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Abstract

Pseudorandom functions (PRFs) play a fundamental role in symmetric-key cryptography.
However, they are inherently complex and cannot be implemented in the class AC0(MOD2).
Weak pseudorandom functions (weak PRFs) do not suffer from this complexity limitation, yet
they suffice for many cryptographic applications.

We study the minimal complexity requirements for constructing weak PRFs. To this end

• We conjecture that the function family FA(x) = g(Ax), where A is a random square
GF (2) matrix and g is a carefully chosen function of constant depth, is a weak PRF.
In support of our conjecture, we show that functions in this family are inapproximable
by GF (2) polynomials and do not correlate with any fixed Boolean function family of
subexponential size.

• We study the class AC0◦MOD2 that captures the complexity of our construction. We con-
jecture that all functions in this class have a Fourier coefficient of magnitude exp(−poly log n)
and prove this conjecture in the case when the MOD2 function is typical.

• We investigate the relation between the hardness of learning noisy parities and the existence
of weak PRFs in AC0 ◦MOD2.

We argue that such a complexity-driven approach can play a role in bridging the gap between
the theory and practice of cryptography.
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1 Introduction

The design of symmetric-key cryptographic primitives can be roughly classified into two main
categories: (1) the “theory-oriented” approach, in which claims on the security of one’s design
are supported by a reduction from a well-established hardness assumption, and (2) the “practice-
oriented” approach, in which the construction is heuristically guided by practical experience and
common sense. In both cases, confidence in the security of the design is gained through lack of
cryptanalysis over time. In this respect, the theory-oriented approach is preferable over its practical
counterpart, as it typically relies on simpler and mathematically more natural hardness assump-
tions. At the same time, the practice-oriented approach, not being constrained by burdensome
proofs of security, results in significantly more efficient constructions.

Even though practical constructions that withstand the test of time are widely considered to be
secure enough for applications, it is not clear whether the lack of cryptanalysis should be attributed
to their secure design or to the fact that the design’s complexity hinders analysis and theoretical
understanding. This leaves us in an unsatisfactory state of affairs, in which the most widely used
cryptographic primitives lack justification for their security. But is complex design really necessary
for actual security, or is it only introduced to hinder cryptanalytic efforts in practice? Is simple
design, one that is easy to understand from a theoretical perspective (and moreover lends itself to
efficient implementation), incompatible with security?

The tension between the theoretical and practical approaches is perhaps most apparent in the
design of pseudorandom functions (PRFs) [GGM84], a fundamental cryptographic primitive that
yields direct solutions to most central goals of symmetric cryptography (encryption, authentication,
identification). While simple theory-oriented constructions of PRFs do exist, these constructions
are inefficient and as a result the most widely deployed PRF in practice is AES [DR02]. It is true
that, comparatively speaking, the design of AES can be considered simple. Yet, we are still quite
far from understanding the role that many of its design choices play in its security as a PRF.

Our focus is on so called weak pseudorandom functions. An adversary for a weak PRF aims
to distinguish a random member of the family from a truly random function after observing a
polynomially-bounded number of samples (x1, f(x1)), . . . , (xm, f(xm)), where x1, . . . , xm are inde-
pendent uniformly random strings from {0, 1}n and f : {0, 1}n → {0, 1} is the function in question.
Although strong PRFs (in which the xi’s can be adaptively chosen by the adversary) have tradi-
tionally played a more important role in cryptography, in many applications of interest they can
be replaced by weak PRFs. Cryptographic applications of weak PRFs have been studied in several
works [DN02, MS07, Pie09, DKPW12, LM13].

In this paper we set out to better understand what makes a weak PRF secure from a complexity
theoretic perspective, and in particular whether the efficiency of such functions is inherently tied to
that of strong PRFs. We propose constructions of weak pseudorandom functions whose complexity
of evaluation is minimal. To this end, we study the class AC0 ◦MOD2 of polynomial-size, constant-
depth circuit families with a layer of MOD2 gates at the bottom level followed by layers of AND/OR
gates.

Unlike the typical theory-oriented construction, our design will not be accompanied by a reduc-
tion from an established problem. Instead, we let the choices in our design be guided by insights on
the complexity of low-depth circuits. A useful byproduct of this process is that it identifies certain
complexity theoretic properties of the class AC0 ◦MOD2 and gives rise to interesting conjectures
that are of independent interest.
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In addition to minimizing the computational complexity of our candidate weak pseudorandom
functions, we also make deliberate effort to keep their design as simple as possible. This is done
in order to make its cryptanalysis more appealing, and to examine to what extent the functions
can withstand actual attacks (this approach was also explicitly advocated by Goldreich [Gol00] and
Miles and Viola [MV12]). The longer they do, the more confidence we will gain in their security.

