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Abstract

The Sliding Scale Conjecture in PCP states that there are PCP verifiers with a constant
number of queries and soundness error that is exponentially small in the randomness of the
verifier and the length of the prover’s answers. The Sliding Scale Conjecture is one of the old-
est open problems in PCP, and it implies hardness of approximation up to polynomial factors
for problems like Max-CSP (with polynomial-sized alphabet), Directed-Sparsest-Cut
and Directed-Multi-Cut.

In this work we prove:

1. The Sliding Scale Conjecture follows from a construction of a low degree test whose
soundness error is exponential in the randomness of the verifier.

2. A parallel repetition theorem for low degree testing: Given a low degree test with error

|F|−Ω(1)
, one can generate a repeated low degree test whose error is |F|−Ω(k)

.

3. Applying the parallel repetition theorem on a suitable low degree test, we get a low

degree test with error |F|−Ω(k)
and randomness O(km log |F|). In particular, we get

the first low degree test with error ≪ 1/ |F| and O(m log |F|) randomness.

The missing piece for proving the Sliding Scale Conjecture is a derandomization of the
parallel repetition theorem. This seems plausible given the algebraic structure of the low
degree testing problem, which was utilized for derandomization in the past. The limitation
on derandomizing parallel repetition by Feige and Kilian does not rule out this
approach.

Additional contributions in this work include an analysis of the sampling properties of
the incidence graph of degree-k curves and k′-tuples of points in a finite space Fm, and
a combinatorial composition lemma for PCP that abstracts the composition technique of
Arora and Safra.
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is based upon work supported by the National Science Foundation under Grant Number 1218547.
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1 Introduction

1.1 The Sliding Scale Conjecture

The basic PCP Theorem [6, 5, 3, 2] shows that NP problems can be verified with constant
soundness error ε = 1

2 using a constant number q of queries to a proof of polynomial length
over a constant alphabet Σ. Given a NO instance, no matter what proof is given, the verifier
accepts with probability at most ε. Given a YES instance, on the other hand, there is a proof
that the verifier always accepts (“perfect completeness”).

For applications, one needs a stronger PCP Theorem: one with soundness error ε close to
0. While such can be obtained by sequentially repeating the basic PCP test enough times, this
also increases the number of queries. A strong PCP Theorem achieves error close to 0 while
keeping the number of queries constant. We remark that ε ≥ 1/ |Σ|q, and, hence, the alphabet
must grow to allow low error and constant number of queries.

Bellare, Goldwasser, Lund and Russell [7] conjectured in 1993 that there are PCPs with
polynomially small soundness error and two queries, provided that the alphabet is of sufficiently
large polynomial size. More generally, the conjecture became known as the “Sliding Scale
Conjecture”:

Conjecture 1.1 (Sliding Scale Conjecture). For some constant c > 0, for every n and ε ≥ 1/nc,
there is an alphabet size k = k(ε) ≤ poly(1/ε), such that there is a PCP verifier for input size
n that uses O(log n) random bits, makes constant number of queries to a proof over alphabet of
size k, and has perfect completeness and soundness error ε. In notation:

NP ⊆ PCP1,ε[O(log n), O(1)]k.

Remark 1.1 (Polynomially small error ⇒ general error). If one constructs PCP with constant
number of queries, polynomially small error and polynomially large alphabet, then one can get
PCP with constant number of queries, error ε, and alphabet poly(1/ε) for all ε ≥ 1/nc for some
constant c > 0. The latter follows from composition with a Hadamard based construction (More
on composition in Sub-section 1.9).

An equivalent phrasing of the conjecture is in terms of the hardness of approximating the
constraint satisfaction problem (Max-CSP). The input to Max-CSP is a system of variables
and constraints over them, where each constraint depends on a constant number of variables,
and each variable ranges over a finite alphabet. The problem is to find an assignment to the
variables that satisfies as many constraints as possible. The Sliding Scale Conjecture is that
given aMax-CSP instance with polynomial-sized alphabet, it is NP-hard to distinguish between
the case that all constraints can be satisfied and the case that only a fraction of 1/nc of the
constraints can be satisfied for some c > 0. The latter implies that it is NP-hard to approximate
Max-CSP to within polynomial factors.

In this work we suggest an approach to proving the Sliding Scale Conjecture based on a
parallel repetition theorem for low degree testing.

1.2 Applications of The Sliding Scale Conjecture to Hardness of Approxi-
mation

As discussed above, the Sliding Scale Conjecture would imply hardness of approximation to
within polynomial factors forMax-CSP. It will also imply such results for constraint satisfaction
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problems with specific predicates, such as quadratic equations over a large finite field, and other
universal predicates (i.e., predicates that can express arbitrary constraints).

Chuzhoy and Khanna [11] showed that the Sliding Scale Conjecture implies hardness to within
polynomial factors for Directed-Sparsest-Cut and Directed-Multi-Cut. In Directed-
Multi-Cut, we are a given an n-vertex directed graph along with source-sink pairs, and the
goal is to find the minimum cardinality subset of edges whose removal separates all source-sink
pairs. Directed-Sparsest-Cut has the same input, but the goal is to find a subset of edges
to delete so as to minimize the ratio of the number of deleted edges to the number of source-sink
pairs that are separated by this deletion. There are likely many more applications of the Sliding
Scale Conjecture along these lines. We hope that this will be the subject of more research in
the future.

1.3 Previous Work

Many PCP constructions aim to achieve soundness error as low as possible. They differ from
one another in the tradeoff they achieve between the error and the other parameters. Ideally,
one would like to achieve PCP with two queries, but it is easier to achieve constructions with
more queries. Projection games are specific kind of two query PCP that is useful for hardness
of approximation and hence especially desirable. In projection games the prover’s answer to the
first query determines at most one satisfying answer to the second query. The size, or length, of
the PCP should be as low as possible as a function of the input size n. We expect the size to be
polynomial in n, or even better, almost-linear n1+o(1). More information about PCP parameters
appears in the preliminaries. The current best constructions in terms of the soundness error are
as follows:

Constant number of queries. With small constant number of queries, we have PCP the-
orems with soundness error 2−(logn)β for some constant β > 0 and 3 queries [32, 4]. The low
error in these constructions was made possible thanks to improved low degree testing theorems.
The low degree testing theorem of [32] was derandomized in [27], and a corresponding PCP
construction with almost linear proof length n1+o(1) was designed in [28]. No attempt was made
to optimize the exact number of queries in [28], and the number of queries became 7.

With large constant number of queries, an almost-polynomial error of ε ≤ 2−(logn)1−α
is

known for any α > 0; the number of queries is poly(1/α), the alphabet is of size 2/ε, and the
proof length is polynomial in n [12].

Projection games. For projection games, there is a PCP theorem with soundness error
1/(log n)β for some constant β > 0 and almost linear proof length n1+o(1) [29]. By applying
parallel repetition on the construction in [29], one can improve the error to 1/(log n)α for any
constant α > 0, at the expense of a large polynomial proof length nΘ(1) (the exponent of nΘ(1)

depends on α/β) [16]. The construction in [29] relies on techniques developed for PCP with a
constant, larger than 2, number of queries [27, 28]. Its novelty is in a composition technique that
decreases the alphabet of a PCP construction, while preserving projection and low error. The
much higher error compared to that of PCPs with more queries originates in the composition
technique.

Quasi-polynomial constructions. If one considers quasi-polynomial npoly logn proof length,
rather than polynomial, or an almost-linear, proof length, then projection games with error 1/n
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and alphabet size nO(1) are known – by the parallel repetition theorem of Raz [31]. Feige and
Kilian [18] showed that parallel repetition could not be derandomized (i.e., the size cannot be
made nO(1)) in the setup of the latter construction.

If one considers quasi-polynomial npoly logn alphabet size, rather than polynomial alphabet
size, then projection games with error 1/n and proof length n1+o(1) are also known - by an
algebraic construction (Manifold vs. Point; see [29]).

Note, however, that in those constructions the error is not polynomially small in either the
proof length or the alphabet size of the PCP. Moreover, the hardness of approximation results
obtained from the constructions are not NP-hardness results, but reductions from inputs of Sat
of size n to super-polynomial sized inputs of the approximation problem. So, lower bounds for
Sat translate to much weaker lower bounds for the approximation problem. Therefore, it is
preferable to refrain from quasi-polynomial constructions.

1.4 Low Degree Testing Theorems

Our approach to the Sliding Scale Conjecture centers around low degree tests, a main component
in algebraic constructions of PCP.

Fix a finite field F, and natural numbers m and d. A low degree test is a one-round multi-
prover protocol for a verifier to interact with non-communicating provers that try to convince
the verifier that they agree on an m-variate polynomial p of degree at most d over F.

An example of a low degree test is the Line-vs.-Line Test which was introduced by Rubin-
feld and Sudan [33]:

Line-vs.-Line Test

1. Pick uniformly at random a point x ∈ Fm, and two lines ℓ1, ℓ2 ∋ x.

2. For i ∈ {1, 2}, query prover i about ℓi to get a univariate polynomial Ai(ℓi) of degree at
most d over F that is supposedly the restriction of p to ℓi.

3. Test whether the assignments to the two lines agree on x, i.e.1, A1(ℓ1)(x) = A2(ℓ2)(x).

Note that the verifier uses O(m log |F|) random bits and that when interacting with honest
provers, i.e., ones that set Ai(ℓ) = p|ℓ for some degree-d polynomial p for all lines ℓ, the verifier
always accepts.

Ultimately, it was shown that for sufficiently large field, all, but perhaps 1/ |F|Ω(1) fraction,
of the success of the test could be traced to Ai agreeing with one of few polynomials of degree
at most d:

Lemma 1.1 (Line vs. Line low degree testing theorem [32, 4]). Assume that F is a large enough

field (polynomial size) with respect to d and m. For some δ = |F|−Ω(1), for any prover strategies
A1, A2, there are m-variate polynomials p1, . . . , pl, l ≤ O(1/δ), of degree at most d over F, such
that the probability that the Line-vs.-Line Test passes but A1(ℓ1) is not one of p1|ℓ1 , . . . , pl|ℓ1
(similarly for A2(ℓ2)), is at most δ.

Note that if the lines are randomly partitioned into 1/δ sets, and for each set there is one
degree-d polynomial pi such that all lines in the set are assigned the restriction of pi, then the

1We will not bother with parameterization issues. A (supposed) restriction Ai(ℓ) of p to ℓ should also contain
the (supposed) evaluation of p on any x ∈ ℓ, and we use Ai(ℓ)(x) to denote it.

4



test passes with probability at least δ. This clarifies why we use O(1/δ) different polynomials
to explain the success of the test. We call δ the soundness error: the probability that the test
passes without being consistent with the list decoding of low degree polynomials. Soundness
error δ = |F|−Ω(1) is tight for Line-vs.-Line Test; in the sequel we will see Example 1.1 that
demonstrates that. Low degree testing is formalized in Section 3.

1.5 Our Results

We prove three theorems in this work. The first reduces the task of proving the Sliding Scale
Conjecture to the task of designing a low degree test with exponentially small soundness error.
The second, which is the heart of our work, is a parallel repetition theorem that decreases the
soundness error of “robust” low degree tests exponentially. The third is a low degree testing
theorem with error |F|−Ω(k) and randomness O(mk log |F|) obtained from applying our parallel
repetition theorem on a suitable low degree test.

Theorem 1 (Minimal error low degree test ⇒ Sliding Scale Conjecture). If for every d and
m, for sufficiently large field F, there is a low degree test in which the verifier uses r ran-
dom bits to generate queries for O(1) provers, each responding with a string of length at most
poly(d,m, log |F|), and the verifier achieves soundness error δ = 2−Ω(r), then there exists c > 0
such that

NP ⊆ PCP1,1/nc [O(log n), O(1)]poly(n).

The idea of the proof – by now folklore in the PCP community – is to encode the proof of
a PCP with large error by a low degree polynomial, and simulate sequential repetition of the
PCP by utilizing the local testability and decodability properties of low degree polynomials.
The implementation of this idea differs from previous ones in several respects, like the setting
of parameters, the initial PCP, and the composition.

The parameters of the polynomials used in PCP necessarily satisfy poly(d,m, log |F|) ≥
(log n)Ω(1). Hence, the low degree test required in Theorem 1 has super-polynomial alpha-
bet size. Yet, we are able to decrease the alphabet size by means of composition, and to this
end we abstract the composition technique of Arora and Safra [3]. Note that we cannot use the
composition technique of the author and Raz [29] (abstracted by Dinur and Harsha [14]), as its
error-alphabet tradeoff does not allow polynomially small error and polynomial alphabet size.
For more details about the composition lemma in this work, see Sub-section 1.9.

The PCP theorem we deduce in Theorem 1 is not a projection PCP and does not have
almost-linear proof length (and so does not settle the “Projection Games Conjecture” discussed
in [26]), but we believe that it might be a stepping stone toward a construction that achieves
both.

The second theorem we prove in this work, a parallel repetition theorem for low degree testing,
says that a “robust” low degree test with soundness error |F|−Ω(1) can be transformed to a low

degree test with soundness error |F|−Ω(k′). In the next section we discuss parallel repetition and
state the theorem. Applying parallel repetition on an appropriate low degree test we can prove:

Theorem 2 (Low error low degree test). There is a low degree test whose soundness error is

|F|−Ω(k′), the provers’ answer size is poly(d, k′, log |F|), and the randomness of the verifier is
O(k′m log |F|).

