
Tableau vs. Sequent Calculi for Minimal Entailment

Olaf Beyersdorff? and Leroy Chew??

School of Computing, University of Leeds, UK

Abstract. In this paper we compare two proof systems for minimal entailment: a tableau
system OTAB and a sequent calculus MLK , both developed by Olivetti (1992). Our main
result shows that OTAB-proofs can be efficiently translated into MLK -proofs, i.e.,MLK p-
simulates OTAB . The simulation is technically very involved and answers an open question
posed by Olivetti (1992) on the relation between the two calculi. We also show that the
two systems are exponentially separated, i.e., there are formulas which have polynomial-size
MLK -proofs, but require exponential-size OTAB-proofs.

1 Introduction

Minimal entailment is the most important special case of circumscription, which in turn is one
of the main formalisms for non-monotonic reasoning [16]. The key intuition behind minimal en-
tailment is the notion of minimal models, providing as few exceptions as possible. Apart from its
foundational relation to human reasoning, minimal entailment has wide-spread applications, e.g.
in AI, description logics [5] and SAT solving [13].

While the complexity of non-monotonic logics has been thoroughly studied — cf. e.g. the recent
papers [5, 9, 20] or the survey [21] — considerably less is known about the complexity of theorem
proving in these logics. This is despite the fact that a number of quite different formalisms have
been introduced for circumscription and minimal entailment [6,17,18]. While proof complexity has
traditionally focused on proof systems for classical propositional logic, there has been remarkable
interest in proof complexity of non-classical logics during the last decade. A number of exciting
results have been obtained — in particular for modal and intuitionistic logics [12, 14] — and
interesting phenomena have been observed that show a quite different picture from classical proof
complexity, cf. [3] for a survey.

In this paper we focus our attention at two very different formalisms for minimal entailment:
a sequent calculus MLK and a tableau system OTAB , both developed by Olivetti [18].1 These
systems are very natural and elegant, and in fact they were both inspired by their classical propo-
sitional counterparts: Gentzen’s LK [11] and Smullyan’s analytic tableau [19].

Our main contribution is to show a p-simulation of OTAB by MLK , i.e.,proofs in OTAB can
be efficiently transformed into MLK -derivations. This answers an open question by Olivetti [18] on
the relationship between these two calculi. At first sight, our result might not appear unexpected
as sequent calculi are usually stronger than tableau systems, cf. e.g. [22]. However, the situation
is more complicated here, and even Olivetti himself did not seem to have a clear conjecture as to
whether such a simulation should be expected, cf. the remark after Theorem 8 in [18].

The reason for the complication lies in the nature of the tableau: while rules in MLK are ‘local’,
i.e., they refer to only two previous sequents in the proof, the conditions to close branches in OTAB
are ‘global’ as they refer to other branches in the tableau, and this reference is even recursive.
The trick we use to overcome this difficulty is to annotate nodes in the tableau with additional
information that ‘localises’ the global information. This annotation is possible in polynomial time.
The annotated nodes are then translated into minimal entailment sequents that form the skeleton
of the MLK derivation for the p-simulation.

? Supported by a grant from the John Templeton Foundation.
?? Supported by a Doctoral Training Grant from EPSRC.
1 While the name MLK is Olivetti’s original notation [18], we introduce the name OTAB here as shorthand

for Olivetti’s tableau. By NTAB we denote another tableau for minimal entailment suggested by Niemelä
[17], cf. the conclusion of this paper.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 32 (2014)

In addition to the p-simulation of OTAB by MLK , we obtain an exponential separation between
the two systems, i.e., there are formulas which have polynomial-size proofs in MLK , but require
exponential-size OTAB tableaux. In proof complexity, lower bounds and separations are usually
much harder to show than simulations, and indeed there are famous examples where simulations
have been known for a long time, but separations are currently out of reach, cf. [15]. In contrast, the
situation is opposite here. The separation carries over rather straightforwardly from the comparison
between classical tableau and LK , using formulas of D’Agostino [8]. These formulas are hard for
classical tableau (and for OTAB), but are easy even for truth table (and therefore also for LK and
MLK), cf. Theorem 15. In contrast, the proof of the simulation result (Theorem 13) is technically
very involved.

This paper is organised as follows. We start by recalling basic definitions from minimal en-
tailment and proof complexity, and explaining Olivetti’s systems MLK and OTAB for minimal
entailment [18]. This is followed by two sections containing the p-simulation and the separation of
OTAB and MLK . In the last section, we conclude by placing our results into the global picture
of proof complexity research on circumscription and non-monotonic logics.

2 Preliminaries

Our propositional language contains the logical symbols ⊥,>,¬,∨,∧,→. For a set of formulae Σ,
VAR(Σ) is the set of all atoms that occur in Σ. For a set P of atoms we set ¬P = {¬p | p ∈ P}.
Disjoint union of two sets A and B is denoted by A tB.

Minimal Entailment. Minimal entailment is a form of non-monotonic reasoning developed as a
special case of McCarthy’s circumscription [16]. Minimal entailment comes both in a propositional
and a first-order variant. Here we consider only the version of minimal entailment for propositional
logic. We identify models with sets of positive atoms and use the partial ordering ⊆ based on
inclusion. This gives rise to a natural notion of minimal model for a set of formulae, in which
the number of positive atoms is minimised with respect to inclusion. For a set of propositional
formulae Γ we say that Γ minimally entails a formula φ if all minimal models of Γ also satisfies
φ. We denote this entailment by Γ �M φ.