1.1 Low-depth pseudorandom functions

Are parallel implementations of PRFs at all achievable? For the case of strong PRFs, a complexity-
theoretic viewpoint provides a fairly satisfactory answer to this question. Based on works of
Razborov and Smolensky [Raz87, Smo87], Razborov and Rudich [RR94] showed that the class
AC0(MOD2) of polynomial-size, constant-depth circuit families with unbounded fan-in AND, OR,
and MOD2 gates cannot contain strong PRFs of hardness1 beyond exp poly log n.

Several works proposed candidate, theory-guided, constructions of strong PRFs that can be
implemented in the class TC0 of polynomial-size, constant-depth circuit families with unbounded
fan-in threshold gates [NR97, BPR12]. The class TC0 strictly contains AC0(MOD2) and is believed
to be of strictly lower complexity than the original construction of Goldreich et al. [GGM84].

In the context of weak PRFs, Linial, Mansour, and Nisan [LMN93] show that weak (and hence
also strong) PRF implementations in the class AC0 of polynomial-size, constant-depth circuit fam-
ilies with unbounded fan-in AND/OR gates can have hardness at most exp poly log n, which is
considered inadequate for cryptographic practice. With this in mind, the class AC0 ◦MOD2, being
a slight extension of AC0, does indeed seem to be “minimal”. Moreover, as mentioned above, this
class (being contained in AC0(MOD2)) does not admit strong PRFs of adequate hardness.

Linial et al. prove that AC0 function families have most of their Fourier mass concentrated
on the first t = poly log n levels of the spectrum; thus such functions can be distinguished from
random by detecting a noticeable correlation with one of the linear functions that depends on at
most t variables. More generally, one could consider attacks that exploits the large correlation
between the function being attacked and some other function h that belongs to some fixed family
H of relatively small size.

These “LMN-type” attacks can be performed given access to the function at random (and in
particular not adaptively chosen) inputs. Thus, at the very least a candidate weak pseudorandom
function should exhibit low correlation with members of fixed families of small size.

1.2 A Candidate weak pseudorandom function in AC0 ◦MOD2

For parameters n, k ∈ N, such that n/k = Θ(2k), and uniformly chosen A ∈ {0, 1}(n+1)×(n+1) our
candidate weak PRF is:

FA(x) = g(Ax) where g(y, z) = TRIBESn/k,k(y)⊕ z.

Here, TRIBESn/k,k is the function defined as the OR of n/k ANDs over independent blocks with

k bits in each block. In particular, for every A, FA can be computed by AC0 ◦ MOD2 circuits.
The rationale behind the design of our candidate function takes the following considerations into
account:

1A pseudorandom function has hardness h if no adversary of size h can distinguish it from a random one with
advantage better than 1/h.
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• Any function of the form g(Ax) for g ∈ AC0 and random A has known heavy Fourier coeffi-
cients, and hence can be learned from random samples by the algorithm of Linial et al. The
matrix A randomly shuffles (and aggregates) the heavy Fourier coefficients of the TRIBES
function. In fact, this transformation reduces the correlation of the function with any fixed
Boolean function family of subexponential size. Keeping A secret is necessary for avoiding
these types of attacks.

• The choice of the TRIBES function is driven by the need to prevent approximation of the
function FA by GF (2) polynomials of low degree, which are learnable from random examples.

• We XOR the output of TRIBES with an independent bit in order to make the output of FA
unbiased.

Needless to say, it would have been preferable if we could also provide a reduction from a
well-established hard problem. However, we currently do not know of such a reduction to any
candidate weak pseudorandom function in AC0 ◦MOD2. As will become clear later, our results
on the complexity class AC0 ◦MOD2 (combined with results of Feldman et al. [FGKP09]) imply
that the computational hardness of the Learning Parity With Noise (LPN) problem [BFKL94] is
necessary for the existence of weak PRFs in AC0 ◦MOD2.

We now turn to give a more detailed exposition of the rationale behind the choices made in the
design of our candidate weak PRF, as well as connections to the complexity class AC0 ◦MOD2 and
to the LPN problem.

1.3 The power of AC0 ◦MOD2 circuits

To better understand the security of our candidate weak PRFs, we study the class AC0 ◦MOD2 of
polynomial-size, constant-depth circuit families consisting of a layer of MOD2 gates at the bottom
level followed by layers of AND/OR gates. Functions computed by such circuits can be represented
in the form f(x) = g(Ax), where A is an m(n)× n GF (2) matrix and g is a constant-depth circuit
of size polynomial in n.

We begin by conjecturing a structural property of all functions in this class.

Conjecture 1. Let {fn : {0, 1}n → {−1, 1}} be a function family in AC0 ◦ MOD2. There is a
polynomial p such that for every n there exists an a ∈ {0, 1}n satisfying |f̂n(a)| ≥ 2−p(logn).