Theorem 2 gives the first low degree test with error ≪ 1/ |F| and randomness O(m log |F|).
It might find some applications in the future.
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As usual with parallel repetition, Theorem 2 has randomness larger by a factor k′ than the
randomness of Line-vs.-Line Test. We suggest that an approach to proving the Sliding Scale
Conjecture is to derandomize parallel repetition for low degree testing and obtain a low degree
test with soundness error |F|−Ω(k′), answer size poly(d, k′, log |F|), and randomness O((k′ +
m) log |F|) for k′ = Θ(m).

1.6 Parallel Repetition For Low Degree Testing

(Standard) parallel repetition is a transformation on two-prover games. Suppose that G is a
game in which the verifier picks questions x and y to the provers, gets from the provers answers
a and b, and decides whether to accept or reject. Let k′ be a natural number. In the parallel
repeated game G⊗k′ , the verifier picks k′ question pairs x1, y1, . . . , xk′ , yk′ independently and
uniformly at random; sends x1, . . . , xk′ to the first prover, and y1, . . . , yk′ to the second prover;
gets answers a1, . . . , ak′ from the first prover and answers b1, . . . , bk′ from the second prover;
and accepts if it would have accepted in all k′ tests.

Raz’s parallel repetition theorem [31] shows that if the verifier accepts with probability at
most 1− ϵ in G, then the verifier accepts with probability at most2 (1− poly(ϵ))−Ω(k′) in G⊗k′ .

Next we define an algebraic analog of parallel repetition for low degree testing. There are
several ways to define such an analog, and we choose one in which the provers’ questions retain a
natural algebraic structure, and the provers’ answers continue to be low dimensional low degree
polynomials. Specifically, we generalize Line-vs.-Line Test to Surface-vs.-Surface Test
where the surfaces have constant dimension v and degree k ≥ k′. This allows the curves to
have k′ points of intersection. The verifier queries the provers on surfaces. The provers respond
with v-variate polynomials of degree at most dk over F that are supposedly the restriction of
an m-variate degree-d polynomial p to the surfaces. Then, the verifier compares their answers
on the k′-intersection.

We use C to denote the family of surfaces. We let I be the family of all k′-tuples of points in
Fm. In a derandomized setting one is interested in families C and I where |C| , |I| ≤ |F|O(m+k′).
Since the family I specifies the number of repetitions k′ in the test, we omit the ⊗k′ from the
name of the test.

Surface-vs.-Surface Test(C, I)

1. Pick uniformly at random k′ points {x1, . . . , xk′} ∈ I, and two dimension-v degree-k
surfaces c1, c2 ∈ C such that c1, c2 ∋ x1, . . . , xk′ .

2. For i ∈ {1, 2}, query prover i about ci to get a v-variate polynomial Ai(ci) of degree at
most dk over F that is supposedly the restriction of a degree-d polynomial p to ci.

3. Test whether A1(c1)(xi) = A2(c2)(xi) for all 1 ≤ i ≤ k′.

Remark 1.2 (Why degree-k and not dimension-k?). The reason that we use degree-k rather than
dimension-k is that in the latter the number of possible responses of the provers is approximately

|F|d
k

. This large alphabet is the reason that k-dimensional subspaces are usually considered in
PCP for k = Θ(1) [32, 27]. In contrast, in this work we consider k = Θ(m), which would

2Here poly(·) and Ω(·) hide large constants and a dependence on the answer size of the provers in G. Better
constants were achieved by Holenstein [21]. For projection games there is an even better dependence on the
acceptance probability in G, and no dependence on the answer size [30].
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eventually allow us to get error that is polynomially small in |Fm|. Alphabet |F|d
Θ(m)

is not
sufficiently smaller than the trivial alphabet |F|d

m

that corresponds to the provers simply sending
the entire m-variate degree-d polynomial to the verifier.

In analogy to standard parallel repetition, one might expect Surface-vs.-Surface Test to
have error |F|−Ω(k′). Yet, it turns out that the error – not only does not decrease with k′ – but
actually increases with k′. Next we show a prover strategy that makes the verifier accept with
probability ≈ k′/ |F|, even though the strategy does not agree with any low degree polynomial
on a substantial fraction of the surfaces.

Example 1.1. Per point x ∈ Fm, pick uniformly and independently at random an m-variate
polynomial px of degree at most d. In addition pick uniformly at random a permutation on the
points in Fm. Prover i ∈ {1, 2}, given a surface ci in Fm, picks the first point x ∈ ci according
to the permutation, and outputs the restriction of px to c. The following hold for this strategy:

• There is no single low degree polynomial that agrees with the answers of the provers on a
fraction ≫ 1/ |Fm| of the surfaces.

• The probability that one of the k′ joint elements of c1 and c2 turns out to be the smallest
element according to the random permutation among the 2 |F|v − k′ elements in c1 ∪ c2,
and hence that the verifier accepts in the repeated test, is k′/(2 |F|v − k′).

For k′ = 1 we can obtain a strategy with success probability 1/ |F| that is not close to a low
degree polynomial by picking for each surface c ∈ C an assignment independently at random -
so the value assigned to each x ∈ c is uniformly random over F.

Example 1.1 reflects the difference between parallel repetition for PCP and parallel repetition
for testing, which is as follows. In parallel repetition for PCP one shows that a prover strategy
for the repeated game that makes the verifier accept with probability at least δΘ(k′) implies
the existence of a (possibly very different) prover strategy for the original game that makes the
verifier accept with probability at least δ. On the other hand, in parallel repetition for testing
one shows that the successful prover strategy for the repeated test is itself close to satisfying the
tested property. The paper [13] shows that indeed parallel repetition for PCP fails to satisfy
this stronger property: a successful strategy for the repeated game is not close to a repeated
successful strategy for the original game.

Next we modify the repeated test to avoid the problem raised in Example 1.1. We follow
a similar fix in a work by Impagliazzo, Kabanets and Wigderson [23] and include a constant
number of additional provers. We set the degree of the surfaces to k ≥ 2k′:

Surfaces Test(C, I)

1. Pick uniformly and independently at random S0, S1, S2, S3 ∈ I. Pick three degree-k
surfaces c1, c2, c3 ∈ C such that c1 ⊇ S0, S1, c2 ⊇ S1, S2, c3 ⊇ S2, S3.

2. Send each of S0, S1, S2, S3, c1, c2, c3 to a different prover.

• For each surface ci receive a v-variate polynomial pi of degree at most dk that is
supposed to be the restriction of a polynomial p to ci.

• For each tuple Sj receive assignments aj over F to the points in Sj . The assignments
are supposed to be the evaluations of p on the points.
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3. Check that pi(x) = aj(x) for every Sj ⊆ ci and x ∈ Sj .

Note that the definition of the repeated test is designed to simplify our analysis, rather than
save in the number of provers.

Note how Example 1.1 fails: S1 and S2 are picked independently from the large I. To be
consistent with the prover who received c1 as in Example 1.1, the prover who received c2 should
decide about the assignment to c2 based on S1. Similarly, to be consistent with the prover who
received c3 as in Example 1.1, the prover who received c2 should decide about the assignment
to c2 based on S2. Unfortunately, the prover who received c2 cannot do both, and will hence
either be inconsistent with at least one of the other provers.

Indeed, we can show that the repeated Surfaces Test has error |F|−Ω(k′), provided that

the family of surfaces C is such that Surface-vs.-Surface Test has “robust” error |F|−Ω(1).
For a family of surfaces C′ and a set of points S ⊆ Fm, let C′

S denote all the surfaces in C′ that
contain all the points in S.

Definition 3 (Robust low degree test). We say that a low degree test Test that compares
surfaces C on k′ tuples of points has (δ, β)-robust error ε if for any S ⊆ Fm, |S| ≤ βk′, for any
sub-family C′ ⊆ C, where |C′

S | ≥ δ |CS |, Test on C′
S has error at most ε.

Theorem 4 (Parallel repetition for low degree testing). Assume that F is a sufficiently large field
(polynomial size) in d, m and k, and that k is large enough (linear size) in k′. If Surface-vs.-

Surface Test(C,Fm) has (|F|−Ω(k′) , |F|−Ω(1))-robust error at most |F|−Ω(1), then Surfaces

Test(C, I) has error at most |F|−Ω(k′).

We need robustness of the base test because of our definition of the repeated test. In standard
parallel repetition, the questions to the provers are products of the questions in the basic game.
Hence, the following assertion, which is crucial for the validity of parallel repetition, holds:
conditioned on likely questions and answers that lead to success of the test in up to β′k′ of the
tests, the remaining questions are such that one can apply the analysis of the basic game. Here
there is no obvious distinction between questions in the repeated game and questions in the
basic game (both sets of questions consist of surfaces), and the premise is meant to ensure the
assertion. In Section 6 we show how one can deduce a robust low degree test as in the premise
of our parallel repetition from the existing analysis of Line-vs.-Line Test.

Our work was inspired by the previous work of Impagliazzo, Kabanets and Wigderson [23]
who focused on direct product testing by querying sized-k sets that intersect in k′-tuples of
points. Although not presented this way, the analysis in [23] can also be thought of as showing
a parallel repetition theorem for testing. Moreover, with some extra work, the analysis in [23]
could be adapted to show a parallel repetition theorem for low degree testing. However, the
analysis in [23] could only achieve soundness error 2−Ω(k′) for k′ ≤

√
k. This soundness error

falls short of what we would expect from a parallel repetition because:

• The base of the exponent is 1/2 instead of the error of the original test, which is roughly
1/ |F| for low degree testing.

• The exponent is the number of repetitions k′ only when k′ ≤
√
k, instead of for any k′ up

to a linear function in k.

Obtaining the right base for the exponent in parallel repetition – the one that corresponds to
the error of the base test – is often referred to as “parallel repetition for low error” as it allows
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one to benefit from a low error of the original test. Parallel repetition for low error has been
a challenge even for standard parallel repetition, as Raz’s proof [31] does not extend in this
way. The recent analysis of Dinur and Steurer [16] was the first to prove a parallel repetition
theorem for low error. In this work we obtain a similar theorem for low degree testing through
combinatorial techniques different from those used in [16].

Obtaining the right exponent in parallel repetition – one that is linear in k – was achieved
in PCP by Raz’s proof. For testing, this remained an intriguing open problem following [23].
We show that in the algebraic setting one can achieve the right exponent. To this end, we
analyze the sampling properties of the incidence graph of degree-k curves and k′-tuples in Fm.
See Sub-section 1.8 for more details.

Two more remarks about the relation of our work to [23] are in order:

1. Our analysis (in particular, Sections 8, 9, 10 and 11) can be adapted to analyzing the
direct product test, and can be thought of as a simplification of the analysis in [23].

2. The work [23] contains a weak derandomization through linear subspaces, but its param-
eters are too weak for the Sliding Scale Conjecture. See Remark 1.2.

1.7 Derandomized parallel repetition?

Uri Feige [17] observed that the limitation on derandomized parallel repetition for PCP in his
work with Kilian [18] implies a certain limitation for parallel repetition of low degree testing.
Our repeated test avoids this limitation.

Feige and Kilian’s argument is designed for two prover games. It holds for protocols that
have a small “degree” (the degree is the maximal number of possible questions to one prover
given a question to the other prover). The argument is that the provers can guess a few of
the questions to one of the provers with significant probability (thanks to the small degree).
Assuming they succeeded, they narrowed down the space of possible remaining questions to the
prover substantially. Typically, in this situation they can agree on a strategy for the rest of the
questions.

Feige observed that this argument continues to hold for more than two provers, provided
that the provers can all guess the questions of one prover with reasonably large probability (See
Section 13 for more details). In Surfaces Test we defined, some of the provers are completely
independent, and the test is designed so that the provers are unable to guess the questions of
any one prover with significant probability.

In the paper we prove the soundness of the non-derandomized Surfaces Test. In the proof
we use the strong testing guarantee to argue that the strategies of the independent provers
must be consistent globally. Moreover, we use the algebraic setting to guarantee error low
enough for the Sliding Scale Conjecture. While the proof that we show in this paper is for a
non-derandomized parallel repetition, we see no reason why an argument based on a testing
guarantee and low error could not be carried out for a suitable derandomized repeated test. So
long as the O(1) tuples picked by the verifier are uniform and independent over a sufficiently
large family I of tuples, |I| ≥ |Fm|, the Feige-Kilian limitation is avoided.

Motivated by the goal of derandomizing Surfaces Test, we suggest the following open
problem:

The Intersecting Surfaces Problem: Is there a family C of degree-k dimension-
O(1) surfaces in Fm, and a family I of k′-tuples of points in Fm, where |C| , |I| ≤
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|F|O(m+k′), the incidence graph G(C, I) is |F|−Ω(k′)-sampling, and the incidence graph

G(I,Fm) is δ-dispersing for δ(µ) = (µ+ |F|−Ω(1))Ω(k′)?

A positive answer to the Intersecting Surfaces Problem would be a step in the direction we sug-
gest in this paper, while a negative answer would rule out certain proof strategies for analyzing
low degree tests.

As usual with derandomization of low degree testing – a random set of poly(|Fm|) degree-k
surfaces is not expected to form intersecting surfaces. In fact, it is unlikely for such surfaces
to have intersections in Ω(k′) points at all! The small number of surfaces only guarantees
intersections in O(1) points, even though the degree of the surfaces allows intersections in k′

points. The Intersecting Surfaces Problem calls for surfaces that have some “random” properties
while also being “structured” in their intersections.

