, ..., σp). For any uniform
sequence σp ∈ ∆p, it holds that |P (σp)| = 1. The key observation is that for any non-uniform
sequence (σ1, ..., σp), the size of P (σ1, ..., σp) is a multiple of p (since |P (aibp−i)| =

(p
i

)
which is a

multiple of p for any i ∈ [p− 1]). Observing that a non-uniform sequence (σ1, ..., σp) contributes to
d(τ) if and only if each element in P (σ1, ..., σp) contributes to d(τ), it follows that the contribution
of non-uniform p-long sequences over ∆ to d(τ) cancels out modulo p (since this contribution comes
in multiples of p). If follows, that only the uniform sequences contribute to d(τ) (mod p), which
means that

d(τ) ≡
∑

σ∈∆: p·σ=τ

αp
σ (mod p),

which in turn means that the sum has at most one element (i.e., the element corresponding to τ/p,
where τ ∈ [−p, p]d). Hence, for every τ ∈ [−p, p]d \ {−p, 0, p}d, it holds that d(τ) = 0 (since τ is
not in the set p ·∆), whereas for every τ = p · σ with σ ∈ ∆ it holds that d(τ) = αp

σ (and αp
σ ≡ ασ

(mod p) follows, since p = |F |). Thus, for every k ≥ 0, it holds that Dpk ⊆ {−pk, 0, pk}d.

Again, we let Ak =
∑pk

i=1 |Di|, and proceed to upper bound Ak. We first consider the case of p = 2.

Fact 5.6.1 (the case of p = 2): There exists β < d + 1 such that |Ak| = O(2βk).

Proof: Generalizing the argument in Claim 5.2, we observe that for any fixed k′ ∈ [k − 1] it holds
that

Ak ≤
∑

i∈[k′]

(2i − 1)d ·Ak−i + (2k′+1 − 1)d ·Ak−k′ ,

where Claim 5.2 used d = 1 and k′ = 2 (with an extra observation that allowed us to replace 7 by 5)
and the current observation is illustrated in Figure 6 (e.g., for d = 1 and every i ∈ [k′], we cover

33

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

Figure 6: A one-dimensional projection of the case of p = 2 and k′ = 3 (for the proof of Claim 5.6).
Only the shaded triangles contain locations that may influence the value of the bottom location.

the ith layer (which has height 2k−i) with 2i − 1 triangles of height 2k−i, and the remaining area
is covered by 2k′+1 − 1 triangles of height 2k−k′

). Thus, to establish the inductive step (by which
|Ak| = O(2βk) for some β < d+1), we should show that

∑
i∈[k′](2

i−1)d ·2−iβ+(2k′+1−1)d ·2−k′β < 1.
Using β > d, we get

k′∑

i=1

(2i − 1)d · 2−iβ + (2k′+1 − 1)d · 2−k′β < 2−β +
k′∑

i=2

2id · 2−iβ + 2(k′+1)d · 2−k′β

= 2−β +

k′∑

i=2

2−(β−d)·i + 2−(β−d)k′+d .

Picking β ≈ d + 1, the last expression is approximately 2−(d+1) + (0.5 − 2−k′
) + 2d−k′

, which is
strictly smaller than 1 provided that d ≥ 1 and k′ ≥ d + 2. Hence, the induction claim follows.

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
�������������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

0 31 2 4 5-1-2

Figure 7: A one-dimensional projection of the case of p = 3 and m = 2 (for the proof of Claim 5.6).
The marked positions are scaled by 3k−1. Only the shaded triangles contain locations that may
influence the values of the m = 2 bottom locations. The bottom level represents 2d copies of Ak−1,

the middle level represents a copy of A
(6)
k−1, whereas the top level represents a copy of A

(8)
k−1.

34

Having established the claim for the case of p = 2, we now turn to the case of p > 2, where we
shall use a more refined analysis (which builds on the same ideas).

Fact 5.6.2 (the case of p > 2): There exists β < d + 1 such that |Ak| = O(2βk).

Proof: Fixing any p > 2, for every m, we let A
(m)
k =

∑pk

i=1 |∪j1,...,jd∈{0,...,m−1}({pk ·(j1, ..., jd)}+Di)|;
that is, A

(m)
k is the sum of the locations at times {−i : i ∈ [pk]} that influence any of the locations

{(j1p
k, ..., jdp

k) : j1, ..., jd ∈ {0, ...,m − 1}} at time 0. Indeed, A
(1)
k is identical to Ak, whereas

{(j1, ..., jd) ·pk}+Di intersects {(j′1, ..., j′d) ·pk}+Di only if i > pk/2 (unless, of course, (j1, ..., jd) =

(j′1, ..., j
′
d)). Abusing notation such that A

(m)
k denote a monotonic in m upper bound on A

(m)
k , the

key observation is that

A
(m)
k ≤ md ·Ak−1 +

p−1∑

j=1

A
((m−1)p+2j+1)
k−1 , (10)

where (m − 1)p + 2j + 1 represents the number of integer multiples of pk−1 in the interval [−j ·
pk−1, (m − 1) · pk + j · pk−1]; see Figure 7. (Note that the inequality in Eq. (10) is tight if we

ignore cancelations that were not stated explicitly before.)29 We also have A
(m)
k ≤ md · Ak, which

is wasteful. Using (m− 1)p + 2j + 1 ≤ (m− 1)p + 2p− 1 < mp + p (for any j ∈ [p− 1]), and letting
N(m) = mp + p, we get

A
(m)
k ≤ md ·Ak−1 + (p− 1) · A(N(m))

k−1 . (11)

Letting N0(m) = m and Ni(m) = N(Ni−1(m)), and using Eq. (11), we get

A
(m)
k ≤ N0(m)d ·Ak−1 + (p− 1) · A(N1(m))

k−1

≤ N0(m)d ·Ak−1 + (p− 1) ·
(
N1(m)d ·Ak−2 + (p − 1) ·A(N2(m))

k−2

)

= N0(m)d ·Ak−1 + (p− 1) ·N1(m)d · Ak−2 + (p− 1)2 ·A(N2(m))
k−2

≤
(

k′∑

i=1

(p− 1)i−1 ·Ni−1(m)d ·Ak−i

)
+ (p− 1)k

′ · A(Nk′ (m))
k−k′

Using Ni(m) = p ·Ni−1(m) + p = pim +
∑i

j=1 pj < 2.5mpi (since p ≥ 3), we get

A
(m)
k ≤

(
k′∑

i=1

(p− 1)i−1 · (2.5mpi−1)d ·Ak−i

)
+ (p − 1)k

′ ·A(2.5mpk′)
k−k′

≤
(

k′∑

i=1

(p− 1)i−1 · (2.5mpi−1)d ·Ak−i

)
+ (p − 1)k

′ · (2.5mpk′
)d · Ak−k′

where the second inequality uses A
(M)
k′ ≤Md ·Ak′ . Now, in order to prove that there exists fixed c

and β < d + 1 (which may both depend on p and d) such that for all k it holds that |Ak| < c · pβk,
we need to prove that

Q
def
=

(
k′∑

i=1

(p − 1)i−1 · (2.5pi−1)d · p−iβ

)
+ (p − 1)k

′ · (2.5pk′
)d · p−k′β < 1 .

29That is, if we only use Dpi = {−pi, 0, pi} and Di+1 ⊆ Di + D1.

35

Note that

Q =
2.5d

pβ
·

k′∑

i=1

(
(p− 1) · pd · p−β

)i−1
+ 2.5d ·

(
(p− 1) · pd · p−β

)k′

=
2.5d

pβ
·

k′∑

i=1

qi−1 + 2.5d · qk′

where q
def
= (p− 1) · pd · p−β. For an adequate constant c′ < 0.1, we shall pick β = d+1− (c′/p ln p).

Then, q = (p− 1) · p−1+(c′/p ln p) ≈ p−1
p ·

p+c′

p (or rather we pick c′ such that q = p−1
p ·

p+0.1
p). Hence,

q < p2−(1−c′)p
p2 < 1− (0.9/p), assuming c′ < 0.1. It follows that

∑
i≥1 qi−1 < 1

0.9/p and Q < Q′ +Q′′,

where Q′ def
= 2.5d

pβ ·p/0.9 and Q′′ def
= 2.5d · (1− (0.9/p))k

′
. For large enough c′′ > 0, setting k′ = c′′ ·pd,

we get Q′′ = 2.5d · (1 − (0.9/p))c
′′pd, which is approximately exp(−(0.9c′′ − ln 2.5) · d). Hence, we

can make Q′′ > 0 arbitrary small by picking a large enough c′′. As for Q′, using pβ = (p− 1) · pd/q
and q = p−1

p ·
p+0.1

p , we have

Q′ =
2.5d · (p/0.9)

(p− 1)pd/q

=
2.5d · (p/0.9) · (p − 1)(p + 0.1)/p2

(p − 1)pd

= (2.5/p)d ·
(

1

0.9
+

1

9p

)

≤ (2.5/3)d ·
(

1

0.9
+

1

27

)

where the last inequality holds for p ≥ 3. The claim (i.e., Q′+Q′′ < 1) follows since (2.5/3)d · 3127 < 1
for every d ≥ 1.

Combining Facts 5.6.1 and 5.6.2, the claim follows.

Conclusion. As stated above, Claim 5.6 implies the claims of Theorem 1.7, except that this was
shown only in the case of t = n. We first observe that what Claim 5.6 actually shows is that, for
some γ < d and any t, it holds that (1/t) ·∑j∈[t] |Dj | < tγ . In case t < n, this is actually stronger

than what we need (and indeed in this case the tester has (total) time complexity poly(ǫ−1) · tγ).
But for t > n, we need a slightly different analysis.

Our first observation is that we should only care of location that are at distance at most n− 1
from the origin (in max-norm), since only these location contain non-dummy values. That is, it
suffices to upper-bound (1/t) ·∑j∈[t] |Dj ∩ [−(n − 1), (n − 1)]d|. Letting ℓ = ⌈logp 2n⌉, the second

observation is that, for j ∈ N, the set Dj ∩ [−(n−1), (n−1)]d is a subset of Dj mod pℓ , since pℓ ≥ 2n

and Dpℓ = {−pℓ, 0, pℓ} (see Figure 8).30 Thus, for every t ≥ n, it holds that

1

t
·
∑

j∈[t]

|Dj ∩ [−(n− 1), (n + 1)]d| ≤ 1

t
·
∑

j∈[t]

|Dj mod pℓ |

30In other works, for every i ∈ [pℓ], it holds that Dpℓ+i ∩ [−(n − 1), (n − 1)]d is contained in (Dpℓ + Di) ∩ [−(n −

1), (n − 1)]d, which in turn equals Di, since pℓ ≥ 2n.

36

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
�������������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

Figure 8: A one-dimensional projection of the case of t = 4pℓ (for the analysis of the case of t > n).
Only the shaded triangles (each of height pℓ) contain locations that may influence the value of the
bottom location. The dashed rectangle marks the boundaries of [t]× [−(n− 1), (n − 1)]d.

≤ 1

t
· ⌈t/pℓ⌉ · (pℓ)1+γ

< 2 · (2pn)γ

where the last inequality uses pℓ < p · 2n. Using γ < d, we conclude that for some γ′ < d it holds
that (1/t) ·∑j∈[t] |Dj ∩ [−(n − 1), (n − 1)]d| < nγ′

. Hence, we get

Theorem 5.7 (Theorem 1.7, restated): For any d ≥ 1 and any field Σ of prime order there

exists a constant γ < d such that the following holds. For any linear Γ : Σ3d → Σ there exists
a time-conforming oracle machine of (total) time complexity poly(ǫ−1) · min(n, t)γ that tests the

consistency of evolving environment with respect to Γ : Σ3d → Σ and the identity viewing function.
Furthermore, the tester is nonadaptive and has one-sided error.

We have obtained a sublinear complexity tester for linear rules over any finite field of prime order,
which may be viewed as modular linear rules with a prime modulus. By using the Chinese remainder
theorem, we can obtain a similar tester for modular linear rules with any modulus that is a product
of distinct primes, but this result does not extend to general composite numbers. For starters:

Open Problem 5.8 Can Theorem 5.7 be extended to arbitrary finite fields? More generally, we
ask whether a tester with sublinear complexity exists for linear rules over any commutative ring.

A more important open problem is the following

Open Problem 5.9 (Can Theorem 5.7 be drastically improved?) Our tester has complexity that
is only mildly sublinear. Even in the special case of Claim 5.2, the complexity is n0.8 for an
environment of size n. Does there exist a tester of polylogarithmic complexity?

37

6 Environments of Moving Objects: The Dense Case

In this section we consider dynamic environments that represent objects that are moving in a d-
dimensional space.31 Recall that in Theorem 2.3 we considered very simple objects that move at
the same fixed speed in one of a few directions and may cross each other’s way without causing any
interruption. In the current section, we consider somewhat more involved movements. For starters,
we consider objects that move at the same fixed speed in one of a few directions, as long as their
paths do not cross; when their paths do cross the objects just stop at their current location (and
remain there forever). The one-dimensional case is studied in Section 6.1.

For sake of simplicity, we present the model in intuitive terms, rather than via a cellular au-
tomata. Nevertheless, such a modeling can be provided by using a “semaphoring” mechanism (to
avoid collision); for details, see Section A.2.

The model studied in the current section is most adequate for the case that the number of
objects is comparable to the size of the environment; that is, the density of the objects in the
environment is noticeable with respect to the proximity parameter (i.e., there are more than ǫnd

objects). An alternative model that is aimed at environment with very few objects is presented in
Section 7.

6.1 A special case: Fixed one-dimensional interruptible movement

We consider the case of one-dimensional environments of moving objects that move in a fixed
direction (until they stop since they collide with some other object). We encode such objects by
the direction of their movement, represented by −1, 0,+1, which is visible (to the observer). A
vacant location is represented by ⊥. An object moves to a vacant location (in the direction of
its movement) if no other object wishes to move to that location; otherwise it stops in its current
location (i.e., remains in its current location (forever)). The latter case consists of two subcases:
(1) more than one object wishes to move to the same location, and (2) the location that the object
wish to move to is occupied by an object that wishes to either stay there or move in the opposite
direction. We also postulate that in the initial configuration the moving objects are not adjacent to
one another. This restriction allows to avoid the case that an object wishes to enter a location that
is currently occupied by an object that wishes to move in the same direction.32 The justification for
this restriction is that in “real life” movement is continuous and such a problem will not arise. Since
we work with a discretized space, we can simply select the discretization based on the minimum
distance between objects.

(We note that a single evolution step of this environment can be emulated by a pair of steps of
the cellular automaton described in Section A.2.)33

31In fact, the models described in this section are related to Chazelle’s original interest in tracing the movement of
objects in an environment (see Acknowledgments).

32Note that this case is problematic because we may have a long sequence of such objects in which the first one (i.e.,
the one “in front”) wishes to move into a location that is occupied by a standing object, in which case the movement
of the entire sequence is postponed (but this case cannot be detected locally at the other end of the sequence).

33In fact, we use a small modification of that CA in which permission to enter a cell is not granted to any object
when several objects wishes to enter it. (In Section A.2, in such a case, we granted entry permit to exactly one object.)
The emulation proceeds as follows: In the first sub-step, objects that wish to move are replaced by an “out-shadow”
in the old location and an “in-shadow” appears in the new (vacant) location (provided that only one object wishes
to enter the vacant location, otherwise the new location is marked as denying access). In the second sub-step, the
out-shadow is modified according to the contents of the foregoing new location; in particular, if an in-shadow was
marked, then it is transformed into the current residence of the object and the corresponding out-shadow is removed.
In other words, the in-shadow is used as a semaphore in this primitive access control mechanism. Objects wishing to

38

6.1.1 A two-sided error tester

It will be more convenient to associate the initial time period with 0 rather than with 1. Thus, we
consider testing the evolution of environments of the form ENV : {0, 1, ..., t} × [n]→ {−1, 0,+1,⊥},
where ⊥ encodes an empty position and δ ∈ {−1, 0, 1} encodes an object that moves in direction
δ (where δ = 0 means that the object remains in place). The reader may think of t = n, but the
analysis holds for any t ∈ [ǫn, n]. (The few places where we rely on these bounds will be indicated.)
The other cases (i.e., t < ǫn and t > n) will be treated separately at the end of this subsection.

In the following description we also refer to queries made to locations outside of the environ-
ment’s domain (i.e., [n]); such queries are of course not made, and the tester never rejects based
on them (i.e., at each check, the answer is fictitiously defined as one that will not cause rejection).

The tester. Given proximity parameter ǫ, the tester selects two random sets S ⊂ [n] and R ⊂ [t]
of m = poly(1/ǫ) elements each, and augments R with 0 (i.e., 0 ∈ R always holds). It then conducts
the following checks:

1. Spaced initial configuration check: The test checks whether the initial configuration contains
no adjacent moving objects. That is, for every s ∈ S, the test queries ENV0(s) and ENV0(s+1),
and checks that at least one of these two values is in {0,⊥}.

2. Individual movement check: The test checks whether the movement of individual objects (as
well as their standing) is continuous; that is, if an object moved at time j, then it must have
moved at every time prior to time j, whereas if it stayed in place in time j then it must have
stayed in place at any time after j (i.e., if ENVj(i) = δ ∈ {±1}, then ENVj−1(i−δ) = δ, whereas
if ENVj(i) = 0, then ENVj+1(i) = 0). This is checked in a rather straightforward manner, as
explained next.

Let R = {r0, r1, ..., rm} such that 0 = r0 < r1 < r2 < · · · < rm. Then, for every s ∈ S and
every δ ∈ {±1}, the test queries for the values of ENV0(s), ENVr1(s+δ ·r1), ..., ENVrm(s+δ ·rm),
and checks that the sequence of answers is in δ∗{0,−δ,⊥}∗. Likewise, for every s ∈ S, the
test queries for the values of ENV0(s), ENVr1(s), ..., ENVrm(s), and checks that the sequence of
answers is in {±1,⊥}∗0∗. For an illustration, see Figure 9.

3. Matching movement and standing check: While Step 2 checks that we have continuous move-
ment and standing of objects, it does not check that the “standing” (of an object) starts when
its movement ends (rather than have objects disappear or be created). To check this feature,
the tester checks that the statistics regarding the ending of movements matches the statistics
of standing objects. Details follow.

We say that an object with initial position s ∈ S stopped approximately at time r ∈ R if
there exists δ ∈ {±1} such that ENVr(s + δ · r) 6= δ and for every r′ < r in R it holds that
ENVr′(s + δ · r′) = δ; in this case, the approximate stopping position of this object is defined
as s + δ · r. Likewise, we say that an object started standing in position i approximately at
time r ∈ R if ENVr(i) = 0 and for every r′ < r in R it holds that ENVr′(i) 6= 0. In particular,
objects that stand at time 0 are not considered as starting to stand (at time 0), and will not
be included in this check. Ditto for moving objects that never stop. For an illustration, see
Figure 10.

move to an occupied location are handled more easily (since they can be made to stop immediately, without resorting
to any access control mechanism).