Proof Complexity. A proof system [7] for a language L over alphabet Γ is a polynomial-time
computable partial function f : Γ ? ⇁ Γ ? with rng(f) = L. An f -proof of string y is a string x
such that f(x) = y.

Proof systems are compared by simulations. We say that a proof system f simulates g (g ≤ f) if
there exists a polynomial p such that for every g-proof πg there is an f -proof πf with f(πf) = g(πg)
and |πf | ≤ p(|πg|). If πf can even be constructed from πg in polynomial time, then we say that f
p-simulates g (g ≤p f). Two proof systems f and g are (p-)equivalent (g ≡(p) f) if they mutually
(p-)simulate each other.

The sequent calculus of Gentzen’s system LK is one of the historically first and best studied
proof system [11]. In LK a sequent is usually written in the form Γ ` ∆. Formally, a sequent
is a pair (Γ ,∆) with Γ and ∆ finite sets of formulae. In classical logic Γ ` ∆ is true if every
model for

∧
Γ is also a model of

∨
∆, where the disjunction of the empty set is taken as ⊥ and

the conjunction as >. The system can be used both for propositional and first-order logic; the
propositional rules are displayed in Fig. 1. Notice that the rules here do not contain structural
rules for contraction or exchange. These come for free as we chose to operate with sets of formulae
rather than sequences. Note the soundness of rule (• `), which gives us monotonicity of classical
propositional logic.

2

(`)
A ` A

(⊥ `)
⊥ `

(` >)
` >

Γ ` Σ (• `)
∆,Γ ` Σ

Γ ` Σ (` •)
Γ ` Σ,∆

Γ ` Σ,A
(¬ `)

¬A,Γ ` Σ
A,Γ ` Σ

(` ¬)
Γ ` Σ,¬A

A,Γ ` Σ
(•∧ `)

B ∧A,Γ ` Σ
A,Γ ` Σ

(∧• `)
A ∧B,Γ ` Σ

Γ ` Σ,A Γ ` Σ,B
(` ∧)

Γ ` Σ,A ∧B

A,Γ ` Σ B,Γ ` Σ
(∨ `)

A ∨B,Γ ` Σ
Γ ` Σ,A

(` •∨)
Γ ` Σ,B ∨A

Γ ` Σ,A
(` ∨•)

Γ ` Σ,A ∨B

A,Γ ` Σ,B
(`→)

Γ ` Σ,A→ B

Γ ` Σ,A B,∆ ` Λ
(→`)

A→ B,Γ,∆ ` Σ,Λ

Γ ` Σ,A A, Γ ` Σ
(cut)

Γ ` Σ

Fig. 1. Rules of the sequent calculus LK [11]

3 Olivetti’s sequent calculus and tableau system for minimal
entailment

In this section we review two proof systems for minimal entailment, which were developed by
Olivetti [18]. We start with the sequent calculus MLK . Semantically, a minimal entailment sequent
Γ `M ∆ is true if and only if in all minimals models of

∧
Γ the formula

∨
∆ is satisfied. In addition

to all axioms and rules from LK , the calculus MLK comprises the axioms and rules detailed in
Figure 2. In the MLK axiom, the notion of a positive atom p in a formula φ is defined inductively
by counting the number of negations and implications in φ on top of p (cf. [18] for the precise
definition).

(`M)
Γ `M ¬p

Γ ` ∆ (``M)
Γ `M ∆

for p atomic and not positive in any formula in Γ

Γ `M Σ,A A, Γ `M Λ
(M-cut)

Γ ` Σ,Λ
Γ `M Σ Γ `M ∆

(• `M)
Γ,Σ `M ∆

Γ `M Σ,A Γ `M Σ,B
(`M ∧)

Γ `M Σ,A ∧B
A,Γ `M Σ B,Γ `M Σ

(∨ `M)
A ∨B,Γ `M Σ

Γ `M Σ,A
(`M •∨)

Γ `M Σ,B ∨A
Γ `M Σ,A

(`M ∨•)
Γ `M Σ,A ∨B

A,Γ `M Σ
(`M ¬)

Γ `M Σ,¬A
A,Γ `M Σ,B

(`M→)
Γ `M Σ,A→ B

Fig. 2. Rules of the sequent calculus MLK for minimal entailment (Olivetti [18])

3

Theorem 1 (Olivetti [18]). A sequent Γ `M ∆ is true if and only if it is derivable in MLK .