Here we identify the outputs “true” and “false” of the circuit with the values −1 and 1, respec-
tively, and we use the notation f̂(a) for the a-th Fourier coefficient of f over Zn2 . In Section 2 we
prove Conjecture 1 in the cases when

1. A is a random matrix (of arbitrary dimension) and g is an arbitrary AC0 function, and

2. A is an arbitrary matrix and g is a polynomial-size depth-2 function (a CNF or a DNF).2

Our conjecture implies that functions in AC0◦MOD2 can be distinguished from random ones by
the Goldreich-Levin and Kushilevitz-Mansour algorithms for learning Fourier coefficients. However,
these algorithms require the examples (x, f(x)) to be chosen by the adversary. Similarly, the
distinguisher of Razborov and Rudich that separates functions in AC0(MOD2) from random ones

2This argument also appears in independent work of Servedio and Viola [SV12].
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requires chosen examples. Therefore these arguments do not rule out the possibility of weak PRFs
in AC0 ◦MOD2.

Servedio and Viola [SV12] conjecture that the inner product function modulo 2 cannot be
computed by polynomial-size AC0 ◦ MOD2 circuits. This would follow from positive answer to
Conjecture 1.

1.4 Some natural attacks on weak pseudorandom functions

Natural attacks for weak PRFs are typically based on weak learning algorithms with respect to
uniform distributions. Informally, an algorithm is a weak learning algorithm with respect to uniform
distribution for a function family if, for any function in the family, after observing a bounded number
of random samples (i.e., input output pairs where inputs are randomly chosen from the uniform
distribution) of the function, the algorithm predicts the output of a random challenge input with
advantage better than 1/2. Because the prediction of any algorithm for random functions is 1/2, a
weak learning algorithm can distinguish this function family from a random one3.

To the best of our knowledge, known attacks for weak PRFs are essentially based on following
two kinds of learning algorithms: statistical query learning algorithms and low-degree learning
algorithms.

Statistical query learning algorithms. Kearns [Kea98] observed that most known learning
algorithms can be converted to statistical query learning algorithms which use random samples in
a restricted way: such algorithms only obtain approximate estimates of Ex[g(x, f(x))] for statistics
g of the algorithm’s choice.

In particular, the algorithm of Linial et al. [LMN93] which rules out weak PRFs in AC0 is a
statistical query learning algorithm. Linial, Mansour, and Nisan proved that AC0 function families
have most of their Fourier mass concentrated on the first t = poly log n levels of the spectrum; thus
such functions has a noticeable correlation with one of the linear functions that depends on at most
t variables. We find that one by estimating the correlation between given function in AC0 and
every linear function that that depends on at most t variables. And that one gives a prediction of
given function for random inputs with advantage better than 1/2. Notice that correlation of given
function f with linear function h, namely Ex[f(x)h(x)], is a statistical property of f . Thus this
algorithm is a statistical query learning algorithm.

In Section 4 we show that statistical query learning algorithms cannot weakly learn the function
family FA(x) = gA(x) where A is a random n× n GF (2) matrix and g is an unbiased function.

Low-degree learning algorithms. Kearns [Kea98] demonstrated that parity functions can-
not be learned by statistical query learning algorithms. Thus, learning algorithms for low-degree
functions are different from statistical query learning algorithms.

Parity functions, and more generally low-degree polynomials over GF(2), can be efficiently
learned by Gaussian elimination. Given a degree d polynomial f(x) =

∑
S⊂[n],|S|=d aSΠi∈Sxi, we

can learn the coefficients by reducing to linear function (or parity function) case by linearization.

3We remark that an algorithm which distinguishes a function family from random is not necessary a weak learning
algorithm for this function family. A weak learning algorithm needs to work for any function in the family. However,
an algorithm that works for most functions in the family is sufficient to break the pseudorandomness of a function
family
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Specifically, we transform samples of f to samples of linear function g(y) =
∑

S⊂[n],|S|=d aSyS by
letting yS = Πi∈Sxi and then recover coefficient of g by Gaussian elimination. The complexity is
poly

(
n
d

)
.

In this work we consider function families FA(x) = g(Ax), where A is a random n × n GF (2)
matrix and g is an almost unbiased “rounding” function of low complexity. For which choices of
g is FA a weak PRF? Clearly if g is a linear function then FA is not weakly pseudorandom, as
the algorithm for learning linear functions from random examples can be used to distinguish FA
from a random function. More generally, if g is a degree-d GF(2) polynomial, then the degree-d
polynomial learning algorithm distinguishes FA from a random function in time poly

(
n
d

)
. Even

more generally, if g is ε-close to a degree-d polynomial p for ε � 1/
(
n
d

)
we would expect FA to

appear indistinguishable from p(Ax) from the perspective of the learning algorithm, and so FA can
again be distinguished from a random function.

Taking into account these bad choices of the function g, we propose the following conjecture
regarding the pseudorandomness of FA. We say g is unbiased if Ex∼{0,1}n [g(x)] = 0.

Conjecture 2. Let α < 1 be a constant, n be sufficiently large, and g : {0, 1}n → {−1, 1} be an
unbiased function. If g is 1/

(
n
d

)α
-far from all GF (2) polynomials of degree d then FA(x) = g(Ax)

is a weak PRF of hardness
(

n
dΩ(1)

)
.