39

s

1

1

1

0

s
′

0

0

0

s
′

−1

−1

−1

0

1

0

0

s

0 0

0

Figure 9: An illustration for Step 2. The left image shows a legal configuration, whereas the
right image shows an illegal one. The broken lines indicate the trajectories of the objects, and the
violations are circled on the right.

s

1

1

1

0

0

0

0

r

r
′

s
′

0

⊥

⊥

⊥

⊥

⊥

−1

Figure 10: An illustration for the notions of approximate stopping time and approximate time of
starting to stand. The object that was in position s at time 0, stopped approximately at time r,
and the object who is standing in position s′ at time t, started to stand approximately at time r′.

By using the queries made in Step 2, the tester compiles a list of pairs (r, i) such that i ∈ S±R

(
def
= {si ± rj : si ∈ S, rj ∈ R}) is the approximate stopping position of an object that stopped

at approximate time r ∈ R, and a list of pairs (r, i) such that some object started standing
in position i ∈ S approximately at time r ∈ R. For a fixed polynomial p, the tester checks if
there exists a matching between the two lists such that the sum of the pairwise distances is
smaller than p(ǫ) ·n|S|, where an unmatched list element is charged 2n units and a matching
of element (r1, i1) to element (r2, i2) is charged |r1 − r2| + |i1 − i2| units. Details regarding
the implementation of this check appear in the analysis of this step.

4. Non-crossing movement check: While Steps 2 and 3 refer to the individual movement and
standing of objects, the current step refers to their pairwise interaction. Specifically, referring
to the queries made in Step 2, the current step checks that no two objects have crossed each
other’s way. This is checked in a rather straightforward manner, as described next.

40

s+r s’-r
r

r’
s’-r’ s+r’

s+r
r

r’
s+r’

s’

Figure 11: An illustration for Step 4. The left image shows a crossing of two moving objects,
whereas the right image shows an object moving to the right while crossing a standing object (at
position s′).

For k = 0, 1, ...,m − 1, the test rejects if there exist s1, s2 ∈ S such that ENVrk
(s1 + rk) =

ENVrk+1
(s1+rk+1) = 1 and ENVrk

(s2−rk) = ENVrk+1
(s2−rk+1) = −1, whereas s1+rk < s2−rk

but s1 + rk+1 > s2 − rk+1. This means that at time rk, location s1 + rk contains an object
moving to the right and location s2 − rk, which is on the right of location i1 + rk < s2 − rk,
contained an object moving to the left, but at time rk+1 the first object was positioned to the
right of the second object: See the left image in Figure 11. Likewise, for k = 0, 1, ...,m − 1,
the test rejects if there exist s1, s2 ∈ S such that ENVrk

(s1 + rk) = ENVrk+1
(s1 + rk+1) = 1

(resp., ENVrk
(s1 − rk) = ENVrk+1

(s1 − rk+1) = −1) and ENVrk
(s2) = ENVrk+1

(s2) = 0, whereas
s1 + rk < s2 but s1 + rk+1 > s2 (resp., s1 − rk > s2 but s1 − rk+1 < s2): See the right image
in Figure 11.

5. Non-spaced standing check: The purpose of this check is to test that whenever objects stop,
they do so for a good reason (i.e., the location that they want to move into is occupied
already). Thus, when an object moving in a certain direction stops (e.g., starts at position s
and stops at time r at position s + r), all objects that move in the same direction and pass
through the initial position of the first object (i.e., s) must stop in subsequent locations (i.e.,
without leaving gaps among them). See illustration in Figure 12.

This check is performed as follows. The tester considers the intervals of movements that it
has seen in prior steps. For each s ∈ S such that ENV0(s) ∈ {+1,−1}, let r+(s) denote the
approximate stopping time of the object with initial position s (as defined in Step 3) and let

r−(s)
def
= max{r ∈ R : r < r+(s)}. By the definition of the approximate stopping time of

on object, the exact time that the object with initial position s is supposed to stop is in the
interval (r−(s), r+(s)]; that is, it is still moving at time r−(s) and is no longer moving at time
r+(s). For any pair of objects that both move to the right (resp. to the left) and have initial
starting positions s and s′ < s (resp. s′ > s), if s′+r−(s′)+1 ≥ s (resp. s′−r−(s′)−1 ≤ s) the
test considers the interval I = [s′+r+(s′), s+r−(s)+1] (resp. I = [s−r−(s)−1, s′−r+(s′)]).
If there exists a point p ∈ S ∩ I such that ENVt(p) 6= 0, then the tester rejects. For an
illustration, see Figure 13.

Loosely speaking, except for Step 3, the tester essentially checks whether the values obtained from
ENV are consistent with a legal evolution of the environment (from some legal initial configuration).

41

s s+rs’

s’+r’

Figure 12: An illustration for Step 5. The first object moves from position s to position s + r,
where it stops, whereas the second objects moves from s′ < s to s′ + r′ ∈ [s, s + r). In this case,
the interval [s′ + r′, s + r] must be filled with stopping objects (at time t).

Step 3 goes beyond such a consistency requirement: It also asks whether the statistics of stopping
and starting-to-stand times match. Indeed, such a check, which relies on statistics, has two-sided
error. As will be shown in Theorem 6.7, two-sided error is essential for any tester (for this rule)
that has complexity that does not depend on the size of the environment (i.e., n).

Clearly, any environment ENV that is consistent with the (“moving object”) evolution rule is
accepted with very high probability. The (small) error probability is due to Step 3, which performs
an estimation based on a random sample.

The rest of the analysis is devoted to showing that if the tester accepts with high probability
(say, with probability at least 2/3), then ENV is ǫ-close to an evolution that is determined by the
foregoing rule of fixed-speed movement with stopping. We proceed in a sequence of steps, where
in each step we rely on the fact that a specific check of the tester passed in order to show that the
currently considered environment is close to one that satisfies yet another constraint.

It will be convenient to associate a separate random sample to each step; that is, Step i uses a
sample Si ⊂ S and Ri ⊂ R. Note that the fact that the actual steps use the same (bigger) sample
only improves their quality. This is obvious for the checks that have a one-sided error probability,
but also holds for Step 3.

Inferring from the success of Steps 1 and 2. Looking at ENV, for every i ∈ [n] and δ ∈ {±1},
we consider a possible moving object that starts in location i (at time 0) and moves in direction
δ. We call such a movement legal if the sequence of values ENV0(i), ENV1(i + δ), . . . , ENVt(i + δ · t) is
in δ∗{0,−δ,⊥}∗. We say that the sequence is γ-close to being legal for γ ∈ [0, 1] if it can be made
legal by modifying at most γt values in the sequence.

If Step 2 accepts (with probability at least 2/3), then it must be that, for all but at most
poly(ǫ) ·n of the pairs (i, δ) ∈ [n]×{±1}, the movement that starts at i ∈ [n] in direction δ ∈ {±1}
is poly(ǫ)-close to being legal. Now, we omit the few exceptions, and correct the rest of the
movements so that they are legal. We address the issue of different corrections of the same cell
(due to collisions of objects) subsequently.

42

ss′ Time 0

Time t

r−(s′)

r+(s′)

r−(s)

r+(s)

I

Figure 13: An illustration for the check performed in Step 5. The solid segments indicate that the
object is moving, and the dashed segments indicate that the object is either moving or already
stopped. The interval I must fully consist of standing objects at time t.

For each such moving object we call its actual movements (i.e., the δ∗-prefix of ENV0(i), ENV1(i+
δ), ..., ENVn(i + δn)) a diagonal line. Likewise, we can correct the vertical lines so that they become
legal, where the vertical line at position i is legal if the sequence of values ENV0(i), ENV1(i)..., ENVn(i)
is in {±1,⊥}∗0∗. In the sequel, we refer to its 0∗-suffix as a vertical line.

Finally, relying on Step 1, we can omit the few (non-empty) diagonal lines that are adjacent to
other (non-empty) diagonal lines. Thus, we obtain an environment ENV′ that is ǫ1-close to ENV, for
ǫ1 = poly(ǫ) to be determined later. Indeed, in ENV′ the initial configuration (i.e., ENV′0) contains
no adjacent moving objects, and the movement of individual objects in ENV′ is continuous; that is,
ENV′ consists of a collection of diagonal lines and vertical lines (but there is no guarantee as to the
relation between these lines). Note, however, that ENV′ may contain illegal symbols for the (possibly
created) collisions of two objects in same cell; this illegality will be removed in the analysis of Step 4
(which is handled after handling Step 3).

Inferring from the success of Step 3. The analysis consists of two sub-steps: First we use
the hypothesis that the check passes (with high probability) in order to argue that the statistics
of the actual stopping and standing pairs in ENV′ (rather than the approximate locations viewed
in the sample of ENV) are close. Once this is done, we shall close the gap (between the stopping
and starting locations) in a way that corresponds to legal movements of objects. Note that the
foregoing claim is made with respect to ENV′, whereas the tester tests ENV. However, our analysis
will refer to a number of samples m′ that is sufficiently small such that m′ǫ1 is very small (and so
this analysis (which corresponds to a part of the tester) cannot tell the difference between ENV′ and
ENV). The first step in the analysis corresponds to the following problem, which is of independent
interest, where in our case d = 2 and we are interested in the ℓ1-norm.

43

Definition 6.1 (the matching distance between sets of points in [0, 1]d): Let P = {p1, ..., pn} and
Q = {q1, ..., qn} be sets of points in [0, 1]d, and define the pairwise distance between these sets as

∆(P,Q) = min
π∈Sym(n)




∑

i∈[n]

‖pi − qπ(i)‖



 (12)

where Sym(n) denotes the set of permutations over [n] and ‖ · ‖ denotes some fixed norm over R
d.

The problem is to approximate ∆(P,Q), when obtaining samples from P and from Q. We assume,
without loss of generality, that ‖r‖ ≤ d for every r ∈ [0, 1]d.

Claim 6.2 (estimating the matching distance between sets of points in [0, 1]d): The pairwise dis-
tance between two n-sets can be approximated up to an additive deviation of ǫ′n by a probabilistic
poly(1/ǫ′)-time algorithm that can obtain samples from both sets. Furthermore, the algorithm out-
puts the value of (n/m) · ∆(P ′′, Q′′), where P ′′ and Q′′ are sets of m = poly(1/ǫ′) points selected
uniformly and independently in the corresponding n-sets.

We comment that, for d = 1, an optimal permutation π is obtained by sorting both sets and
matching the ith element of P to the ith element of Q (see Remark 6.3).

Proof: For ε = ǫ′/10d, consider a discretization of all points such that each point reside in
{((i1 − 0.5) · ε, ..., (id − 0.5) · ε) : i1, ..., id ∈ [1/ε]} and is at distance (i.e., ‖ · ‖-distance) at most
dε/2 from its original location. Denote the resulting multi-sets by P ′ and Q′, respectively. Clearly,
∆(P ′, Q′) = ∆(P,Q)± dεn.

Next, consider taking m-sized samples from P ′ and Q′, denoted P ′′ and Q′′, and consider the
multi-sets P ′′′ and Q′′′ obtained by repeating each element in the sample n/m times. Since, with
very high probability, the element-counts in the multi-sets P ′′′ and Q′′′ are very similar to the counts
in P ′ and Q′, it holds that ∆(P ′′′, Q′′′) = ∆(P ′, Q′) ± εn. Finally, observe that ∆(P ′′′, Q′′′) = n

m ·
∆(P ′′, Q′′), where the lower bound holds by observing that the permutation π′′′ used in ∆(P ′′′, Q′′′)
yields a permutation π′′ for ∆(P ′′, Q′′).34 We note that ∆(P ′′, Q′′) can be computed in poly(m)-time
by finding a perfect matching of minimum weight in the bipartite graph defined by the distances
between points in P ′′ and points in Q′′.

Remark 6.3 (computing the matching distance between sets of points in [0, 1], a detour): In the
case of d = 1, a permutation π that obtains the value of Eq. (12) can be found by sorting both sets
and matching the ith element of P to the ith element of Q. The claim can be proved by considering
{p1, ..., pm} ⊂ R and {q1, ..., qm} ⊂ R such that p1 < · · · < pm and q1 < · · · < qm and showing
that

∑
i∈[n] |pi − qi| equals minπ{

∑
i∈[n] |pi − qπ(i)|}. To show this, let π a permutation achieving

the latter minimum, and let i ∈ [n] be smallest such that π(i) 6= i. Letting j = π(i) and k = π−1(i),
we observe that |pi − qi| + |pk − qj| ≤ |pi − qj | + |pk − qi| and the claim follows (by considering a
permutation π for which min(i : π(i) 6= i) is largest).35

34Observe that π′′′ defines a n/m-regular bipartite graph with multiple edges crossing the bipartition (P ′′, Q′′),
where |P ′′| = |Q′′| = m. Coloring the edges of this bipartite graph with n/m colors, it follows that there exists
a color that corresponds to a perfect matching of minimum sum of distances. This matching yields the desired
permutation π′′.

35In proving this observation, we may assume, w.l.o.g, that pi < qi (and note that j, k > i). If pk > qi, then
|pi − qj |+ |pk − qi| ≥ |[pi, max(pk, qj)]| > |[pi, qi]|+ |pk − qj |. If pk ≤ qi, then |pi − qj |+ |pk − qi| = |[pi, qj]|+ |[pk, qi]| =
|[pi, qi]| + |[pk, qj]|.

44

Turning back to the analysis of Step 3, let {(r′i, s′i) : i ∈ [n′]} denote the set of ending positions
of diagonal lines (i.e., the stopping positions of moving objects), and {(r′′i , s′′i) : i ∈ [n′′]} denote
the starting positions of vertical lines (i.e., positions in which objects started standing). Defining
pi = (r′i, s

′
i)/2n (resp., qi = (r′′i , s′′i)/2n) if i ∈ [n′] (resp., if i ∈ [n′′]) and pi = (1, 1) (resp., qi = (1, 1))

otherwise, we apply Claim 6.2. Note that since t ≤ n, the original positions in {0, 1, ..., t} × [n]
are mapped to positions in [0, 0.5]2, and matching the image of such a position to a fictitious
position (i.e., (1, 1)) carries a large cost (i.e., distance at least 0.5). Assuming that, with high
probability, Step 3 did not reject, we infer that the matching distance between the pi’s and the qi’s
is at most poly(ǫ) · n. (Note that Step 3 effectively samples these points, except that it uses good
approximations for their locations rather than their actual values.)36

It follows that all but at most poly(ǫ) · n of the (ending positions of the) diagonals and the
(starting positions of the) verticals can be matched to one another such that the distance between
each pair of matched points is at most poly(ǫ) ·n. (This holds when testing ENV, although the claim
refers to ENV′, because the two are ǫ1-close and the size of the sample that we took is smaller than
1/10ǫ1.)

37

Omitting the exceptional lines (i.e., the lines left unmatched or pairs of lines that are matched
at a large distance), we remain with small gaps in the remaining pairs of lines, where each gap is
of size at most poly(ǫ) · n, which is small compared to t ≥ ǫn. The generic cases for such gaps
(up to rotation) are depicted in Figure 14. In all cases, the diagonal line and the vertical line are
extended or truncated to the crossing position marked ‘X’. Hence, we obtain an environment ENV′′

that is ǫ2-close to ENV, where ǫ2 = poly(ǫ) > ǫ1 (since we used m = poly(1/ǫ2) < 1/10ǫ1). Indeed,
ENV′′ retains the foregoing features of ENV′, and in addition the stopping places of its diagonal lines
match the starting places of vertical lines. In other words, ENV′′ consists of lines that go from the
first row to the last row such that each line consists of an initial (possibly empty) diagonal segment
followed by a (possibly empty) vertical segment. (But these lines may cross one another.)

Inferring from the success of Step 4. Considering the environment ENV′′, we note that there
may be line-crossings of two types: (1) crossing between lines that move in the same direction (with
one turning vertical and crossing the other that continues as diagonal), and (2) crossing between
lines that move in opposite directions (or between diagonals and lines that are vertical all along).
We deal with each of these cases separately.

Starting with lines that describe a right movement (i.e., δ = +1), we denote the start and
end position of these lines by (s1, e1), ..., (sn′ , en′); that is, the ith line starts at location si at
time 0, and ends at location ei ≥ si at time t. Let ti denote the time in which the corresponding
object stopped (i.e., the ith line becomes vertical), so that ti = ei − si. We assume, w.l.o.g., that
s1 < s2 < · · · < sn′ , and let π : [n′] → [n′] denote the (unique) permutation that “sorts” the
end-locations; that is, eπ(1) < eπ(2) < · · · < eπ(n′). We eliminate the crossing among these lines by

modifying the lines such that the ith line (which starts at location si) ends at location eπ(i) rather
than at location ei, obtaining an environment ENV′′′. The simple case in which a single crossing is
eliminated (i.e., π(i) = j and π(j) = i) is depicted in Figure 15; note that in this case the cost is
2 · (sj − si) + 2 ·

√
2(ei − ej), which is smaller than 3 · (|si − sj|+ |ei − ej|).

36Indeed, two points are being made here. The first is that by selecting a random s ∈ [n] and considering the
diagonal (r, s + r)r∈[t] (resp., (r, s− r)r∈[t]), Step 3 samples the ending positions, where the cases of ENV0(s) ∈ {0,⊥}
and of a diagonal that does not stop are handled as generating a fictitious point. The same holds with respect to
sampling the starting positions of vertical lines. The second point is that Step 3 uses the approximate ending (and
starting) positions rather than the actual ones, but the approximation is good enough.

37Hence, the sample taken for the estimation hits a point on which ENV and ENV
′ differ with probability at most 1/10.

45

1

2

X

1

2

X

Figure 14: Analysis of Step 3. The left image shows (part of) a diagonal line that stops too early
(with respect to its matched vertical line, which starts at either location 1 or location 2), whereas
the right image shows a diagonal that stops too late.

In general, π(i) = j may not imply π(j) = i, yet we claim that the cost of the entire correction
is smaller than 2 ·∑i∈[n′](|ei − eπ(i)| + |si − sπ(i)|). This is shown by charging each i (such that
π(i) 6= i) one diagonal segment and one vertical segment. Each such segment is either removed or
added, and the charging rule is described next. Recall that ti = ei − si denotes the time in which
the object corresponding to line i stops moving. Let t′i = eπ(i) − si denote the time in which the
object corresponding to line i stops moving after we eliminate the crossings as described above.
Observe that t′i − ti = eπ(i) − ei and that t′i − tπ(i) = si − sπ(i).

• Diagonal segment. We charge i with the diagonal segment between (ti, ei) and (t′i, eπ(i)). If
ei > eπ(i), implying that ti > t′i, then this segment is removed, and if ei < eπ(i), implying that

ti < t′i, then this segment is added. The length of this segment is
√

(ti − t′i)
2 + (ei − eπ−1(i))

2,

and since |ti − t′i| = |ei − eπ−1(i)| this length equals
√

2 · |ei − eπ−1(i)|.

• Vertical segment. We charge i with the vertical segment between (t′i, eπ(i)) and (tπ(i), eπ(i)).
If i < π(i), implying that si < sπ(i) and hence t′i > tπ(i), then this segment is removed, and if
i > π(i), implying that si > sπ(i) and hence t′i < tπ(i), then this segment is added. The length
of this segment is |t′i − tπ(i)| = |si − sπ(i)|.

For an illustration of the charged segments, see Figure 16. The claim follows; that is, the cost of
the entire correction is smaller than 2 ·∑i∈[n′](|ei − eπ(i)|+ |si − sπ(i)|).