We note that there are explicit families C of size |F|O(m+k′) such that the incidence graph

G(C,Fm) is |F|−Θ(k′)-sampling. Such were constructed by Guo [19] based on techniques by
Ta-Shma and Umans [35] and Guruswami, Umans and Vadhan [20].

1.8 The Sampling Properties of Curves and Tuples

The incidence graph of “degree-k curves vs. k′-tuples” is the bipartite graph that has on one
side all degree-k curves in a space Fm, and on the other side all k′-tuples of points in Fm. A
curve is connected to a tuple if it contains it. Our analysis of parallel repetition relies on the
sampling (or extractor) properties of the incidence graph “degree-k curves vs. k′-tuples”. We
say that the graph is a (δ, ε)-sampler if for any subset S of the k′-tuples, all curves, but at most
δ fraction, have µ± ε fraction of their points in S, where µ is the overall fraction of tuples in S.
We call δ the sampling error, and we call ε the deviation error (For background on sampling,
extractors and incidence graphs, see the preliminaries). Roughly speaking, our analysis of the
parallel repetition theorem shows that the error of the repeated low degree test is δ + εk

′
.

For k′ = 1, it is well known that the “degree-k curves vs. points” graph has sampling error
δ = |F|−Ω(k) and deviation error ε = |F|−Ω(1). This follows from the (k + 1)-wise independence
of degree-k curves. Extending this argument to “degree-k curves vs. k′-tuples” for larger k′

results in a large sampling error δ = |F|−Ω(k/k′). Similarly, it is shown in [23] that the graph
“k-tuples vs. k′-tuples” has sampling error δ = exp(−k/k′) with a small constant deviation
error ε. Indeed, the reason for the error exp(−

√
k) in [23] is taking k′ =

√
k, as to balance

δ = exp(−k/k′) and εk
′
= exp(−k′).

On the other hand, we show that the “degree-k curves vs. k′-tuples” incidence graph has
sampling error |F|−Ω(k−k′) while maintaining ε = |F|−Ω(1) deviation error (for sufficiently large

field F). This allows us to take k′ = Θ(k), and achieve error |F|−Ω(k) for the repeated test.
Our approach to analyzing the sampling properties of “degree-k curves vs. k′-tuples” is to view

the incidence graph of “degree-k curves vs. k′-tuples” as a k′-fold product of the incidence graph
of “degree-k curves vs. points”. The product we use is a replacement product for extractors,
which turns out to have also appeared in a previous work [10]. The product graph essentially
inherits the low sampling error of the initial graph, and hence the sampling error of “degree-k
curves vs. k′-tuples” is similar to that of “degree-k curves vs. points”.

Interestingly, this approach does not apply to the “k-tuples vs. k′-tuples” incidence graph
relevant for [23]. The reason is that the deviation error accumulated in the k′ applications of
the product builds up, and the initial deviation error is not sufficiently low to withstand that.
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1.9 Abstraction of Arora-Safra Composition

Arora and Safra [3] were the first to suggest the technique of composition to decrease the number
of queries (or alphabet) of a PCP verifier. Their work led to the first PCP with constant number
of queries [2]. Since then, every proposed PCP construction (including the current one) used
composition. Alas, the Arora-Safra composition was tailored to low degree extensions, and led
to somewhat cumbersome and restricted usage.

In recent years there has been an attempt to formulate abstract composition lemmas that are
widely applicable and lead to modular, easier to understand, constructions. One combinatorial
method of composition was formulated by Szegedy [34], Dinur-Reingold [15] and Ben-Sasson
et al [8]. Their works revealed the advantage of a “robust” PCP construction for composition.
Robustness means that in the soundness case, not only that – with significant probability
– the verifier rejects, but, in fact, the verifier’s view is far from one that would have been
accepted. Equivalently, the PCP is a “projection game” (the equivalence between robust PCPs
and projection games is spelled out in [14]). A method of composition that preserves low
soundness error and projection was discovered by the author and Raz [29], and was abstracted
by Dinur and Harsha [14].

Interestingly, in contrast to all those composition techniques, the Arora-Safra composition
does not require that the PCP being composed is robust. This is actually an advantage, because
robust PCPs (equivalently, projection games) are harder to construct than general PCPs. In
the high error regime there are various techniques for “robustization” (see, e.g., [15]), but in the
low error regime we do not know how to transform a general PCP verifier into a robust PCP
verifier with a comparable soundness error.

As a side-benefit of our construction, we provide an abstract version of the Arora-Safra
composition. This lemma (Lemma 4.2) works in the low error regime and does not require that
the PCPs being composed are robust (and, appropriately, does not guarantee that the composed
PCP is robust).

1.10 Organization

We start with preliminaries regarding PCP verifiers and multi-prover games, error correcting
codes, samplers and extractors, incidence graphs, curves, surfaces and polynomials over a finite
space in Section 2. We formalize low degree testing in Section 3, and show how the Sliding Scale
Conjecture follows from a derandomized low degree test in Section 4. For our parallel repetition
theorem we will need to analyze the sampling properties of curves and tuples. We do so via a
general paradigm for extractor products in Section 5. We address the premise of our parallel
repetition theorem (a robust low degree test), and how it follows from existing analyses of low
degree tests in Section 6. We outline the proof of our parallel repetition theorem in Section 7,
and in the next sections we provide the proof. We discuss Feige’s limitation on derandomized
low degree testing in Section 13, and ideas for further research in Section 14.

2 Preliminaries

In this section we introduce notions and notation that we use throughout this work, including
PCP verifiers and multi-prover games, error correcting codes, samplers and extractors, incidence
graphs and curves over a finite space.

Throughout this work, k′-tuple means an ordered set of size k′.
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2.1 Probabilistically Checkable Proofs

A PCP verifier is an NP verifier that has polynomially many tests, each depending on a bounded
number of queries to the proof. A random test (even though it involves only a bounded number
of queries!) predicts correctly the outcome of the verification with good probability.

Definition 5 (PCP verifier). For c, s, r, q,Σ that are functions of n, the class PCPc,s[r, q]Σ
contains all languages L that have verifiers that on input x of size n use r random bits to make
q queries to a proof over alphabet Σ, and satisfy:

• Completeness: For every x ∈ L, there exists a proof π such that the verifier accepts with
probability at least c.

• Soundness: For every x /∈ L, for any purported proof π, the verifier accepts with probability
at most s.

Σ is called the alphabet of the proof. It Σ is omitted, the understanding is that Σ = {0, 1}.
Often we only specify the size of Σ, in which case it is understood that Σ = {1, . . . , |Σ|}. The
size of the PCP (equivalently, the proof length) can be bounded by 2rq. If on inputs x of size n
we have 2rq = n1+o(1)poly(1/ε), then we say that the PCP is of almost linear size. If c = 1 we
say that the verifier has perfect completeness. In this work we will only consider verifiers with
perfect completeness. The fraction s is called the soundness error of the verifier, or simply the
error. We have the following lower bounds on the error:

Proposition 2.1. If s < 2−r or s < |Σ|−q, then PCPc,s[r, q]|Σ| ⊆ P .

In other words, for r = O(log n) the error can be at best polynomially small in n, and to
achieve error s with a constant number of queries, one has to take the alphabet to be at least
(1/s)Ω(1).

Given a PCP verifier, one can generate a new PCP verifier with lower error and more queries
by sequentially repeating the test of the original verifier. The new verifier can be implemented
in a randomness-efficient manner, yielding the following:

Proposition 2.2 (Sequential repetition). For every ε = ε(n) > 0, there is k = Θ(log1/s(1/ε)),
such that

PCP1,s[r, q]|Σ| ⊆ PCP1,ε[O(r + k), qk]|Σ|.

We say that a PCP verifier is a projection PCP verifier (or that the PCP is a projection game)
if the verifier makes q = 2 queries, and given the answer to the first query, there is at most one
accepting answer to the second query.

A different perspective on PCP verifiers is given by the notion of multi-prover interactive
proofs or multi-prover games:

Definition 6 (MIP). We say that a language L has an MIP protocol with parameters c, s, r, q,Σ,
if there is a protocol in which a verifier interacts with q non-interacting provers, uses r random
bits to decide on queries to the q provers; the provers respond with replies taken from an alphabet
Σ.

• Completeness: For every x ∈ L, there exists a strategy to the provers such that the verifier
accepts with probability at least c.
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• Soundness: For every x /∈ L, for any strategy to the provers, the verifier accepts with
probability at most s.

One can view any MIP protocol as a PCP verifier, and vice versa. The proof for the PCP
verifier consists of writing down, for each of the MIP’s protocol q provers, its replies on all the
possible questions of the verifier.

The PCP Theorem states that probabilistic checking of proofs can always be done with
constant number of queries:

Theorem 7 (PCP Theorem [6, 5, 3, 2]). NP ⊆ PCP1, 1
2
[O(log n), O(1)].

Various works amplify the soundness error of the basic PCP theorem. We will use a PCP
theorem with low error:

Theorem 8 (Low error PCP Theorem [32, 4, 12]).

NP ⊆ PCP1,2/|Σ| [O(log n), O(1)]|Σ| ,where log |Σ| =
√
log n log log n.

2.2 Error Correcting Codes

An (n, k, d)Σ code C is a set of
∣∣Σk
∣∣ strings in Σn, where every two different strings x, y ∈ C

agree on at most d of their symbols, i.e.,

|{ i ∈ [n] |xi = yi}| ≤ d.

We often associate an encoding function C : Σk → Σn with C. Many times it is useful that the
encoding is systematic, i.e., the first k symbols in the encoding C(x) of some x ∈ Σk are the
symbols of x.

The following code construction follows from [1] using standard techniques (concatenation):

Proposition 2.3 (Code construction). For any 0 < δ < 1 and natural number k, there exists
an (n, k, (1− δ)n)Σ code where n = O(k/δ2) and |Σ| = O(1/δ2).

The following bound on the number of codewords that can agree with a word follows from
counting (our Proposition 3.1 uses a similar argument), and is a simplified version of Johnson’s
bound [24]:

Proposition 2.4 (List decoding bound). Let C be an (n, k, d)Σ code. For every w ∈ Σn and
δ ≥ 2

√
1− d/n, there exist at most 2/δ codewords in C that agree on at least δ fraction with w.

2.3 Samplers, Dispersers and Extractors

For a graph G = (V,E) and a vertex v ∈ V , the neighborhood of v in G is NG(v) =
{u ∈ V | (v, u) ∈ E}.

A sampler is a bi-regular bipartite graph with a large part A and a small part B, in which, for
any set B′ ⊆ B, almost every vertex in A has about |B′| / |B| fraction of its neighbors landing
in B′:

Definition 9 (Sampling). For δ : [0, 1]× (0, 1) → (0, 1), we say that a bi-regular bipartite graph
G = (A,B,E) is δ-sampling if for any set B′ ⊆ B, µ = |B′| / |B|, for a uniformly distributed
a ∈ A, it holds that ∣∣∣∣ |NG(a) ∩B′|

|NG(a)|
− |B′|

|B|

∣∣∣∣ ≤ ε,

with probability at least 1− δ where δ = δ(µ, ε).
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We call δ the sampling error and ε the deviation error. We will also use the terminology (δ, ε)-
sampling when the condition in Definition 9 holds for specific δ and ε and for all 0 ≤ µ ≤ 1.

A one-sided version of sampling is given in the following definition:

Definition 10 (Dispersing). For δ : [0, 1] → (0, 1), we say that a bi-regular bipartite graph
G = (A,B,E) is δ-dispersing if for any set B′ ⊆ B, µ = |B′| / |B|, when one picks uniformly
at random a ∈ A, the probability that all of A’s neighbors land in B′ is at most δ = δ(µ).

An extractor is a function that maps a distribution X ′ with sufficient “randomness” over
a large space X to a distribution that is approximately uniform over a small space Z. The
randomness of X ′ is measured using min-entropy, and is H∞(X ′) = log(1/maxx Pr [X

′ = x]).

Definition 11 (Extractor). A 1-1 function Ext : X × Y → Z × W is a (δ, ε)-extractor if
for any distribution X ′ over X, H∞(|X ′|) ≥ log(δ |X|), the probability distribution defined3 by
Ext(X ′, Y ) on Z, is ε-close to uniform over Z.

X ′ is called the randomness source. The elements in Y are called the seeds of the extractor.
Often extractors are defined without W and without being 1-1, but incorporating W will be
useful for us, and similar conventions have been used in the past.

We associate a bipartite graph with Ext: the graph is on vertices X ∪ Z and it has an edge
(x, z) if there are y ∈ Y and w ∈ W such that Ext(x, y) = (z, w).

Zuckerman observed that the notions of sampler and extractor are closely related:

Proposition 2.5 ([37]). The following hold:

1. If Ext : X×Y → Z×W is a (δ, ε)-extractor, then the bipartite graph on X ∪Z associated
with it is (2δ, ε)-sampling.

2. If (X,Z,E) is a (δ, ε)-sampler, then a corresponding function Ext : X × Y → Z ×W is,
for any δ′ ≥ δ, a (δ′, ε+ δ/δ′)-extractor.

2.4 Curves, Surfaces and Polynomials

Let F be a finite field. Let m, k and r be natural numbers. A degree-k curve in Fm is a
function c : F → Fm such that there exist m univariate degree-k polynomials c1, . . . , cm where
c(t) = (c1(t), . . . , cm(t)). We often associate a curve with its image c(F). A line is a degree-1
curve. A dimension-r degree-k surface in Fm is a function s : Fr → Fm such that there exist m r-
variate degree-k polynomials s1, . . . , sm where s(t1, . . . , tr) = (s1(t1, . . . , tr), . . . , sm(t1, . . . , tr)).
We often associate a surface with its image s(Fr). A curve is a dimension-1 surface.

