
On the Query Complexity of

Selecting Few Minimal Sets

Joao Marques-Silva1,2 and Mikoláš Janota2

1,2CASL, University College Dublin, Ireland
2IST/INESC-ID, Technical University of Lisbon, Portugal

Abstract

Propositional Satisfiability (SAT) solvers are routinely used for solv-
ing many function problems. A natural question that has seldom been
addressed is: what is the best worst-case number of calls to a SAT solver
for solving some target function problem? This paper develops tighter up-
per bounds on the query complexity of solving several function problems
defined on propositional formulas. These include computing the back-
bone of a formula and computing the set of independent variables of a
formula. For the general case, the paper develops tighter upper bounds
on the query complexity of computing a minimal set when the number of
minimal sets is constant. This applies for example to the computation of
a minimal unsatisfiable subset (MUS) for CNF formulas, but also to the
computation of prime implicants and implicates.

1 Introduction

The practical success of Boolean Satisfiability (SAT) solvers is demonstrated by
an ever increasing number of applications. While some of these applications are
naturally formulated as decision problems; others are not. In many settings SAT
solvers are used for solving function problems. This is the case for example with
computing a minimal unsatisfiable subset (MUS) of a CNF formula, a minimal
correction subset (MCS) of a CNF formula, the backbone of a propositional
formula, a prime implicant or implicate of a propositional formula, the largest
autark assignment of a CNF formula, among many other function problems.
Some of these function problems find important practical applications. For
example MUSes are routinely used in abstraction refinement loops in software
model checking (e.g. [11]), prime implicates are also used in model checking [2, 3],
and backbones are used for example in configuration and in post-silicon fault
localization [23].

Despite the vast number of settings in which SAT solvers are used for solv-
ing function problems, the worst-case number of times a SAT solver is called
for solving these problems is in general not known with sufficient accuracy. For
example, it is not known what is the best worst-case number of calls to a SAT

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 31 (2014)

solver for computing the backbone of a propositional formula, or for computing
the maximum autarky of a CNF formula, or for computing a minimal unsatisfi-
able subset, or for computing a maximally satisfiable subset, or for computing a
prime implicant or implicate, among many other function problems. Moreover,
the exact query complexity of computing an MUS has been an open research
topic for around two decades [5].

This paper extends recent work on unifying the approaches used for solving a
large number of function problems related with propositional formulas [16, 15],
namely function problems that can be modeled as computing a minimal set
subject to a monotone predicate. More concretely, this paper investigates the
worst-case number of times SAT solvers are called for solving function problems,
and refines known upper bounds for a number of problems.

Most algorithms for solving function problems can be modeled with poly-
nomial time algorithms that call a SAT solver a polynomial number of times.
A measure of the hardness of these function problems is the number of times
the SAT solver is called given the problem instance size, i.e. the query complex-
ity of the function problem. Following standard approaches in computational
complexity, the SAT solver can be viewed as an oracle: given an instance the
SAT solver answers positively (for satisfiable instances) or negatively (for un-
satisfiable instances). However, the operation of SAT solvers differs from the
traditional NP oracle (e.g. [6, 17]). In the case of positive answers, the SAT
solver also returns a satisfying truth assignment (i.e. a witness). The ability of
the SAT solver to return a witness on positive answers can have a profound im-
pact on query complexity characterizations of function problems (related results
have actually been investigated in the past, e.g. [7, 8]). This paper demonstrates
that in some function problems, the availability of witnesses enables reducing
the worst case number of oracle queries from polynomial to logarithmic. As a
result, this paper proposes to use witness oracles [4, 12] to model the operation
of a SAT solver, and to develop query complexity characterizations of function
problems in terms of witness oracles. These query complexity characterizations
can then serve to compare available algorithms against the best known theoret-
ical results.