In addition to the sequent calculus MLK , Olivetti developed a tableau calculus for minimal
entailment [18]. Here we will refer to this calculus as OTAB . A tableau is a rooted tree where
nodes are labelled with formulae. In OTAB , the nodes are labelled with formulae that are signed

α α1 α2

T (A ∧B) TA TB
F¬(A ∧B) F¬A F¬B
T¬(A ∨B) T¬A T¬B
F (A ∨B) FA FB
T¬(A→ B) TA T¬B
F (A→ B) F¬A FB
T¬¬A TA TA
F¬¬A FA FA

β β1 β2
T (A ∨B) TA TB
F¬(A ∨B) F¬A F¬B
T¬(A ∧B) T¬A T¬B
F (A ∧B) FA FB
T (A→ B) T¬A TB
F¬(A→ B) FA F¬B

Fig. 3. Classification of signed formulae into α and β-type by sign and top-most connective

with the symbol T or F . The combination of the sign and the top-most connective allows us
to classify signed formulas into α or β-type formulae as detailed in Figure 3. Intuitively, for an
α-type formula, a branch in the tableau is augmented by α1, α2, whereas for a β-type formula it
splits according to β1, β2. Nodes in the tableau can be either marked or unmarked. For a sequent
Γ `M ∆, an OTAB tableau is constructed by the following process. We start from an initial
tableau consisting of a single branch of unmarked formulae, which are exactly all formulae γ ∈ Γ ,
signed as Tγ, and all formulae δ ∈ ∆, signed as Fδ. For a tableau and a branch B in this tableau
we can extend the tableau by two rules:

(A) If formula φ is an unmarked node in B of type α, then mark φ and add the two unmarked
nodes α1 and α2 to the branch.

(B) If formula φ is an unmarked node in B of type β, then mark φ and split B into two branches
B1,B2 with unmarked β1 ∈ B1 and unmarked β2 ∈ B2.

A branch B is completed if and only if all unmarked formulae on the branch are literals. A
branch B is closed if and only if it satisfies at least one of the following conditions:

1. For some formula A, TA and T¬A are nodes of B (T -closed).
2. For some formula A, FA and F¬A are nodes of B (F -closed).
3. For some formula A, TA and FA are nodes of B (TF -closed).

For branch B let At(B) = {p : p is an atom and Tp is a node in B}. We define two types of
ignorable branches:

1. B is an ignorable type-1 branch if B is completed and there is an atom a such that F¬a is a
node in B, but Ta does not appear in B.

2. B is an ignorable type-2 branch if there is another branch B′ in the tableau that is completed
but not T -closed, such that At(B′) ⊂ At(B).

Theorem 2 (Olivetti [18]). The minimal entailment sequent Γ `M ∆ is true if and only if
there is an OTAB tableau in which every branch is closed or ignorable.

4 Simulating OTAB by MLK

We will work towards a simulation of the tableau system OTAB by the sequent system MLK . In
preparation for this a few lemmas are needed. We also add more information to the nodes (this
can all be done in polynomial time). We start with a fact about LK (for a proof see [2]).

4

Lemma 3. For sets of formulae Γ,∆ and disjoints sets of atoms Σ+, Σ− with VAR(Γ ∪ ∆) =
Σ+ tΣ− we can efficiently construct polynomial-size LK -proofs of Σ+,¬Σ−, Γ ` ∆.

We also need to derive a way of weakening in MLK , and we show this in the next lemma.

Lemma 4. From a sequent Γ `M ∆ with non-empty ∆ we can derive Γ `M ∆,Σ in a polynomial-
size MLK -proof for any set of formulae Σ.

Proof. We take δ ∈ ∆, and from the LK -axiom we get δ ` δ. From weakening in LK we obtain
Γ, δ ` ∆,Σ. Using rule (``M) we obtain Γ, δ `M ∆,Σ. We then derive Γ `M ∆,Σ using the
(M -cut) rule. ut

Note that these proofs can be efficiently constructed in polynomial size.

Lemma 5. Let Tτ be an α-type formula with α1 = Tτ1, α2 = Tτ2, and let Fψ be an α-type
formula with α1 = Fψ1, α2 = Fψ2. Similarly, let Tφ be an β-type formula with β1 = Tφ1,
β2 = Tφ2, and let Fχ be an β-type formula with β1 = Fχ1, β2 = Fχ2.

The following sequents all can be proved with polynomial-size LK -proofs: τ ` τ1∧τ2, τ1∧τ2 ` τ ,
ψ ` ψ1 ∨ ψ2, ψ1 ∨ ψ2 ` ψ, φ ` φ1 ∨ φ2, φ1 ∨ φ2 ` φ, χ ` χ1 ∧ χ2, and χ1 ∧ χ2 ` χ.

The straightforward proof of this involves checking all cases, which we omit here.
We now annotate the nodes in an OTAB tableau, such that each node u is given three sets of

formulae Au, Bu, Cu and a set of branches Du. This information will later be used to construct
sequents Au `M Bu, Cu, which will form the skeleton of the eventual MLK proof that simulates
the OTAB tableau. The formulae Au and Bu are constructed similarly, while Cu requires more
work and uses the sets Dv for nodes v. The formal definition follows. We start with the definition
of the formulae Au and Bu, which proceeds by induction on the construction of the tableau.

Definition 6. Nodes u in the OTAB tableau from the initial tableau are annotated with Au = Γ
and Bu = ∆.

For the inductive step, consider the case that the extension rule (A) was used on node u for
the α-type signed formula φ. If φ = Tχ has α1 = Tχ1, α2 = Tχ2 then for the node v labelled α1

and the node w labelled α2, Av = Aw = ({χ1, χ2} ∪Au) \ {χ} and Bu = Bv = Bw. If φ = Fχ has
α1 = Fχ1, α2 = Fχ2 then for the node v labelled α1 and the node w labelled α2, Au = Av = Aw
and Bv = Bw = ({χ1, χ2} ∪Bu) \ {χ}.