For T = {t1, . . . , tk} ⊆ F and 1 ≤ i ≤ k, we use Lagrange interpolation to define IT,i as the
degree-(k − 1) polynomial that is 1 on ti and 0 on T − {ti}:

IT,i(t)
.
=

∏
j∈T−{ti}(t− tj)∏
j∈T−{ti}(ti − tj)

.

Fixing T = {t1, . . . , tk} ⊆ F, for every k-tuple of points X = {x1, . . . , xk} ⊆ Fm we can
interpolate the degree-(k− 1) curve cX that passes through x1, . . . , xk in positions t1, . . . , tk as:

cX(t) =

k∑
i=1

xi · IT,i(t).

3This distribution is sampled by picking uniformly at random x ∈ X ′ and y ∈ Y , computing Ext(x, y) = (z, w),
and outputting z.
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2.5 Incidence Graphs

In this work we are interested in bipartite graphs that correspond to set inclusion:

Definition 12 (Incidence graph). Let U be a set. Let A and B be families of subsets of U . The
incidence graph G(A,B) is the bipartite graph on A and B in which a vertex a ∈ A is connected
to a vertex b ∈ B if b ⊆ a.

A few examples of incidence graphs are:

1. ”k-tuples vs. k′-tuples”: U is a finite set. A is the family of all k-tuples of points in U ,
and B is the family of all k′-tuples of points in U .

2. “degree-k curves vs. k′-tuples”: U = Fm for a finite field F and a natural number m. A is
the set of all degree-k curves in Fm; B consists of all k′-tuples of points in Fm.

3. “degree-k curves vs. points”: A special case of “degree-k curves vs. k′-tuples” in which
k′ = 1, so B corresponds to the family of points4 in Fm.

3 Low Degree Testing

Let F be a finite field and let m, v, d and k be natural numbers. In this section we define low
degree testing for m-variate polynomials of degree at most d over F by querying v-dimensional
surfaces of degree at most k in Fm, as well as querying k′-tuples of points in Fm. So, for example,
in Line-vs.-Line Test, v = 1 and k = k′ = 1.

One is advised to think of the parameters as follows:

• |F| is large with respect to d and m. Typically, |F| = poly(d,m).

• We typically take v to be a small constant, possibly 1.

• We typically take k ≤ d.

• We take k′ to be smaller than k, but often of the same order of magnitude as k.

The set of surfaces that may be queried is denoted C, and the set of k′-tuples that may be
queried is denoted I. In this work I will always be the set of all k′-tuples of points in Fm. In a
derandomized test, I would contain fewer k′-tuples. Ideally, |I| , |C| ≤ |F|O(m+k′). Assignments5

to v-dimensional surfaces of degree at most k in Fm are supposedly the restrictions of a single
m-variate degree-d polynomial to the surface – in which case we say that they agree with the
polynomial – and in any case are v-variate polynomials of degree at most dk over F. Assignments
to k′-tuples of points in Fm are supposedly the restrictions of the same m-variate degree-d
polynomial to the points – in which case we say that they agree with the polynomial – and in
any case are k′-tuples of values in F. A low degree test is specified by a verifier that makes a
constant number of queries to surfaces and tuples, receives the assignments to the surfaces and

4We will often use the shorthand B = Fm in this case, even though Definition 12 talked about B that consists
of subsets.

5In the context of multi-prover protocols, it is natural to consider several assignments, one for each prover,
while in the context of PCP it is natural to consider a single assignment. However, even in the multi-prover
context one can assume without loss of generality that there is only one assignment, provided that the test
randomly picks which prover to query for each query it makes.
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tuples, and either accepts or rejects. The randomness of the low degree test is the number of
random bits used by the verifier. We say that the low degree test has perfect completeness if
the verifier always accepts if whenever it queries a surface or a tuple it gets the restriction of a
single m-variate degree-d polynomial over F. All the tests that we consider in this work have
perfect completeness. We say that the tester is uniform, if the distribution of each of its queries
is uniform over all surface in C or tuples in I. All the tests that we consider in this work are
uniform.

3.1 Initial Points

Let q < v + k be a natural number. For the application to PCP we allow the embedding of
q-tuples of points in Fm in the surfaces we consider. Initial conditions are given as a collection
of q-tuples of points {(xi,1, . . . , xi,q)}Mi=1 ⊆ (Fm)q. Typically, M ≤ |Fm|. We fix T ⊆ F, |T | = q.
We say that a family C of surfaces satisfies the conditions at T if each surface c ∈ C passes
through xi,1, . . . , xi,q at positions T for some 1 ≤ i ≤ M , and each q-tuple is contained this way
in the same number of surfaces in C. In PCP constructions the initial conditions are typically
concentrated in a small sub-cube in Fm, and the verifier refrains from comparing the surfaces
on them. Hence, we adapt our low degree tests as to allow “forbidden points” that the verifier
does not use for comparisons:

Definition 13 (Forbidden points). Forbidden points are defined by a function Q : C → 2F. For
a curve c ∈ C, let c−Q .

= c(F−Q(c)). For a family of curves C, we will use the notation C−Q to
refer to

{
c−Q

∣∣ c ∈ C
}
.

In this work we consider forbidden points where |Q(c)| is the same for all c ∈ C, and we define
|Q| to be this number.

3.2 A Variety of Low Degree Testers

The low degree testers that we consider in this work are:

1. Surface-vs.-Surface Test: compares two surfaces that intersect in a k′-tuple. This is
a generalization of Curve-vs.-Curve Test and Line-vs.-Line Test.

2. Surface-vs.-Surface-on-Point Test: compares two surfaces that intersect on a k′-
tuple, but only on a random point in the k′-tuple.

3. Surfaces Test: compares three surfaces and four k′-tuples on the three surfaces.

Surface-vs.-Surface Test is parameterized by two families of surfaces, C1 and C2, a dis-
tribution P over pairs in C1 × C2, forbidden points Qi : Ci → 2F, and a family I of tuples.
Throughout this work, we only consider distributions P where the two surfaces are independent
given their intersection, and where the distribution on each of the surfaces has sufficient min-
entropy. In this tester and in similar testers: If C2 and Q2 are omitted, it should be understood
that C2 = C1 and Q2 = Q1. If P is omitted, it should be understood that it is the uniform
distribution over pairs of surfaces in C1 × C2 that intersect in a tuple from I.

Surface-vs.-Surface Test(C1, C2,P, Q1, Q2, I)

1. Pick (c1, c2) ∈ C1×C2 from the distribution P and a tuple S ∈ I such that S ⊆ c−Q1
1 , c−Q2

2 .
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2. Check that A(c1)(x) = A(c2)(x) for every x ∈ S.

When the surfaces are one dimensional, we refer to the test as Curve-vs.-Curve Test. When
the surfaces are lines, we refer to the test as Line-vs.-Line Test.

Curve-vs.-Curve-on-Point Test is similar to Curve-vs.-Curve Test, except that it
only compares the two curves on a random point in their intersection. It is mainly useful an
auxiliary test for the analysis:

Surface-vs.-Surface-on-Point Test(C1, C2,P, Q1, Q2, I)

1. Pick (c1, c2) ∈ C1×C2 from the distribution P and a tuple S ∈ I such that S ⊆ c−Q1
1 , c−Q2

2 .

2. Pick uniformly at random a point x ∈ S.

3. Check that A(c1)(x) = A(c2)(x).

When the intersections between surfaces are points (i.e., I = Fm, k′ = 1), Surface-vs.-
Surface-on-Point Test and Surface-vs.-Surface Test are equivalent.

Surfaces Test queries three surfaces from a family C with forbidden points Q : C → 2F,
and four k′-tuples from a family I. It satisfies that the k′-tuples are independent, thus ruling
out cheating strategies as in Example 1.1.

Surfaces Test(C, Q, I)

1. Pick uniformly at random four tuples S0, S1, S2, S3 ∈ I. Pick curves c1, c2, c3 ∈ C such
that c−Q

1 contains S0; c
−Q
1 , c−Q

2 contain S1; c
−Q
2 , c−Q

3 contain S2; c
−Q
3 contains S3.

2. Check that A(c1) agrees on S0 with A(S0); A(c1) and A(c2) agree on S1 with A(S1);
A(c2) and A(c3) agree on S2 with A(S2); A(c3) agrees on S3 with A(S3).

One could consider a variant of Surfaces Test that queries only surfaces and not k′-tuples,
but the test we defined is easier to analyze, and hence we prefer it.

3.3 Low Degree Testing Theorems: Proximity and List Decoding

Let ε > 0 be a function of |F|, d and m (typically ε ≈ d/ |F|). Let d′ be a natural number
(typically d′ ≈ d). There are several soundness guarantees we consider for low degree tests:

• Surface (Tuple) Proximity: Let γ′ : [0, 1] → [0, 1] (typically, γ′(γ) = γ − ε). For every
γ ≥ ε, if the verifier accepts with probability γ, then there exists an m-variate polynomial
of degree at most d′ over F that agrees with γ′ = γ′(γ) fraction of the surfaces in C (resp.,
tuples in I). To denote that this statement holds we write AgrErrCγ→γ′,d→d′(Test) ≤ ε

(resp., AgrErrIγ→γ′,d→d′(Test) ≤ ε).

• Surface (Tuple) List decoding: Let l : [0, 1] → N (typically, l(γ) = O(1/γ)). For every
γ ≥ ε, there exist m-variate polynomials p1, . . . , pl, l = l(γ), of degree at most d′ over
F such that the probability that the verifier accepts yet the assignments to the surfaces
(resp., tuples) it picked do not agree with one of p1, . . . , pl, is at most γ. To denote that
this statement holds we write ListErrCl,d′(Test) ≤ ε (resp., ListErrIl,d′(Test) ≤ ε).
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It is straightforward to show that a low degree testing theorem in list decoding form implies
a theorem in proximity form, since one of the polynomials in the list has to agree with at least
γ′(γ)

.
= (γ− ε)/l(γ) fraction of the tuples. Next we show that the other direction holds as well,

i.e., from a low degree testing in proximity form, one can deduce the list decoding form. Below
we outline the argument for tuples, since this is what we will use later.

First, we need the following proposition which uses the error correction properties of polyno-
mials, and the sampling properties of the family of all k′-tuples of points in Fm. The Proposition
extends Proposition 2.4.

Proposition 3.1 (Short list decoding). For δ0 = (d′/ |F|)k′, for every assignment A of elements
in Fk′ to tuples in I, and any δ ≥ 2

√
δ0, there are at most 2/δ m-variate polynomials p1, . . . , pl

of degree at most d′ over F, such that

Pr
S∈I

[
A(S) ≡ p|S

]
> δ.

Proof. Assume on way of contradiction that there are different m-variate polynomials p1, . . . , pl
of degree at most d′ over F with Prc∈C

[
A(c) ≡ p|c

]
> δ for l = 1 + ⌊2/δ⌋.

For 1 ≤ i < j ≤ l, the polynomials pi and pj can agree on at most d′/ |F| fraction of the
points in Fm. For at most δ0 = (d′/ |F|)k′ fraction the tuples, the polynomials pi and pj agree
on the tuple.

By inclusion-exclusion, the number of tuples that agree with one of p1, . . . , pl can be lower
bounded by:

lδ |I| −
(
l

2

)
δ0 |I| .

We have lδ > 2 and
(
l
2

)
≤ 1/δ0, which implies that |I| > |I| – contradiction!

Proposition 3.2 (Proximity ⇒ List decoding). Let δ′ = γ′(δ) − |F|−k′. Assume that δ′ ≥
2(d′/ |F|)k′/2. Then, for any low degree tester Test,

AgrErrIγ→γ′,d→d′(Test) ≤ δ ⇒ ListErrI2/δ′,d′(Test) ≤ δ

Proof. Let δ∗ = γ′(δ). Let δ′ = δ∗ − |F|−k′ , so δ′ ≥ 2(d′/ |F|)k′/2. Let p1, . . . , pl be all the
m-variate polynomials of degree at most d over F that agree with A on at least δ′ fraction of the
tuples S ∈ I. By Proposition 3.1, we have l ≤ 2/δ′. We will upper bound by δ the probability
that the test passes, yet the verifier picks S ∈ I such that A(S) /∈

{
p1|S , . . . , pl|S

}
(this will

imply the lemma). Assume, toward a contradiction, that this is not the case.
For every tuple S ∈ I such that A(S) ∈

{
p1|S , . . . , pl|S

}
, define A∗(S) to be a random

element in Fk′ . By our assumption, the probability that Test passes for A∗ is at least δ. Since
AgrErrIγ→γ′,d→d′(Test) ≤ ε, there is an m-variate polynomial p∗ of degree at most d′ over F
that agrees with A∗ on at least γ′(δ) = δ∗ fraction of the tuples S ∈ I. The probability that

A∗(S) = p∗|S on those tuples S for which A∗(S) was chosen randomly is |F|−k′ , and thus p∗ must

agree with A on at least δ∗−|F|−k′ = δ′ fraction of the tuples. Thus p∗ ≡ pj for some 1 ≤ j ≤ l,
and pj agrees with A∗ with probability at least δ′ over the tuples. This is a contradiction!
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3.4 A Theorem And A Conjecture

In this work we give the first low degree test whose soundness error can be made ≈ 1/ |Fm|. The
low degree testing theorem follows from applying our parallel repetition theorem (Theorem 17)
on the low degree testing theorem in Section 6. The family of surfaces used is specified in
Section 6 as well.