On the other hand, the number of crossings (i.e., |{(i, j) ∈ [n′]2 : i < j ∧ ei > ej}|, which equals
|{(i, j) ∈ [n′]2 : i < j ∧ π−1(i) > π−1(j)}|) is at least 1

2

∑
i∈[n′] |i − π−1(i)| = 1

2

∑
i∈[n′] |i − π(i)|.

To verify this observe that if π−1(i) > i (that is, ei appears in position greater than i in the
sorted order of the ei’s), then the number of lines j such that j > i and ej < ei must be at least
p−1(i)− i and an analogous argument holds for the case that π−1(i) < i regarding lines j such that
j < i and ej > ei. The next claim implies that

∑
i∈[n′] |i − π(i)| can be lower bounded in terms of∑

i∈[n′](|ei− eπ(i)|+ |si− sπ(i)|); hence, if Step 4 rejects with small probability, then it must be the

case that the correction cost is low.38

38Again, we use the fact that the size of the sample required to detect a crossing is small enough so that this sample

46

ei

si sj

sj − si

ej END (time t)

START (time 0)

√
2 · (ei − ej)

Figure 15: Eliminating a crossing between lines i and j in the analysis of Step 4 for the case that
π(i) = j and π(j) = i. The segments that are omitted are shown in dashes, and the segments that
are added are shown in bold.

Claim 6.4 (distances versus ranking with respect to sorted order on the line): Let r1 < r2 < · · · <
rn be real numbers such that rn ≤ r1 + n and π : [n]→ [n] be a permutation. If

∑
i∈[n] |ri− rπ(i)| >

εn2, then
∑

i∈[n] |i− π(i)| > poly(ε) · n2.

Claim 6.4 extends to the case that we have only n′ < n points, by introducing n−n′ dummy points
(such that π(i) = i for i > n′). Applying Claim 6.4 twice (once with s1, ..., sn′ and π and once with
eπ(1), ..., eπ(n′) and π−1), we infer that if the corrected environment ENV′′′ (obtained from ENV′′ as
described above) is ǫ′-far from ENV′′ (i.e., 2 ·∑i∈[n′](|ei − eπ(i)| + |si − sπ(i)|) > ǫ′t ≥ ǫ′′n2), then

|{(i, j) ∈ [n′]2 : i < j ∧ π(i) > π(j)}| > poly(ǫ′′) · n2. But in the latter case Step 4 will reject with
high probability (when inspecting either ENV′′ or ENV), since most of the crossings do not occur
close to the end of the line segments. The reason is simply that for each line and value v, the
number of lines that can cross the line at distance at most v from the end of its diagonal segment
(beginning of its vertical segment) is at most v. Thus, the hypothesis that the test accepts (with
high probability) implies that ENV′′′ is ǫ3-close to ENV.

Proof: We partition [n] into buckets, Bj,k for j, k ∈ [c], where c = 2/ε, such that i ∈ Bj,k if
ri ∈ [(j ± 0.5)εn/2) and rπ(i) ∈ [(k± 0.5)εn/2). The contribution of

⋃
j∈[c] Bj,j to

∑
i∈[n] |ri− rπ(i)|

is at most εn2/2, since each i ∈ Bj,j contributes at most εn/2, and it follows that there exist j 6= k

such that
∑

i∈Bj,k
|ri − rπ(i)| > εn2/2c2 = ε3n2/8. Note that |Bj,k| > ε3n2/8

n = (ε/2)3 · n, since

maxi{|ri − rπ(i)|} ≤ n. Let Bj,k = {i1, ..., im} where i1 < i2 < · · · < im, and note that for every
i ∈ Bj,k it holds that i ∈ [i1, im] but π(i) 6∈ [i1, im], since [ri1 , rim] ⊆ [(j ± 0.5)εn/2) whereas rπ(i) ∈
[(k± 0.5)εn/2) and [(j ± 0.5)ǫ′n/2)∩ [(k± 0.5)ǫ′n/2) = ∅ for j 6= k. Let B′ = {i ∈ Bj,k : π(i) < i1}
cannot distinguish ENV from ENV

′′, which is ǫ2-close to it.

47

ei

(t′i, eπ(i))

si

eπ(i)ei

(tπ(i), eπ(i))

(t′i, eπ(i))

(ti, ei)

sisπ(i)sπ(i)si

END (time t) eπ(i) ei

(ti, ei)

(t′i, eπ(i))

sπ(i) − si

(tπ(i), eπ(i))

ei eπ(i)

si

eπ(i)

(ti, ei)

(t′i, eπ(i))

sπ(i) sπ(i)

START (time 0)

√
2 · (ei − eπ(i))

(tπ(i), eπ(i))

(tπ(i), eπ(i))

(ti, ei)

Figure 16: An illustrations for the charging rule in the analysis of Step 4. The omitted segments
are shown in dashes and the added segments are shown bold. In all cases line i is charged for either
the omission or the addition of the diagonal segment whose endpoints are (ti, ei) and (t′i, eπ(i)) and
for either the omission or the addition of the vertical segment whose endpoints are (t′i, eπ(i)) and
(tπ(i), eπ(i)). The four cases correspond to the four possibilities with respect to the relation between
si and sπ(i) and between ei and eπ(i). The lengths of the segments appear in the top left illustration.

and B′′ = {i ∈ Bj,k : π(i) > im}. Then,

∑

i∈Bj,k

|i− π(i)| =
∑

i∈B′

(i− π(i)) +
∑

i∈B′′

(π(i) − i)

=
∑

i∈B′

((i1 − π(i)) + (i− i1)) +
∑

i∈B′′

((im − i) + (π(i) − im))

=
∑

i∈B′

|i1 − π(i)| +
∑

i∈B′

|i− i1|+
∑

i∈B′′

|im − i|+
∑

i∈B′′

|π(i) − im|

48

≥ 2
∑

i∈[|B′|]

i + 2
∑

i∈[|B′′|]

i

where the inequality follows since each of the four sums is a sum of distinct positive integers. The
claim follows since |B′|2 + |B′′|2 ≥ 2 · (m/2)2.

The foregoing description refers to crossings among the set of lines that move from left to right,
but the same applies to the set of lines that go in the opposite direction. Hence, we eliminate
all crossings among pairs of lines that go in the same direction (i.e., Type (1)). We now turn to
crossings between lines that move in opposite directions and between diagonals and (full) verticals
(i.e., Type (2)), where by verticals we refer to lines that are vertical from the start (i.e., from
time 0). We shall actually first deal with this (sub)type of crossing, and before doing so we will
convert lines that are almost vertical (i.e., which have a very short diagonal segment) into perfectly
vertical lines.

Specifically, we call a line almost vertical if its diagonal segment is shorter than ǫ3 · n. We turn
all almost vertical lines to vertical at a relative cost of ǫ3, while possibly introducing new crossings
between verticals and diagonals. Abusing notation, let ENV′′′ denote the resulting environment and
note that ENV′′′ is 2ǫ3-close to ENV. We first relate the number of vertical-vs-diagonal crossings to
the number of lines that participate in them. This is done by using the following claim (where
points represent verticals and intervals represent diagonal segments).

Claim 6.5 (vertex cover versus number of edges in some interval graphs): Let p1, . . . , pn ∈ [0, 1] be
points and I1, . . . , In be intervals that are internal to [0, 1] such that |Ij | > ǫ′ for every j. Consider
the bipartite graph with vertex set {pi : i∈ [n]} ∪ {Ij : j∈ [n]} such that (i, j) is an edge if and only
if pi ∈ Ij . Then, for every ǫ′′ > 0, the number of edges in this graph is at least ǫ′ǫ′′ ·n · (τ − ǫ′′n)/2,
where τ is the size of a minimum vertex cover in this graph.

Indeed, a vertex cover in this bipartite graph corresponds to a set of lines that when omitted from
the current environment yields an environment in which there are no crossing between vertical lines
and lines having diagonal segments. Claim 6.5 asserts that if this number must be big (i.e., bigger
than 2ǫ′′n), then there are many (i.e., poly(ǫ′ǫ′′) · n2) pairwise crossings.

Proof: We show that if the edge density is low, then the graph has a small vertex cover. Specifically,
we construct a vertex cover of the graph in iterations, where in each iteration we add a single vertex
(i.e., an Ij) to the vertex cover and drop many edges from the current graph. When we complete
the process only few vertices are left and so adding these to the vertex cover is fine. Details follow.

We consider a fixed partition of [0, 1] into 1/ǫ′ consecutive segments, denoted S1, . . . , S1/ǫ′ , such
that Si = [(i − 1)ǫ′, iǫ′) for i < 1/ǫ′ and Si = [(i − 1)ǫ′, iǫ′) for i = 1/ǫ′. At each iteration, we
maintain in the current graph only non-isolated vertices. If there exists a segment Sk that contains
at least ǫ′′ǫ′n point vertices (i.e., pi’s), then we consider the median point pi in that segment; hence,
pi ∈ Sk whereas |{j : pj ∈ Sk ∧ pj ≤ pi}| ≥ |Sk|/2 and |{j : pj ∈ Sk ∧ pj ≥ pi}| ≥ |Sk|/2. Let Ij

be an interval that contains pi (i.e., (i, j) is an edge in the residual graph). Then, Ij contains at
least half of the points in Sk, since Ij (which has length greater than ǫ′) covers pi as well as one of
the endpoints of Sk (and thus it covers all points in between). Thus, adding Ij to the vertex cover
and omitting all edges that it covers, we increased the vertex cover by one unit while omitted at
least |Sk|/2 ≥ ǫ′′ǫ′n/2 edges. The process stops when no segment contains ǫ′′ǫ′n point vertices that
are non-isolated in the current graph, which means that the residual graph contains at most e′′n
non-isolated point vertices. Thus, i iterations yields a vertex cover of size at most i + ǫ′′n, whereas
the number of edges omitted in these i iterations is at least iǫ′′ǫ′n/2. Denoting the minimum vertex

49

cover of the original graph by τ , we get i ≥ τ − ǫ′′n and so the number of edges in the original
graph is at least (τ − ǫ′′n) · ǫ′′ǫ′n/2. The claim follows.

Hence, assuming that Step 4 rejected with very small probability, we infer that the number of
pairwise crossings between (almost) verticals and diagonal segments is small (i.e., smaller than
poly(ǫ) · n2). Using Claim 6.5, it follows that few lines (i.e., poly(ǫ) · n) can be omitted from the
environment such that all these crossing are eliminated. (Using t ≥ poly(ǫ) · n, it follows that such
an omission yields an environment that is poly(ǫ)-close to ENV′′′.)

A similar argument can be applied to crossing between diagonals that move in opposite direc-
tions. In this case we consider each of the two endpoints of diagonals that move in one direction
against the intervals of movement of the diagonals that move in the other direction. (This is done
twice, once per each direction playing the first role; see below.) Note that the number of edges
in each application may be twice the number of crossing (since each line of the opposite direction
contributes two endpoints), whereas a lack of edges between an interval and the endpoints of an
(opposite direction) interval means that the former interval is internal to the latter (in which case
edges will appear in the other application). Details follow.

Let {Ri}i∈[n′] (resp., {Li}i∈[n′′]) denote the set of intervals that correspond to diagonals that
move to the right (resp., left). Now, consider one invocation of Claim 6.5 in which the Ri’s play the
role of the intervals and the endpoints of the Li’s play the role of points, and a second invocations
in which the roles are reversed. Note that each crossing (between some Ri and Lj) contributes at
least one edge to one of the two graphs, and at most four such edges. On the other hand, edges
may arise only from intervals that overlap. Again, assuming that Step 4 rejected with very small
probability, we infer that the number of pairwise crossing between diagonal segments is small, and
it follows that both graphs have relatively few edges. And, again, using Claim 6.5, it follows that
few lines can be omitted from the environment such that all these crossing are eliminated.

In summary, we obtain an environment ENV† that is ǫ4-close to ENV such that ENV† retains all
features of ENV′′′ and in addition contains no crossings between lines. That is, ENV† consists of
non-crossing lines that go from the first row to the last row such that each line consists of an initial
(possibly empty) diagonal segment followed by a (possibly empty) vertical segment.

Inferring from the success of Step 5. The only aspect in which ENV† may be inconsistent
with the (“moving object”) evolution rule is that objects may stop with no good reason (i.e., when
their desired direction of movement is not blocked). In terms of the foregoing lines this means that
there exists a line with a diagonal segment starting at some position s and ending at position s + r
(resp., s − r) and another line starting at position s′ < s (resp., s′ > s) and ending at position
s′ +r′ ∈ [s, s+r) (resp., s′−r′ ∈ (s−r, s]) such that the interval [s′ +r′, s+r] (resp., [s′−r′, s−r])

is not filled with vertical segments at time t (i.e., ENV†t(p) = ⊥ for some p in the interval). In other
words, vertical segments are missing in some locations (i.e., locations that are between the stopping
positions of diagonal segments that have overlapping horizontal projections). We shall first show
that the success of Step 5 implies that the number of such missing segments in ENV† is relatively
small, and next we shall show how to modify ENV† so as to eliminate them, while maintaining all
other features of ENV† and thus obtaining an environment that is consistent with the (“moving
object”) evolution rule.

We shall deal separately with objects moving to the right and with objects moving to the left,
capitalizing on the fact that these movements do not cross and that our modifications are internal
to the intervals of moving objects. We shall focus on lines that correspond to objects moving to
the right, and lines that correspond to objects moving to the left can be dealt in exactly the same

50

way.
We start with a rough overview of the argument. For a position s such that ENV†(s) = 1,

we denote by r(s) the stopping time (in ENV†) of the object whose initial position is s. Thus, the
movement interval of this object is [s, s+r(s)). We cluster the moving objects into buckets according
to the values of the start and end points of their movement intervals, and dispose of all small buckets
(i.e., omit all the lines that correspond to objects placed in small buckets). Furthermore, assume
for a moment that all buckets correspond to long enough intervals (i.e., contain objects with a
sufficiently long movement interval). We consider a graph in which the remaining buckets are
vertices, and edges connect buckets that correspond to intervals that overlap. Relying on the
success of Step 5, we infer that there are few missing verticals in the intervals that correspond to
these connected components (or buckets).

Recall that this argument ignores short buckets (i.e., buckets that contain lines with a short
movement interval). It is tempting to modify the corresponding lines into vertical lines, but this
may create crossings with a large number of long diagonal segments (which may be close by). So
a slightly more careful treatment is required here; specifically, we extend the treatment of long
intervals to short intervals that are at the proximity of long intervals, and turn short diagonals into
verticals when they are not at the proximity of a long interval.

Another level of complication arises from the fact that Step 5 refers only to the approximate
stopping time of sampled objects. For such an object, starting at a position s, we do not have its
actual stopping time r(s), but rather we only know that it resides in a relatively small interval;
that is, r(s) ∈ (r−(s), r+(s)], where we may assume that r+(s) − r−(s) is small. (Recall that
r−(s), r+(s) ∈ R are such that the object s still moves at time r−(s) but stands at time r+(s).) In
what follows, we shall use the (diagonal segments) of sampled lines to create a “skeleton” according
to which we decide which lines to remove and which to modify so as to get a legal environment
(according to the evolution rule) that is close to ENV†.

Consider clustering all lines into buckets according to the starting and ending points of their
diagonal segments (completely vertical lines are not clustered, and will not be modified). For
every j, k ∈ [1/ǫ5], we place in bucket Bj,k all lines with a diagonal that starts in the interval
((j − 1)ǫ5n, jǫ5n] and ends in the interval ((k − 1)ǫ5n, kǫ5n]. Note that j ≤ k must hold, and
equality is possible.

We shall say that a bucket is small if the number of lines belonging to the buckets is smaller
than ǫ3

5n. Otherwise it is large. (As stated above, we shall omit all small buckets, and omit all lines
that reside in them.)

For the sake of the analysis, we partition the sample S into two equal-size parts, S1 and S2.
(This is actually a partition of the sample S5 that is “designated” for this step, so that it is
independent of the samples that were selected in previous steps.) From this point on, we shall
make the following assumptions, which hold with high probability (over the choice of the sample
S5).

1. For each large bucket Bj,k, consider sorting the lines in Bj,k according to their starting
position and partitioning the lines into consecutive subsets of size ǫ3

5n/4 (more precisely, of
size at least ǫ3

5n/4 and at most ǫ3
5n/2). The assumption is that the sample S1 includes at

least one (starting position of a) line from each such subset.

2. For each s ∈ S1 that corresponds to the starting position of a moving object in ENV†, we have
that r+(s)− r−(s) ≤ ǫ4

5t. (where the notations r+(s) and r−(s) were introduced in Step 5).

Actually, this assumption refers to the sample R, and holds with very high probability.

51

s′ s

s ′

+
r −

(s ′)

s ′

+
r +

(s ′)

s
+

r +
(s)

s
+

r −

(s)

Figure 17: The intervals considered in Assumption 3. The two arrows depict the actual movement
of two objects, starting at locations s′ < s. The actual stopping times are within the intervals
(s′+r−(s′), s′+r+(s′)] and (s+r−(s), s+r+(s)], respectively. The interval [s′+r+(s′), s+r−(s)+1]
is depicted by a dotted double-arrow.

3. Consider the union U of all intervals [s′ + r+(s′), s + r−(s) + 1] for s, s′ ∈ S1 such that s′ < s

and s′+r−(s′)+1 ≥ s. (See Figure 17.) If the number of points p ∈ U such that ENV†t(p) = ⊥
is greater than ǫ5n, then S2 contains at least one such point.

In addition, as in previous steps, we assume that for all points queried by the algorithm, ENV

agrees with ENV†. We next show that conditioned on the above assumptions as well as on the
assumption that Step 5 passes successfully, we can transform ENV† into a legal environment by
making O(ǫ5n

2) modifications. These modifications are performed on right-moving objects only
(and the modifications performed on left-moving objects are analogous), whereas objects that stand
from time 0 are not modified. (We may deal separately with right-moving objects and left-moving
objects due to the non-crossing property of ENV†.)

We perform the modifications in two stages. In the first stage we remove few lines and transform
some lines with short diagonal segments into vertical lines. We show that at the end of this stage the
number of positions that correspond to empty gaps at time t between standing objects is small. In
the second stage we show how to add lines so as to fill these gaps. In what follows we identify lines
with their starting position (i.e., the initial position of the corresponding object). In particular,
when we refer to the bucket that a point s belongs to, we mean the bucket that the line whose
starting position is s belongs to.

Stage I. We start by removing all lines belonging to small buckets. By the definition of small
buckets and the fact that there are less than 1/ǫ2

5 buckets, the total number of lines removed is at
most (1/ǫ5)

2 · ǫ3
5n = ǫ5n, and the number of modification due to these removals is at most ǫ5nt.

From this point on we will assume that all (non-empty) buckets are large and refer only to these
buckets. We say that a bucket is long if k ≥ j + 2, otherwise (i.e., k ∈ {j, j + 1}) it is short. Note
that intervals that belong to the same long bucket must overlap on at least ǫ5n points: Indeed, if
s ∈ Bj,k (and k ≥ j + 2), then s ∈ [(j − 1)ǫ5n, jǫ5n] and s + r(s) ∈ [(k− 1)ǫ5n, kǫ5n], which implies
[s, s + r(s)] ⊆ [jǫ5n, (k − 1)ǫ5n].