The contributions of this paper can be summarized as follows. For func-
tion problems that can be represented as computing a minimal set subject to
a monotone predicate in certain general forms [16, 15], and have a constant
number of minimal sets, the paper shows that a minimal set can be computed
with a logarithmic number of calls to a witness oracle. This result has a number
of consequences which the paper also analyzes. For example, the backbone of
a propositional formula or the independent variables of a propositional formula
can be computed with a logarithmic number of calls to a witness oracle. In addi-
tion, a few additional results are included in the paper, related to special cases of
other function problems when the number of minimal sets is constant. Observe
that, although the paper addresses function problems solved with polynomial
number of calls to a SAT solver, other oracles could be considered, including
SMT, CSP, and QBF solvers.

The paper is organized as follows. Section 2 introduces the notation used in

2

the paper. Section 3 develops query complexity results for function problems
that have exactly one minimal set. Section 4 extends the results of the previous
section for function problems that have exactly a constant number of minimal
sets. The paper concludes in Section 5.

2 Preliminaries

This section introduces the notation and definitions used throughout the paper.

2.1 Propositional Logic

Standard propositional logic definitions are used throughout the paper (e.g. [10,
1]), including propositional formulas, truth assignments, etc. Some definitions
are briefly reviewed in this section.

Sets are represented in calligraphic font, e.g.R,W, . . . Propositional formulas
are also represented in calligraphic font, e.g. F ,H, T , . . . Propositional variables
are represented with letters from the end of the alphabet, e.g. x, y, z, and indices
can be used, e.g. x1, y1, . . . A literal is a variable xi or its negation ¬xi.

The variables of a propositional formula F are represented by var(F). For
simplicity, the set of variables of a formula will be denoted by X , var(F).
A clause c is a non-tautologous set of literals, interpreted as a disjunction of
literals. A CNF formula F is set clauses, interpreted as a conjunction of clauses.

When the set of variables of a formula F is relevant, the notation F [X] is
used, meaning that F is defined in terms of variables from X. Substitutions
of variables will be used. The notation F [xi/yi] represents formula F with
variable xi replaced with yi. This definition can be extended to more than one
variable. For the general case, if X = {x1, . . . , xn} and Y = {y1, . . . , yn}, then
the notation F [X/Y] represents formula F with x1 replaced by y1, x2 replaced
by y2, ..., and xn replaced by yn, simultaneously. Alternatively, one could write
F [x1/y1, x2/x2, . . . , xn/yn].

2.2 Computational Complexity

Standard computational complexity definitions are used throughout the pa-
per [6, 17]. The notation is adapted from [17] and more recent papers (e.g.
[19]). Besides the well-known complexity classes P, NP, coNP, Dp, as well as
PNP = ∆p

2 , NPNP = Σp
2 , etc., the following classes of function problems are

used in the paper (see [17] for a definition of function problem):

� FP: class of function problems solvable in deterministic polynomial time.

� FPNP: class of function problems solvable in deterministic polynomial
time by executing a polynomial number of calls to an NP oracle.

� FPNP[log]: class of function problems solvable in deterministic polynomial
time by executing a logarithmic number of calls to an NP oracle.

Observe that, although PNP[log] = PNP
|| (e.g. [17]), it is believed that FPNP[log] 6=

FPNP
|| (e.g. [20]).

3

As indicated above, a SAT solver computes witnesses for the positive out-
comes. Thus, the standard NP oracle model is inadequate given that retrieving
a witness requires more than a logarithmic number of calls to an NP oracle,
unless P = NP [7, Theorem 5.4]. Nevertheless, researchers have looked into
a similar issue in the past, and proposed the use of a witness oracle, i.e. an
NP oracle that returns a witness for the positive outcomes. The definition of a
witness oracle is taken from [4, page 4] and [12, Definition 6.3.1]. Observe that
the difference between the default NP oracle is of interest only when a better
than polynomial (e.g. logarithmic) number of calls can be used for solving a
given function problem. Hence, this paper considers the following additional
complexity class:

� FPNP[wit,log]: Class of function problems that can be solved with a loga-
rithmic number of (adaptive) calls to a witness oracle.

Witness oracles can also be defined for other levels of the polynomial hierar-
chy [4, 12].