Consider now the case that the branching rule (B) was used on node u for the β-type signed
formula φ. If φ = Tχ has β1 = Tχ1, β2 = Tχ2 then for the node v labelled β1 and the node w
labelled β2, Av = ({χ1} ∪ Au) \ {χ}, Aw = ({χ2} ∪ Au) \ {χ} and Bv = Bw = Bu. If φ = Fχ
has β1 = Fχ1, β2 = Fχ2 then for the node v labelled β1 and the node w labelled β2, Bv =
({χ1} ∪Bu) \ {χ}, Bw = ({χ2} ∪Bu) \ {χ} and Av = Aw = Au.

For each ignorable type-2 branch B we can find another branch B′, which is not ignorable type-
2 and such that At(B′) ⊂ At(B). The definition of ignorable type-2 might just refer to another
ignorable type-2 branch, but eventually — since the tableau is finite — we reach a branch B′, which
is not ignorable type-2. There could be several such branches, and we will denote the left-most
such branch B′ as θ(B).

We are now going to construct sets Cu and Du. The set Du contains some information on
type-2 ignorable branches. Let u be a node, which is the root of a sub-tableau T , and consider
the set I of all type-2 ignorable branches that go through T . Now intuitively, Du is defined as
the set of all branches from θ(I) that are outside of T . The set Cu is then defined from Du as
Cu = {

∧
p∈At(θ(B)) p | B ∈ Du}. The formal constructions of Cu and Du are below. Unlike Au

and Bu, which are constructed inductively from the root of the tableau, the sets Cu and Du are
constructed inductively from the leaves to the root, by reversing the branching procedure.

Definition 7. For an ignorable type-2 branch B the end node u is annotated by the singleton sets
Cu = {

∧
p∈At(θ(B)) p} and Du = {θ(B)}; for other leaves Cu = Du = ∅.

Inductively, we define:

5

– For a node u with only one child v, we set Du = Dv and Cu = Cv.
– For a node u with two children v and w, we set Du = (Dv \ {B | w ∈ B})∪ (Dw \ {B | v ∈ B})

and Cu = {
∧
p∈At(θ(B)) p | B ∈ Du}.

For each binary node u with children v, w we specify two extra sets. We set Eu = (Dv∪Dw)\Du,
and from this we can construct the set of formulae Fu = {

∧
p∈At(B) p | B ∈ Eu}. We let ω =

∨
Fu.

We now prepare the simulation result with a couple of lemmas.

Lemma 8. Let B be a branch in an OTAB tableau ending in leaf u. Then Au is the set of all
unmarked T -formulae on B (with the sign T removed). Likewise Bu is the set of all unmarked
F -formulae on B (with the sign F removed) .

Proof. We will verify this for T -formulae, the argument is the same for F -formulae. If Tφ at node
v is an unmarked formula on branch B then φ has been added to Av, regardless of which extension
rule is used and cannot be removed at any node unless it is marked. Therefore, if u is the leaf
of the branch, we have φ ∈ Au. If Tφ is marked then it is removed (in the inductive step in the
construction in Definition 6) and is not present in Au. F -formulae do not appear in Au. ut

Lemma 9. Let B be a branch in an OTAB tableau.

1. Assume that Tφ appears on the branch B, and let A(B) be the set of unmarked T -formulae on
B (with the sign T removed). Then A(B) ` φ can be derived in a polynomial-size LK -proof.

2. Assume that F (φ) appears on the branch B, and let B(B) be the set of unmarked F -formulae
on B (with the sign F removed). Then φ ` B(B) can be derived in a polynomial-size LK -proof.

Proof. We prove the two claims by induction on the number of branching rules (A) and extension
rules (B) that have been applied on the path to the node. We start with the proof of the first item.

Induction Hypothesis (on the number of applications of rules (A) and (B) on the node
labelled Tφ): For a node labelled Tφ on branch B, we can derive A(B) ` φ in a polynomial-size
LK -proof (in the size of the tableau).

Base Case (Tφ is unmarked): The LK axiom φ ` φ can be used and then weakening to obtain
A(B) ` φ.

Inductive Step: If Tφ is a marked α-type formula, then both α1 = Tφ1 and α2 = Tφ2 appear
on the branch. By the induction hypothesis we derive A(B) ` φ1, A(B) ` φ2 in polynomial-size
proofs, hence we can derive A(B) ` φ1 ∧ φ2 in a polynomial-size proof (we are bounded in total
number of proof subtrees by the numbers of nodes in our branch). We then have φ1∧φ2 ` φ using
Lemma 5. Using the cut rule we can derive A(B) ` φ.

If Tφ is a β-type formula and is marked, then the branch must contain β1 = Tφ1 or β2 = Tφ2.
Without loss of generality we can assume that β1 = Tφ1 appears on the branch. By the induction
hypothesis A(B) ` φ1, therefore we can derive A(B) ` φ1 ∨ φ2 since it is a β-type formula and
derive φ1 ∨ φ2 ` φ with Lemma 5. Then using the cut rule we derive A(B) ` φ.

The second item is again shown by induction.
Induction Hypothesis (on the number of applications of rules (A) and (B) on the node

labelled Fφ): For a node labelled Fφ on branch B, we can derive φ ` B(B) in a polynomial-size
LK -proof (in the size of the tableau).

Base Case (Fφ is unmarked): The LK axiom φ ` φ can be used and then weakened to
φ ` B(B).