Next, we define a graph H = (P,E) such that the vertex set P contains some points in S1

from each (non-empty) buckets and edges represent overlapping intervals between these points.
Specifically, for each long bucket Bj,k, the set P contains two points in Bj,k ∩ S1: the smallest
s ∈ Bj,k∩S1 and the largest such s. By Assumption 1, (more than) two such (different) points exist
for each bucket. For each short bucket, P contains exactly one point in S1 from each Θ(ǫ3

5n)-sized

52

subset as defined in Assumption 1. It follows that |P | = O(1/ǫ3
5). We put an edge between s and

s′ < s in P if (and only if) s′+r−(s′)+1 ≥ s. (By the definition of r−(·) this means that s′+r(s′) ≥ s,
implying that at time t there should be standing objects in all points p ∈ [s′ + r(s′), s + r(s)].)
Observe that for each long bucket there is an edge between every pair of (sample) points in the
bucket (and so the two selected sample points from the same long bucket belong to the same
connected component in H).

Consider the connected components in H. We say that a line (starting at) s that belongs to
a long bucket Bj,k (but is not necessarily in the sample S1) is assigned to a connected component
C in H if the points from Bj,k ∩ S1 belong to C. Recall that such a long bucket has two points
in H, and these two points are necessarily in the same connected component. In contrast, short
buckets may have O(1/ǫ5) points in H, and these points need not belong to the same connected
component. Hence, for each short bucket Bj,k, we say that a line (starting at) s that belongs to
Bj,k is assigned to a connected component C in H if the sampled point s′ ∈ S1 ∩ Bj,k closest to s
belongs to C. Denote the lines assigned to C by A(C).

For each connected component C in H, let smin(C) be the point s ∈ C for which s is minimized,
and smax(C) be the point s ∈ C for which s is maximized. Note that smin(C) and smax(C) do not
necessarily belong to the same bucket. Loosely speaking, we now remove lines that end after the
endpoint point of the line smax(C) while starting before smin(C

′) for all components that start after
C. Specifically, we remove lines as follows.

• Let C1, . . . , Cm be an ordering of the connected components according to smin(·). By the
definition of H, we have that smax(Ci) + r−(smax(Ci)) + 1 < smin(Ci+1) (since there is no
edge between smax(Ci) and smin(Ci+1)).

We shall say that a connected component Ci is short if all lines that are assigned to it (i.e.,
all lines in A(C)) are short. Otherwise Ci is long.

• The default is that for each i ∈ [m − 1], we remove all lines s′ in Ci ∪ Ci+1 such that
s′ + r(s′) > smax(Ci) + r−(smax(Ci)) + 1 and s′ < smin(Ci+1). (Indeed we may remove
smax(Ci) itself). The exception is for the case that both Ci and Ci+1 are short. In this case
we do not remove the lines “between” these two connected components.

In addition, if Cm is a long bucket, then we remove all points s′ (in Cm) such that s′+r(s′) >
smax(Cm) + r−(smax(Cm)) + 1, and if C1 is a long bucket, then remove all points s′ (in C1)
such that s′ < smin(C1).

Using Assumption 1, we show that the total number of lines removed is O(ǫ5n), and it follows that
the contribution to the number of modifications is O(ǫ5nt). This is shown by charging each omitted
line s′ ∈ Ci ∪Ci+1 either to the bucket containing smax(Ci) or to the bucket containing smin(Ci+1).
If one of these buckets is long, then s′ must belong to the same Θ(ǫ3

5n)-sized extreme subset of the
bucket (i.e., to the last subset of Bj,k in case smax(Ci) belongs to Bj,k that is long, and to the first
subset of Bj,k in case smin(Ci+1) belongs to Bj,k that is long). If both buckets are short, then these
buckets may be used as basis for removing lines for at most two values of i ∈ [m], and for each
value of i the same Θ(ǫ3

5n)-sized subset of the bucket is used (although it need not be an extreme
one). Hence, each value of i causes O(ǫ3

5n) omissions, whereas m < 1/ǫ2
5.

We now transform all lines that are assigned to short connected components into vertical lines.
Given our rules for removing lines, no crossings are created now (between lines in short connected
components and lines in long connected components). Each modified line incurs a cost of 3ǫ5n, since
it belongs to a short bucket, and so the total number of modifications due to this transformation

53

sf
1 sℓ

3sf
3sℓ

2sf
2sℓ

1

Figure 18: An illustration for modifications performed in Stage I of the analysis of Step 5. The left
image shows (part of) the environment ENV† before lines are removed or “straightened”, whereas
the right image shows the environment after these changes. The illustration shows three connected
components Cj, where C1 and C2 are short, while C3 is long. The notation sf

j stands for smin(Cj),

and sℓ
j stands for smax(Cj). Lines starting at the corresponding six positions are bold. The dotted

lines indicate the positions sℓ
j + r−(sℓ

j) + 1. Since C1 and C2 are both short, no lines are removed
“between” them, while since C3 is long all lines “between” C2 and C3 are removed, as well as the
lines “at the end” of C3. Finally, all (remaining) lines in the short buckets C1 and C2 are turned
into vertical lines.

is O(ǫ5n
2). For an illustration of the removal of lines and the changes in lines belonging to short

buckets, see Figure 18.
Let the resulting environment be denoted by ENV‡, and let M denote the set of missing positions

p. That is, for each p ∈ M there exist s′ < s for which ENV‡(s′) = ENV†(s) = +1 while s′ +

r(s′) < p < s + r(s) and ENV
‡
t(p) = ⊥. Observe that based on the definition of H and the

lines we removed and modified, for each p ∈ M there exists a connected component C such that
smin(C) + r−(smin(C)) + 1 < p < smax(C) + r+(smax(C)).

We claim that |M | = O(ǫ5n). To verify this, for each long connected component C (whose lines
were not turned into vertical lines), consider a shortest path from smin(C) to smax(C), denoted
s1(C), . . . , sℓ(C), where ℓ ≤ |P | < 1/ǫ3

5. We shall say that a point p is covered by this path if for
some j ∈ [ℓ− 1] it holds that p ∈ [sj(C) + r+(sj(C), sj+1(C) + r−(sj(C)) + 1]. By the definition of
H, Assumption 3, and the premise that Step 5 completed successfully, the number of points p ∈M
that belong to any interval [sj(C) + r+(sj(C)), sj+1(C) + r−(sj+1(C)) + 1] (i.e., for any C and any
j) is at most ǫ5n. On the other hand, by Assumption 2, for each C and each j, the number of points
p ∈ [sj(C) + r−(sj(C)), sj(C) + r+(sj(C))] is at most 2ǫ4

5n. Hence, |M | ≤ ǫ5n + |P | · 2ǫ4
5 = O(ǫ5n).

Stage II. In this stage we add lines so as to get a legal environment. First, for each long connected
component C, let s′max(C) denote the maximum s′ (not necessarily in S) that are assigned to C
in ENV‡. (Recall that we may have removed smax(C).) We first add a vertical line in position
smax(C) + r(smax(C)) + 1, unless such a line already exists (either vertical or left moving). The
total number of lines added is at most 1/ǫ5.

Next, given that the set of positions M is relatively small, we can afford to insert lines in order to
have standing objects (i.e., vertical segments) in these positions, but the question is whether we can

54

do so in a legal manner. The simple case corresponds to a gap (among the vertical segments) such
that the corresponding diagonal segments are far enough from one another (see the gap indicated
by (i) in Figure 19). In this case we just insert a line (consisting of a vertical segment and a diagonal
segment) in this gap. The more complicated case (depicted in Figure 19 by the gap marked (ii))
is of a gap (among the vertical segments) such that the corresponding diagonal segments are too
close to allow for the insertion of a diagonal segment. In this case we insert a vertical segment
at the gap, and continue it diagonally by “taking over” the neighboring diagonal segment (which
must be at a very short distance). But then, we should re-route the corresponding vertical segment
(i.e., prepend it with a diagonal segment), which we do just as we did when we inserting a new
vertical segment (and again there are the same two cases). This means that, in the second case, we
enter a sequence of “take overs” such that the changes required for each step (i.e., a single “take
over”) are very local (and are constant in number), whereas a cost of O(t) (for inserting a vertical
segment) is payed at the last step and the number of steps is O(n). Thus, in each case, the closing
of a single gap costs O(t + n) changes in the environment. The closing of multiple gaps is done in
the direction of movement (i.e., from left to right in Figure 19), while the sequence of “take overs”
that refers to a single gap moves in the opposite direction (i.e., from right to left).

(ii) (i)

Figure 19: Filling up the vertical gaps in the analysis of Step 5. The original lines are shown in
solid, the dashed line at location (i) is inserted without conflicts, whereas the dotted lines show an
insertion at location (ii) and its propagated corrections.

To summarize, the said gaps (i.e., the position in M) can be eliminated at a cost of O(|M | · n)
modifications. Since t = Ω(ǫn) and |M | = O(ǫ5 ·n), we obtain an environment ENV⋆ that is O(ǫ5/ǫ))-
close to ENV and is consistent with the (“moving object”) evolution rule, where the argument relies
on picking ǫ5 such that ǫ4 = poly(ǫ5).

Conclusion: Deriving Theorem 1.8 for the case of t ≥ ǫn/2. Picking ǫ5 = ǫ2/O(1) and
ǫi = poly(ǫi+1) for every i = 4, ..., 1, the entire argument goes through for t ∈ [0.5ǫn, n]. Specifically,
if the test (described at the beginning of this section) accepts ENV with probability at least 1/3,
then ENV is ǫ-close to being consistent with the (“moving object”) evolution rule. The reason for

55

the constraint that t ∈ [0.5ǫn, n] is due to the fact that we used this condition in our analysis (in
Step 3). Our aim is to establish this result also for the other cases.

Dealing with the case of t > n is quite easy; actually, the current tester will do. The key
observation is that, after n evolution steps, each of the moving objects either exited the environment
or got stuck in a standing state (within the environment). Hence, we need only apply the current
tester for the first n steps of the evolution, and may apply a rather simple tester for the remaining
t − n, where the latter tester merely checks that objects that stand at time n continue standing
at any time in [n, t]. Actually, the current test essentially performs the latter checking (where for
t ≫ n/ǫ it actually checks that objects that stood at time approximately ǫt continue to stand at
later times). Also note that when t > 2n/ǫ, it suffices to perform only the latter test (since the
first n evolution steps can be modified, in a trivial manner, to fit the standing pattern of the last
t− n steps).

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

t

Figure 20: The trapezoid environments used for the case of t < ǫn/2.

Conclusion: Deriving Theorem 1.8 for the case of t < ǫn/2. We handle this case by first
observing that our treatment of the case of a t-by-(2t/ǫ) rectangular environments (i.e., n = 2t/ǫ)
extends to trapezoid environments that are obtained by chopping off two right-angle triangles as
shown in Figure 20. When applying the tester to such trapezoid environments, we ignore all
queries made to the triangles that were chopped off, just as we ignored locations that are outside
the rectangular environments that were considered so far. Now, when testing a (rectangular) t-by-n
environment, where t < ǫn/2, we cut the rectangle into consecutive t-by-(2t/ǫ) environments (see
Figure 21) and apply the “trapezoid tester” to a sample of O(1/ǫ) of these trapezoid environments.

t

Figure 21: Tiling a rectangle with trapezoids (for the case of t < ǫn/2).

Note that any t-by-n environments that evolves according to the moving-objects rule is accepted
by this tester, with probability at least 2/3, because the evolution within each trapezoid is according
to the rule. The latter fact follows because the movement within each trapezoid involve only objects
that started within this trapezoid. (This is the reason that we chopped off the triangles.) On the
other hand, if the t-by-n environment is ǫ-far from any environment that evolves according the
moving-objects rule, then at least ǫ/4 fraction of the trapezoids are ǫ/4-far from evolving according
to the said rule, since only an ǫ/2 fraction of the area is lost by the chopped triangles. This
completes the proof of Theorem 1.8 also for this case; that is, we have proved the following.

56

Theorem 6.6 (Theorem 1.8, restated): There exists a time-conforming oracle machine of (total)
time complexity poly(1/ǫ) that tests the consistency of evolving environments with the fixed-speed
movement of objects in one dimension, where colliding objects stop forever. Furthermore, the tester
is nonadaptive, but it has two-sided error.

6.1.2 On the complexity of one-sided error testers

The foregoing tester (as asserted in Theorem 6.6) has two-sided error. As stated at the beginning of
Section 6.1.1, this is unavoidable for testers of query complexity that meets the claim of Theorem 6.6
(i.e., having complexity that does not depend on n).

Theorem 6.7 (lower bound on one-sided testers): Any nonadaptive one-sided error tester for the
consistency of environments of the form ENV : {0, 1, ..., n} × [n] → {−1, 0, 1,⊥} with the moving
object evolution rule has (total) query complexity Ω(

√
n).

Before proving Theorem 6.7, we discuss its implications. First note that Theorem 6.7 implies that
any time-conforming one-sided error tester for the foregoing property has (total) query complexity
Ω(log n). The latter lower bound holds even for adaptive (one-sided error) testers that are not time-
conforming. We also note that the tester we used for proving Theorem 6.6 is actually nonadaptive.

We do not know whether the logarithmic query complexity lower bound is tight for general
time-conforming one-sided error testers, but it is certainly tight for arbitrary testers that are not
time-conforming. That is, an oracle machine that is not time-conforming can test such environments
with one-sided error and total time complexity poly(ǫ−1 log n). For example, one may replace Step 3
in the foregoing tester by sampling poly(ǫ−1) start positions and verifying that if a diagonal segment
starts in some position at time 0 then it either exits [1, n] or turns into a vertical segment (which
ends at time n). Similarly, one should check that vertical segments that end at time n either start
as vertical lines (at time 0) or are the continuation of some diagonal segment. Both checks can be
performed by conducting a binary search for the ending/starting locations of the relevant segments,
but indeed this binary search (in time) in not time-conforming.

Proof: We prove that any nonadaptive one-sided error tester for the moving object evolution
rule has (total) query complexity Ω(n1/2). Towards this end, we consider a uniformly chosen
environment out of the following family of environments ENV : [0, n] × [n] → {−1, 0, 1,⊥} that are
parameterized by an integer r ∈ [0.1n] (and depicted in Figure 22). Such an environment, denoted
ENV(r), consists of

1. Legal lines starting at any odd location in the interval [0.4n + 1, 0.4n + 2r]. Each of these r
lines starts as a diagonal and the ith line turns vertical in location 0.75n + i.

2. Pairs of lines starting at any odd location in the interval Ir
def
= [0.4n + 2r + 1, 0.6n + 2r],

called the illegal interval. Hence, we have 0.05n such pairs of lines. The first line in each pair
is legal, whereas the second has only a diagonal segment. The diagonal segment of the lines
of the ith pair stop at column 0.75n + r + i (and only the first line turns vertical).

3. Legal lines starting at any odd location in the interval [0.6n+2r, 0.8n]. Each of these 0.1n−r
lines starts as a diagonal and the ith line turns vertical in location 0.8n + r + i.

4. A vertical line at location 0.9n + 1.

57

1st legal
interval illegal interval (length = 0.2n) 2nd legal interval

(0.9n)(0.8n)

(0.4n)

(0.9n)(0.75n)

Figure 22: A generic environment in the family used in the proof of Theorem 6.7. The three
dashed lines are illegal (since they have no vertical continuation at the point that they stop). Only
a portion of the environment is shown, say [0, 0.4n] × [0.4n, 0.9n].

In total, we have r+0.05n+(0.1n−r) = 0.15n legal lines and 0.05n illegal lines, where all lines start
as diagonals at odd locations in [0.4n, 0.8n]. The legal lines end as vertical in locations [0.75n, 0.9n];
see Figure 22.

The reader may verify that each of these environments is Ω(1)-far from being consistent with
the moving object evolution rule; one way of seeing it is that there are 0.2n diagonal segments
(each of length at least 0.1n) but only 0.15n vertical segments (each of length at least 0.65n).
Thus, any one-sided error tester that is given access to any of these environments has to find, with
high probability, a substructure that is not compatible with the evolution rule. We shall prove that
such a substructure cannot be found by a nonadaptive oracle machine that makes o(n1/2) queries.

We shall show that for any set of possible queries Q ⊂ [n]2, with probability at least 1−O(|Q|2)
over all possible choices of r ∈ [0.1n], the answers obtained from ENV(r) are compatible with some
environment that is consistent with the evolution rule. Hence, for |Q| = n1/2/O(1), with probability
at least 0.9, a random execution of any nonadaptive oracle machine on a random ENV(r) obtains
answers that are compatible with a legal environment, and must accept (if it is to constitutes a
one-sided error tester). But this implies that there exists an environment ENV(r) that is accepted
by this machine with probability at least 0.9, which contradicts the testing requirement. So it all
boils down to proving the foregoing claim (in italics).

The foregoing claim will be proved by showing how to modify ENV(r) into an environment ẼNV
(r)

that evolves according to the rule and agrees with ENV(r) on all queries made (i.e., for every q ∈ Q it

holds that ẼNV
(r)

(q) = ENV(r)(q)). Actually, the latter claim holds for any Q (of size
√

n/O(1)) and

58

for almost all choices of r ∈ [0.1n]. An obvious case in which this cannot be done is when the set
of queries contains the last point (y, z) on an illegal diagonal line as well as its close neighborhood
(i.e., (y, z + 1), (y + 1, z), and (y + 1, z + 1)), which indicates that the diagonal stops with no
continuation. Note, however, that the hypothesis that (y, z) is the last point on an illegal diagonal
yields a linear equation involving x, y and r; specifically, if z = 0.75n+r+i, then y = 0.35n−r−2i,
which implies that y + 2z = 1.85n + r. But, for a fixed (x, y), the equality holds with probability
(at most) 1/0.1n, when r is selected at random uniformly in [0.1n].

Unfortunately, the above case is not the only case that may hinder our argument. To see

the type of difficulties that arise, consider an attempt to modify ENV(r) into a legal ẼNV
(r)

. One
observation is that we can remove from ENV(r) any illegal diagonal segment that is not hit by any
query. Furthermore, we may can remove from ENV(r) any legal diagonal segment that is not hit
by any query, and connect its vertical segment to a neighboring illegal diagonal segment (which
was hit by some query). The latter modification is undetectable provided that the corresponding
column was not queried (at least not at the point where we modified it). This suggests that we
need to avoid a situation in which queries reside both on an illegal diagonal and on the vertical
segment that belongs to the legal diagonal that is paired with this illegal diagonal. (Indeed, this is
where the expression |Q|2 comes from.)

In general, things are more complicated than that, since there may be queries also on the legal
diagonal that is paired with the illegal one. Still, the notions of diagonal and vertical segments (or
rather their infinite extensions) that are hit by queries plays a major role; see the sets D(Q) and
C(Q) below. In addition, we shall use a process that connects illegal diagonals that were hit by
queries to vertical segments, while queuing legal diagonals that were queried and yet their vertical
segment was taken by the process. This process will work from right to left (in reverse order to
our numbering), and will be captured by the game, which in turn defined a set G(·) of lines that
entered the queue. Actually, the set G(·) is a superset of the lines that we should care about, since
the queuing in the game is more conservative than the queuing done in the actual process.

We start with some notations. Firstly, let [[n]] = {0, 1, ..., n} = [n] ∪ {0}. Next, we define the
sets briefly discussed above.