2.3 Minimal Sets over Monotone Predicates

Monotone predicates have recently been proposed as a unifying approach for
computing minimal sets [2, 3, 16, 15]. A predicate P : 2R → {0, 1}, defined
on a reference set R, with |R| = m, is said to be monotone if whenever P(R0)
holds, with R0 ⊆ R, then P(R1) also holds, with R0 ⊆ R1 ⊆ R. Observe that
P(R) can be assumed, but this is not required. Also, P(R) can be tested with
a single predicate test. Moreover, observe that, if there exists a set R0 ⊆ R
such that P(R0) holds, and P is monotone, then P(R) also holds.

Definition 1 Let P be a monotone predicate, and let M⊆ R such that P(M)
holds. M is minimal iff ∀M′(M,¬P(M′).

Definition 2 (MSMP Problem) Given a monotone predicate P, the Min-
imal Set over a Monotone Predicate (MSMP) problem consists in finding a
minimal subset M of R such that P(M) holds.

The MSMP problem was shown to model a number of function problems
related with computing minimal sets on propositional formulas in [16]. This
work was extended in [15] to show that a much larger set of function problems
can be reduced to the MSMP problem. Nevertheless, and as shown in [15] for
the considered problems, the monotone predicates end up being of one of three
forms. Let R be a reference set, and let element ui ∈ R represent either a literal
or a clause. Moreover, σ(ui) represents a Boolean formula built from ui, where
new variables may be used, but such that ui is the only element from R used in
σ(ui). For example, σ(ui) can represent a clause, a literal, or the negation of a
literal or of a clause, etc. Let G denote a propositional formula, and letW ⊆ R.
Then, from [15] the following predicate forms are defined.

4

Table 1: Examples of monotone predicates

Problem R Form ui σ(ui) G Predicate, P , with W ⊆ R

FMUS F P cl. c c ∅ ¬SAT(∧c∈W (c))

FMCS F L cl. c c ∅ SAT(∧c∈R\W (c))

FBB X B var. x (x ∧ ¬y) FBB ¬SAT(FBB ∧ (∨x∈R\W(x ∧ ¬y)))

FVInd X P var. x (x↔ y) FVInd ¬SAT(FVInd ∧ ∧x∈W(x↔ y))

Definition 3 (Predicates of Form L) A predicate P is of form L iff its
general form is given by,

P(W) , SAT(G ∧ ∧ui∈R\W (σ(ui))) (1)

Definition 4 (Predicates of Form B) A predicate P is of form B iff its
general form is given by,

P(W) , ¬SAT(G ∧ (∨ui∈R\W (σ(ui)))) (2)

Definition 5 (Predicates of Form P) A predicate P is of form P iff its
general form is given by,

P(W) , ¬SAT(G ∧ ∧ui∈W (σ(ui))) (3)

Example 1 The following function problems are studied in this paper: (i) ex-
tracting an MUS (FMUS); extracting an MCS (FMCS); (iii) computing the
backbone of a formula (FBB); and (iv) identifying the set of independent vari-
ables of a formula (FVInd). The monotone predicates for FMUS and FMCS
are studied in detail in [16, 15]. For FBB, subformula G is given by, FBB ,
F [X/X] ∧ F [X/Y], where Y is a fresh set of variables. For FBB, observe that
the elements in the complement of the minimal set R \M are the variables for
which F cannot be satisfied with x = 0 and x = 1. For FVInd, subformula G
is given by, FVInd , (F [X/Y] ∧ ¬F [X/X] ∨ ¬F [X/Y] ∧ F [X/X]), where Y
is again a fresh set of variables. For FVInd, observe that the elements in the
minimal set are the variables that must take the same value in the two copies of
F for those copies to remain equivalent.

2.4 Related Work

The query complexity of selecting minimal/maximal sets has been studied in
the past [13, 5]. The hereditary property studied in [5] resembles monotonicity
properties studied in recent work [2, 3, 16, 15]. Nevertheless, the approaches
have important differences, the most significant of which is that hereditarity is
defined in terms of possible solutions; that is not the case with monotonicity.