Razborov and Smolensky showed that the majority and MODq predicates on n input bits,
where q is a power of a prime other than 2, are Ω(1)-far from all GF (2) polynomials of degree

√
n.

Conjecture 2 predicts that the resulting weak pseudorandom functions have exponential hardness.

1.5 Inapproximability of AC0 ◦MOD2 by low-degree polynomials

Can we instantiate Conjecture 2 with a function g in the class AC0 ◦MOD2? Razborov [Raz87]
shows that every AC0 function g can be approximated by a polynomial of degree d with error
ε = expO(−dα′/ log n), where α′ ≤ 1 is a constant that is inverse proportional to the circuit
depth. In contrast, Conjecture 2 requires that g be 1/

(
n
d

)α
= exp (−O(αd log n))-far from all such

polynomials (assuming d ≤
√
n). Thus we would like to find functions in AC0 ◦ MOD2 whose

Razborov approximating polynomials have essentially optimal degree-error tradeoff.
As an example of interest we consider the TRIBESn/k,k function. This function is defined as the

OR of n/k ANDs over independent blocks with k bits in each block. We will assume that the bias
of TRIBESn/k,k is constant, which is only possible if n/k = Θ(2k)). The Razborov approximation
method gives approximating polynomials for TRIBESn/k,k of degree d and error exp (−O(d/ log n))
for every d. We show this is tight up to O(log n) factor in the exponent.

Theorem 3. Let α > 0 be a constant. Assume that αk2k ≤ n ≤ (1 − α)k2k. For every GF (2)
polynomial p of degree 1 ≤ d ≤ n− k, Prx[p(x) 6= TRIBESn/k,k(x)] ≥ 2−3d.

Despite this, the TRIBESn/k,k function may not be a suitable choice for g as we are not aware
of any sequence of values (n, k(n)) that makes g unbiased (or of negligible bias). We therefore
work with the function g(y, z) = TRIBESn/k,k(y) ⊕ z, which we show is unbiased yet cannot be
approximated by degree d polynomials any better than TRIBES.

Corollary 4. The function g(y, z) = TRIBESn/k,k(y)⊕ z is unbiased and satisfies the conclusion
of Theorem 3.
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1.6 Learning noisy parities vs. weak pseudorandom functions in AC0 ◦MOD2

The Goldreich-Levin and Kushilevitz-Mansour algorithms efficiently learn all large Fourier coeffi-
cients of a boolean function f , but require that the examples (x, f(x)) be chosen by the algorithm.
Feldman et al. [FGKP09] show that if noisy parities can be learned efficiently, then random ex-
amples can be used instead of chosen ones. Thus assuming Conjecture 1, the LPN assumption is
necessary for the existence of weak PRFs in AC0 ◦MOD2. Is it also sufficient?

Banerjee et al. [BPR12] observe that under the Learning with Errors (LWE) [Reg10] assumption
over a sufficiently large modulus q one can construct relatively simple weak PRFs. Their argument
is based on the existence of an efficient rounding function g for which the distributions g(Ax + e)
and g(Ax) are of negligible statistical distance. Here, A is a random GF (q) matrix and e follows
the noise model of the LWE assumption. Can this argument be modified to handle smaller values
of q, specifically q = 2?

In Section 5 we show that no such reduction exists from LPN to breaking a weak PRF of the
form g(Ax) for any choice of the rounding function g: If samples of the form g(Ax+ e) and g(Ax)
are statistically indistinguishable, then g must be significantly biased.

In a recent work, Alwen et al. [AKPW13] use a different type of reduction to show hardness
of “learning with rounding” for a bounded number of samples assuming the hardness of LWE over
moduli q of magnitude polynomial in the hardness parameter.

2 The Fourier Spectrum of AC0 ◦MOD2

In this section we prove two special cases of Conjecture 1. This conjecture postulates the existence
of a large Fourier coefficient in functions of the form f(x) = g(Ax), where A is an m by n matrix
and g can be represented by a small AC0 circuit.

Linial, Mansour, and Nisan [LMN93] showed that the Fourier spectrum of a function that can
be computed by AC0 circuits of size s and depth d is concentrated on the first O(log s)d levels. It
follows that at least one of these Fourier coefficients of low weight must have large value. If the
rows of A are linearly independent (i.e. the map AT is injective), then all the Fourier coefficients
of g appear as coefficients of f and the conjecture follows easily.

The scenario where the rows of A are dependent is more interesting. In particular this always
happens when m > n. In this case, every Fourier coefficient of f is a scaled sum of Fourier
coefficients of g over some affine subspace. The concentration property of g proved by Linial et al.
is no longer sufficient to obtain the conclusion of Conjecture 1.

We make the following partial progress towards the conjecture:

1. In Proposition 5 we prove that if g has small DNF size, then g(Ax) has a large Fourier
coefficient. This proof is inspired by the analysis of Jackson’s algorithm for weakly learning
DNF formulas.