• For any set Q ⊂ [[n]] × [n], denote by D(Q) the set of starting positions (i.e., at time 0) of
the infinite diagonals on which the elements of Q reside; that is,

D(Q)
def
= {s ∈ [n] : ∃j ∈ [[n]] s.t. (j, s + j)∈Q}. (13)

• For any set S ⊂ [n], we define a set G(S) by using the following game, which proceeds

for n′ def
= 0.1n iterations (corresponding to the integers in [0.4n, 0.8n] that are congruent

to 1 mod 4). The game is initialized with (a state) state0 = 0. In the ith iteration, if
S ∩ {0.8n − 4i + 1, 0.8n − 4i + 3} 6= ∅, then statei ← statei−1 + 1 (representing enqueuing
an element), else statei ← max(0, statei−1 − 1) (representing dequeuing an element). Note
that staten′ > 0 indicates that the queue remains non-empty at the end of the game (which
corresponds to a definite failure in our correction process).

Let P (S) denote the indices of iterations in which the state is positive, and let G(S) contain
the elements of [0.4n, 0.8n] that correspond to P (S); that is,

G(S)
def
= {0.8n − 4i + 1, 0.8n − 4i + 3 : i ∈ P (S)} (14)

where P (S)
def
= {i ∈ [n′] : statei > 0}. (15)

59

Fact 6.7.1 Let 1 ≤ i1 ≤ i2 ≤ 0.1n−|S| be integers such that S ⊆ [0.8n−4i2+1, 0.8n−4i1+3].
Then, G(S) ⊆ [0.8n − 4(i2 + |S|) + 1, 0.8n − 4i1 + 3].

Proof: First note that for every i < i1, it holds that i 6∈ P (S). Next note that statei2 ≤ |S|,
since whenever statei is incremented some (different) element of S is charged for it, whereas
for every i > i2 it holds that statei = max(0, statei−1). Hence, statei2+|S| = 0 and P (S) ⊆
[i1, i2 + |S| − 1] follows.

Fact 6.7.2 For any S ⊆ [n], it holds that |G(S)| ≤ 4|S|.

Proof: We first note that for every i ∈ [n′] either statei = statei−1+1 or statei = max(0, statei−1−
1). Now, if i ∈ P (S) and statei 6= statei−1 + 1, then statei = statei−1 − 1 must hold (since
i ∈ P (S) implies statei > 0). Next note that |{i ∈ [n′] : statei = statei−1 − 1}| equals
|{i ∈ [n′] : statei = statei−1+1}| ≤ |S|, where the inequality follows since statei = statei−1+1
implies that S ∩ {0.8n− 4i + 1, 0.8n− 4i + 3} 6= ∅. Hence |P (S)| ≤ 2|S|, and the fact follows.

• For any r ∈ [0.1n] and odd s ∈ [0.4n + 2r + 1, 0.6n + 2r], define er(s) to be the ending
(or stopping) column of the diagonal segment that starts at position s; that is, er(s) =
0.75n + r + ⌈(s− (0.4n + 2r + 1))/4⌉, which equals 0.65n + ⌊r/2⌋ + ⌈s/4⌉. Indeed, for any
i ∈ [0.05n], it holds that er(0.4n + 2r + 4i + 1) = er(0.4n + 2r + 4i + 3) = 0.65n + r + i,
reflecting the fact that the corresponding pair of diagonals end at the same column.

For odd s ∈ [0.4n+1, 0.4n+2r], we define er(s) = 0.75n+⌊(s − 0.4n)/2⌋ = 0.55+⌊s/2⌋, which
is indeed the ending (or stopping) column of the diagonal segment that starts at position s.
(Indeed, er is not defined for other values.)

Abusing notation, for a set S ⊆ [0.8n], we define er(S)
def
= {er(s) : s∈S ∩ [0.4n + 1, 0.8n]},

which means that the elements of S \ [0.4n + 1, 0.8n] are ignored.

• For any Q ⊂ [n]2, denote by C(Q) the set of columns that are contain a point in Q; that is,

C(Q)
def
= {c ∈ [n] : ∃(j, c) ∈ Q}.

The following claim upper bounds the probability that the set of the stopping columns of queried
diagonals that start at the illegal interval (i.e., Ir = [0.4n+2r+1, 0.6n+2r]) is “related” to the set
of columns that contain some query, where the relation is the one that arises from G(·) and er(·).
That is, we consider the intersection of the sets er(G(D(Q) ∩ Ir)) and C(Q). Note that the first
set is a random variable, which depends on the random r ∈ [0.1n], whereas the second set is fixed.

Actually, we will augment the above condition (i.e., er(G(D(Q)∩ Ir))∩C(Q) = ∅) in two ways:
Firstly, we shall augment the set of columns with the column 0.75n, which is equivalent to requiring
that the set of diagonals to which er is applied does not contain 0.4n + 1. (This reflects the queue
being empty at the end of the game.) Secondly, we shall augment the set G(D(Q) ∩ Ir) with the
|Q| last diagonals of the first legal region (i.e., the odd integers in [0.4n+2r−2(|Q|−1), 0.4n+2r]).
The reason for these augmentation will be clarified in the proof of Claim 6.7.4.

Claim 6.7.3 Recall that Ir = [0.4n + 2r + 1, 0.6n + 2r] and let Ar,s = [0.4n + 2r− 2(s− 1), 0.4n +
2r] ∩ {2i − 1 : i ∈ N}. For any set Q ⊂ [n]2, it holds that

Prr∈[0.1n]

[
er(G(D(Q) ∩ Ir) ∪Ar,|Q|) ∩ (C(Q) ∪ {0.75n}) 6= ∅

]
<

90(|Q| + 1)2

n
.

60

Proof: By Fact 6.7.1, it holds that G(D(Q)∩ Ir)∪Ar,|Q| equals (G(D(Q)∩ Ir)∩ Ir)∪Ar,|Q|, which
is contained in (G(D(Q)) ∩ Ir) ∪Ar,|Q|. Hence:

Prr∈[0.1n]

[
er(G(D(Q) ∩ Ir) ∪Ar,|Q|) ∩ (C(Q) ∪ {0.75n}) 6= ∅

]

≤ Prr∈[0.1n] [er(G(D(Q)) ∩ Ir) ∩ (C(Q) ∪ {0.75n}) 6= ∅] (16)

+ Prr∈[0.1n]

[
er(Ar,|Q|) ∩ (C(Q) ∪ {0.75n}) 6= ∅

]
(17)

We start with Eq. (17). By the definition of er(·), it holds that er(Ar,|Q|) = {0.55n + r −
|Q|, ..., 0.55n + r}. Hence Eq. (17) reduces to

Prr∈[0.1n] [{0.55n + r − |Q|, ..., 0.55n + r} ∩ (C(Q) ∪ {0.75n}) 6= ∅]
≤

∑

i∈[[|Q|]]

∑

j∈(C(Q)∪{0.75n})

Prr∈[0.1n] [0.55 + r − i = j]

≤ (|Q|+ 1) · (|C(Q)|+ 1) · 1

0.1n

which is upper bounded by 10 · (|Q|+ 1)2/n. Turning to Eq. (16), we note that for every s ∈ D(Q)
such that G(s) ∈ Ir it holds that er(s) = 0.65n + ⌊r/2⌋+ ⌊s/4⌋. Hence, Eq. (16) is upper bounded
as follows:

Prr∈[0.1n] [er(G(D(Q)) ∩ Ir) ∩ (C(Q) ∪ {0.75n}) 6= ∅]
≤

∑

i∈G(D(Q))

∑

j∈(C(Q)∪{0.75n})

Prr∈[0.1n] [i ∈ Ir & er(i) = j]

≤
∑

i∈G(D(Q))

∑

j∈(C(Q)∪{0.75n})

Prr∈[0.1n] [0.65n + ⌊r/2⌋ + ⌊i/4⌋ = j]

≤ |G(D(Q))| · (|C(Q)|+ 1) · 2

0.1n

≤ 20

n
· 4|Q| · (|Q|+ 1),

where the last inequality uses Fact 6.7.2. The claim follows.

Next, we show that if the event referred to in Claim 6.7.3 does not occur (i.e., if er(G(D(Q) ∩ Ir))
does not intersect C(Q) ∪ {0.75n}), then the answers on the queries Q obtained from ENV(r) are
consistent with the evolution rule (or rather are compatible with some environment that evolves

according to this rule). For a fixed choice of r, we shall also use the notation ENV
(r)
Q to denote the

restriction of the environment ENV(r) to Q. In other words, ENV
(r)
Q is determined by the answers to

the queries in Q when the environment is ENV(r).

Claim 6.7.4 Let Ar,s be as in Claim 6.7.3. If er(G(D(Q) ∩ Ir) ∪Ar,|Q|) ∩ (C(Q) ∪ {0.75n}) = ∅,
then ENV

(r)
Q is consistent with a legal environment of the moving object evolution rule.

Proof: Given a partial environment ENV
(r)
Q that satisfies er(G(D(Q)∩Ir)∪Ar,|Q|)∩(C(Q)∪{0.75n}) =

∅, we show how to extend it to a legal environment ẼNV
(r)

such that ẼNV
(r)
Q = ENV

(r)
Q . To this end

we construct a matching between diagonals and vertical lines. If a diagonal starting in position
(0, s) is matched to a vertical line that ends in position (n, e), where necessarily e > s, then this

61

means that in ẼNV
(r)

there is a diagonal that starts in position (0, s) and turns into a vertical line
in position (e− s, e).

In ẼNV
(r)

, as in ENV(r), there is a vertical line extending from (0, 0.9n) to (n, 0.9n). In general, in

ẼNV
(r)

, as in ENV(r), there will be vertical lines ending in all positions (n, e) for every e ∈ [0.75n, 0.9n],

where the difference between ENV(r) and ẼNV
(r)

may be in the starting positions of these vertical
lines. Each of these vertical lines will be matched to a diagonal line starting in the first row, where
the matching is “non-crossing”. That is, if the vertical line in column e is matched to the diagonal
starting in position (0, s), then for every e′ < e, the vertical line in column e′ is matched to a
diagonal starting in position (0, s′) where s′ < s. The starting positions of the vertical lines will be
determined by the meeting points with the diagonals they are matched to. If, for an odd position

s ∈ [0.4n, 0.8n] we get that (0, s) is not matched to any vertical line, then in ẼNV
(r)

there will be

no diagonal starting in position (0, s). Thus, we ensure that ẼNV
(r)

is a legal environment.
The matching is constructed iteratively as follows, going “backwards” from the vertical line in

column 0.9n − 1. In iteration i we match the vertical line in column ei = 0.9n − i to the diagonal
starting in position (0, si), where si is determined as follows. For i = 1, we let s1 be the largest
odd value s ≤ 0.8n (so that there is a legal diagonal starting in position (0, s1) in ENV(r), and this
diagonal turns into a vertical line in column e1). To determine si for i > 1 we maintain a queue,
where the queue is initially empty. In general, the queue will only contain (temporarily) odd indices
s for which the following holds:

1. The diagonal starting in position (0, s) in ENV(r) ends in a column e (in ENV(r)) that was
matched to some diagonal starting in position (0, s′) for some s′ > s; and

2. there is a query in Q that resides on the diagonal starting at (0, s).

Note that s may correspond to either a legal or an illegal diagonal in ENV(r).
As long as si−1 > 0.6n+2r+2 (which means that we are in the second legal interval), the vertical

line in column ei is matched to the (legal) diagonal starting in position (0, si), where si = si−1− 2,

and so that ẼNV
(r)

is the same as ENV(r) in this region. In this case, the queue remains empty. Once
si−1 ≤ 0.6n + 2r + 2, which means that we enter the illegal region, and until we exit it, we proceed
as follows, where in each iteration i we assign a value to si (and match ei to si).

39

• If the queue is empty at the start of iteration i, then there are several cases (which are depicted
in Figure 23).

1. The following two cases corresponds to lack of a new query on the relevant diagonal
(determined by the case).

(a) If si−1 corresponds to a legal diagonal and there is no query on the illegal diagonal
that corresponds to si−1 − 2, then we set si = si−1 − 4. (See Case 1a in Figure 23.)

(b) Similarly, if si−1 corresponds to an illegal diagonal and there is no query on the
illegal diagonal that corresponds to si−1 − 4, then we set si = si−1 − 6.
(N.B.: Since the queue is empty, this means that there is no query on the legal
diagonal that corresponds to si−1−2, whereas ei−1 as matched to si−1 (see Case 2).)

Note that, in both cases, we matched the vertical line ending at ei to the very legal
diagonal to which it is connected in ENV(r).

39Recall that in the illegal region the diagonals come in pairs. Each pair consists of one legal diagonal and one
illegal diagonals, which end in the same column, where the legal diagonal starts two positions before the illegal one.

62

ENV(r)

Case 1a

ẼNV
(r)

ei ei−1 ei

s
i−

1

s
i

s
i−

1

ENV(r)

query

Case 2a

ẼNV
(r)

ei−1 eiei

s
i−

1
s
i

ẼNV
(r)

ENV(r)

ei−1 ei−1ei ei

s
i−

1

s
i−

1 −
2

s
i

s
i−

1

ei−1

query

ẼNV
(r)

Case 2b

ENV(r)

ei−1ei−1 eiei

s
i−

1
s
i

ei−1

Case 1b

s
i−

1 −
4

s
i−

1 −
6

s
i−

1 −
2

s
i−

1

s
i−

1 −
4

s
i−

1

Figure 23: Detail for the proof of Claim 6.7.4. An illustration for the way the matching is con-
structed in the illegal region when the queue is empty. As in Figure 22, in the images for ENV(r), the
dashed lines represent illegal diagonals (in ENV(r)), whereas the solid lines represent legal diagonal
and vertical segments.

2. The following two cases corresponds to the presence of a query on the relevant diagonal
(determined by the case).

(a) If si−1 corresponds to a legal diagonal and there is a query on the illegal diagonal
corresponding to si−1 − 2, then we set si = si−1 − 2. If there is also a query on the
legal diagonal corresponding to si − 2, then we add si − 2 to the queue.

(b) Similarly, if si−1 corresponds to an illegal diagonal and there is a query on the illegal
diagonal corresponding to si−1 − 4, then we set si = si−1 − 4, and add si− 2 to the
queue if there is a query on the diagonal that correspond to it.

(Recall: The foregoing four cases are depicted in Figure 23.)

• If the queue is not empty, we set si to be index at the front of the queue, and remove it from
the queue. (This means that we matched ei to si, which means that we certainly matched ei

differently than in ENV(r).)

If there is a diagonal starting in position (0, s) such that s < si and in ENV(r) this diagonal
ends in column ei, and if there is a query (in Q) on this diagonal, then s is added to the end
of the queue. If there are two such indices (one corresponding to a legal diagonal and one to
an illegal one), then they are both added (where the illegal one, which has the larger index,
is added first).40

40Recall that in ENV
(r) there are two diagonals that end in each column in [0.75 + r, 0.8 + r] (and these diagonals

are in the illegal interval).

63

5 7 9 11 13 15 17 5 7 11 13 15 17

201918 201918171615

1311
5
75

17

ENV(r) ẼNV
(r)

The full circles on the l.h.s. image correspond to queries and the state of the queue is depicted on the bottom

right-hand side. In particular, when column 19 is matched with diagonal 15, column 13 is added to the queue

(which was previously empty) since it ends in ENV
(r) in column 13 and it was queried. When it is removed

from the queue to be matched with column 18, diagonal 11 is added. When diagonal 11 is removed from the

queue to be matched with column 17, diagonals 7 and 5 are added to the queue. When diagonal 7 is removed

from the queue, it is matched with column 16, and when diagonal 5 is removed from the queue, it is matched

with column 15.

Figure 24: Detail for the proof of Claim 6.7.4. An illustration for the way the matching is con-
structed when the queue is non-empty.

The overall process of setting the si’s while handling the queue is depicted in Figure 24.

Once we exit the illegal region and enter the first legal region and as long as the queue is not
empty, the matching is performed as in the last case (of a non-empty queue while being in the
illegal region). The only difference is that in the current case at most one diagonal may enter the
queue in each iteration; this happens when there is a query on the legal diagonal that ends in
column ei (in ENV(r)). This means that the queue will become empty after at most |Q| iterations
that refer to the first legal region, because if the queue contained q elements, then at least q queries
were made on diagonals that reside in the illegal region. Note that we may get into trouble only
if r < |Q|, since otherwise the queue will become empty before we finish dealing with the first
legal region. (Here we use the hypothesis 0.75n 6∈ er(G(D(Q) ∩ Ir) ∪ Ar,|Q|).) Once the queue
becomes empty, the matching is performed as in the second legal interval; that is, ei is matched
with si = si−1 − 2.

The behavior of the queue is reflected (or rather upper-bounded) by the definition of the game
and the function G defined above. Specifically, the queue’s size is incremented only if a queue
is made on a relevant diagonal, and otherwise the queue size is decremented (unless it is empty

already). The constructed ẼNV
(r)

differs from ENV(r) only on columns that correspond to iterations

in which the queue was not empty, and if no queries were made on these columns then ẼNV
(r)
Q and

ENV
(r)
Q are identical. Finally, the claim hypothesis (i.e., er(G(D(Q) ∩ Ir) ∪ Ar,|Q|) ∩ C(Q) = ∅)

implies that there are no queries on these columns (i.e., the columns that correspond to iterations
in which the queue was not empty). The claim follows.

64

Combining Claims 6.7.3 and 6.7.4, it follows that, for every Q ⊆ [[n]] × [n], with probability

O(|Q|2/n) over the choices of r ∈ [0.1n], the view ENV
(r)
Q is consistent with a legal environment of

the moving object evolution rule. Thus, any nonadaptive one-sided error tester of query complex-
ity q(n), must accept a randomly chosen ENV(r) with probability at least O(q(n)2/n), where the
probability is taken over both the choice of r ∈ [0.1n] and the tester internal coin tosses. However,
all these ENV(r)’s are far from evolving according to the said rule, and thus the tester is not allowed
to accept them with probability greater than 1/3. Hence, q(n) = Ω(

√
n) must hold.

Figure 25: An illustration for Remark 6.8. The figure shows diagonals that were included in the
first set of queries and two vertical lines who’s intersections with the horizontal lines were included
in the second set of queries. The three small cycles indicate intersection points that (together
with the first set of queries) provide a proof of illegality of the environment: Too many diagonals
(specifically, all diagonals prior to i and subsequent to j) stop between these two verticals (which
can fit only 2/3 of that amount).

Remark 6.8 The construction used in the proof of Theorem 6.7 cannot prove a stronger lower
bound, since a nonadaptive machine making O(

√
n) queries may find evidence for its inconsistency

with the evolution rule. Consider a tester that, for every ℓ ∈ L
def
= {0.40n, 0.41n, ..., 0.79n}, queries

ENV
(r)
0 on the locations {ℓ + 2i + 1 : i ∈ [10

√
n]} and queries ENV(r) on the points {(j · √n, ℓ +

0.1n + i · √n) : j ∈ [
√

n], i ∈ [2]}. The first set of queries reveals 10
√

n consecutive diagonals that
start in Ir (e.g., {0.4n + 2r′ + 2i + 1 : i ∈ [10

√
n]}, where r′ = ⌈r/0.01n⌉ · 0.01n ∈ L), whereas

the second set of queries reveals that the stopping times of these 10
√

n diagonals are too close (i.e.,
they stop at distance at most

√
n from two columns that are at distance 2.5

√
n apart, whereas in a

legal evolution the distance should be 5
√

n). See Figure 25.