Theorem 14 (Low error low degree testing theorem). Let F be a finite field that is large enough
(polynomial size) with respect to m, k′, q and d, and fix initial conditions {(xi,1, . . . , xi,q)}Mi=1 ⊆
(Fm)q. Then, there is a family C of surfaces, |C| ≤ M |F|O(mk′), that satisfies the initial condi-
tions with forbidden points Q : C → 2F; in which the surfaces are of degree k = Θ(k′ + q) and
dimension v = O(1); and it holds:

ListErrC
|F|O(k′),dk

(Surfaces Test(C,P, Q, (Fm)k
′
)) ≤ |F|−Ω(k′) ,

where P is a distribution over pairs of surfaces in C.

We conjecture that there is a low degree test whose soundness error can be made ≈ 1/ |Fm|
when the randomness is only O(m log |F|) (note that the verifier can only access a number of
curves and tuples that is exponential in its randomness). As we show in Section 4, the conjecture
would imply the Sliding Scale Conjecture:

Conjecture 3.1 (Derandomized low degree test conjecture). Let F be a finite field that is large
enough (polynomial size) with respect to m, k′, q and d, and fix initial conditions {(xi,1, . . . , xi,q)}Mi=1 ⊆
(Fm)q. Then, there exist:

1. A family C of surfaces that satisfies the initial conditions, and in which the surfaces are
of degree k = poly(k′, q, d) and dimension v = O(1);

2. A family I of k′-tuples of points in Fm;

3. A low degree tester Test that uses O((m+ k′) log |F|+ logM) random bits to make O(1)
queries to C and I, so

ListErrC
|F|O(k′),poly(d,k)

(Test) ≤ |F|−Ω(k′) .

4 From Derandomized Low Degree Test to Sliding Scale Con-
jecture

In this section we show how a derandomized low degree test as in Conjecture 3.1 implies the
Sliding Scale Conjecture, hence proving Theorem 1. The idea of the proof is to use the low
degree test for simulating sequential repetition. This idea has been used in many works before,
however, there are a few differences between the current proof and previous works: (1) We start
with a low error PCP by Dinur et al [12], and our choice of parameters is unusual; (2) We
formulate and use a new abstraction of the composition theorem of Arora-Safra [3].

Our construction is as follow. We start with an instantiation of the low error PCP from
Theorem 8:

NP ⊆ PCP1,2/|Σ| [O(log n), O(1)]|Σ| ,where log |Σ| =
√
log n log log n.
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By sequential repetition of this PCP O(
√

log n/ log log n) times (see Proposition 2.2) we get:

NP ⊆ PCP1,1/n

[
O(log n), O(

√
log n/ log logn)

]
|Σ|

.

We wish to decrease the number of queries to a constant without hurting the soundness error
or the randomness too much. Recall that to allow that we have to increase the alphabet appro-
priately (see Proposition 2.1). Ultimately, we want to prove a PCP theorem with polynomially
small error and polynomial alphabet size:

NP ⊆ PCP1,1/nΩ(1) [O(log n), O(1)]nO(1) . (1)

From this, one can get “sliding-scale”, i.e., error ε with alphabet size poly(1/ε) by composition
with a Hadamard/quadratic functions-based construction.

In the next section we describe the algebraic framework for converting a PCP verifier with
many queries to a PCP verifier with a constant number of queries based on the local testing
and decoding properties of low degree polynomials. This framework is invoked twice, with two
different settings of parameters. In the first application (see Section 4.1), we get a construction
with sub-exponential alphabet:

NP ⊆ PCP1,1/nΩ(1) [O(log n), O(1)]
22

Θ((logn)1/2v) . (2)

In the second application (see Section 4.2), we get a construction6 with poly-logarithmic ran-
domness, poly-logarithmically small soundness error, and quasi-polynomial alphabet:

NP ⊆ PCP
1,2−Ω(log2v n)

[
O((logn)4v−1), O(1)

]
2Θ(log4v−1 n) . (3)

Our final construction (1) is obtained from composing (2) as an outer construction and (3) as
inner construction. The idea is that construction (3) is invoked on n′ which is about logarithmic

in the alphabet size of (2), i.e., n′ = 2Θ((logn)1/2v), so (log n′)2v = O(log n). The final construction
inherits its soundness error from both the outer and inner constructions, but inherits its alphabet
only from the inner construction.

4.1 Query Reduction Using Polynomials

We assume a PCP verifier V1 that uses r random bits to make q queries to a proof over alphabet
Σ. The verifier has perfect completeness and soundness error ε. We show how to simulate V1

using a new verifier V2 that makes only O(1) queries to a proof over a larger alphabet.
The general idea is this: The proof for V2 contains a (supposed) encoding of V1’s proof as a

low degree polynomial. The encoding is given by the restrictions of the polynomial to surfaces
and tuples of points. Each surface goes through q points that represent q queries of V1 on some
randomness string. The verifier V2 locally tests the encoding by making only O(1) queries using
the low degree test, and achieves low soundness error. The verifier V2 locally decodes the q
queries required for V1 by making a single query to a surface.

The details are as follows: Let N = 2rq be the maximal length of a proof accessible by a
verifier with 2r possible tests, each accessing q locations in the proof. Let m, h be natural
numbers for which hm = N . Denote d

.
= m(h− 1). Let F be a finite field of characteristic two

6In fact, as we explain in Section 4.2, we need a stronger guarantee, namely a “decoding verifier”.
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and size |F| ≥ poly(d, |Σ|) for a sufficiently large polynomial as in Conjecture 3.1. Let H ⊆ F,
|H| = h, and associate {1, . . . , N} with Hm. Let S ⊆ F, |S| = |Σ|, and associate Σ with S.

For a string π ∈ ΣN , let pπ : Fm → F be the m-variate polynomial of degree at most h− 1 in
each of its variables for which pπ(x) = π(x) for every x ∈ Hm.

For randomness w ∈ {0, 1}r, let (xw,1, . . . , xw,q) ∈ (Hm)q be the q-tuple of points correspond-
ing to the queries of V1 on randomness w. Let C be a family of v-dimensional surfaces that pass
through {(xw,1, . . . , xw,q)}w. That is, every surface in C contains a q-tuple of queries, and every
q-tuple of queries appears on the same number of surfaces in C.

The verifier V2 is as follows:

Verifier V2

Prescribed proof: As specified by the low degree test; supposedly the restrictions of pπ to surfaces
in C and k′-tuples in I.
Test:

1. Simulate the verifier of the low degree test; let xw,1, . . . , xw,q ∈ Fm be the initial points
picked by the verifier (embedded in a surface). Reject if the low degree testing verifier
rejects.

2. Let v1, . . . , vq ∈ F be the evaluations received on xw,1, . . . , xw,q (embedded in the assign-
ment for the surface).

3. Reject if it is not the case that v1, . . . , vq ∈ S.

4. Apply V1 on randomness w and answers v1, . . . , vq. Reject if V1 rejects; accept otherwise.

The verifier V2 uses O(log |C|) random bits to make O(1) queries to a proof over alphabet F(
d′+v

v ).
It has perfect completeness. It remains to prove soundness.

Lemma 4.1 (PCP Soundness). There are γ, γ′ = |F|−Ω(k′) for which: if there is a proof that
makes V2 accept with probability more than γ′, then there is a proof that makes V1 accept with
probability more than γ.

Proof. Assume on way of contradiction that there is no proof that makes V1 accept with proba-
bility more than γ (to be fixed later). Apply the soundness of the low degree test for an appro-

priate parameter ε = |F|−Ω(k′), and let p1, . . . , pl be the polynomials list decoding, l = |F|O(k′).
Let π1, . . . , πl be the proofs that correspond to p1, . . . , pl: For every i ∈ {1, . . . , N}, the i’th
position of πj is pj(i) if pj(i) ∈ S, and an arbitrary symbol otherwise (Recall that we associate
{1, . . . , N} with Hm).

There are two cases in which V2 accepts:

1. The low degree test passes although it is not the case that v1 = pi(xw,1), . . . , vq = pi(xw,q)
for some 1 ≤ i ≤ l. By the low degree test soundness guarantee, this happens with
probability at most ε.

2. v1 = pi(xw,1), . . . , vq = pi(xw,q) for some 1 ≤ i ≤ l, and v1, . . . , vq ∈ S, and V1 accepts
πi on randomness w. By the soundness of V1, for every 1 ≤ i ≤ l, this happens with
probability at most γ. Thus, the probability it happens for some 1 ≤ i ≤ l is at most lγ.

This means that V2 accepts with probability at most ε+ lγ. Pick γ = |F|−Ω(k′) so γ′
.
= ε+ lγ =

|F|−Ω(k′).
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Settings of Parameters (toward (2)):

• m, k′, q, k = Θ((log n)1−1/2v).

• h, |F| = 2Θ((log n)1/2v).

• |Fm| = nΘ(1).

• |F|−Ω(k′) = 1/nΩ(1).

• |Σ| = 22
Θ((logn)1/2v)

.

• |C| ≤ nO(1).

4.2 Decoding verifier

We can adapt the algebraic construction from the previous section into a “decoding” verifier,
i.e., a verifier that, if it does not reject, outputs symbols from a list decoding of proofs. This
variant is required for the composition scheme:

Definition 15 (Decoding verifier). We say that a verifier V is a decoding verifier with error
probability ε and list size l for SatN , if the following holds: On input a formula φ on N variables,
and a collection of u-tuples of variables,

• Completeness: For every assignment π that satisfies φ, there is a proof that V never
rejects. Moreover, given access to this proof, V outputs (xi1 , v1), . . . , (xiu , vu), where
(xi1 , . . . , xiu) is uniformly distributed u-tuple from the given collection, and v1 = π(xi1), . . . , vu =
π(xiu).

• Soundness: For every proof for V , there are assignments π1, . . . , πl that satisfy φ, such
that the probability that V does not reject and outputs (xi1 , v1), . . . , (xiu , vu), so none of
π1, . . . , πl satisfies v1 = π(xi1), . . . , vu = π(xiu), is at most ε.

For a large enough (polynomial size) field F with respect to q, one can obtain a decoding

verifier with error |F|−Ω(1) and list size |F|O(1) from the standard Sum-Check construction and
the Line-vs.-Line Test [25]. Applying our query reduction technique on this decoding verifier,

one obtains a decoding verifier with error probability |F|−Ω(k′) and list size |F|O(k′).

Setting of parameters (toward (3)):

• m =
√
log n.

• h, |F| = 2Θ(
√
logn).

• u = Θ(1).

• k′, k, q = Θ((log n)2v−1/2).

• |Fm| = poly(n).

• |F|Θ(k′) = 2Θ((logn)2v).

• |Σ| ≤ 2O(
√
logn).

• |C| ≤ 2O((logn)2v)poly(M).

22



4.3 Composition

Using a PCP verifier with low error ε but large alphabet Σ, and a decoding verifier for input size
n′ ≈ log |Σ| with low error ε and small alphabet Σ′, one can obtain a PCP verifier with error
O(ε) and alphabet Σ′. The technique, called composition, was first introduced by Arora and
Safra in their breakthrough PCP paper [3]. The next lemma describes an abstract interpretation
of the Arora-Safra composition.

Interestingly, while this composition lemma is in the same spirit as the combinatorial compo-
sition lemmas of Szegedy [34], Dinur-Reingold [15], Ben-Sasson et al [8] and Dinur-Harsha [14]
(which is an abstraction of the composition of the author and Raz [29]), it differs from them
in its parameters and in its requirements from the initial verifiers. It preserves low error like
the composition lemma of [14], but it does not require the initial verifiers to be robust. Its
disadvantage is that the number of queries increases and (naturally) the output verifier is not
robust.

We compose a verifier and a decoding verifier as follows. Let Vout be a PCP verifier for Satn

that uses r1 random bits to make q1 queries to a proof over alphabet Σ1 and achieves perfect
completeness and soundness error ε1. Let C be an error correcting code for encoding symbols
from Σ1, whose parameters are (n′, log |Σ1| , (1− ε2/4)n′)S as in Proposition 2.3. For every ran-
domness w ∈ {0, 1}r1 , consider the formula φw over variables x1,1, . . . , x1,n′ , · · · , xq1,1, . . . , xq1,n′ ,
each ranging over S, such that φw is satisfied iff the variables correspond to C(v1), . . . , C(vq1)
where v1, . . . , vq1 ∈ S are values that would make Vout accept on randomness w. Consider the

collection of q1-tuples {(x1,i, . . . , xq1,i)}
n′

i=1. Suppose that for all w ∈ {0, 1}r1 , on input φw and
the collection we defined, a decoding verifier Vin uses r2 random bits to make q2 queries to a
proof over alphabet Σ2 and achieves error probability ε2 with list size l2.

The composed verifier is as follows:

Verifier V

Prescribed proof:

• A proof π1 for Vout written over the alphabet S, where each symbol in Σ1 is encoded using
C. We denote the length of π1 by N1.

• Per random string w ∈ {0, 1}r1 , the prescribed proof πw of Vin for the formula φw, the
collection of q1-tuples we defined above, and the satisfying assignment corresponding to
π1.

1. Pick uniformly at random w1 ∈ {0, 1}r1 .

2. Simulate Vin on πw1 . If Vin rejects, reject. Otherwise, Vin decodes q1 symbols v1, . . . , vq1 ∈
S that are supposed to equal certain symbols in π1. If they are not equal, reject.