Of the function problems studied in this paper, the best studied is the se-
lection of an MUS (e.g. [18, 5]). The actual query complexity of computing an

5

MUS is not known. The best bounds were obtained in [5], with a lower bound
in FPNP

|| and a (trivial) upper bound in FPNP. Observe that this makes it very

unlikely that selecting an MUS could be in FPNP[log], otherwise FewP = P,
NP = R and coNP = US [20]. For computing the backbone of a formula, to the
best of our knowledge, the only complexity analysis is [9], but restricted to the
decision problem. For computing the set of independent variables of a formula,
the best upper bound is FPNP [14].

3 Complexity of Selecting 1 Minimal Set

This section investigates the query complexity of selecting the minimal set for
instances of the MSMP problem when it is known that there exists exactly one
minimal set.

3.1 Preliminary Results

Definition 6 (Partial Maximum Satisfiability (MaxSAT)) Let F denote
a set of soft clauses, i.e. some may be falsified. Let H denote a set of hard
clauses, i.e. all must be satisfied. Partial MaxSAT problem is the function prob-
lem of computing the largest set S ⊆ F such that H ∪ S is satisfiable.

If H = ∅, then the problem is referred to as (plain) MaxSAT. Observe
that this definition differs somewhat from the standard definition (e.g. [13]) in
that the actual set of satisfied clauses is to be computed, not just the number.
However, in many practical applications of MaxSAT, this is exactly what is to
be computed. However, with an NP oracle, the identification of the actual set
of satisfied clauses requires more than a logarithmic number of calls to an NP
oracle; otherwise P = NP [7, Theorem 5.4].

Proposition 1 Partial MaxSAT is in FPNP[wit,log].

Proof. It is well-known that (unweighted) (partial) MaxSAT is in FPNP[log]
when the function problem is to compute the number of simultaneously satisfied
clauses [13]. Thus, we can use a straightforward binary search algorithm (e.g.
[13]), but using a witness-oracle instead of an NP oracle, which serves to identify
the satisfied clauses. Thus the number of witness oracle calls is O(logm), where
m is the number of clauses. Hence, MaxSAT is in FPNP[wit,log]. 2

Definition 7 (MaxSet) Let {F1(X), . . . ,Fn(X)} be a set of Boolean func-
tions defined on a set of variables X. The function problem of computing
the set of Boolean functions Fi that are satisfiable is the MaxSet problem for
{F1, . . . ,Fn}.

Proposition 2 MaxSet is in FPNP
|| .

6

Proof. The satisfiability of each function Fi can be tested independently of the
other functions. Thus, n non-adaptive calls can be used for solving the MaxSet
problem and so MaxSet is in FPNP

|| . 2

Proposition 3 MaxSet is in FPNP[wit,log].

Proof. We reduce MaxSet to partial MaxSAT which, by 1, is in FPNP[wit,log].
Consider n + 1 sets of distinct variables X1, . . . , Xn, and Z, with |Xi| = |X|,
1 ≤ i ≤ n, and |Z| = n. Define zi ↔ Fi[X/Xi] and let,

T ,
n∧

i=1

(zi ↔ Fi[X/Xi]) (4)

It is plain to conclude that the largest number of zi variables that can be set to 1
such that T is satisfied identifies the largest set of satisfiable Boolean functions.
Formula T can be encoded into an equisatisfiable CNF formula in polynomial
space by introducing additional variables (e.g. [22]). The resulting clauses are
marked as hard. Finally, define the set of soft clauses to be (zi), 1 ≤ i ≤ n.
Therefore, the largest set of soft clauses that can be simultaneously satisfied
such that T is satisfied represents all of the Boolean functions that are satisfi-
able. Thus, MaxSet is in FPNP[wit,log]. 2

Proposition 4 Let Γ be a function problem represented by monotone predicate
P of form B, and let uj ∈ R. The formula G ∧ (σ(uj)) is satisfiable iff uj ∈M
for every minimal set M⊆ R. Hence, for Γ there is a unique minimal set.