65

We wonder what is the total query complexity of the best nonadaptive one-sided error tester for
the consistency of environments of the form ENV : [n]2 → {−1, 0, 1,⊥} with the moving object
evolution rule. More importantly, we wonder about the query complexity of general (i.e., adaptive)
time-conforming one-sided error tester for this property.

Open Problem 6.9 As stated above, we do not know whether the result of Theorem 6.7 extend
to arbitrary (i.e., adaptive) time-conforming testers. That is, what is the total query complexity
of the best time-conforming one-sided error tester for the consistency of environments of the form
ENV : [n]2 → {−1, 0, 1,⊥} with the moving object evolution rule? In particular, is it Ω(nc), for some
c > 0, or is it poly(ǫ−1 log n), or something in-between?

We believe that this open problem may be instructive also towards the study of testing variable
movement and/or movement in multi-dimensional environments (as initiated in Section 6.2).

6.2 Variable movement in multi-dimensional environments

Here we extend the model considered in Section 6.1 in two ways. The first (and obvious) extension
is from one dimension to d ≥ 2 dimensions. The second extension is considering objects that may
vary their movement according to their internal state (rather than merely stop as a result of a
collision).

Fixed multi-dimensional interruptible movement. A natural question is whether the result
of Theorem 6.6 can be extended to d ≥ 2 dimensions. Actually, there are two natural models that
may be considered. In the first model, objects stop only after a head-on collision, which happens
when they are moving on the same line and in opposite directions, and otherwise they just cross each
other paths (where these two paths spans a two-dimensional space). (A collision with a standing
object always counts as a head-on collision.)41 In the second model, objects stops whenever their
paths collide (regardless if this is a head-on collision or a side-collision).

Open Problem 6.10 For any fixed d > 1, does there exists a time-conforming oracle machine of
(total) time complexity poly(1/ǫ) that tests the consistency of evolving environments with the first
model (i.e., the head-on collisions model) of moving objects in d-dimensions? Ditto with respect to
the second model (i.e., the colliding paths model).

Testing in the first model can be reduced to testing in the second model,42 and our initial feeling
was that the first model is easier to deal with. Furthermore, it seems as if testing the evolving
d-dimensional environment in the first model can be reduced to testing a small sample of the
((3d − 1)/2) · nd−1 one-dimensional lines that represent possible movement paths. The intuitive

41Postulating the opposite does not seem reasonable because this would distinguish standing objects that originally
moved along the same line from standing object that originally moved on a different line.

42We reduce testing in the first model to testing a promise problem in the second model such that only head-on
collisions may occur in this promise problem. In the promise problem, the d-dimensional grid is partitions to subcubes
with side-length of 3d. The initial configurations have objects moving in direction δ ∈ {−1, 0, 1}d placed at distance
exactly D(δ) from the center of such sub-cube along the line (in direction δ) that pass through this center, where

D : {−1, 0, 1}d → {0, 1, ..., (3d − 1)/2} satisfies (1) D(δ) = 0 iff δ = 0d, and (2) D(δ
′
) = D(δ) iff δ

′
∈ {±δ}. That is,

the initial location of an object moving in direction δ has the form γ−D(δ) ·δ, where γ ∈ {(3d−1)/2+i ·3d : i ∈ Z}d is
the location of the center of one of the subcubes. Thus, two moving objects may collide (i.e., enter the same location
at the same time) only if they move in opposite directions, and this happens when they try to enter the center of the
same subcube.

66

(but inaccurate) justification is that stopping may occur only due to head-on collisions, whereas
head-on collision occur only if the two objects move on the same one-directional line (but in opposite
directions). This is correct if a collision with a standing object does not count as a head-on collision
(when the standing object has originally moved along a different path), but we have postulated the
opposite.

Variable (state-dependent) movement. In the models considered so far, the state of an object
was identical to its direction of movement. Furthermore, the only change in state allowed was from
moving in a specific direction to standing in place, and such a change took place (only) as a result
of a collision with another object. Here we consider moving objects that hold a more complex state,
which encodes not only their current direction of movement but also some additional information.
Such objects can vary their direction of movement also when they do not collide with any other
object, and their response to a collision is not necessarily stopping (although we still do not allow
two objects to occupy the same location at the same time).

Unfortunately, this model of moving objects is not easier to handle than the model of fully
visible state, considered in Section 4. That is, for any d ≥ 1, testing consistency of the evolution
of d-dimensional environments with fully visible state is not made easier when we confine these
environments to represent the variable (state-dependent) movement of objects in a d-dimensional
grid. This follows from the fact that such (stateful) moving objects can emulate the evolution of
any environment having fully visible state.43 Details follow.

For any evolution rule Γ : Σ3d → Σ, consider moving objects (in a d-dimensional grid) that
encode (in their own state) the state of the corresponding cell. Initially, for each i = (i1, ..., id) ∈
[n]d, the state of location i is encoded in the state of an object that resides in location (2i1 +
1, ..., 2id +1). The emulation of a single evolution step (according to Γ) is done by having the object
“communicate” the “encoded state” to their neighbors by their movement in the next O(3d · log |Σ|)
time units.

For simplicity, we consider the case of d = 1, and envision the objects as residing on a horizontal
line. The communication takes place in 8 log2 |Σ| time units, where in the first 4 log2 |Σ| time units
only objects residing in locations i ≡ 1 (mod 4) move. Specifically, a bit (in the encoding of the
state in Σ) is communicated to both neighbors by the movement in the corresponding 4 time units
such that if the bit is 1 then the object moves one step to the left, two to the right, and finally one
step to the left (returning to its initial position); if the bit is 0 then the object stays in its place
in all 4 time units. Once the communication is completed, each objects holds the state of all the
cells that neighbor the cell that it emulates. It then determines the new state of this cell, which
completes the emulation of a single step of the cellular automata.

We conclude that, in general, evolution rules that describe variable motion of stateful objects
may not be easier to handle than the general evolution of environments with fully visible state.
Still, one may seek natural classes of such variable motion that are easier to handle.

Open Problem 6.11 (extremely open ended): For any d ≥ 1, provide natural classes of evolution
rules that describe variable motion of stateful objects in d dimensions such that for each rule in the
class some (or all) of the following holds:

43The emulation presented below reveals the state of the environment that the moving objects emulate. It seems
that moving objects that “communicate” only via visible movement cannot emulate an environment with hidden
states. Of course, if the model of moving objects allows them to sense the hidden part of the state of a neighboring
object, then an emulation of arbitrary d-dimensional environments becomes possible.

67

1. Testing whether the evolution of an environment of size nd is consistent with this rule can be
done in sublinear temporal query complexity; that is, complexity poly(1/ǫ) · o(nd).

Same for complexity poly(ǫ−1 · log n).

2. Learning the evolution of an environment of size nd that is consistent with this rule can be
done in polynomial time and temporal query complexity o(nd/ log n).

Same for temporal query complexity poly(1/ǫ) · Õ(nd)/t, say when t = n.

Same when requiring the algorithms to be time-conforming.

7 Environments of Moving Objects: The Sparse Case

The model studied in Section 6 is most adequate in the case that the number of objects is comparable
to the size of the environment (which is nd). In the current section we consider the case that the
number of objects, denoted m, is very small in comparison to the size of the environment; that is,
m ≪ nd and even m ≪ poly(ǫ) · nd. Actually, m will denote a given upper bound on the number
of objects in the environment (rather than the actual number of objects).

7.1 The model

Analogously to the study of testing bounded degree graphs (initiated in [GR02]) as compared to the
study of testing dense graphs (initiated in [GGR98]), we need to modify two aspects of the testing
model: (1) the queries (that the testers may perform), and (2) the distance measure (between
environments).

The queries. When objects are very few in comparison to the size of the environments, oracle
access to ENV : [t] × [n]d → Σ (only) may be quite useless. Indeed, in such a case, it is natural to
allow queries that ask for the location of a specific object at a specific time. Such natural queries

are modeled by an oracle, denoted LOC : [t] × [m] → ([n]d ∪ {⊥}), such that LOCj(i)
def
= LOC(j, i)

equals the location of the ith object at time j, and ⊥ indicates that the ith object is not present
in the environment at time j (which includes the case that it does not exist at all). We stress
that there is no predetermined order between the locations of the objects (in particular, it is not
necessarily the case that LOC1(i) < LOC1(i + 1)). Furthermore, we do not assume that LOC1(i) = ⊥
implies that LOC1(i + 1) = ⊥.

In addition to oracle access to LOC, we also allow oracle queries to ENV, which in particular
allows to inspect the neighborhood of certain objects at certain times. We assume all along that
ENV is consistent with LOC; that is, if LOCj(i) = ℓ ∈ [n]d, then ENVj(ℓ) 6= ⊥, and if LOCj+1(i) = ℓ + δ
such that δ ∈ {−1, 0, 1}d, then ENVj(ℓ) = δ. Furthermore, if ENVj(ℓ) 6= ⊥, then there must exist an
i ∈ [m] such that LOCj(i) = ℓ.

Needless to say, in such a context the notion of sublinear complexity has to be modified: Here
sublinear total complexity means complexity o(tm), whereas sublinear temporal complexity means
complexity o(m). Indeed, at the very least, we seek testers of total running time o(tm), but our
focus should be on testers of temporal query complexity o(m), which mean that for every j ∈ [t]
the tester makes o(m) queries to LOCj and ditto to ENVj.

The notion of time-conforming algorithms also needs to be revisited: Indeed, a time-conforming
algorithm is restricted to make queries that are monotonically non-decreasing with respect to the
time value, where this refers to both types of queries. That is, such algorithm never make a query
to either LOCj or ENVj after making a query to either LOCj′ or ENVj′ such that j < j′.

68

Objects have identity. Note that the current model endows the objects with identities. That
is, the location function LOC reveals that the object that resides in location LOCt1(i) at time t1 is
the same object that resides in location LOCt2(i) at time t2. In contrast, the environment function
ENV (which is the only source of information in the model studied in Section 6) may only reveal
that these two locations were occupied at the corresponding times, but it does not reveal whether
the occupant is the same object. Note that this information is not evident even in the case of
fixed-speed interrupted movement in one dimension (studied in Section 6.1). In particular, this
information allows to securely identify a moving object with an object that stands at a later time.

The distance. In general, the notion of distance in property testing combines a notion of distance
between structures, hereafter referred to as absolute distance, with a normalization by the “size of
the structures”, which yields a notion of a relative distance. In the current context, when the moving
objects are very few in comparison to the size of the environments, it is not natural to consider the
tested structures as having size t · nd and to normalize accordingly, since in this case any evolving
environment with few objects will be deemed close to the empty evolving environment (which is
typically consistent with any evolution rules). Instead, we view these evolving environments as
having size m · t (representing up to m objects that exist during t units of time). The above
refers to deriving a notion of relative distance from a definition of absolute distance, whereas the
latter seems non-obvious here. In Section 6 things were simple: The evolving environments were
represented by a single function ENV, and the absolute distance was defined as the amount of
difference between such functions (i.e., number of arguments on which they differ). In this section,
every evolving environment is represented by two functions, LOC and ENV, and each of these functions
is determined to a great extent by the other. Thus, three natural choices (for defining absolute
distance) arise.

1. Counting the differences between function-pairs: In this case the absolute distance between
two evolving environments, represented by (LOC, ENV) and (LOC′, ENV′), is defined as the sum
of |{(j, i) ∈ [t]× [m] : LOC(j, i) 6= LOC′(j, i)}| and |{(j, ℓ) ∈ [t]× [n]d : ENV(j, ℓ) 6= ENV′(j, ℓ)}|.

2. Counting the differences between the location functions: In this case the absolute distance
between two evolving environments, represented by their location functions LOC and LOC′, is
just |{(j, i) ∈ [t]× [m] : LOC(j, i) 6= LOC′(j, i)}|.
The environment function ENV is partially determined by the location function LOC in the
sense that, for every (j, ℓ) ∈ [t] × [n]d, it holds that ENVj(ℓ) 6= ⊥ if and only if LOCj(i) = ℓ
for some i ∈ [m]. Furthermore, if the location function LOC describes a legal evolution, then
ENV is totally determined by it. (This may not be the case, in general, since we may have
LOCj(i)− LOCj+1(i) 6∈ {−1, 0, 1}.) Since we only consider distances between illegal evolutions
LOC and legal evolutions, each case in which LOCj(i)−LOCj+1(i) 6∈ {−1, 0, 1} is counted anyhow
towards the distance from a legal evolution. In general, changing the location function at a
single argument yields at most two changes in the environment function. Hence, counting
differences according to the location function is closely related to counting differences between
function pairs.

3. Counting the differences between the environment functions: In this case the absolute distance
between two evolving environments, represented by their environment functions ENV and ENV′,
is defined as |{(j, ℓ) ∈ [t]× [n]d : ENV(j, ℓ) 6= ENV′(j, ℓ)}|.
We note that in the case of environments that evolve according to the rule of movement, the
location function is determined by the environment function. However, this does not mean

69

that if ENV appears as fitting a legal evolution, then it uniquely determines LOC. For example,
we may have ENVj(ℓ) = 0 for every j ∈ [t] and every ℓ ∈ {1d, 3d}, describing two standing
objects, but any setting of LOC such that {LOCj(1), LOCj(2)} = {1d, 3d} (for every j ∈ [t])
is consistent with this ENV. (Indeed, only the settings that satisfy LOCj(1) = LOCj+1(1), for
every j, represent a legal evolution.)

The discrepancy between the first two measures and the third measure is reflected in our results:
See the contrast between Theorems 7.1 and 7.3. The question of which measure is “right” may
depend on whether the identities endowed by the location function are viewed as inherent features
of the objects or as an artifact of the model that supports location queries. Specifically, if these
identities are an artifact, then it may be justified to consider distances according to the environment
function. (This means that ENV and ENV′ are far only if for every LOC and LOC′ that are consistent
with them, the environments that are described by (LOC, ENV) and (LOC′, ENV′) are far apart.)

7.2 Results

Revisiting the learning algorithm described in Section 4, note that the effective number of instan-
taneous configurations with m objects is exp(m log n), assuming that d is a constant. (Such a
configuration is encoded by the value of the location function at a fixed time.) This fact has an im-
mediate effect on the complexity of learning and testing such environments, but it may be possible
to do better. In particular, as in Section 6, we seek polynomial-time (time-conforming) testers of
sublinear temporal query complexity.

We shall mimic the results of Section 6, showing that (1) the case of fixed-speed movement of
objects in one dimension has a very efficient tester, but (2) the general case of variable movement
in d dimensions is as hard as the general case of testing d-dimensional environments for consistency
with respect to an arbitrary evolution rule (with a fully visible state). While Part (2) holds for all
distance measures we defined above, Part (1) holds only when counting the differences according
to the environment function.

Starting with Part (2), we merely observe that the emulation carried out in Section 6.2 holds
also in the current context, provided that the number of objects (i.e., m) is set to equal the number
of locations in the emulated environment (i.e., m = nd when we emulate an environment on [n]d).
We stress that for such moving objects (i.e., as used in the emulation), the location function LOC

does not provide any information that is not available by a constant number of queries to the
function ENV. Specifically, for each i = (i1, ..., id) ∈ [n]d, we associate a designated object indexed
i (for simplicity), and this object will reside (at all times) in locations within the sub-cube (of size
3d) that is centered at location (2i1 + 1, ..., 2id + 1). Note that an environment evolving on [n]d is
emulated by m = nd objects that move in [2n + 1]d, but the latter may be an arbitrary fraction
of a larger environment of the form [N]d and the emulation holds for any N > 2n (where m = nd

holds always).
Turning to Part (1), we note that the tester used in Section 6.1.1 can be adapted to the current

model. In fact, the most difficult check performed by this tester – the two-sided error checking of
a matching between diagonal and vertical segments – is trivial in the current context (since such
a matching is explicitly provided by the location function). This allows us to obtain a one-sided
error tester in the current context, which (applies also to the case of m = n and) stands in contrast
to Theorem 6.7. The check of non-spaced standing (performed in Step 5) is also simplified by the
explicit matching between diagonal and vertical segments. However, the above can be applied only
for t ≥ poly(ǫ) · n, and this restriction is inherent (see Remark 7.2).

70

Theorem 7.1 (testing interruptible moving objects in the sparse model, when counting differences
according to the environment function): In the model of Section 7.1, when distances are defined
according to the environment function, and for t ≥ poly(ǫ) · n, the following holds. There exists a
time-conforming oracle machine of (total) time complexity poly(1/ǫ) that tests the consistency of
evolving environments with the fixed-speed movement of objects in one dimension, where colliding
objects stop forever. Furthermore, the tester has one-sided error, but is adaptive.

The conflict between Theorem 7.1 (which obtains a one-sided error tester of complexity poly(1/ǫ))
and Theorem 6.7 (which deems such tester impossible also in case m = n) is rooted in the fact that
the model of Theorem 7.1 provides access to the location oracle LOC. We note that Theorem 6.7
holds also in a model in which ENV returns the identity of the object residing in the queried location
at the queried time (as considered in Section 7.3), but LOC is not available.

Proof: We start by detailing the revised tester, which is obtained by adapting the tester of
Section 6.1.1. Again, we start by assuming that t ∈ [ǫn/2, n] (or rather that t ∈ [poly(ǫ) · n, n]),
and recommend that the reader consider the case of t = n. We also adopt the convention by which
queries that refer to locations outside of the environment’s domain (i.e., [n]) are not made and the
tester never rejects based on them (i.e., at each check, the answer is fictitiously defined as one that
will not cause rejection).

It will be again more convenient to associate the initial time period with 0 rather than with 1.
We use random samples I ⊆ [m] (rather than S ⊆ [n]) and R ⊆ [t], which are each of poly(1/ǫ)
size, and again augment R with {0}. For simplicity, we also augment R with {t}.

• Spaced initial configuration check: Analogously to Step 1 in the original tester, for every i ∈ I,
we check that locations LOC0(i) and LOC0(i) + 1 are not both occupied by moving objects.
That is, for each i ∈ I, we first obtain s ← LOC0(i) and if s 6= ⊥ (which indicates that the
ith object is present in location s of the environment at time 0), then we check that either
ENV0(s) = 0 or ENV0(s + 1) ∈ {0,⊥}.
Let I ′

def
= {i ∈ I : LOC0(i) 6= ⊥} denote the actual set of objects in I, and si

def
= LOC0(i) for

every i ∈ I ′.

• Individual movement check: Analogously to Step 2, we check that there exists r ∈ R such
that the ith object moves in the same direction at all times prior to r and stands in place at
all times r′ ∈ R such that r′ > r.

Specifically, for every i ∈ I ′, if δ
def
= ENV0(si) 6= 0, then we let r ∈ R be the largest integer

such that ENVr(si + δ · r) = δ, and let r+ be its successor in R, otherwise we define r = −1
and r+ = 0. We then check that for every r′ ≤ r in R it holds that LOCr′(i) = si + δ · r′,
whereas there exists an ei that resides between si + δ · r and si + δ · (r+ − 1) such that for
every r′ > r in R it holds that LOCr′(i) = ei. Note that if δ = ENV0(si) = 0 then ei = si.
(Indeed, we assume that LOC and ENV are consistent with one another.)