Inductive Step: If Fφ is a marked α-type formula, then both α1 = Fφ1 and α2 = Fφ2
appear on the branch. Since by the inductive hypothesis φ1 ` B(B) and φ2 ` B(B), we can derive
φ1 ∨ φ2 ` B(B) in a polynomial-size proof. We then have φ ` φ1 ∨ φ2 using Lemma 5. Using the
cut rule we can derive φ ` B(B).

If Fφ is a β-type formula and is marked, then the branch must contain β1 = Fφ1 or β2 = Fφ2.
Without loss of generality we can assume β1 = Fφ1 appears on the branch. By the induction
hypothesis φ1 ` B(B), therefore we can derive φ1 ∧ φ2 ` B(B) since it is a β-type formula and
derive φ ` φ1 ∧ φ2 with Lemma 5. Using the cut rule we derive φ ` B(B). ut

6

Lemma 10. Let B be a branch, which is completed but not T -closed. For any node u on B, the
model At(B) satisfies Au.

Proof. We prove the lemma by induction on the height of the subtree with root u.
Base Case (u is a leaf): By Lemma 8, Au is the set of all unmarked T -formulae on B. But

these are all literals as B is completed, and hence the subset of positive atoms is equal to At(B).
Inductive step: If u is of extension type (A) with child node v then the models of Au

are exactly the same as the models of Av. This is true for all α-type formulae. For example, if
the extension process (A) was used on formula T (ψ ∧ χ) and the node v was labelled Tψ then
Av = {ψ, χ} ∪ Au \ {ψ ∧ χ} and this has the same models as Au. By the induction hypothesis,
At(B) |= Av and hence At(B) |= Au.

If u is of branch type (B) with children v and w then At(B) |= Av and At(B) |= Aw. The
argument works similarly for all β-type formulae; for example, if the extension process was using
formula T (ψ ∨ χ) and v is labelled Tψ and w is labelled Tχ, then Au = ({ψ ∨ χ} ∪ Av) \ {ψ}.
Hence At(B) |= Av implies At(B) |= Au. ut

We now approach the simulation result (Theorem 13) and start to construct MLK proofs. For
the next two lemmas, we fix an OTAB tableau of size k and use the notation from Definitions 6
and 7 (recall in particular the definition of ω at the end of Definition 7).

Lemma 11. There is polynomial q such that for every binary node u, every proper subset A′ ⊂ Au
and every γ ∈ Au \A′ we can construct an MLK -proof of A′, ω `M γ of size at most q(k).

Proof. Induction Hypothesis (on the number of formulae of Au used in the antecedent: |A′|):
We can find a q(k)-size MLK proof containing all sequents A′, ω `M γ for every γ ∈ Au \A′ .

Base Case (when A′ is empty): For the base case we aim to prove ω `M γ, and repeat this for
every γ. We use two ingredients. Firstly, we need the sequent ω `M Fu, γ which is easy to prove
using weakening and (∨ `), since ω is a disjunction of the elements in Fu. Our second ingredient
is a scheme of ω,

∧
p∈M p `M γ for all the

∧
p∈M p in Fu, i.e.,M = At(B) for some B ∈ Eu. With

these we can repeatedly use (M-cut) on the first sequent for every element in Fu. We now show
how to efficiently prove the sequents of the form ω,

∧
p∈M p `M γ.

For branch B ∈ Eu, as At(B) is a model M for Au by Lemma 10, M |= γ. Since no atom a in
VAR(γ) \M appears positive in the set M we can infer M `M ¬a directly via (`M). With rule
(`M ∧) we can derive

∧
p∈M p `M

∧
p∈VAR(γ)\M ¬p in a polynomial-size proof. Using (`), (` ∨•),

and (` •∨) we can derive
∧
p∈M p ` ω. We then use these sequents in the proof below, denoting∧

p∈VAR(γ)\M ¬p as n(M):∧
p∈M p ` ω

(``M)∧
p∈M p `M ω

∧
p∈M p `M n(M)

(• `)
ω,

∧
p∈M p `M n(M)

From Lemma 3, M,¬VAR(γ)\M ` γ can be derived in a polynomial-size proof. We use simple
syntactic manipulation to change the antecedent into an equivalent conjunction and then weaken
to derive ω,

∧
p∈M p,

∧
p∈VAR(γ)\M ¬p `M γ in a polynomial-size proof. Then we use:

ω,
∧
p∈M p, n(M) `M γ ω,

∧
p∈M p `M n(M)

(M-cut)
ω,

∧
p∈M p `M γ

Inductive Step: We look at proving A′, γ′, ω `M γ, for every other γ ∈ Au \ A′. For each γ
we use two instances of the inductive hypothesis: A′, ω `M γ and A′, ω `M γ′.

A′, ω `M γ′ A′, ω `M γ
(• `M)

A′, γ′, ω `M γ

Since we repeat this for every γ we only add |(Au \A′) \ {γ}| many lines in each inductive step
and retain a polynomial bound. ut

7

The previous lemma was an essential preparation for our next Lemma 12, which in turn will
be the crucial ingredient for the p-simulation in Theorem 13.

Lemma 12. There is polynomial q such for every binary node u there is an MLK -proof of Au, ω `
Bu of size at most q(k).