Proof.
⇐ By definition of form B, for minimal set M ⊆ R, G ∧ (∨ui∈R\Mσ(ui))

is unsatisfiable. By hypothesis, M is minimal, and so for any uj ∈ M,
G ∧ (∨ui∈R\(M\{uj})σ(ui)) ≡

(
G ∧ (∨ui∈R\Mσ(ui)) ∨ G ∧ (σ(uj))

)
is sat-

isfiable. Thus, the formula G ∧ (σ(uj)) is satisfiable.
⇒ A minimal set M ⊆ R given predicate P of form B is such that G ∧

(∨ui∈R\Mσ(ui)) is unsatisfiable and for anyM′ (M, G∧(∨ui∈R\M′σ(ui))
is satisfiable. Let uj ∈ R\M, whereM is a minimal set for which P holds.
Then, G ∧ (σ(uj)) is unsatisfiable. Therefore, if G ∧ (σ(uj)) is satisfiable,
then uj ∈M where M⊆ R is a minimal set given P . 2

Therefore, any element uj ∈ R not in a minimal set is such that G ∧ (σ(uj)) is
unsatisfiable. Add any such element to a set U = R\S. Then, by construction,
U is maximal, unique, and G∧ (∨ui∈R\Uσ(ui)) is unsatisfiable. Thus, S = R\U
is a minimal set and it is unique. 2

Proposition 5 Let Γ be a function problem represented by monotone predicate
P of form B. Then Γ is in FPNP

|| .

7

Proof. Given 4, for any element uj ∈ M, for minimal set M ⊆ R, formula
G ∧ (σ(uj)) is satisfiable. Otherwise, it is unsatisfiable. Thus, consider |R| non-
adaptive oracle calls, where for each uj check whether G∧(σ(uj)) is satisfiable. If
it is, then uj is in the minimal setM. Otherwise uj is not in the minimal set. 2

Finally, even for predicates of form P there are examples of function prob-
lems which have a unique minimal set.

Proposition 6 The function problem of computing the set of independent vari-
ables of F (FVInd) [15] has a unique minimal set.

Proof. By definition, Boolean function F is independent of xi iff F ≡ F [xi/0] ≡
F [xi/1]. Thus, we can check each variable separately for independence. Any
variable xi of which F is independent is added to a set I. No other variable can
be added to I and I is unique. 2

3.2 Main Results

Theorem 1 Let Γ be a function problem represented by a monotone predicate
P of form L . Then Γ is in FPNP[wit,log].

Proof. We reduce the problem of computing the smallest minimal set to
MaxSAT. Let M ⊆ R denote any minimal set. Then, by definition of pred-
icate of form L , there exists an assignment that satisfies G ∧ ∧ui∈R\M(σ(ui)).
Let zi ↔ σ(ui), where zi is a new propositional variable. Any minimal set M
corresponds to a maximal set R \M of variables zi assigned value 1. We can
compute the largest minimal set as follows. Define the formula,

G ∧ ∧ui∈R(zi ↔ σ(ui)) (5)

which is encoded to a set of hard clauses. Moreover, let the soft clauses be (zi).
This is a MaxSAT formulation, and by 1 the largest set of satisfied zi variables
can be found with a logarithmic number of calls to a witness oracle. The non-
satisfied zi variables denote a smallest minimal set. Thus, any function problem
Γ represented with a monotone predicate P of form L is in FPNP[wit,log]. 2

Theorem 2 Let Γ be a function problem represented by a monotone predicate
P of form B. Then, Γ ∈ FPNP[wit,log].

Proof. By 4, any predicate of form B has exactly one minimal set. Thus, the
proof considers that there exists a unique minimal set. We reduce the problem
of computing the minimal set to MaxSAT (using the construction in the proof
of 3). Let M ⊆ R denote the minimal set. By 4, uj ∈ M iff G ∧ (σ(ui)) is
unsatisfiable. Consider the following new sets of variables X1, . . . , Xm and Z,
and define the formula,

T ,
∧

ui∈R
zi ↔ (G ∧ (σ(ui)))[X/Xi] (6)

8

with zi ∈ Z. Hence, the variables zi that can be assigned value 1, such that T is
satisfied, denote the elements of R that are not in the minimal set. Let the the
hard clauses be given by T and the soft clauses be (zi). The MaxSAT solution
gives the elements that are not in the minimal set. The complement represents
the elements that are in the minimal set. Thus, Γ ∈ FPNP[wit,log]. 2

Theorem 3 Let Γ be a function problem represented by a monotone predicate
P of form P, such that Γ has exactly one minimal set. Then, Γ ∈ FPNP[wit,log].