2. In Proposition 7 we show that if no set of poly log s rows of A is linearly dependent, then
g(Ax) has a large Fourier coefficient. Curiously, in addition to Linial et al.’s characterization
of the Fourier spectrum of AC0 circuit, our proof relies on Braverman’s theorem stating that
polylogarithmically independent distributions are pseudo-random for AC0 circuits.

In particular, Proposition 7 applies to the cases when the map AT is injective and when A is
a random matrix of essentially arbitrary dimension.
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2.1 g is a DNF and A is arbitrary

Proposition 5. Let g : {0, 1}m → {−1, 1} be a DNF with s terms, A be an m × n GF (2) matrix
and f(x) = g(Ax). There exists a ∈ {0, 1}n such that |f̂(a)| ≥ 1/(2s+ 1).

The proof of Prop 5 uses the following Lemma of Jackson, which he used in the analysis of his
weak learner for DNF formulas.

Lemma 6 (Jackson [Jac97]). Let g : {0, 1}m → {−1, 1} be a DNF with s terms. For every distri-
bution D on {0, 1}m, there exists a vector b ∈ {0, 1}m so that Ez∼D[g(z)χb(z)] ≥ 1/(2s+ 1).

Proof of Proposition 5. By Lemma 6, for distribution Ax where x ∼ {0, 1}n, there exists b ∈ {0, 1}m
so that

Ex∼{0,1}n [g(Ax)χb(Ax)] ≥ 1/(2s+ 1).

Notice that Ex∼{0,1}n [g(Ax)χb(Ax)] = Ex∼{0,1}n [f(x)χAT b(x)] = f̂(AT b). Therefore there exists

a = AT b, |f̂(a)| ≥ 1/(2s+ 1).

2.2 A is “typical” and g is arbitrary

In this section we consider the case where A is a random matrix and g is an arbitrary AC0 function.
We first prove, in Proposition 7, that Conjecture 1 holds for an arbitrary AC0 function g and A with
a certain property (specifically, the property that no poly log s rows of A are linearly dependent).
Then in Corollary 10, we show that a random matrix A has this property with very high probability.
Therefore Conjecture 1 holds for an arbitrary AC0 function g and a random matrix A.

Proposition 7. Let g : {0, 1}m → {−1, 1} be an AND/OR circuit of size s ≥ n and depth d, A be
an m× n GF (2) matrix so that every set of r = (log s)O(d3) rows of A is linearly independent, and

f(x) = g(Ax). Then there exists an a ∈ {0, 1}n for which |f̂(a)| ≥ m−O((log s)d).

Our proof relies on the following fundamental lemmas about AC0 circuits of Linial, Mansour,
and Nisan and Braverman.

Lemma 8 (Linial et al. [LMN93]). Let g : {0, 1}m → {−1, 1} be an AND/OR circuit of size s ≥ n
and depth d. For any t, ∑

|b|>t

ĝ(b)2 ≤ 2s2−t
1/d/20

Lemma 9 (Braverman [Bra11]). Let f : {0, 1}n → {−1, 1} be a function computed by a size s depth
d AND/OR circuit, and D be an r-wise independent distribution over {0, 1}n, where r ≥ r(s, d, ε) =
(log(s/ε))O(d2). Then |Ez∼D[f(z)]− Ez∼{0,1}n [f(z)]| ≤ ε.

Proof of Proposition 7. We apply Lemma 8 with t = (20 log 4s)d. In particular, there must exist
at least one b ∈ {0, 1}m with Hamming weight at most t for which

ĝ(b)2 ≥ 1/
(

2

t∑
i=0

(
m

i

))
= m−O(log s)d .

We now show that for a = AT b, |f̂(a)| ≥ |ĝ(b)|/2 = m−O(log s)d .
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Consider the function h(z) = g(z)χb(z), where χb(z) = (−1)
∑
zi . H̊astad [H̊as87] observes that

χb can be computed by a circuit of depth d and size 2t
1/(d−1)

. Therefore h is computable by a circuit
of size s+2O(t1/(d−1)) = 2O(log s)d/(d−1)

and depth d+1. Instantiating Lemma 9 with the appropriate
parameters, we get that

|Ez∼D[h(z)]− Ez∼{0,1}m [h(z)]| ≤ |ĝ(b)|/2, (1)

as long as D is r-wise independent, where

r = r(2O(log s)d/(d−1)
, d+ 1, |ĝ(b)|/2) ≥ r(2O(log s)d/(d−1)

, d+ 1,m−O(log s)d) = (log s)O(d3).

By our assumption on the matrix A, the distribution Ax, where x ∼ {0, 1}n is r-wise independent.
Substituting into (1) we get

|Ex∼{0,1}n [g(Ax)χb(Ax)]− Ez∼{0,1}m [g(z)χb(z)]| ≤ |ĝ(b)|/2.

This inequality can be rewritten as

|f̂(AT b)− ĝ(b)| ≤ |ĝ(b)|/2

so by the triangle inequality, |f̂(AT b)| ≥ |ĝ(b)|/2.