We also check that for every i ∈ I \ I ′ (that is, i ∈ I for which LOC0(i) = ⊥), it holds that
LOCr(i) = ⊥ for every r ∈ R .

• Matching movement and standing check: As explained upfront, an analog of Step 3 is trivial
here (i.e., each diagonal segment is mapped to the vertical segment that corresponds to the
same object). One may view the check regarding the existence of an ei ∈ [si+δ·r, si+δ·(r+−1)]
such that LOCr′(i) = ei for every r′ > r in R (where r and r+ are also as defined above) as a
check that this explicit matching is legitimate.

71

• Non-crossing movement check: Analogously to Step 4, we just need to check that the lines
of the sample do not cross each other. We can actually perform this check more intuitively
via the location function: For every i, j ∈ I ′, we check that if LOC0(i) < LOC0(j), then
LOCr(i) < LOCr(j) for every r ∈ R.

• Non-spaced standing check: Analogously to Step 5, the tester considers the intervals of move-
ments that it has seen in prior steps, and determines the sub-intervals that must be full of
standing objects. The definition of these sub-intervals is actually simpler than in the dense
case since we know the exact stopping position of each sampled object (while in the dense
case we only knew their approximate stopping position). The tester then samples locations
in these sub-intervals (at time t) and checks that they are all occupied by standing objects.
The latter check is done via queries to ENVt.

Note that the queries to ENV performed by the tester are chosen adaptively based on the answers
obtained from the LOC oracle: This happens both in the spaced initial configuration check and in
the non-spaced standing check. In particular, the queries to ENV0 (resp., ENVt) are made based on
the answers obtained from LOC0 (resp., LOCt).

44

The above tester always accepts an environment that evolves according to the fixed-movement
rule. As in the proof of Theorem 6.6, we show that if the environment ENV passes the test with
probability 2/3, then it is close to an environment that evolves according to the fixed-movement
rule. This will be done by modifying ENV (as well as LOC) in relatively few places so to obtain a
(consistent) description of a legal movement. We shall rely on the specific distance measure (which
only counts differences in the environment function) only in the (second part of the) analysis of the
non-spaced standing check.

From this point on, we assume that ENV (along with the consistent LOC) passes the test with
probability 2/3. By the spaced initial configuration check and individual movement check, we may
infer that almost all objects start in adequately spaced locations and move in an individually
legitimate manner. By omitting the few exceptional lines, we obtain an environment ENV′ in which
each object moves in a way that corresponds to a legal line, which consists of a (possibly empty)
diagonal segment followed by a (possibly empty) vertical segment.

We now turn to the analysis of the non-crossing movement check: Following the argument in the
proof of Theorem 6.6, we first get rid of crossing between objects that move in the same direction.
Recall that the cost of eliminating these crossing is smaller than 2 ·∑i∈L(|ei − eπ(i)|+ |si − sπ(i)|),
where L = {i ∈ [m] : LOC0(i) 6= ⊥} = {i1, ..., im′} denotes the set of living objects, (si, ei) denotes
the starting and ending positions of the ith living object such that si1 < si2 < · · · < sim′ , and
π is such that eπ(i1) < eπ(i2) < · · · < eπ(im′). On the other hand, the number of crossings (i.e.,

|{(i, j) ∈ L× L : i < j ∧ ei > ej}|) is at least
∑

i∈L |i− π−1(i)| = ∑i∈L |i − π(i)|. The next claim,
which generalizes Claim 6.4 by decoupling the parameters n and m (which were equal in Claim 6.4),
shows that

∑
i∈L |i−π(i)| can be upper bounded in terms of

∑
i∈L(|ei− eπ(i)|+ |si− sπ(i)|). Hence,

if our tester rejects with small probability, then it must be the case that the correction cost is low.45

Claim 7.1.1 (Claim 6.4, generalized): Let r1 < r2 < · · · < rm be real numbers such that rm ≤ r1+n
and π : [m]→ [m] be a permutation. If

∑
i∈[m] |ri−rπ(i)| > εmn, then

∑
i∈[m] |i−π(i)| > poly(ε)·m2.

44While this does not violate the time-conforming condition, one may argue that it is natural to consider a model
in which adaptivity is not allowed within the same time unit (i.e., all queries made at time j must be determined by
the end of time j − 1). In order to adhere to this more restricted model, one may replace the queries to ENV0 (resp.,
LOCt) by corresponding queries to ENV1 (resp., LOCt−1).

45Again, we use the fact that the size of the sample required to detect a crossing is small enough so that this sample
cannot distinguish ENV from ENV

′, which is ǫ1-close to it.

72

Indeed, Claim 6.4 corresponds to the special case in which m = n.

Proof: We use an analogue partition of [m] into buckets, Bj,k for j, k ∈ [c], where c = 2/ε, such
that i ∈ Bj,k if ri ∈ [(j ± 0.5)εn/2) and rπ(i) ∈ [(k ± 0.5)εn/2). The contribution of

⋃
j∈[c] Bj,j

to
∑

i∈[m] |ri − rπ(i)| is at most εmn/2, since each i ∈ Bj,j contributes at most εn/2. It follows

that there exist j 6= k such that
∑

i∈Bj,k
|ri − rπ(i)| > εmn/2c2 = ε3mn/8, which implies that

|Bj,k| > ε3mn/8
n = (ε/2)3 ·m (since |ri − rπ(i)| ≤ n for every i ∈ [m]). Continuing exactly as in the

proof of Claim 6.4, we infer that
∑

i∈Bj,k
|i− π(i)| > |Bj,k|2/2, and the current claim follows.

Next, we turn to crossings between objects that move in opposite direction (or between moving
and standing objects). Again, we proceed exactly as in the proof of Theorem 6.6, while noting that
we may use Claim 6.5 as is (indeed, Claim 6.5 refers to n points, but this is a free parameter in
that claim, and in our current application we may set it to m). Hence, we obtain an environment
ENV′′ that is close to ENV such that ENV′′ consists of legal lines that do not cross one another.

7 3 9 1 5 211

7 3 9 1 5 2

8 4

48 11

6

6

Figure 26: Illustrating the reliance on the distance measure that counts only changes in the envi-
ronment function. The objects in the figure start at a (minimal) distance 2 of one another, and
(with the exception of lines 4 and 9) they end at distance 1 of one another (leaving no gaps). Note
that the gap between lines 4 and 9 cannot be filled without significantly modifying half of the lines
in terms of the location function.

Finally, using the non-spaced standing check, we infer that, by applying a relatively small
modification to ENV′′, we can obtain an environment, denoted ENV†, in which very few vertical
segments are missing within the sub-intervals that must be full of standing objects (i.e., the sub-
intervals determined by the movement of the sampled objects). This is done similarly to the first
stage in the analysis of Step 5 in the dense case (i.e., the proof of Theorem 6.6). In particular,
we partition lines into buckets as done in the dense case. The two (related) changes are in the
definition of small buckets and in the requirement regarding sampled objects in large buckets. Here
we say that a bucket is small if the number of lines belonging to the bucket is smaller than ǫ3

5m
(otherwise it is large). The cost of removing all lines belonging to small buckets is at most ǫ5mt.
We also consider partitioning the lines in each large bucket into subsets (with consecutive initial

73

positions) of size (roughly) ǫ3
5m/4, and assume that we sample at least one line from each such part

(in each large bucket). The definition of short and long buckets remains the same and the rules for
removing lines from buckets and “straightening” lines from short buckets remain unchanged. The
total cost of the modifications performed is O(ǫ5mn) (the factor of n, rather than t is due to the
straightening of short lines, as in the dense case).

We now apply the same correction procedure as in the second stage of the analysis of Step 5
in the proof of Theorem 6.6. At this point we rely on the hypothesis that distances are measured
according to the environment function. The issue is that the “taking over” of a diagonal segment by
a vertical segment can be charged a constant number of units (as opposed to O(t) units), although
the segment moves from one object to another (i.e., from one LOC(i) to some other LOC(i′)), because
we only count changes in the environment function (and do not count changes in the location
function). An example where this is an issue is depicted in Figure 26. Hence, we obtain a legal
environment ENV‡ that is close to ENV. Note that here, as in all prior steps, the distance between
the corrected environment and the original one is at most poly(ǫ) ·mt.

All the above was stated in terms of the case that t ∈ [poly(ǫ) ·n, n], and extending it to the case
of t > n is relatively easy. One alternative is to note that Claim 7.1.1 holds for any t ≥ n whereas
the only other point in which the proof of Theorem 6.6 actually refers to the relation between n and
t is in the analysis of the matching of diagonal and vertical segments, which we avoided here. The
other alternative is just to mimic the extension presented at the end of the proof of Theorem 6.6.

Remark 7.2 (on the case of t ≪ poly(ǫ) · n): As stated above, the result of Theorem 7.1 does
not extend when t ≥ poly(ǫ) · n does not hold. To see the problem with such a case, suppose that
m = 2n/t and consider an environment that consists of n/t separate sub-environments such that
each sub-environment contains two objects that cross each other’s path in the middle of their paths.
Although such an environment is far from any environment that evolves according to the rule of
movement, no oracle machine that makes o(min(t,

√
n/t)) queries may see two objects in the same

sub-environment (let alone a crossing). Things change if the objects indices are ordered according
to their starting positions, which was not postulated in our model.

As stated upfront, the result of Theorem 7.1 relies on the “counting convention” (i.e., the definition
of distance according to the environment function). In contrast, if distance is defined according to
the location function, then testing requires Ω(m1/4) queries.

Theorem 7.3 (testing interruptible moving objects in the sparse model, when counting differences
according to the location function): In the model of Section 7.1, when distances are defined accord-
ing to the location function, testing the consistency of evolving environments with the fixed-speed
movement of objects in one dimension requires Ω(m1/4) time-conforming queries, even for constant
ǫ > 0.

We stress that the claim holds even if adaptive testers of two-sided error are allowed. On the other
hand, the claim is restricted to time-conforming testers.

Proof: To gain intuition, consider the example depicted in Figure 26. More generally, consider a
“block” of m′ objects that start moving when they are at distance two apart, and stop moving at
time Θ(t) such that there is a single gap among their stopping positions. Assuming that this gap
is relatively close to the middle, this evolving environment is Ω(1)-far from legal, when distances
are defined according to the location function. Essentially, the reason is that we must “close the

74

gap” so that the stopping of every object will be “justified”. To this end we need to either modify
the stopping time and position of many objects, or we need to remove many objects. On the other
hand, in order to detect the illegality of this structure, a tester needs to do at least one of the
following: (1) query ENV at the location of the gap; (2) query ENV at a location and time in which
an object starts standing; (3) make two LOC-queries to this block (this is a necessary condition,
which may not suffice.)46 In order to avoid two LOC-queries to the same block, we have to use many
such blocks. Specifically, we set m′ =

√
m/3 so that we can have

√
m such blocks, which implies

that the last event does not occur unless we make Ω(m1/4) queries.
Turning to the actual proof, we consider two distributions of evolving environments, each con-

taining m′ def
=
√

m/3 blocks of m′ moving objects, where each object stops at some time in [t/3, 2t/3]
and t = Ω(m5/4). Each block has length 3m′ and is partitioned into three equal parts; the “real
action” will take place in the middle part, and the other parts are used to “mask” it (via random-
ization). The first distribution, denoted D1, is generated as follows (where the objects are assigned
random identities in [m]):

1. Select uniformly a (“base”) stopping time s ∈ [t/3, 2t/3] and have the initial configuration
(at time 0) contain a standing object (i.e., a vertical line) in position m + s + 1 (so that an
object that starts at location m and moves towards this standing object will stop at time s
and location m + s);

2. For each block i ∈ [m′] and each j ∈ [m′/2], the initial configuration contains a rightward
moving object at location (3(i− 1) + 1) ·m′ + 2j (i.e., the second third of each block contains
moving objects that reside at the even locations at distance two apart);

3. For each block i ∈ [m′] and each j ∈ [m′/2], select uniformly σi,j ∈ {0, 1}, and have the initial
configuration contains a rightward moving object at location (3(i− 1) + 2σi,j) ·m′ + 2j (i.e.,
an object is placed either at location 3(i− 1) ·m′ + 2j, which belongs to the first third of this
block, or at location (3(i − 1) + 2) ·m′ + 2j, which belongs to the last third).

Hence, the total length of all blocks is m′ · 3m′ = m, and the number of objects in them is
m′ · (m′/2 + m′/2) = m/3. The environment is obtained by applying the rule of movement to
the initial configuration selected as above. Note that the initial configuration is a legal one, since
the objects are at distance at least two apart from one another. Hence, D1 is a distribution over
environments that evolve according to the moving-objects evolution rule.

The second distribution, denoted D2, is obtained by the following modifications to D1. First, for
each block i ∈ [m′], we select uniformly ji, ki ∈ [m′/2], remove from the initial configuration the
object that resides at location (3(i−1)+1)·m′+2ji and place it in location (3(i−1)+1)·m′+2ki−1.
Note that this creates an illegal initial configuration, since the relocated object is at distance one
from another (moving) object. Nevertheless, consider the environment obtained by applying the
rule of movement to this initial configuration (see Figure 27). We next show that with very high
probability, an environment selected according to D2 is Ω(1)-far from a legal evolution (when
distances are defined by the location function). Note that the relocated object (which was placed
illegally) plays the same role as the gap in the motivational discussion.

Claim 7.3.1 With probability 1 − o(1) an environment chosen according to D2 is Ω(1)-far from
any environment that evolves according to the moving-objects rule when distance is measured with
respect to the location function.

46For example, making two LOC-queries to this block may yield the starting and stopping locations of two objects,
and if these two objects are at different sides of the gap then the differences reveal the illegality of the structure.

75

X I

Figure 27: Illustration of (part of) the second third of a block in the D2. An object was omitted
from the dashed diagonal segment marked X and inserted in the diagonal segment marked I. The
evolution itself is according to the rule. The dotted diagonal indicates the stopping time of moving
objects in the corresponding evolution of D1.

Proof: Consider selecting an environment according to D2. We shall say that a block i is bad if
ji ∈ [m′/8] and ki ∈ [m′/4, 3m′/8], which implies that ki− ji ≥ m′/8 and (m′/2)−ki ≥ m′/8. Since
ji and ki are selected uniformly independently at random in [m′/2], the probability that a block
is bad is 1/16. It follows that with probability 1 − exp(−Ω(m′)) the fraction of bad blocks is at
least 1/32. Let LOC be the location function of such an environment, and let LOC′ be the location
function of an environment that evolves according to the moving-objects rule. We shall show that
the distance between LOC and LOC′ is Ω(1).

Observe that for any object p in LOC, if p has either a different initial location in LOC′ or a
different stopping time (or it does not exist in LOC′), the difference between LOC and LOC′ due to p
is Ω(t) (since in LOC the object p stops at some time r ∈ [s, s + m], where s ∈ [t/3, 2t/3]). Consider
any bad block i in LOC, and any pair of objects p and p′ that belong to the second third of the block
such that the initial position of p is between (3(i− 1) + 1) ·m′ + 2ji and (3(i− 1) + 1) ·m′ + 2ki− 1
and the initial position of p′ is after (3(i−1)+1) ·m′+2ki−1. The main observation is that it is not
possible that both p and p′ will have the same initial and stopping positions in LOC and LOC′. The
reason is that due to the relocation (in LOC) of the object from initial position (3(i−1)+1) ·m′+2ji

to initial position (3(i− 1)+ 1) ·m′ + 2ki− 1, the difference between the starting positions of p and
p′ in LOC is less than twice the difference between their stopping positions. Such a behavior cannot
occur in LOC′, which evolves according to the moving-objects rule.

Considering m′/8 disjoint pairs (p, p′) as above, we infer that the contribution of a bad block
to the distance between LOC and |l′ is Ω(m′ · t). The claim follows by combining this with the
lower bound on the number of bad blocks in LOC. Theorem 7.3 follows by showing that Ω(m1/4)
time-conforming queries are required in order to distinguish these two distributions, as we show
next.

76

One key observation is that a time-conforming oracle machine that makes q queries is quite
unlikely to make a query at the time interval [s, s + t/100q]. This is because queries made at
the time interval [0, s] are unlikely to reveal information about s, where the only exception is the
unlikely event of hitting the standing object at position m + s + 1. Hence, if we let τ denote the
time parameter of the first query made at time greater than s, then we expect τ to be greater than
s + t/3q. Using the time-conforming condition it follows that the machine cannot make a query at
the time interval [s, τ − 1], even if it later learns s. However, if t/100q > m (which is certainly the
case when q = o(m1/4) and t = Ω(m5/4)), then all these later queries refer to times after all objects
have stopped (i.e., to times after s + m). We shall show that such o(m1/4) queries are unlikely to
distinguish between the two distributions. We first give a high-level argument and then make it
more rigorous.

To streamline the argument, we augment the generation process of an environment in the
support of D1 by choices of ji, ki ∈ [m′/2] (for every i ∈ [m′]), which have no effect. Considering an
oracle machine of query complexity q = o(m1/4), we may assume that the following events occur,
which happens with high probability: (1) No query is made at the time interval [s, s+m] (in which
part of the objects, but not all, stop); (2) At most one location query is made into each block;
(3) For every i ∈ [m′], no query hits the diagonal that starts at location (3(i − 1) + 1) ·m′ + 2ji

nor the diagonal that starts at location (3(i − 1) + 1) · m′ + 2ki − 1. Recall that (1) is violated
with probability O(qm/t) = o(1), and note that (2) is violated with probability q2/m′ = o(1),
whereas (3) is violated with probability q/m′ = o(1).

Under the above assumptions, the answers to the queries made prior to time s are identically
distributed in the two distributions of evolving environments. The answers to ENV-queries made
after time s + m are also identically distributed in the two distributions, but the answers to the
LOC-queries for time after m + s (combined with the corresponding queries to LOC0) may reveal
the stopping time of the corresponding objects. This would have allowed to distinguish the two
distributions if we had not added the randomization in two thirds of each block. Specifically,
the replacement of a single object in each block effects the stopping time of some objects in that
block by one unit. However, this unit is masked by adding m′/2 random bits to it, which means
that the information leakage is bounded by O(1/

√
m

′
). Hence, the total information leakage is

O(q/m1/4) = o(1). Following is a more rigorous description of this analysis.

Claim 7.3.2 Any time-conforming machine that makes q queries distinguishes D1 from D2 with
gap O(q/m1/4), provided that t = Ω(m5/4).

Proof: In the following description, we shall construct on-the-fly an evolving environment that is
distributed (approximately) according to each of the two distributions, while answering queries
made to that environment. The same description applies to both distributions, except when
explicitly stated otherwise. The description relies on the hypothesis that the oracle machine is
time-conforming.

1. Select uniformly s ∈ [t/3, 2t/3] and ji, ki ∈ [m′/2] for every i ∈ [m′].

2. Each query done at time that resides in the interval [0, s] is typically answered as it would
have been answered under the first distribution. In particular, when a location query is
made, we assign its index (which is in [m]) an initial location uniformly distributed in [m],
and answer it with ⊥ (indicating that the object is not present in the environment) if the
assigned location is odd. If the assigned location is even and resides in the first or last third
of a block, then make a random choice (i.e., σi,j) regarding whether it exists in this third (or

77

in the other third). The same random choices are made for relevant ENV-queries, and in both
cases the choice is recorded and the evolution is conditioned accordingly. See further details
below.