Proof. We reduce the problem of computing a minimal set for Γ to the MaxSet
problem. LetM⊆ R be the unique minimal set of Γ. Consider the propositional
formula representing the argument of predicate P for some W ⊆ R:

G ∧ ∧uj∈Wσ(ui) (7)

Clearly, if M ⊆ W, then (7) is unsatisfiable; otherwise it is satisfiable. Next,
consider the following m = |R| sets for W: R \ {ui}. Clearly, if ui ∈ M, then
(7) is satisfiable with W = R \ {ui}; otherwise it is unsatisfiable. Thus, the set
of elements ui ∈ R that satisfy (7) when W = R \ {ui} represents the minimal
set of Γ. Next, consider a fresh set of variables for each of the considered sets,
{X1, . . . , Xm}: (

G ∧ ∧uj∈R\{ui}σ(ui)
)

[X/Xi] (8)

Thus, we have createdm = |R| propositional formulas, one for each i, 1 ≤ i ≤ m,
given by (8).
This concludes the reduction to MaxSet, and thus Γ ∈ FPNP[wit,log]. 2

Observe that, for the concrete case of computing prime implicates, Theo-
rem 3 refines the claims in [2, Theorem 3] and in [3, Theorem 4.2] regarding
the selection of a minimal set of Γ when Γ has a unique minimal set. The claim
in [2, 3] states that the worst-case number oracle calls is necessarily linear in
the size of the problem representation. If the oracle calls use a witness oracle
then, as Theorem 3 shows, a better worst-case is achieved.

3.3 Consequences

This section highlights some of the number of consequences from the results
in the previous section, namely Theorem 1, Theorem 2, and Theorem 3. An
immediate consequence of Theorem 2 is that the backbone of a Boolean formula
can be computed with a logarithmic number of calls to a witness oracle. From a
query complexity perspective, this represents an exponential improvement over
the best known algorithms [23].

Corollary 1 The function problem of computing the backbone of a propositional
formula FBB (but also FBBr) [15] is in FPNP[wit,log].

Moreover, and using Theorem 3 and 6 we also get the following:

9

Corollary 2 FVInd is in FPNP[wit,log].

2 refines the query complexity of FPNP suggested in [14]. If the oracle computes
witness (e.g. a SAT solver), then a logarithmic number of calls suffices. The main
result for predicates of form P is more restricted, due to the requirement of the
problem having a unique minimal set. Nevertheless, and in those cases, one can
compute a minimal set with a logarithmic number of calls to a witness oracle.
One concrete example is the extraction of an MUS.

Corollary 3 FMUS for formulas with a unique MUS is in FPNP[wit,log].

4 Complexity of Selecting k Minimal Sets

This section extends the results of the previous Section 3 to the case when it is
known that there are exactly k minimal sets, for some constant k. Given the
results of previous sections, form P is the only predicate form of interest, since
function problems represented with predicates of either form L or B can be
solved with a logarithmic number of witness oracle calls. We begin by a lemma
that will let us relate the general case with the case k = 1 (i.e. Theorem 3).

Lemma 1 Let P be a predicate of the form P such that R contains exactly k
distinct minimal sets M1, . . . ,Mk. For any i ∈ 1..k there exists a set D ⊆ R
with |D| = k− 1 such that R\D contains one and only one minimal set, which
is the set Mi.