Proof. Induction Hypothesis (on the number of formulae of Au used in the antecedent: |A′|):
Let A′ ⊆ Au. There is a fixed polynomial q such that A′, ω ` Bu has an MLK -proof of size at
most q(|ω|).

Base Case (when A′ is empty): We approach this very similarly as in the previous lemma.
Using weakening and (∨ `), the sequent ω `M Fu, Bu can be derived in a polynomial-size proof. By
repeated use of the cut rule on sequents of the form ω,

∧
p∈At(B) p `M Bu for B ∈ Eu the sequent

ω `M Bu is derived. Now we only need to show that we can efficiently obtain ω,
∧
p∈M p `M Bu.

Consider branch B ∈ Eu. As At(B) is a minimal model M for Γ by Lemma 10, this model M
must satisfy ∆ and given the limitations of the branching processes of F -labelled formulae, Bu as
well.

Similarly as in the base case of Lemma 11 we can derive
∧
p∈M p `M

∧
p∈VAR(Bu)\M ¬p and∧

p∈M p ` ω in a polynomial-size proof. We then use these sequents in the proof below once again,
denoting

∧
p∈VAR(γ)\M ¬p as n(M).∧

p∈M p ` ω
(``M)∧

p∈M p `M ω
∧
p∈M p `M n(M)

(• `)
ω,

∧
p∈M p `M n(M)

We can use M satisfying Bu to derive ω,
∧
p∈M p, n(M) ` Bu in the same way as we derive

ω,
∧
p∈M p,

∧
p∈VAR(γ)\M ¬p ` γ in Lemma 11.

ω,
∧
p∈M p, n(M) `M Bu ω,

∧
p∈M p `M n(M)

(M-cut)
ω,

∧
p∈M p `M Bu

Inductive Step: Assume that A′, ω `M Bu has already been derived. Let γ ∈ Au \ A′. We
use Lemma 11 to get a short proof of A′, ω `M γ. One application of rule (• `M)

A′, ω `M Bu A′, ω `M γ
(• `M)

A′, γ, ω `M Bu

finishes the proof. ut

Theorem 13. MLK p-simulates OTAB.

Proof. Induction Hypothesis (on the height of the subtree with root u): For node u, we can
derive Au `M Bu, Cu in MLK in polynomial size (in the full tableau).

Base Case (u is a leaf): If the branch is T -closed, then by Lemma 9, for some formula φ we
can derive Au ` φ and Au ` ¬φ. Hence Au ` φ∧¬φ can be derived and with φ∧¬φ ` and the cut
rule we can derive Au ` in a polynomial-size proof. By weakening and using (``M) we can derive
Au `M Bu in polynomial size as required.

If the branch is F -closed, then by Lemma 9, for some formula φ we can derive φ ` Bu and
¬φ ` Bu. Hence φ ∨ ¬φ ` Bu can be derived and with ` φ ∨ ¬φ and the cut rule we can derive
` Bu in a polynomial-size proof. By weakening and using (``M) we can derive Au `M Bu in
polynomial size.

If the branch is TF -closed, then by Lemma 9, for some formula φ we can derive Au ` φ and
φ ` Bu. Hence via the cut rule and using (``M) we can derive Au `M Bu in polynomial size as
required.

If the branch is ignorable type-1 then the branch is completed. Therefore Au is a set of atoms
and there is some atom a /∈ Au such that ¬a ∈ Bu. It therefore follows that Au `M ¬a can be

8

derived as an axiom using the (`M) rule. We then use Lemma 4 to derive Au `M Bu in polynomial
size.

If the branch is ignorable type-2 then p ∈ At(θ(B)) implies p ∈ Au. Since Cu = {
∧
p∈At(θ(B)) p}

we can find a short proof of Au ` Cu using (` ∧).
Inductive Step: The inductive step splits into four cases according to which extension or

branching rule is used on node u.
Case 1. Extension rule (A) is used on node u for formula Tφ with resulting nodes v and w

labelled Tφ1, Tφ2, respectively.

φ1 ` φ1
(• `)

φ1, φ2 ` φ1
φ2 ` φ2

(• `)
φ1, φ2 ` φ2

(` ∧)
φ1, φ2 ` φ1 ∧ φ2

Since we are extending the branch on an α-type formula signed with T , we can find a short proof
of φ1 ∧ φ2 ` φ using Lemma 5. Together with φ1, φ2 ` φ1 ∧ φ2 shown above we derive:

φ1, φ2 ` φ1 ∧ φ2 φ1 ∧ φ2 ` φ
(cut)

φ1, φ2 ` φ
By definition we have φ1, φ2 ∈ Av, and then by weakening φ1, φ2 ` φ we obtain Av ` φ. By

Definitions 6 and 7, Bv = Bu and likewise Cu = Cv. Hence Av `M Bu, Cu is available by the
induction hypothesis. From this we get:

Av ` φ
(``M)

Av `M φ Av `M Bu, Cu
(• `M)

Av, φ `M Bu, Cu

Au ` φ1 and Au ` φ2 also have short proofs from weakening axioms. These can be used to cut
out φ1, φ2 from the antecedent of Av, φ `M Bu, Cu resulting in Au `M Bu, Cu as required.