Corollary 10. Let A be a random m×n GF (2) matrix. With probability 1−2−Ω(n) over the choice
of A, for every AND/OR circuit g : {0, 1}m → {−1, 1} of size n ≤ s ≤ exp

(
(n/ logm)1/O(d3)

)
and

depth d, and f(x) = g(Ax), there exists an a ∈ {0, 1}n for which |f̂(a)| ≥ m−O((log s)d).

Proof. It is sufficient to show that with probability 1 − 2−Ω(n) over the choice of A, every r =
(log s)polyd rows of A are linearly independent. By a union bound, the probability that there exists
a linear dependence between r or fewer rows is at most

1

2n

r∑
i=0

(
m

i

)
≤ (r + 1)mr

2n
≤ 2−Ω(n),

where the last inequality follows from our assumption that s ≤ exp
(
(n/ logm)1/O(d3)

)
.

3 AC0 functions inapproximable by low-degree polynomials

In order to apply Conjecture 2 towards obtaining a weak PRF in the class AC0 ◦MOD2, we need
a function g in the class AC0 ◦MOD2 that (1) is unbiased and (2) is inapproximable by GF (2)
polynomials of low degree.

We show that the TRIBESn/k,k function with n = Θ(k2k) satisfies condition (2). We prove

Theorem 3 which states that TRIBESn/k,k is 2−3d-far from all polynomials of degree at most n−k.

We remark that we didn’t try to optimize the constant and the bound 2−O(d) may not be tight.
To meet condition (1) (which the TRIBES function family does not appear to satisfy), we give a

simple general transformation that preserves correlation with degree d polynomials for every d but
turns any function into an unbiased one. Let Corrd(f) denote the maximum correlation between
f : {0, 1}n → {−1, 1} and degree-d polynomials: Corrd(f) = maxp Ex∼{0,1}n [f(x) · (−1)p(x)] where
p is GF (2) polynomial of degree d.

Claim 11. Let f : {0, 1}n → {−1, 1} be a boolean function. Let g : {0, 1}n+1 → {−1, 1} be given by
g(y, z) = f(y) · (−1)z. Then for every d ≥ 1, Corrd(g) = Corrd(f).

Combining Theorem 3 and Claim 11 yields Corollary 4.
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3.1 Proof of Theorem 3

Our proof relies on the following special case of Schwarz-Zippel Lemma.

Lemma 12 (Schwartz-Zippel Lemma [Sch80, Zip79]). If p is a nonzero multilinear polynomial
over GF (2) of degree d, then Prx[p(x) 6= 0] ≥ 2−d.

For simplicity of notation, we denote TRIBESn/k,k as T . Suppose that Prx[p(x) 6= T (x)] < 2−3d

where 0 < d < n−k. We decompose the tribes function T of interest as T (x1, x2) = T1(x1)∨T2(x2),
where T1 and T2 are tribes on l and n− l variables respectively, where l = d(d+ 1)/ke · k. The size
of each tribe is k in both T1 and T2. We divide the analysis into two cases: d ≥ k and d < k.

d is large. If d ≥ k, we show there exists an x2 such that T2(x2) = 0 and for any x1, T (x1, x2) =
p(x1, x2). It follows p(x1, x2) = T1(x1). However, the expansion of T1(x) as a GF (2) polynomial is
unique and can be easily checked to have degree l ≥ d+ 1. But p only has degree d. Contradiction!

By our choice of parameters, note that 3d − l ≥ 2d − k ≥ d and α < 2−kn/k < (1 − α). We
show the existence of x2 by the probabilistic method.

Prx2 [T2(x2) 6= 0] = 1− (1− 2−k)(n−l)/k

≤ 1− (1− (n− l)/k2−k)

= 2−k(n− l)/k
< 2−kn/k < 1− α.

Prx2 [∃x1, T (x1, x2) 6= p(x1, x2)] ≤
∑
x1

Prx2 [T (x1, x2) 6= p(x1, x2)]

≤ 2l Prx1,x2 [T (x1, x2) 6= p(x1, x2)]

≤ 2l−3d ≤ 2−d.

Thus the existence of x2 follows from

Prx2 [T2(x2) = 0 ∧ ∀x1, T (x1, x2) = p(x1, x2)] ≥ 1− (1− α)− 2−d = α− 2−d = Ω(1) > 0.

d is small. Now we prove the case 0 < d < k. By Markov’s inequality, with probability at least
1 − 2−d over the choice of x2 we have Prx1 [p(x1, x2) 6= T (x1, x2)] ≤ 2−2d. Notice that T1 is AND
function over k bits. For those choices of x2,

Prx1 [p(x1, x2) 6= T2(x2)] ≤ Prx1 [p(x1, x2) 6= T2(x2) ∨ T (x1, x2) 6= T2(x2)]

≤ Prx1 [p(x1, x2) 6= T (x1, x2)] + Prx1 [T (x1, x2) 6= T2(x2)]

≤ 2−2d + 2−k

< 2−d.