Proof. The sets Mj are such that the formula G ∧ ∧u∈Mj
σ(u) is unsatisfi-

able, for j ∈ 1..k. Further, removing any element from Mj makes this formula
satisfiable, due to minimality. Hence, there are no Mj ⊆ Mj′ with j 6= j′.
Put into D an element uj from each Mj , j 6= i, such that uj /∈ Mi. (Ob-
serve that once D is removed from R, unsatisfiability cannot be due to any
Mj , j 6= i.) Now D has at most k − 1 elements. If R \ Mi does not have
enough elements to do so, add dummy elements to R in order to ensure that
it has. (For instance always add k−1 elements to R before the construction.) 2

Theorem 4 Consider a function problem Γ, and let P denote the monotone
predicate representing Γ, of form P. Let Γ have exactly k minimal sets. Then
Γ ∈ FPNP[wit,log]. Moreover, computing the k minimal sets is also in FPNP[wit,log].

Proof. (Sketch)
The proof is motivated by 1. It constructs a formula that examines the removal
of all possible subsets of R of size k − 1. Some of these removals leave a single
minimal set in R; gadgets of Theorem 3 are used to calculate this set.
Consider

(
m

k−1
)

= O(mk−1) subsets of R, where for each set, k− 1 elements are

removed. Let Dt, with 1 ≤ t ≤
(

m
k−1
)
, denote each of the subsets with k − 1

elements of R, and let Rt , R \ Dt. For each Rt construct the gadget used in
the proof of Theorem 3, where a set Zt of zti variables are associated with the

10

formulas created for each instance t. In addition, use an extra z variable, i.e.
ztm+1, as follows:

ztm+1 ↔ (G ∧ ∧ui∈Rσ(ui)) [X/Xt
m+1] (9)

This variable serves to indicate whether Rt contains a minimal set. For each
Rt, one the following four cases can occur:

1. If Rt has at least two disjoint minimal sets, then none of the zti variables
can take value 1, and so no minimal set will be identified.

2. If Dt intersects k−1 of the k minimal sets, thenRt has exactly one minimal
set. Thus, the zti variables will identify the minimal set for instance t. This
situation is guaranteed to occur by 1.

3. If there are no minimal sets in Rt, then the predicate does not hold and so
G∧∧ui∈Rσ(ui) is satisfiable. Thus, variable ztm+1 can be assigned value 1.

4. If all minimal sets in Rt intersect, then the zti variables that take value 1
will be the ones associated with elements in the intersection of the minimal
sets. This set of variables will necessarily be a subset of some other set
covered by case 2.

We use MaxSAT to find all the zti variables that can take value 1. Afterwards
we discard the sets of zti variables for those instances t that are contained in
any other instance; this is a polynomial time procedure. We must also discard
any ztm+1 variables that take value 1, and the associated zti variables. The total
number of zti variables, over all

(
m

k−1
)

instances is (m + 1) ×
(

m
k−1
)

= O(mk).

Therefore, binary search for computing the largest set of zti variables that can
take value 1 requires O(logmk) = O(logm) (for constant k) witness oracle calls.
Thus, Γ ∈ FPNP[wit,log]. To conclude the proof, observe that the set of zti vari-
ables gives all the k minimal sets. Thus, computing the k minimal sets is also
in FPNP[wit,log]. 2

5 Conclusions & Research Directions

The practical success of SAT solvers motivates their use in solving both deci-
sion and function problems. Many of these function problems are in FPNP but
a more accurate query complexity characterization is not known. For proposi-
tional formulas, this is the case, for example, with computing an MUS (for CNF
formulas) (e.g. [18, 5]), computing the backbone (e.g. [9, 23]), identifying the set
of independent variables (e.g. [14]), or computing prime implicants/implicates,
among many others. This paper studies the query complexity of function prob-
lems with a constant number of minimal sets, and shows that, if these problems
can be represented with monotone predicates in certain general forms, then they
are in FPNP[wit,log], i.e. the class of function problems solved in polynomial time
by using at most a logarithmic number of calls to a witness oracle [4, 12]. The
main consequence of this result is that a large number of well-known function
problems are shown to be solved with a logarithmic number of calls to a wit-
ness oracle. These include computing the backbone of a propositional formula,

11

the set of independent variables of a propositional formula, computing an MUS
when there exist a constant number of MUSes, and also computing prime im-
plicants (given a term) and prime implicates (given a clause), again when there
exist a constant number.