3. If none of the tests above rejects, accept.

In the lemma below we analyze the composed verifier. Note that we think of q1, q2 that are
constants.

Lemma 4.2 (Composition). Suppose that ε
1/q1
2 (1 − ε2)/l2 ≥ 2ε

1/q1
1 and that ε ≤ 2(ε1/ε2)

1/q1.
The composed verifier uses r1 + r2 random bits to make q1 + q2 queries to a proof over alphabet
Σ2 and achieves perfect completeness and soundness error O(ε2).
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Proof. Without loss of generality, we assume that every symbol of π1 is accessed by Vout with
the same probability.

The randomness, number of queries, alphabet and perfect completeness of V are evident. Let
us argue soundness. Assume that V accepts with probability at least 2ε2. We will argue that
there exists a proof for Vout that makes it accept with probability at least ε1.

For every i ∈ [N1], pick uniformly at random a symbol σ ∈ Σ1 among the ones whose encoding
agrees with π1(i) on at least ε fraction. By Johnson’s bound (see Proposition 2.4), there are
at most 2/ε such symbols. We will argue that the expected probability that Vout accepts is at
least ε1. It will follow that there exists a proof with success probability at least ε1.

For at least ε2 fraction of the choices of w1, with probability at least ε2, the verifier Vin

accepts the proof πw1 and decodes q1 symbols from π1, one per query of Vout on randomness w1.
By the soundness of Vin, for all those w1’s, there must exist πw1,1, . . . , πw1,l2 ∈ Sn′

that satisfy
φw1 , and, with probability at least 1 − ε2, the proof π1 agrees with one of πw1,1, . . . , πw1,l2 on
the q1 S-symbols Vin decodes. Hence, there must be 1 ≤ p ≤ l2 such that πw1,p agrees with π1
on at least (1 − ε2)/l2 ≥ ε fraction of S-symbols from each one of the q1 symbols Vout queries
on randomness w1. The probability that all q1 symbols in Vout’s probabilistic proof agree with
πw1,p is at least εq1 . Thus, the expected fraction of w1’s for which Vout accepts is at least
ε2 · εq1 ≥ ε1.

By composing the verifier from Section 4.1 and the decoding verifier from Section 4.2, we get
Theorem 1.

5 Curve-Tuple Sampling

In this section we explore the sampling properties of the “degree-k curves vs. k′-tuples” incidence
graph7, which will be used in our parallel repetition proof. We start with an argument based on
k/k′-wise independence. This argument yields low sampling error for k′ = Θ(1). Then, we show
that the “degree-k curves vs. k′-tuples” graph can be viewed as a k′-product of the “degree-k
curves vs. 1-tuples”. We use this connection to argue that the graph for k′-tuples has essentially
the same sampling error as the graph for 1-tuples, albeit with larger deviation.

Interestingly, while the larger deviation is too large for the “k-tuples vs. k′-tuples” graph (the
graph relevant to IKW [23]), it is sufficiently small when k-tuples are replaced with degree-k
curves.

5.1 The k/k′-wise Independence Argument

Let B ⊆ (Fm)k
′
, |B| = µ

∣∣∣(Fm)k
′
∣∣∣. Pick c ∈ C uniformly at random. For a k′ tuple T =

{t1, . . . , tk′} ⊆ F, let XT indicate whether (c(t1), . . . , c(tk′)) ∈ B, and let X̂T = XT − µ.

Since each k′-tuple appears in the same number of curves, we have E
[
X̂T

]
= 0. Define X̂

.
=(|F|

k′

)−1∑
T⊆F X̂T .

Proposition 5.1 (l’th Moment). Let l ≤ k/k′.

E
[
X̂ l
]

≤ |F|−l/2 klµ(l + 1).

7Our proof readily extends from curves to surfaces.
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Proof.

E
[
X̂ l
]

=

(
|F|
k′

)−l

·E


∑

T⊆F
X̂T

l


=

(
|F|
k′

)−l

·E

 ∑
T1,...,Tl⊆F

X̂T1 · · · X̂Tl


=

(
|F|
k′

)−l

·
∑

T1,...,Tl⊆F
E
[
X̂T1 · · · X̂Tl

]
(4)

For every l pairwise disjoint T1, . . . , Tl ⊆ F, we have that X̂T1 , . . . , X̂Tl
are independent. Hence,

if among T1, . . . , Tl ⊆ F there is at least one 1 ≤ i ≤ l such that Ti is disjoint from the other Tj

for j ̸= i, we have

E
[
X̂T1 · · · X̂Tl

]
= E

[
X̂Ti

]
·E
[
X̂T1 · · · X̂Ti−1X̂Ti+1 · · · X̂Tl

]
= 0.

Therefore, the only terms that survive in (4) are those where every Ti has non-empty intersection

with
∪

j ̸=i Tj (for this we need l ≥ 2). Their number is bounded by
(|F|
k′

)l
|F|−l/2 kl. Each can be

bounded by:

E
[
X̂T1 · · · X̂Tl

]
≤ Pr

[
∃iX̂Ti = 1− µ

]
· (1− µ) + Pr

[
∀iX̂Ti = −µ

]
(−µ)l ≤ µ(l + 1).

The proposition follows.

As a corollary we get a proof of the sampling property of G(C, (Fm)k
′
):

Proposition 5.2. For l ≤ k/k′, the incidence graph G(C, (Fm)k
′
) is µ |F|−l/2 kl(l + 1)ε−l-

sampling.

Proof. By Markov’s inequality,

Pr
[
X̂ ≥ ε

]
≤ Pr

[
X̂ l ≥ εl

]
≤

E
[
X̂ l
]

εl
.

The proposition follows from Proposition 5.1.

In the sequel we will also need an analysis of the sampling properties of G(CS , IS) where CS
is the family of all the degree-k curves through a small set of points S ⊆ Fm, |S| ≪ k′, and
IS is the family of all k′-tuples of points in Fm that contain the points in S. Such an analysis
follows along the same lines as above.

For k′ = 1 we recover the standard upper bound of ≈ |F|−k on the sampling error of “degree-k
curves vs. points”. However, for larger k′ we get a much weaker upper bound of ≈ |F|−l.

It is instructive to have an example in mind for when a sampling error of ≈ |F|−l kl occurs:

Example 5.1. Let X ⊆ Fm be a set of points of fraction µ = |X| / |Fm| to be determined
later; let B ⊆ (Fm)k

′
be the family of k′-tuples in which the lexicographically first element lands

in X; let A ⊆ C be the family of degree-k curves in which the first l points according to the
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lexicographic order land in B. Then the probability mass of B is µ; the probability mass of A is
µl; given that c ∈ A and S ⊆ c, S ∈ (Fm)k

′
, the probability that S ∈ B is8 ≈ lk′/ |F|. Pick µ so

µ < lk′/ |F| − ε. The sampling error is roughly (k/ |F| − ε)l.

Note that Example 5.1 works only when ε < lk′/ |F|. For larger ε = |F|−Θ(1) we will be able
to get error ≈ |F|−k rather than ≈ |F|−l in Section 5.2.

5.2 Extractor Product

In this section we define a replacement product operation on extractors, and use it to prove a
much lower sampling error for “degree-k curves vs. k′-tuples” than the one proved in Proposi-
tion 5.2. Replacement product turns out to have been defined before in [10].

Replacement product is a generalization of a widely-used transformation by Wigderson and
Zuckerman [36]. Both transformations take two extractors Ext1 and Ext2 and generate a new
extractor whose output is the multiplication of the output of Ext1 and the output of Ext2.
The new extractor requires independent seeds for Ext1 and Ext2. The difference between our
operation and the Wigderson-Zuckerman one is that WZ require Ext2 to work for the same
domain as Ext1, and handle a lower min-entropy than Ext1. In our operation the domain of
Ext2 is potentially much smaller than the domain of Ext1, and there is no similar demand on
the min-entropy of Ext2. This allows Ext2 to have a smaller seed, and in certain settings may
allow for exhaustive search of a construction of Ext2 with optimal parameters.

Definition 16 (Replacement product for extractors). Suppose Ext1 : X1 × Y1 → Z1 ×X2 and
Ext2 : X2×Y2 → Z2×W2 are extractors. Ext1⊗Ext2 : X1×(Y1×Y2) → (Z1×Z2)×(X2×W2)
is defined as follows: assume Ext1(x1, y1) = (z1, x2) and Ext2(x2, y2) = (z2, w2), then (Ext1 ⊗
Ext2)(x1, y1, y2) = (z1, z2), (x2, w2).

In contrast, the Wigderson-Zuckerman operation takes Ext2 : X1 × Y2 → Z2 ×W2, and sets
Ext(x1, y1, y2) = (z1, z2), (w1, w2) if Ext1(x1, y1) = (z1, w1) and Ext2(x1, y2) = (z2, w2).

The bipartite graph associated with the product extractor can be constructed as follows:
Take the bipartite graph associated with Ext1, and replace every vertex z ∈ Z1 with a copy of
the extractor Ext2, by identifying the Ext1 neighbors of z with elements of X2, and connecting
them to elements in {z} × Z2 according to Ext2.

The next lemma states that the product of two extractors is also an extractor

Lemma 5.3 (Replacement product lemma). If Ext1 is a (δ1, ε1)-extractor and Ext2 is a
(δ2, ε2)-extractor, then Ext1 ⊗ Ext2 is a (δ, ε)-extractor for δ ≥ max {δ1, δ2} and ε ≥ ε1 +
ε2 + δ2/δ.

Proof. Let X be a distribution over X1 with H∞(X) ≥ log(δ |X1|), and let us show that the
distribution defined by (Ext1 ⊗ Ext2)(X,Y1, Y2) over Z1 × Z2 is ε-close to uniform.

Consider z1 ∈ Z1 whose probability according to Ext1(X,Y1) is at least (δ2/δ) · (1/ |Z1|).
Let Xz1 be the distribution over X2 that assigns each x ∈ X2 its probability according to X
conditioned on z1 being chosen. Since H∞(X) ≥ log(δ |X1|), the probability of any element
according to Xz1 is at most (1/(δ |X1|)) · (δ |Z1| /δ2) = |Z1| /δ2 |X1| = 1/(δ2 |X2|). Hence,
H∞(Xz1) ≥ log(δ2 |X2|). By the property of Ext2, the distribution defined by Ext2(Xz1 , Y2)
over Z2 is ε2-close to uniform.

8In contrast, for “k-tuples vs. k′-tuples” the probability would have been ≈ lk′/k; the difference is crucial for
understanding why our approach in Section 5.2 works for the algebraic case, but not for direct products.
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The total probability according to Ext1(X,Y1) on z1 ∈ Z1 whose probability according to
Ext1(X,Y1) is less than (δ2/δ) · (1/ |Z1|) is less than δ2/δ.

By the property of Ext1, the distribution defined by Ext1(X,Y1) on Z1 is ε1-close to uniform.
Overall, we can upper bound the distance of the distribution defined by (Ext1⊗Ext2)(X,Y1, Y2)

over Z1 × Z2 from uniform by ε1 + δ2/δ + ε2.

Corollary 5.4. Let 0 < ε < 1. Set δ(|F| , k, ε) = |F|−k/2 kk(k + 1)ε−k. Then, for all k′, the
incidence graph “degree-k curves vs. k′-tuples” is a (δk′/ε, 2k

′ε)-extractor for

δk′ = (|F| − k′ + 1)−(k−k′+1)/2kk(k + 1)ε−k.

Proof. The proof is by induction on k′. For k′ = 1 the claim follows from Proposition 5.2
that analyzes the sampling properties of the incidence graph “degree-k curves vs. points” and
Proposition 2.5 that converts samplers to extractors. Assume that the claim is true for k′ − 1,
and let us prove it for k′.

For every (k′ − 1)-tuple of points S ⊆ Fm, consider the “(degree-k curves through S)
vs. points” incidence graph, where every curve through S is connected to all the points on
it except for those in S. Similarly to Proposition 5.2, this incidence graph is a (δk′ , ε)-extractor.
Moreover, for different S’s we get isomorphic incidence graphs.

We can view the incidence graph “degree-k curves vs. k′-tuples” as the product of the in-
cidence graph “degree-k curves vs. (k′ − 1)-tuples” and the incidence graph “(degree-k curves
through a (k′ − 1)-tuple) vs. points”. By the induction hypothesis, the first is a (δk′−1/ε, 2(k

′ −
1)ε)-extractor. The second is a (δk′ , ε)-extractor. By Lemma 5.3 and since δk′ ≥ δk′−1, the
product graph is a (δk′/ε, 2k

′ε)-extractor.

Note that the statement of Corollary 5.4 is meaningful for sufficiently large F with respect to
k′. For such we can take ε = |F|−Θ(1) and have a deviation 2k′ε = |F|−Θ(1).

6 The Base Low Degree Test

In this section we show that a “robust” low degree testing theorem for Surface-vs.-Surface
follows from the low degree testing theorem for Line-vs.-Line Test (Lemma 1.1). By “robust”
we refer to the fact that the low degree testing theorem holds when restricting the family of
surfaces to any sub-family of fraction δ = |F|−Θ(k) of the surfaces, and even further to any such
family and to surfaces that pass through given k′′ points in Fm. The construction relies on the
curve-tuple sampling proved in Section 5. As explained in the introduction, the robust version
is required for our parallel repetition theorem.

We focus on the following family C of 3-dimensional surfaces in Fm: Fix initial conditions

{(xi,1, . . . , xi,q)}Mi=1 ⊆ (Fm)q.