Case 2. Extension rule (A) is used on node u for formula Fφ with resulting nodes v and w
labelled Fφ1, Fφ2, respectively. We can find short proofs of Au, φ1 ` φ1∨φ2, Au, φ2 ` φ1∨φ2 using
axioms, weakening and the rules (` •∨), (` ∨•). Similarly as in the last case, we have Av = Au
and likewise Cu = Cv. Therefore, by induction hypothesis Au `M Bv, Cu is available with a short
proof.

Au `M Bv, Cu

Au, φ1 ` φ1 ∨ φ2
(``M)

Au, φ1 `M φ1 ∨ φ2
(M-cut)

Au `M Bv \ {φ1}, φ1 ∨ φ2, Cu
We can do the same trick with φ2:

Au `M Bv \ {φ1}, φ1 ∨ φ2, Cu
Au, φ2 ` φ1 ∨ φ2

(``M)
Au, φ2 `M φ1 ∨ φ2

(M-cut)
Au `M Bu \ {φ}, φ1 ∨ φ2, Cu

Since Fφ is an α-type formula, then φ1∨φ2 ` φ by Lemma 5, and by weakening Au, φ1∨φ2 ` φ.
The derivation is the finished by:

Au `M Bu \ {φ}, φ1 ∨ φ2, Cu
Au, φ1 ∨ φ2 ` φ

(``M)
Au, φ1 ∨ φ2 `M φ

(M-cut)
Au `M Bu, Cu

Case 3. Branching rule (B) is used on node u for formula Tφ with children v and w labelled
Tφ1, Tφ2, respectively. The sequents Av `M Bu, Cv and Aw `M Bu, Cw are available from the
induction hypothesis.

Av `M Bu, Cu, Fu and Aw `M Bu, Cu, Fu can be derived via weakening by Lemma 4. From
these sequents, simple manipulation through classical logic and the cut rule gives us Av `M
Bu, Cu, ω and Aw `M Bu, Cu, ω. Using the rule (∨ `M) we obtain Au \ {φ}, φ1 ∨φ2 `M Bu, Cu, ω.
Since φ ∈ Au, from Lemma 5 we derive φ ` φ1∨φ2 and φ1∨φ2 ` φ in polynomial size. Weakening
derives Au ` φ1 ∨ φ2 and Au \ {φ}, φ1 ∨ φ2 ` φ. From these we derive:

9

Au \ {φ}, φ1 ∨ φ2 `M Bu, Cu, ω

Au \ {φ}, φ1 ∨ φ2 ` φ
(``M)

Au \ {φ}, φ1 ∨ φ2 `M φ
(• `M)

Au, φ1 ∨ φ2 `M Bu, Cu, ω

Au ` φ1 ∨ φ2
(``M)

Au `M φ1 ∨ φ2
(M-cut)

Au `M Bu, Cu, ω

From Lemma 12, Au, ω `M Bu, Cu has a polynomial size proof. We can then finish the deriva-
tion with a cut:

Au, ω `M Bu Au `M Bu, Cu, ω
(M-cut)

Au `M Bu, Cu

Case 4. Branching rule (B) is used on node u for formula Fφ with children v and w labelled
Fφ1, Fφ2, respectively. The sequents Au `M Bv, Cv and Au `M Bw, Cw are available from the
induction hypothesis.

From these two sequents we obtain via weakening Au `M Bv, Cu, Fu and Au `M Bw, Cu, Fu.
We can turn Fu into the disjunction of its elements by simple manipulation through classical logic
and the cut rule and derive Au `M Bv, Cu, ω and Au `M Bw, Cu, ω. Using the rule (`M ∧) we
obtain Au `M Bu \ {φ}, φ1 ∧ φ2, Cu, ω. Since φ1 ∧ φ2 ` φ by Lemma 5, we derive by weakening
Au, φ1 ∧ φ2 ` φ. We then continue:

Au `M Bu \ {φ}, φ1 ∧ φ2, Cu, ω
Au, φ1 ∧ φ2 ` φ

(``M)
Au, φ1 ∧ φ2 `M φ

(M-cut)
Au `M Bu, Cu, ω

From Lemma 12, Au, ω `M Bu, Cu has a polynomial-size proof.

Au, ω `M Bu Au `M Bu, Cu, ω
(M-cut)

Au `M Bu, Cu

This completes the proof of the induction.
From this induction, the theorem can be derived as follows. The induction hypothesis applied

to the root u of the tableau gives polynomial-size MLK proofs of Au `M Bu, Cu. By definition
Au = Γ and Bu = ∆. Finally, Cu = Du = ∅, because for every ignorable type-2 branch B, the
branch θ(B) is inside the tableau.

Since all our steps are constructive we prove a p-simulation. ut

5 Separating OTAB and MLK

In the previous section we showed that MLK p-simulates OTAB . Here we prove that the two
systems are in fact exponentially separated.

Lemma 14. In every OTAB tableau for Γ `M ∆ with inconsistent Γ , any completed branch is
T -closed.

Proof. If a branch B is completed but not T -closed, then via Lemma 10, At(B) is a model for all
initial T -formulae. But these form an inconsistent set. ut

Theorem 15. OTAB does not simulate MLK .

Proof. We consider Smullyan’s analytic tableaux [19], and use the hard sets of inconsistent formulae
in [8]. For each natural number n > 0 we use variables p1, . . . , pn. Let Hn be the set of all 2n

clauses of length n over these variables (we exclude tautological clauses) and define φn =
∧
Hn.