A number of future research directions can be envisioned. First, it is open
whether the results for monotone predicates of form P can be improved upon.
This would have key consequences in long-standing open problems, e.g. com-
puting an MUS [5]. Second, although the worst-case query complexity results in
this paper improve significantly what practical algorithms have achieved for sev-
eral function problems, it would be important to also investigate lower bounds
on query complexity.

Acknowledgements

This work is partially supported by SFI PI grant BEACON (09/IN.1/I2618), FCT

grants ATTEST (CMU-PT/ELE/0009/2009), POLARIS (PTDC/EIA-CCO/123051/2010),

and by INESC-ID multiannual funding from the PIDDAC program funds.

References

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in AI and Applications. IOS Press,
2009.

[2] A. R. Bradley and Z. Manna. Checking safety by inductive generalization
of counterexamples to induction. In FMCAD, pages 173–180. IEEE Press,
2007.

[3] A. R. Bradley and Z. Manna. Property-directed incremental invariant gen-
eration. Formal Asp. Comput., 20(4-5):379–405, 2008.

[4] S. R. Buss, J. Kraj́ıček, and G. Takeuti. Provably total functions in the
bounded arithmetic theories Ri

3, U i
2, and V i

2 . In P. Clote and J. Kraj́ıček,
editors, Arithmetic, Proof Theory, and Computational Complexity, pages
116–161. OUP, 1995.

[5] Z.-Z. Chen and S. Toda. The complexity of selecting maximal solutions.
Inf. Comput., 119(2):231–239, 1995.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[7] G. Gottlob and C. G. Fermüller. Removing redundancy from a clause.
Artif. Intell., 61(2):263–289, 1993.

[8] B. Jenner and J. Torán. The complexity of obtaining solutions for prob-
lems in NP and NL. In Complexity theory retrospective II, pages 155–178.
Springer, 1997.

12

[9] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and back-
doors in satisfiability. In M. M. Veloso and S. Kambhampati, editors, AAAI,
pages 1368–1373. AAAI Press / The MIT Press, 2005.

[10] H. Kleine Büning and T. Letterman. Propositional Logic: Deduction and
Algorithms. Cambridge University Press, 1999.

[11] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic ab-
straction in SMT-based unbounded software model checking. In Sharygina
and Veith [21], pages 846–862.

[12] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Complexity The-
ory. Cambridge University Press, 1995.

[13] M. W. Krentel. The complexity of optimization problems. J. Comput. Syst.
Sci., 36(3):490–509, 1988.

[14] J. Lang, P. Liberatore, and P. Marquis. Propositional independence:
Formula-variable independence and forgetting. J. Artif. Intell. Res.,
18:391–443, 2003.

[15] J. Marques-Silva and M. Janota. Computing minimal sets on propositional
formulae I: Problems & reductions. CoRR, arXiv:1402.3011, 2014. Avail-
able at http://arxiv.org/abs/1310.2491.

[16] J. Marques-Silva, M. Janota, and A. Belov. Minimal sets over monotone
predicates in Boolean formulae. In Sharygina and Veith [21], pages 592–607.

[17] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[18] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J.
Comput. Syst. Sci., 37(1):2–13, 1988.

[19] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy:
A compendium. SIGACT news, 33(3):32–49, 2002.

[20] A. L. Selman. A taxonomy of complexity classes of functions. J. Comput.
Syst. Sci., 48(2):357–381, 1994.

[21] N. Sharygina and H. Veith, editors. Computer Aided Verification (CAV),
2013.

[22] G. S. Tseitin. On the complexity of derivation in propositional calcu-
lus. Studies in Constructive Mathematics and Mathematical Logic, Part
II, pages 115–125, 1968.

[23] C. S. Zhu, G. Weissenbacher, and S. Malik. Post-silicon fault localisation
using maximum satisfiability and backbones. In P. Bjesse and A. Slobodová,
editors, FMCAD, pages 63–66. FMCAD Inc., 2011.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://arxiv.org/abs/1310.2491