For every 1 ≤ i ≤ M , add all the 3-dimensional surfaces of the form

s(t1, t2, t3) = c1(t1) + t3c2(t2),

where c1 is a curve of degree at most q+k and passes through xi,1, . . . , xi,q , and c2 is a curve of
degree at most k . The forbidden points Q : C → 2F rule out the initial points embedded in the
surfaces, and possibly other points. The number of surfaces is M · |F|O((q+k)m). Each surface is
the union of |F|2 lines x+ ty where x ∈ Fm is on the curve c1, and y ∈ Fm is on the curve c2.
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Proposition 6.1 (Base test). Assume that F is a large enough field (polynomial size) with
respect to m, d, k and |Q|. Assume that k is large enough (linear size) in k′′. There are

δ = |F|−Ω(k) and ε = |F|−Ω(1) that satisfy:
For any C′ ⊆ C and S′ ⊆ Fm, |S′| ≤ k′′, such that

∣∣C′
S′

∣∣ ≥ δ |CS′ |,

ListErr
C′
S′

|F|O(1),d(q+k)
(Surface-vs.-Surface Test(C′

S′ , Q,Fm)) ≤ |F|−Ω(1) .

Proof. Fix C′ as in the premise. The proposition is proved by reduction to Line-vs.-Line Test.
Consider the following variant of Line-vs.-Line Test:

Line-vs.-Line Test↑(C′
S′ , Q,Fm)

1. Pick at random surfaces s, s′ ∈ C′
S′ that intersect in a point x ∈ s−Q, s′−Q.

2. Pick at random ℓ ⊆ s, ℓ′ ⊆ s′ so x ∈ ℓ, ℓ′.

3. Define A(ℓ) ≡ A(s)|ℓ and A(ℓ′) ≡ A(s′)|ℓ′ .

4. Check that A(ℓ)(x) = A(ℓ′)(x).

Take ε = |F|−0.4. By the curve-tuple sampling property, the distribution of the lines picked
in Line-vs.-Line Test↑(C′

S′ , Q,Fm) is ε-close to the distribution of the lines picked in Line-
vs.-Line Test.

Applying Lemma 1.1, there exists δ0 = |F|−Ω(1) and there arem-variate polynomials p1, . . . , pl,
l ≤ O(1/δ0), of degree at most d(q + k) over F, such that the probability that Line-vs.-Line
Test↑(C′

S′ , Q,Fm) passes, yet A1(ℓ1) is not one of p1|ℓ1 , . . . , pl|ℓ1 , is at most δ0.
If Surface-vs.-Surface Test(C′

S′ , Q,Fm) passes on surfaces s, s′, then Line-vs.-Line
Test↑(C′

S′ , Q,Fm) passes on lines ℓ, ℓ′. Moreover, the probability that A(s) is not one of
p1|s, . . . , pl|s, yet for a random ℓ ⊆ s it holds that A(s)|ℓ is one of p1|ℓ, . . . , pl|ℓ, is at most

|F|−Θ(1).

7 Setup For Parallel Repetition Theorem

In this section we formally define our parallel repetition theorem, and outline its analysis. Our
parallel repetition theorem assumes that a test that compares two surfaces on a point has error
|F|−Ω(1), and shows that an appropriately defined k′-repeated test has error |F|−Ω(k′). The
guarantee about the base test has to hold for any sufficiently large sub-test, and in Section 6
we showed that existing low degree tests can be adapted so they satisfy this requirement. The
formal statement of the parallel repetition theorem is as follows:

Theorem 17 (Parallel repetition for low degree testing). Assume that F is large enough (poly-
nomial size) in d′, m, k′, |Q|, and that k is large enough (linear size) in k′. Then, the assumption
about the base test implies the conclusion about the repeated test:

Base Test: Assume that there exists a constant 0 < β′ < 1 such that for every set S′ ⊆ Fm,
|S′| ≤ β′k′, for every C′ ⊆ C, |C′| ≥ |F|−β′k′ |C|, and Q′ : C′ → 2F, |Q′| ≤ |Q|+ β′k′:

ListErr
C′
S′

|F|−Ω(1),d′
(Surface-vs.-Surface Test(C′

S′ , Q′,Fm)) ≤ |F|−Θ(1) .

Repeated Test: Then, there exists δ = |F|−Ω(k′), such that

ListErrC
|F|O(k′),d′

(Surfaces Test(C, Q, I)) ≤ δ.
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For simplicity, we prove Theorem 17 for curves rather than surfaces. Our arguments readily
extend to surfaces.

The heart of the proof of Theorem 17 is an analysis of the two query Curve-vs.-Curve Test.
As is expected from Example 1.1, this analysis only gives a guarantee about a tiny portion of all
curves in C. We then use the extra queries in Curves Test and the error correction properties
of polynomials to give a guarantee about a sizable portion of C. The analysis consists of the
following three parts:

1. Analysis of Curve-vs.-Curve Test (Sections 8, 9 and 10): Use the base test to deduce

that success |F|−βk′ in Curve-vs.-Curve Test gives rise to a set S′ of ≈ βk′ points in

Fm and a low degree polynomial that agrees with ≈ |F|−βk′ fraction of the curves in CS′

(recall that CS′ are the curves in C that contain S′). To reduce to the base test – the
main challenge in any parallel repetition analysis – we use the sampling properties of the
“degree-k curves vs. k′-tuples of points” incidence graph.

2. Weak analysis of Curves Test (Section 11): Use the analysis of Curve-vs.-Curve

Test from the previous item to deduce that success |F|−βk′ in Curves Test gives rise to

a low degree polynomial that agrees with ≈ |F|−βk′ fraction of the k′-tuples of points in
Fm. Here we use the extra queries of the verifier in Curves Test to go from a structural
conclusion about the assignment to CS′ , a tiny portion of all C, to a structural conclusion
about the assignment to a sizable portion of all k′-tuples of points in Fm.

3. Strong analysis of Curves Test (Section 12): Use the weak analysis of Curves Test

to deduce that success |F|−βk′ in Curves Test gives rise to a low degree polynomial

that agrees with ≈ |F|−βk′ fraction of the curves in C. Here we rely on the list decoding
argument in Section 3.3.

8 Identifying a Successful Sub-Test

In this section we show that success probability γ ≫ |F|−k of Curve-vs.-Curve Test implies
a much higher success probability ≫ 1/ |F| of Curve-vs.-Curve-on-Point Test over a small
subset of the curves. We will later use this lemma where the initial family of curves does not
necessarily contain all degree-k curves. We therefore use C∗ to denote the initial set of curves.

The higher success probability is obtained by conditioning, as in the following lemma:
Pick c1, c2 ∈ C∗, S ∈ I, S ∈ c−Q

1 , c−Q
2 , as in Curve-vs.-Curve Test(C∗, Q, I). Pick a

uniformly random permutation of the points in the tuple S. For i = 1, . . . , k′, let agri denote
the event that A(c1) and A(c2) agree on the i’th point in S.

Lemma 8.1 (Conditional success). Suppose that the probability that Curve-vs.-Curve Test(C∗, Q, I)
passes is at least |F|−βk′. Let 0 < β′ < β. Then, there exists 0 ≤ k′′ < β′k′ such that

Pr
[
agrk′′+1| ∧k′′

i=1 agri

]
≥ |F|−β/β′

.

Proof. By the chain rule,

|F|−βk′ ≤ Pr
[
∧β′k′

i=1 agri

]
= Pr [agr1] · Pr [agr2|agr1] · · ·Pr

[
agrβ′k′ | ∧β′k′−1

i=1 agri

]
. (5)

Hence, there must exist 0 ≤ k′′ < β′k′ such that Pr
[
agrk′′+1| ∧k′′

i=1 agri

]
≥ |F|−βk′/(β′k′) =

|F|−β/β′
.
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Lemma 8.2 (Sub-Test Lemma). Suppose that the probability that Curve-vs.-Curve Test(C∗, Q, I)
passes is at least |F|−βk′. Let 0 < β′ < β and k′′ be as in Lemma 8.1. Set ζ = (1/4) |F|−βk′/2−β/2β′

.
Then, there exist

• S′ ⊆ Fm, |S′| = k′′;
∣∣C∗

S′

∣∣ ≥ ζ · (|C∗| / |C|) · |CS′ |;

• C′ ⊆ CS′, |C′| ≥ ζ |F|−k′′ ·
∣∣C∗

S′

∣∣;
• Q′ : C′ → 2F, |Q′| ≤ |Q|+ k′′;

such that the probability that Curve-vs.-Curve-on-Point Test(C′, Q′, IS′) passes is at least

(3/4) |F|−β/β′
.

Proof. Pick a k′′-tuple S′ of points in Fm and assignments over F to the points in S′ by generating
a pair of curves as in Curve-vs.-Curve Test conditioned on ∧k′′

i=1agri, and observing the k′′

points of agreement and their assignments. Let C′ ⊆ CS′ be the set of curves that contain the
k′′-tuple we picked and agree with the assignment we generated for it. For c ∈ C′, get Q′(c) by
adding to the forbidden points Q(c) the locations of the points in the k′′-tuple.

The distribution of curves in Curve-vs.-Curve Test(C′, Q′, IS′) for random S′ and C′ is
the same as the distribution of curves in Curve-vs.-Curve Test(C∗, Q, I) conditioned on
∧k′′
i=1agri. Hence, from Lemma 8.1, the expected success probability of Curve-vs.-Curve-on-

Point Test(C′, Q′, IS′) is at least |F|−β/β′
.

The probability that S′ ∈ I is picked inCurve-vs.-Curve Test(C∗, Q, I) is
∣∣C∗

S′

∣∣2 /∑S∈I |C∗
S |

2.

Conditioning on ∧k′′
i=1agri, this probability is multiplied by at most |F|βk

′
.

By convexity, we can bound:

1

|I|
∑
S∈I

|C∗
S |

2 ≥

(
1

|I|
∑
S∈I

|C∗
S |

)2

=

(
|C∗|
|C|

· 1

|I|
∑
S∈I

|CS |

)2

=

(
|C∗|
|C|

|CS′ |
)2

,

where the last inequality follows since |CS | is the same for all S ∈ I. Let

I ′ .
=

{
S ∈ I | |C∗

S | < ζ
|C∗|
|C|

|CS |
}
.

The probability that we picked S′ ∈ I ′ is at most

∑
S′∈I′

|F|βk
′
·

∣∣C∗
S′

∣∣2∑
S∈I

∣∣C∗
S

∣∣2 ≤
∑
S′∈I′

|F|βk
′
· 1

|I|
·
(
ζ(|C∗| / |C|) |CS′ |
|C∗| |CS′ | /|C|

)2

≤ |F|βk
′
· ζ2.

We have E [|C′|] ≥ |F|−k′′
∣∣C∗

S′

∣∣. Thus, similarly to the previous argument, the probability

that |C′| < ζ |F|−k′′
∣∣C∗

S′

∣∣ is at most |F|βk
′
· ζ2.

Therefore, there exist S′ and C′ for which the probability that Curve-vs.-Curve-on-Point
Test(C′, Q′, IS′) passes is at least (3/4) |F|−β/β′

, while
∣∣C∗

S′

∣∣ ≥ ζ · (|C∗| / |C|) · |CS′ | and |C′| ≥
ζ |F|−k′′ ·

∣∣C∗
S′

∣∣.
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9 From Large Intersection To One Point Intersection

In this section we show that if the Curve-vs.-Curve-on-Point Test passes with good proba-
bility when the intersection between curves contains (k′−k′′) points, then theCurve-vs.-Curve
Test passes with comparably good probability when the intersection between curves contains
just one point. In other words, while Example 1.1 shows that the provers have an advantage
due to the larger intersection, we are able to bound this advantage. The proof relies on the
sampling property of the “degree-k curves vs. k′-tuples” incidence graph.

Lemma 9.1 (Sampler Argument). Assume the setup of Lemma 8.2, and in particular that
for S′, C′ and Q′ as there, the probability that Curve-vs.-Curve-on-Point Test(C′, Q′, IS′)

passes is at least |F|−β/β′
. Further, assume that β and β′ are such that for every (k′′ + 1)-tuple

of points S′′ ⊆ Fm, the incidence graph G(CS′′ , IS′′) is (δ, ε)-sampling for

ε ≤ (1/12) · |F|−β/β′
.

δ ≤ ζ2 |F|−k′′ (|C∗| / |C|)ε2,

Then, Curve-vs.-Curve Test(C′, Q′,Fm) passes with probability at least |F|−β/β′
− 3ε.

Proof. For a point x ∈ Fm let CS′∪{x} be the curves c ∈ CS′ such that x ∈ c−Q′
, and let IS′∪{x}

be the tuples in IS′ that pass through x. Since S′ is fixed throughout the proof, we use Cx to
denote CS′∪{x} and we use Ix to denote IS′∪{x}.

Let p(x) be the probability that a uniform c ∈ C′ contains x as x ∈ c−Q′
. For a possible

assignment a ∈ F to x, let Cx,a be the family of curves in Cx with A(c)(x) = a. Per S ∈ IS′ ,
let µx,a(S) be the fraction of curves in Cx,a among the curves in C′ ∩ Cx that contain S. Since
every curve c ∈ C′ ∩ Cx contains the same number of k′-tuples in Ix,

E
S∈Ix

[µx,a(S)] =
|C′ ∩ Cx,a|
|C′ ∩ Cx|

.