Since every model must contradict one of these clauses, φn is inconsistent. We now consider the
sequents φn `M .

10

Since classical entailment is included in minimal entailment there must also be an OTAB
tableau for these formulae. Every type-1 ignorable branch in the OTAB tableau is completed and
therefore also T -closed by Lemma 14. The tableau cannot contain any type-2 ignorable branches
as every completed branch is T -closed. Hence the OTAB tableaux for φn `M are in fact analytic
tableaux and have n! many branches by Proposition 1 from [8].

Since the examples are easy for truth table [8], they are also easy for LK and the rule (``M)
completes a polynomial-size proof for them in MLK . ut

6 Conclusion

In this paper we have clarified the relationship between the proof systems OTAB and MLK for
minimal entailment. We conclude by mentioning that there are further proof systems for minimal
entailment and circumscription, which have been recently analysed from a proof-complexity per-
spective [2]. In particular, Niemelä [17] introduced a tableau system NTAB for minimal entailment
for clausal formulas, and Bonatti and Olivetti [6] defined an analytic sequent calculus CIRC for
circumscription. Building on initial results from [6] we prove in [2] that NTAB ≤p CIRC ≤p MLK
is a chain of proof systems of strictly increasing strength, i.e., in addition to the p-simulations we
obtain separations between the proof systems.

Combining the results of [2] and the present paper, the full picture of the simulation order
of proof systems for minimal entailment emerges. In terms of proof size, MLK is the best proof
system as it p-simulates all other known proof systems. However, for a complete understanding of
the simulation order some problems are still open. While the separation between OTAB and MLK
from Theorem 15 can be straightforwardly adapted to show that OTAB also does not simulate
CIRC , we leave open whether the reverse simulation holds. Likewise, the relationship between the
two tableau systems OTAB and NTAB is not clear.

It is also interesting to compare our results to the complexity of theorem proving procedures
in other non-monotonic logics as default logic [4] and autoepistemic logic [1]; cf. also [10] for
results on proof complexity in the first-order versions of some of these systems. In particular, [4]
and [1] show very close connections between proof lengths in some sequent systems for default
and autoepistemic logic and proof lengths of classical LK , for which any non-trivial lower bounds
are a major outstanding problem. It would be interesting to know if a similar relation also holds
between MLK and LK .

References

1. O. Beyersdorff. The complexity of theorem proving in autoepistemic logic. In SAT, pages 365–376,
2013.

2. O. Beyersdorff and L. Chew. The complexity of theorem proving in circumscription and minimal
entailment. Technical Report TR14-014, Electronic Colloquium on Computational Complexity, 2014.

3. O. Beyersdorff and O. Kutz. Proof complexity of non-classical logics. In N. Bezhanishvili and
V. Goranko, editors, Lectures on Logic and Computation - ESSLLI 2010/11, Selected Lecture Notes,
pages 1–54. Springer, Berlin Heidelberg, 2012.

4. O. Beyersdorff, A. Meier, S. Müller, M. Thomas, and H. Vollmer. Proof complexity of propositional
default logic. Archive for Mathematical Logic, 50(7):727–742, 2011.

5. P. A. Bonatti, C. Lutz, and F. Wolter. The complexity of circumscription in DLs. J. Artif. Intell.
Res. (JAIR), 35:717–773, 2009.

6. P. A. Bonatti and N. Olivetti. Sequent calculi for propositional nonmonotonic logics. ACM Transac-
tions on Computational Logic, 3(2):226–278, 2002.

7. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof systems. The Journal
of Symbolic Logic, 44(1):36–50, 1979.

8. M. D’Agostino. Are tableaux an improvement on truth-tables? Journal of Logic, Language and
Information, 1(3):235–252, 1992.

9. A. Durand, M. Hermann, and G. Nordh. Trichotomies in the complexity of minimal inference. Theory
Comput. Syst., 50(3):446–491, 2012.

11

10. U. Egly and H. Tompits. Proof-complexity results for nonmonotonic reasoning. ACM Transactions
on Computational Logic, 2(3):340–387, 2001.

11. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:68–131, 1935.
12. P. Hrubeš. On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic, 157(2–

3):194–205, 2009.
13. M. Janota and J. Marques-Silva. cmMUS: A tool for circumscription-based MUS membership testing.

In LPNMR, pages 266–271, 2011.
14. E. Jeřábek. Substitution Frege and extended Frege proof systems in non-classical logics. Annals of

Pure and Applied Logic, 159(1–2):1–48, 2009.
15. J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of Encyclo-

pedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1995.
16. J. McCarthy. Circumscription – a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39,

1980.
17. I. Niemelä. A tableau calculus for minimal model reasoning. In TABLEAUX, pages 278–294, 1996.
18. N. Olivetti. Tableaux and sequent calculus for minimal entailment. J. Autom. Reasoning, 9(1):99–139,

1992.
19. R. Smullyan. First Order Logic. Springer-Verlag, Berlin, 1968.
20. M. Thomas. The complexity of circumscriptive inference in Post’s lattice. Theory of Computing

Systems, 50(3):401–419, 2012.
21. M. Thomas and H. Vollmer. Complexity of non-monotonic logics. Bulletin of the EATCS, 102:53–82,

2010.
22. A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic, 1:425–467, 1995.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