By Schwarz-Zippel Lemma, Prx1 [p(x1, x2) 6= T2(x2)] < 2−d where p(x1, x2) has degree at most d
implies p(x1, x2) − T2(x2) is the zero polynomial in x1. Thus for at least 1 − 2−d choice of x2,
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p(x1, x2) is a constant function in x1. We show p doesn’t depend on x1. For otherwise, we could
write p as

p(x1, x2) =
∑
T⊂[k]

fT (x2)Πi∈Tx1i

where x1i denote the ith bit in x1 and there exists a non-empty T such that fT is non-zero poly-
nomial. Since fT has degree at most d, by the Schwarz-Zippel Lemma, with probability at least
1 − 2−d over the choice of x2, fT (x2) is non-zero thus p(x1, x2) is not a constant function in x1.
Contradiction!

More generally, we can decompose T as T1 ∨ T2 where T1 is AND of the ith block of inputs
and T2 is tribes over remaining inputs (or blocks). By the same reasoning, we can show p doesn’t
depend on ith block of inputs. Therefore p is a constant function which doesn’t depend on any
inputs which contradicts the assumption d 6= 0.

3.2 Proof of Claim 11

To prove Claim 11, notice that the correlation of f(y) with a polynomial p(y) equals the correlation
of g(y, z) with the polynomial p(y) ⊕ z. In the other direction, suppose g(y, z) and p(y, z) have
correlation γ. By averaging z can be fixed to a constant c ∈ {0, 1} so that g(y, c) and p(y, c) have
correlation at least γ. Then f(y) has correlation at least γ with the polynomial p(y, c)⊕ c.

Corollary 4 follows from Theorem 3 and Claim 11.

4 Lack of Correlation with Fixed Function Families

One main efficiency measure of statistical query learning algorithms is the number of statistical
properties (also called statistical queries) the algorithms needs to estimate. In particular, the
statistical queries lower bound the running time of statistical query learning algorithms. The
characterization of the number of statistical queries was studied in [BFJ+94, BF02, Fel09]. In
particular, Bshouty and Feldman [BF02] showed if a function family can be weakly learned by
statistical query algorithm with s queries, then we find a collection of functions of size s + 1 such
that every function f ∈ F correlates with H.

Theorem 13 ([BF02]). Let F = {h : {0, 1}n → {−1, 1}} be a function family. Suppose there exists
an algorithm that for any f ∈ F uses at most s statistical queries with error at most δ to predict f
on random inputs with probability 1/2+ε. There exists a collection of functions H = {h : {0, 1}n →
{−1, 1}} of size s+ 1 such that for any f ∈ F , there exists h ∈ H, |Ex[f(x)h(x)]| ≥ min(2/δ, 1/ε).

Corollary 15 below shows that statistical query learning algorithms cannot work against our
family FA if g is unbiased and A is square matrix: for any fixed function family H of size at most
2n/4, the correlation between FA and any function in H is exponentially small with overwhelming
probability over the choice of the key, which implies, by Theorem 13, any statistical query learning
algorithm needs an exponential number of statistical queries to learn noticeable fraction of functions
in this family (which is required to break pseudorandomness of weak PRFs).

Proposition 14. For any function h : {0, 1}n → {−1, 1},

PrA
[
|Ex[g(Ax)h(x)]− Ex[g(x)] Ex[h(x)]| > ε+ 2−n+1

]
= O(2−n/ε2)

where A is a random n× n matrix.
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Our proof is essentially a second moment calculation which relies on the pairwise independence
of the values Ax.

Proof. Consider the random variable Z(A) = Ex[g(Ax)h(x)]. We will estimate the first and second
moments of this random variable.

Conditioned on x 6= 0, Ax is uniformly distributed in {0, 1}m and independent of x. Therefore

EA[Z(A)] =
1

2n

∑
x 6=0

EA[g(Ax)h(x)] +
1

2n
g(0)h(0) =

1

2n

∑
x 6=0

h(x) Ey[g(y)] +
1

2n
g(0)h(0)

= Ex[h(x)] Ey[g(y)]− 1

2n
h(0) Ey[g(y)] +

1

2n
g(0)h(0).

Since |h(0) Ey[g(y)]| ≤ 1 and |g(0)h(0)| ≤ 1, we can obtain

|EA[Z(A)]− Ey[g(y)] Ex[h(x)]| ≤ | 1

2n
h(0) Ey[g(y)]|+ | 1

2n
g(0)h(0)| ≤ 2−n+1.

All probabilities are over the uniform distribution. For the second moment, we have

EA[Z(A)2] = EA[Ex[g(Ax)h(x)]2]

= EA
[
Ex[g(Ax)h(x)] Ex′ [g(Ax′)h(x′)]

]
= Ex,x′

[
h(x)h(x′) EA[g(Ax)g(Ax′)]

]
.