The probability that Curve-vs.-Curve Test(C′, Q′,Fm) passes is given by∑
x∈Fm

p(x) ·
∑
a∈F

(
|C′ ∩ Cx,a|
|C′ ∩ Cx|

)2

. (6)

The probability that Curve-vs.-Curve-on-Point Test(C′, Q′, I) passes is given by∑
x∈Fm

p(x) ·
∑
a∈F

∑
c∈C′∩Cx,a

1

|C′ ∩ Cx|
· E
S∈Ix:S⊆c

[µx,a(S)]. (7)

By the sampling property of “degree-k curves vs. (k′ + 1)-tuples”, all curves c ∈ Cx, except
for at most δ |Cx| curves which we denote Bx, have

E
S∈Ix:S⊆c

[µx,a(S)] =
|C′ ∩ Cx,a|
|C′ ∩ Cx|

± ε.

Let G ⊆ Fm be the points x ∈ Fm for which |C′ ∩ Cx| > (δ/ε) |Cx|. Since |C′| ≥ (δ/ε2) |CS′ |,
for x /∈ G it holds:

p(x) =
|C′ ∩ Cx|

|C′|
≤ δ

ε

|Cx|
|C′|

≤ δ

ε

|Cx|
(δ/ε2) |CS′ |

= ε
|Cx|
|CS′ |

.
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Hence, the contribution to (7) from points x /∈ G is at most∑
x∈Fm

ε
|Cx|
|CS′ |

≤ ε.

The contribution to (7) from points x ∈ G and curves c ∈ Bx is at most∑
x∈G

p(x) · |C
′ ∩ Cx ∩Bx|
|C′ ∩ Cx|

≤
∑
x∈G

p(x) · δ |Cx|
(δ/ε) |Cx|

≤ ε.

Hence, we can upper bound the probability in (7) by:

(7) ≤ 2ε+
∑
x∈G

p(x) ·
∑
a∈F

∑
c∈C′∩Cx,a−Bx

1

|C′ ∩ Cx|
· E
S∈Ix:S⊆c

[µx,a(S)]

≤ 2ε+
∑
x∈G

p(x) ·
∑
a∈F

∑
c∈C′∩Cx,a

1

|C′ ∩ Cx|
·
(
|C′ ∩ Cx,a|
|C′ ∩ Cx|

+ ε

)

≤ 3ε+
∑
x∈Fm

p(x) ·
∑
a∈F

(
|C′ ∩ Cx,a|
|C′ ∩ Cx|

)2

The lemma follows from (6).

10 Curve vs. Curve Analysis

In this section we apply the machinery we developed to this point, as well as the guarantee
about the base test, to start from a noticeable success probability of Curve-vs.-Curve Test
and get a small set of points and a low degree polynomial that agrees with a noticeable fraction
of the curves through the points.

Lemma 10.1 (Analysis of Curve-vs.-Curve Test). Assume that |F| is a sufficiently large
polynomial of d, m, k. Let 0 < β′ < β < 1.

Base Test: Let C′ ⊆ C be such that for every β′k′-tuple of points S′ ⊆ Fm where
∣∣C′

S′

∣∣ ≥
δ |CS′ |, for every Q′ : C′ → 2F, |Q′| ≤ q:

AgrErrC
′

γ→γ′,d→d′(Curve-vs.-Curve Test(C′, Q′,Fm)) ≤ γ0.

Assumptions:

•
γ0 ≤ (1/2) · |F|−β/β′

,

• For every S′′ ⊆ Fm, |S′′| ≤ β′k′ +1, the incidence graph G(CS′′ , IS′′) is (δ, ε)-sampling for
δ and ε as in Lemma 9.1.

Repeated Test: If Curve-vs.-Curve Test(C∗, Q, I) passes with probability at least |F|−βk′,
then there exists a set S′ ⊆ Fm, |S′| ≤ β′k′ and an m-variate polynomial of degree at most d′

over F that agrees with at least γ′((1/2) · |F|−β/β′
) · δ fraction of the curves in C∗

S′.
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Proof. Assume that Curve-vs.-Curve Test(C∗, Q, I) passes with probability at least |F|−βk′ .
Let 0 < β′ < β and k′′ < β′k′ be as in Lemma 8.1. By Lemma 8.2, there exist S′ ∈ (Fm)k

′′
;

C′ ⊆ CS′ ; Q′ : C′ → 2F; such that |C′| =
∣∣C′

S′

∣∣ ≥ δ |CS′ |, and the probability that Curve-vs.-

Curve-on-Point Test(C′, Q′, IS′) passes is at least (3/4) |F|−β/β′
. By Lemma 9.1, Curve-

vs.-Curve Test(C′, Q′,Fm) passes with probability at least (1/2) · |F|−β/β′
. By our assumption

on the base test, there is an m-variate polynomial p of degree at most d′ over F that agrees with
a set of curves Cp of fraction γ′ = γ′((1/2) · |F|−β/β′

) in C′. We have

|Cp| ≥ γ′
∣∣C′∣∣ ≥ γ′δ |CS′ | .

11 Curves Test Analysis

In this section we use the analysis of Curve-vs.-Curve Test in Section 10 to derive an
analogous conclusion for Curves Test. Thanks to the third query in Curves Test, this time
we get a conclusion about the agreement of a low degree polynomial with a large portion of
all k′-tuples, not just those that contain a small set S′ of points. In the next sections we will
extend this to argue about agreement with a large portion of all curves.

Lemma 11.1 (Analysis of Curves Test). Using the notation of Lemma 10.1, and under its
assumptions about the parameters and the base test:

Repeated Test:

AgrErrI
γ→|F|−Ω(k′),d→d′

(Curves Test(C, Q, I)) ≤ 2 |F|−βk′ .

Proof. Assume that Curves Test(C, Q, I) passes with probability at least 2 |F|−βk′ . Let C∗

be the family of curves c ∈ C, such that with probability at least |F|−βk′ over the choice of

S ⊆ c−Q, it holds that A(c) and A(S) agree. We have |C∗| ≥ |F|−βk′ |C|, and Curve-vs.-

Curve Test(C∗, Q, I) passes with probability at least |F|−βk′ .
By Lemma 10.1, there exists an m-variate polynomial p of degree at most d′ over F, such

that with probability at least γ′((1/2) · |F|−β/β′
) · δ over c ∈ C∗

S′ , it holds that A(c) ≡ p|c. The
lemma follows since every k′-tuple that does not intersect S′ is contained in the same number
of curves in CS′ , which means that A(c2) agrees with at least |F|−βk′ fraction of the S2’s.

12 Concluding The Analysis

In this section we get a list of polynomials that explains almost all of the success of Curves
Test.

Lemma 12.1 (decoding → list decoding). Under the assumptions of Lemma 11.1, there exists

δ0 = |F|−Ω(k′), such that

ListErrC2/δ0,dk(Curves Test(C, Q, I)) ≤ δ0.

Proof. By Lemma 11.1 and the list decoding transformation of Lemma 3.2.

From the list decoding that explains the success of assignments to tuples we can get a list
decoding that explains that success of assignments to curves:
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Lemma 12.2. Using the assumptions and notation of Lemma 12.1, and assuming that9 (δ
3/2
0 /2)·(|F|−|Q|

k′

)
>
(
dk
k′

)
,

ListErrC2/δ0,dk(Curves Test(C, Q, I)) ≤ δ0.

Proof. For c1, S1, c2, S2, c3 picked in Curves Test, we set:

• AGR: A(c3)|S2
≡ A(S2);

• TEXPi: A(S2) ≡ pi|S2
;

• TEXP :
∨l

i=1 TEXPi;

• CEXPi: A(c3) ≡ pi|c3 ;

• CEXP :
∨l

i=1CEXPi;

By Lemma 12.1,
Pr [AGR ∧ ¬TEXP ] ≤ δ.

Hence,

Pr
c3

[
Pr
S2

[AGR ∧ ¬TEXP ] ≥
√
δ

]
≤

√
δ.

Consider a curve c3 such that PrS2 [AGR ∧ TEXP ] ≥
√
δ. Then, there exists 1 ≤ i ≤ l, such

that PrS2 [TEXPi] ≥
√
δ/l. Since the premise of the lemma guarantees that

√
δ/l fraction of

the tuples on a curve must span more than dk points, we have CEXPi. Hence,

Pr [AGR ∧ ¬CEXP ] ≤ Pr

[
AGR ∧ Pr

S2

[AGR ∧ TEXP ] <
√
δ

]
≤ Pr

[
AGR ∧ (Pr

S2

[AGR] < 2
√
δ)

]
+ Pr

[
Pr
S2

[AGR ∧ ¬TEXP ] ≥
√
δ

]
≤ 2

√
δ +

√
δ.

13 Limitations On Derandomized Parallel Repetition

Uri Feige [17] observed that his work with Kilian about the limitations of derandomized parallel
repetition in PCP [18] implies a certain limitation also for derandomizing Surfaces Test.
In this section we discuss Feige’s argument. We start with a combinatorial lemma that follows
from [18]. At a first glance, it seems like this lemma yields a provers strategy for Surfaces Test
that is far from any low degree polynomial, yet passes the test with too high of a probability. On
a closer inspection, it turns out that the lemma says nothing when the O(1) intersections
between the surfaces are picked independently from I. The lemma does rule out several
other formulations of a derandomized Surfaces Test that look natural a-priori.

Consider the graph GC = (C, EC) that has an edge e = (c1, c2) if c1 and c2 intersect by a
k′-tuple from I. We denote the intersection tuple by I[e]. The heart of Feige’s argument is

9When considering v-dimensional surfaces rather than curves, the condition becomes (δ
3/2
0 /2) ·

(|F|−|Q|
k′

)
>(

dk|F|v−1

k′

)
.
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that with significant probability over the random choice of an edge, the intersection between
the surfaces falls in a small set of points associated with the surfaces. Below think of s =
(1/ |F|ω(1)) · |Fm| and γs = |EC |−ω(1/m). Recall that we are after polynomially small error

|EC |−Θ(1).

Lemma 13.1 (Follows from Theorem 6 in [18]). Let s > 2 |F|3. There exists an assignment
FC that assigns each surface c ∈ C a set FC(c) ⊆ Fm of at most s points, such that for at least

γs
.
= |E|−2 log|F|/ log(s/2|F|) fraction the edges e = (c1, c2) ∈ EC, the surfaces c1 and c2 are assigned

the same set, and the set contains I[e].

For every tuple S ∈ I, assign a set FI(S) as follows: pick at random e = (c1, c2) ∈ EC with
I[e] = S. If c1 and c2 are assigned the same set FC(c1) = FC(c2) and this set contains S, assign
it to S. Otherwise, assign S to S.

Consider the following provers strategy: for every set F ⊆ Fm of at most s points, let p[F ]
be a random m-variate polynomial of degree at most d over F. For every c ∈ C, let A(c) be the
restriction of p[FC(c)] to c. For every tuple S ∈ I, let A(S) be the restriction of p[FI(S)] to S.

Let us make the following assumption, which holds for the family of all k′-tuples of points in
Fm, and it is reasonable to expect that it holds for I as well:

Definition 18 (Tuple Dispersing). We say that I is tuple dispersing if for s = (1/ |F|ω(1))·|Fm|,
for any set of s points, at most |F|−ω(k′) fraction of the k′-tuples are contained in the set.

Under the tuple dispersing assumption, the provers strategy we defined does not agree
with any low degree polynomial on a fraction |F|−Ω(k′) of the tuples. A-priori, it seems like
Lemma 13.1 ought to imply that the strategy succeeds in Surfaces Test with probability
poly(γs) (hence demonstrating that polynomially small error cannot be attained for Surfaces
Test). However, this does not hold as long as the O(1) intersections between the surfaces in
Surfaces Test are chosen independently from I.

The strategy we defined does succeed with probability poly(γs) for some formulations of a
derandomized Surfaces Test:

• Given c2, the choice of S1, S2 ⊆ c2 in Surfaces Test is uniformly random. For such a
test, the strategy we defined succeeds with probability at least γ2s .

While this may seem like a reasonable formulation a-priori, it is a misleading one, as it picks
intersecting S1 and S2 with probability ≈ 1/ |F|. For such a test, a provers strategy like the one
in Example 1.1 succeeds with a high probability ≈ 1/ |F|.

• Given c2, the choice of S1, S2 ⊆ c2 in Surfaces Test is uniformly random conditioned
on S1 ∩S2 ̸= ϕ. For such a test, the strategy we defined succeeds with probability at least
poly(γs).

This formulation was considered by Feige [17]. Note that the framework we outlined above does
not fall into this criterion.

14 Further Research

We hope that the approach for proving the Sliding Scale Conjecture suggested in this paper will
eventually result in a proof of the conjecture. This would follow from derandomizing our parallel
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repetition for low degree testing, either for Surfaces Test or for a different test, for either low
degree polynomials or for a modified code (e.g., “folded” low degree extension or some enhanced
polynomial encoding such as multiplicity code). The reader who is interested in pursuing this
direction is advised to read Section 13, where we discuss a certain limitation on a derandomized
Surfaces Test, as well as a way around it. Additional limitations on derandomizing the test
would be very interesting as well, as they might lead to better hypotheses.

There are many potential applications to handling the projection case, and settling the Pro-
jection Games Conjecture [26], with, or without, almost linear proof length. To achieve a
projection PCP, one would have to adapt our low degree testing theorem to projection, and also
devise a composition technique that works for polynomially small error and projection. Other
generalizations of the Sliding Scale Conjecture concern verifiers that make linear tests (with
imperfect completeness), and “smooth” verifiers, i.e., verifiers in which the legit views of the
verifier form an error correcting code [22].
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