Note that the distribution is indeed skewed by the fact that we never answer a location query
by assigning it the standing object at location m + s + 1; this only biases the distribution by
an amount of 1/m (per query). More importantly, we shall abort the emulation (and output
a arbitrary environment) if a query is made to the diagonals that correspond to the initial
locations (3(i− 1) + 1) ·m′ + 2ji and (3(i− 1) + 1) ·m′ + 2ki − 1, but this event occurs with
probability O(q/m′).

Details: We select a permutation π : [m] 7→ [m], representing the assignment of locations to
indices of objects, and the bits σi,j, representing occupancy choices made for the first and
last thirds of the blocks, on the fly. Initially, both π and the sequence of σi,j ’s are fully
undetermined.

When a location query (a, b) ∈ {0, 1, ..., t} × [m] is made, if π is undefined at b then we set
π(b) at random (among the values that do not appear yet in the range of π). Queries made
to diagonals that start at odd locations are answered with an indication that no object is
present there, except for the case that they refer to location (3(i− 1) + 1)m′ + 2ki − 1 in the
ith block. At this exceptional case we abort (with an arbitrary output). If a query is made
to a diagonal starting at an even location at the second third of a block, then it is answered
as in D1, except for the case that it refers to location (3(i − 1) + 1)m′ + 2ji in the ith block,
which also causes abort. If a query is made to the 2jth diagonal in the first or last third of
the ith block and σi,j is undefined, then we determine σi,j at random. The query itself is then
answered as in D1.

We stress that the difference in the handling of location and environment queries amounts
to whether or not the mapping π is used and possiblly further determined: Location queries
refer to π, whereas environment queries do not refer to π. In both cases, the query is answered
according to the starting location of the diagonal on which it resides (as determined by π in
case of a location query), which may refer to the value of the relevant σi,j.

Observe that the probability of aborting is O(q/m′), and otherwise all queries (at times
r ∈ [0, s]) are answered in exactly the same manner according to both distributions.

3. If any query is made at at a time that belongs to [s, s+m], then we abort the emulation. Hence,
we condition the rest of the emulation by an event that occurs with probability 1−O(qm/t).

4. Queries made at any time r ∈ [s + m + 1, t] are answered as follows. Environment queries
are answered in a straightforward manner, since the m/3 + 1 standing objects reside in the
interval [s + (2m/3) + 1, s + m + 1] and only in it. The issue is how to answer the location
queries.

We start by making all the random choices that were left undetermined by the prior steps
(i.e., the random choices for the first and last third of each block, that is, the σi,j ’s, as well
as the remaining random assignment of objects to locations). This determines the evolution
in each of the two distributions, but these evolutions differ due to the relocation between
(3(i− 1) + 1) ·m′ + 2ji and (3(i− 1) + 1) ·m′ + 2ki− 1 in the second distribution. We answer
questions in each of the two distributions accordingly.

We stress that at the current step the process is not adaptive (i.e., the random choices are not
made on-the-fly in respond to queries as in Step 2). Instead, all random choices are made at

78

the very beginning of the current step, and all queries are answered deterministically based
on these choices.

It is left to analyze the deviation in the distribution of the answers that we provide for the location
queries in the last step (i.e., in Step 4). Recall that if the emulation did not abort, then the diagonals
that correspond to the choices ji and ki were never queried, and we condition the distributions on
this event. We also condition the distributions on the event that location queries (made in Steps 2
and 4) hit at most one object in each block. This holds with probability 1−O(q2/m′). From this
point on we fix the prefix of queries and answers performed before time s+m+1 (where the prefix is
assumed to obey the aforementioned conditioning), and we analyze the difference between the two
distributions on the remaining suffix of queries and answers for any such fixed prefix (conditioned
on the second event).

In each distribution, the location of an object at time t is determined by the number of objects
that reside to its right in time 0, denoted ρ (i.e., the location is s + m− ρ). For objects that reside
in the first or last third of a block, the number ρ depends only on the random choices made for this
block; this holds for both distributions, and ρ is distributed identically in both cases. For objects
that reside in the second third of a block, the number ρ may differ by one unit between the two
distributions (due to the relocation between (3(i−1)+1)·m′+2ji and (3(i−1)+1)·m′+2ki−1). But
this difference is “masked” by the random distribution of the number of objects in the last third,
which is caputed by binomial distribution B(m′′) counting the number of heads in m′′ independent
coin tosses, where m′′ > m′/4 represents the number of choices made for this block in the last step
(i.e., in Step 4). Since the variation distance between the distribution B(m′′) and the distribution
B(m′′) + 1 is O(1/

√
m′′), the total deviation due to these answers is O(q/

√
m′/4).

To summarize, we showed that a time-conforming oracle machine that makes q queries can
distinguish the two distributions with probability O(q2/m′) + O(qm/t) + O(q/

√
m′) = O(q/

√
m′),

provided that t = Ω(m
√

m′). The claim follows.
The theorem follows by combining the above two claims. Specifically, environments generated

according to D1 have to be accepted with probability at least 2/3, whereas (by Claim 7.3.1) en-
vironments generated according to D2 have to be rejected with probability at least 2/3 − o(1).
Using Claim 7.3.2, it follows that a time-conforming tester must have query complexity Ω(

√
m′) =

Ω(m1/4), provided that t = Ω(m5/4).

Remark 7.4 We comment that the distributions presented in the proof of Theorem 7.3 can be
distinguished by an oracle machine of query complexity O(log m) that is not time-conforming. Such
a machine can find s, by a binary search along the movement of the rightmost object, which with high
probability starts at a location in [m−O(1),m−1]. This certainly foils the analysis presented above.
More importantly, a machine that is not time-conforming can first find the stopping time of an object
that belongs to the second third of a block and then check the stopping times of other objects in this
block. Specifically, for a random i ∈ [m], it can first obtain the stopping time j = LOC(t, i)−LOC(0, i)
of the ith object by making the corresponding LOC-queries, and then make ENV-queries to a small
random sample of the diagonal segment {(j+k, LOC(j, i)−k) : k ∈ [±m′/10]}, which means querying
times j ± (m′/10) after querying time t. The point is that in the first distribution all the objects
of the second third of this block stop on this diagonal, whereas in the second distribution many of
these objects do not stop on this diagonal (due to the relocation); see Figure 27.

This leads to

Open Problem 7.5 What is the query complexity of testing the consistency of evolving envi-
ronments with the fixed-speed movement of objects in one dimension, when distances are defined

79

according to the location function? Same when requiring the tester to be time-conforming.

Analogously to Open Problem 6.11, we ask

Open Problem 7.6 (extremely open ended): Referring to the models presented in Section 7.1,
provide natural classes of evolution rules that describe variable motion of relatively few stateful
objects in [n]d such that for each rule in the class some (or all) of the following holds:

1. Testing whether the evolution of an environment with at most m objects is consistent with this
rule can be done in sublinear temporal query complexity; that is, complexity poly(1/ǫ) · o(m).

Same for complexity poly(ǫ−1 · log n).

2. Learning the evolution of an environment with at most m objects that is consistent with this
rule can be done in polynomial time and temporal query complexity o(m).

Same for temporal query complexity max(1,poly(1/ǫ) · Õ(m)/t).

Same when requiring the algorithms to be time-conforming.

7.3 A twist on the model: Environment oracles that return identities

Recall that the models presented in Section 7.1 provided the tester with access to two oracles, an
environment oracle ENV and a location oracle LOC. As in Section 6, we assumed that the environment
oracle returns a value in {−1, 0, 1,⊥}, indicating the movement direction of an object (or its non-
presence). In light of the fact that the location oracle endows objects with identities, it is natural
to consider also an environment oracle that indicates these identities. Specifically, we consider an
environment oracle ENV : [t]× [n]d → [m]× {−1, 0, 1} ∪ {⊥} such that ENV(j, ℓ) = (i, δ) if at time j
the ith object resides in location ℓ and moves in direction δ, and ENV(j, ℓ) = ⊥ if no object resides
in location ℓ at time j.

Note that in this model all distance measures considered in Section 7.1 are closely related.
Specifically, the value of ENV determines the value of LOC, and changing one value in ENV yields one
change in LOC.

Open Problem 7.7 What is the query complexity of testing the consistency of evolving environ-
ments with the fixed-speed movement of objects in one dimension, when the environment oracle
returns identities of objects? Same when requiring the tester to be time-conforming.

We conjecture that the answer is poly(ǫ−1 log n).

8 Directions for Further Research

One obvious question is for which local rules Γ : Σ3d → Σ and viewing functions V : Σ→ Σ′ there
exists an efficient learning algorithm that has sublinear temporal query complexity (i.e., that makes
o(nd) queries to each ENVj : [n]d → Σ). Ditto for testing. These questions are actually a research
program, having numerous appealing special cases, some of them were discussed in the previous
sections. In many cases, any improvement over the running time of the exhaustive search would
also be interesting. On the other hand, one may argue that our notion of efficiency is too crude
and that one should seek poly(n) · t-time algorithms (rather than poly(n, t)-time algorithms).

Another general question is for which local rules Γ : Σ3d → Σ and viewing functions V : Σ→ Σ′

is it possible to test the environment with o(nd) queries, and furthermore with o(nd/t) queries to

80

each ENVj, where here we assume that the proximity parameter (i.e., ǫ > 0) is a constant. Typically,
this would mean that testing these evolving environments requires less queries than learning them.

We note that in the context of evolving environments nonadaptive algorithms have a natural
appeal when one may think of the probing of the environment by sensors that are placed in prede-
termined locations. In such a case, one may claim that relocating these sensors at time j according
to the answers provided in time j−1 (let alone according to the answers provided in time j itself)47

may be infeasible or undesirable. But extending this argument may mean that it is undesirable to
relocating these sensors at all, or that relocation to a small distance is to be preferred. In the case
of environments of moving objects (studied in Sections 6 and 7) one may think of attaching sensors
to the objects. All these possibilities are natural ramifications that beg further research.

Finally, we note that our formulations of the learning and testing tasks followed the standard
definitions that refer to worst-case complexity. With respect to learning, it makes sense to consider
average-case complexity versions; for example, the case that the initial global state (i.e., ENV1) is

uniformly distributed in Σn3d

. Average-case complexity may also be applied to the testing task, but
one must be very careful regarding the choice of distributions (cf. [Gol07], which refers to property
testing at large).

Acknowledgments

We were inspired by a short presentation of Bernard Chazelle in the Property Testing Workshop
that took place in January 2010 at Tsinghua University (Beijing).48 Specifically, Bernard suggested
attempting to provide a sublinear time analysis of dynamic systems, which may consist of selecting
few objects and tracing their movement in time. This suggestion sounded very appealing to us,
and it was the trigger for the model presented here.

We are grateful to Benny Applebaum for collaboration in early stages of this research.

47Indeed, our notion of adaptive (time-conforming) algorithms allows to determine queries based on the answers
obtained in the same time period. Hence, we view the time period is long enough to allow for such an adaptive
probing. A natural restriction may allow for adaptivity only towards later time periods; that is, at the end of each
time period, we must determine (possibly based on the answers obtained at this time period) all queries to be made
in the next time period.

48A related collection of extended abstracts and surveys has appeared as [Gol10].

81

References

[AIK10] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography by cellular automata or
how fast can complexity emerge in nature? In Proceedings of the First Symposium on
Innovations in Computer Science (ICS), pages 1–19, 2010.

[BBM12] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45(4):653–750, 1998.

[Gol] O. Goldreich. Short locally testable codes and proofs: A survey in two parts. In [Gol10].

[Gol07] O. Goldreich. On the average-case complexity of property testing. Technical Report
TR07-057, Electronic colloquium on computational complexity (ECCC), 2007.

[Gol10] O. Goldreich, editor. Property Testing: Current Research and Surveys. Springer, 2010.
LNCS 6390.

[Gol13] O. Goldreich. On the communication complexity methodology for proving lower bounds
on the query complexity of property testing. Technical Report TR13-073, Electronic
colloquium on computational complexity (ECCC), 2013.

[GR02] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

[GR11] O. Goldreich and D. Ron. On proximity oblivious testing. SIAM Journal on Computing,
40(2):534–566, 2011.

[GR13] T. Gur and R. Rothblum. Non-interactive proofs of proximity. Technical Report TR13-
078, Electronic colloquium on computational complexity (ECCC), 2013.

[GS06] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost linear length.
Journal of the ACM, 53(4):558–655, 2006.

[KS92] B. Kalyanasundaram and G. Schintger. The probabilistic communication complexity of
set intersection. SIAM Journal on Discrete Math, 5(4):545–557, 1992.

[KT00] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. In Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of
Computing (STOC), pages 80–86, 2000.

[KV94] M. Kearns and U. Vazirani. An introduction to Computational Learning Theory. MIT
Press, 1994.

[Ron10] D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, 5:73–205, 2010.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

82

[RS06] S. Raskhodnikova and A. Smith. A note on adaptivity in testing properties of bounded
degree graphs. Technical Report TR06-089, Electronic Colloquium on Computational
Complexity (ECCC), 2006.

[Val84] L. G. Valiant. A theory of the learnable. CACM, 27(11):1134–1142, November 1984.

83

Appendix: Some Tedious Details

A.1 Some linear-time computations by one-dimensional cellular automata

In this section we show how to implement a few basic operations by a linear number of steps of a
one-dimensional automaton.49 These implementation are used for proving Theorem 3.2 (as stated,
rather than for t = poly(n)). Recall that n denotes the number of cells in the automaton. Our
description uses the transmission of tokens on the automaton, which is readily implemented by
special parts of the states.

Synchronizing two endpoints of an interval. Suppose that two endpoints of an interval of
[n] are marked (by parts of their states), and that one of its endpoints wishes to synchronize its
actions with the other endpoint. This can be done by having the initiating endpoint send two
tokens to the other endpoint such that one token proceed in half the speed of the other, and having
the other endpoint bounce back the faster token. Synchronization is thus achieved when the faster
token reaches the initiator and the slower token reaches the other endpoint.

Computing an approximation of n. We find such an approximation by repeated bisections. In
the first iteration, the two endpoints of the automaton send tokens to one another, and the meeting
point of these tokens is marked as the middle point, thus partitioning [n] into two intervals, each
of length ⌊n/2⌋. The endpoints of these smaller intervals proceed in a similar fashion, and this is
repeated till the intervals reach length that approximately equals the number of iterations performs.
The latter condition is detected by having each endpoint maintain a unary counter (via the cells
to its right) of the number of iterations performed so far. The counter value is also passed to the
middle point whenever it is created. Thus, the ith iteration can be implemented in O(i ·n/2i) steps,
and the process halts when i = Θ(n/2i). At this time, n as well as simple functions of n that
are bounded by a polynomial (like

√
n) can be approximated in poly(log n) steps, by emulating a

computation of a Turing machine, where the result of the computation is stored in the first O(log n)
cells.

Furthermore, numbers such as n′ = nc (for some c ∈ (0, 1)), which are stored in the first log2 n′

cells, can be transformed in Õ(n′)-time into unary notation, where the result is stored in the first n′

cells. This is done by iterations, each lasting poly(log n) steps, such that in each iteration a binary
counter is decreased and a new token is sent towards the right hand side. Each token stops at the
first cell that contains no such token at the relevant time.

Copying a block of n′ bits to the adjacent n′-bit long block. Suppose that the adjacent
block is on the right hand side of the old block. Then, we start by marking the right endpoint
of the new block. This can be done by synchronizing the endpoints of the old block, and having
both endpoint send token towards the end of the new block such that the token send by the right
endpoint proceeds in half the speed. The meeting point of these tokens is marked as the end of the
new block. Next each cell of the old block sends a token that contains its state to the right, but
does so only one time unit after its right neighbor has done so (when the rightmost cell starts this
processes). When a token arrives at the right endpoint of the new block, its contents is recorded,
and it disappears. Other cells record and eliminate tokens that arrive to them only after their right
neighbor has done so, and otherwise they forward the token to that neighbor. The entire process
takes O(n′) steps.

49We are quite certain that these implementations are at least implicit in the vast literature on cellular automata.

84

A.2 Modeling moving objects via cellular automata

In this section we outline how the environments studied in Section 6 can be captured by a d-
dimensional cellular automaton. Recall that in Section 6 we considered objects that move at the
same fixed speed in one of a few directions, as long as their paths do not cross. When their paths
do cross the objects just stop at their current place (and remain there forever). As in the beginning
of Section 6.2, we actually generalize this model to movement in d ≥ 1 dimensions.

In our model, states will encode the existence or absence of an object in the location as well as
auxiliary information. In case an object is present (in this location), the state also indicates the
direction in which the object “wishes” to move (i.e., the object may either want to stay in place
or move to one out of the 3d − 1 neighboring grid points). In case no object is present (i.e., the
location is vacant), the state also encodes whether or not permission is granted to some neighboring
object to move to this location (and if so then this permission also points to the neighbor to which
the permission is granted).

It is natural to postulate that only the existence or absence of an object in a location is visible
(and that the wish or permission information is hidden from the observer). An alternative for-
mulation that is closer in spirit to the description in Section 6, includes also the past movement
direction in the state and allows this part to be visible too. For sake of simplicity, we use the first
alternative in the rest of this section, while noting that the past direction of movement can easily
be deduced by probing all 3d locations in the prior time slot.

We now turn to a description of the local evolution rule that corresponds to the model outlined
above. Recall that the local rule determines the next state of a location in the environment based
on the states of 3d locations in the preceding time unit (i.e., the state of the location itself and the
state of its neighbors). In the current case, the local rule postulates the following:

1. If the current location grants permission to some direction and there exists an object in the
corresponding position that wishes to move to the current location, then the object moves to
the current location (and indicates that it wishes to continue moving in that direction).

(That is, if the central (i.e., location 0 = (0, ..., 0)) state encodes a vacancy and permission
in direction δ ∈ {−1, 0, 1}d, and the state in location δ encodes an object wishing to move in
direction 1− δ, then the new state encodes an object wishing to move in direction 1− δ.)

2. If the current location contains an object that wishes to move in some direction and the
corresponding position indicates that permission is granted in that direction, then the current
location becomes null (i.e., encodes vacancy with no permission).

(Indeed, the combination of these two sub-rules enables the movement of an object, by making
sure that the object appears in the new location and disappears from the old one. Further-
more, the “directed permission” guarantees that a single object moves to the currently vacant
location.)

3. If the current location is null (i.e., it contains no object and no permission is granted) and
there exists a neighboring object that wishes to move to it, then permission is granted to one
of these objects (according to a predetermined order of preference). (That is, the new state
encodes a permission in that direction, but the object may only move to it in the next step.)
The same holds if the current location is vacant and a permission is granted in direction δ, but
either there is no object in direction δ or the object in direction δ wishes to move elsewhere.

4. If the current location is vacant and no neighboring object wishes to move to it, then it
becomes null (i.e., if it was null it remains so, and if a permission was previously granted then

85

it is voided).

5. In all other cases, the state of the current location remains unchanged. This includes the case
that the current location contains an object that wishes to stay in it, and the case that the
current position is null and no neighbor wishes to move to it.

The basic model captures environments in which objects move in predetermined (or constant)
directions subject to “control rules” that prevent collisions. More elaborate models may be devised
for environments in which objects may change their direction of movement. Such models include
an “internal control state” (ICS) per each object, and the object may change its wish (and alter
its ICS) according to its current ICS and the vacancies around the object.

86

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