Fix x and x′ satisfying x 6= x′ and x, x′ 6= 0. Then Ax and Ax′ are independent and uniformly
distributed in {0, 1}n over the choice of A, so EA[g(Ax)g(Ax′)] = Ey[g(y)]2. Since the event “x = x′

or x′ = 0 or x = 0 happens with probability at most 3 · 2−n, it follows that

EA[Z(A)2] ≤ Ex[h(x)]2 Ex[g(x)]2 + 3 · 2−n

and
VarA[Z(A)] = EA[Z(A)2]− EA[Z(A)]2 ≤ 7 · 2−n.

The proposition follows by applying Chebyshev’s inequality to Z(A).

By applying a union bound and setting parameters appropriately, we obtain the following
corollary:

Corollary 15. Let H be any collection of functions h : {0, 1}n → {−1, 1} of size at most 2n/4.
With probability 2−Ω(n) over the choice of A, for every h ∈ H, Ex[g(Ax)h(x)] ≤ β + 2−Ω(n), where
β = Ex[g(x)].

The β term is necessary; if g is biased then g(Ax) correlates with the zero function.

5 Noisy parities, rounding, and weak pseudorandom functions

As observed in the introduction, assuming Conjecture 1, the hardness of learning noisy parities
(LPN) is a necessary assumption for the existence of weak PRFs in AC0 ◦MOD2. In this section
we investigate whether this assumption is also sufficient.
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For this purpose we view our function fA(x) = g(Ax) as applying a “rounding” function g
that adds a “deterministic noise” to the samples Ax. This viewpoint has proved instrumental in
the context of learning with errors (LWE), which is a generalization of LPN to larger modulus q.
Specifically, Banerjee et al. [BPR12] construct a weak PRF f ′A(x) = g′(Ax) where A, x and all
operations are over GF (q) for a sufficiently large modulus q; they then prove that for a suitably
chosen rounding function g′, their “deterministic noise” is statistically close to an LWE noise,
implying that their function f ′ is as hard as LWE; finally, as g′ has negligible bias, they conclude
that f ′A(x) = g′(Ax) is computationally indistinguishable from uniform; namely, f ′ is a weak PRF.
Can their proof techniques [BPR12] be transferred to the field GF (2) for basing the hardness of our
candidate function on LPN? In Theorem 16 we give a negative answer to this question by showing
that for every function g, if the “deterministic noise” incurred by g is statistically close to an LPN
noise, then g is highly biased (ie, g is close to a constant function and thus f(x) = g(Ax) cannot
be a weak PRF).

Elaborating on the above, Banerjee et al. [BPR12] observe that under the LWE assumption
(and for a suitable g′), samples of the form (x, g′(〈a, x〉)) are computationally indistinguishable from
samples (x, g′(u)), where x ∼ GF (q)n and u ∼ GF (q) is independent of x. This follows by looking
at the auxiliary distribution (x, g′(〈a, x〉+ e)), where e follows the LWE noise distribution. On the
one hand, for a suitable choice of g′, (x, g′(〈a, x〉)) and (x, g′(〈a, x〉+ e)) are statistically close. On
the other hand, by the LWE assumption, (x, g′(〈a, x〉+e)) and (x, g′(u)) are computationally close.
Thus, as g′ has negligible bias, they conclude that the samples (x, g′(〈a, x〉)) are computationally
indistinguishable from uniform samples (x, u); namely, f ′ is a weak PRF.

Transferring the proof technique of [BPR12] to the case q = 2 would look as follows. Suppose
the adversary sees t samples

(x1, g(Ax1)), . . . , (xt, g(Axt)), (2)

and consider the auxiliary distribution

(x1, g(Ax1 + e1)), . . . , (xt, g(Axt + et)) (3)

where e1, . . . , et ∈ {0, 1}m follow the LPN noise distribution with rate η (ie, their coordinates are
i.i.d. random variables accepting 1 with probability η); denote this distribution {0, 1}mη . On the
one hand, argue for some choice of g that distributions (2) and (3) are statistically close. On the
other hand, by the LPN assumption4 distribution (3) is computationally close to

(x1, g(u1)), . . . , (xt, g(ut))

where u1, . . . , ut ∼ {0, 1}m are independent of x1, . . . , xt. Finally, using the assumption that g has
negligible bias, it would follow that g(Ax) is pseudo-random.

The following theorem shows that this proof method cannot work: essentially if distributions
(2) and (3) are statistically close, then g must be biased. Specifically, if the statistical distance

is ε ≤ η2

m2 · 1
n2c for c > 0 a constant and sufficiently many samples say t = m2

η2 · mn · n2c (note

that t = poly(n) for m = poly(n) and LPN noise rate η which is noticeable), then we obtain that
Bias[g]2 = 1−O(n−c).

4The values (x1, Ax1 + e1), . . . , (xt, Axt + et) can be viewed as noisy samples for multiple random secret-
s. Specifically, the random secrets are the rows aj of the matrix A, and the corresponding noisy samples are
(x1, 〈aj , x1〉 + e1), . . . , (xt, 〈aj , xt〉 + et). Such samples are computational indistinguishable from uniform samples
under LPN assumption (this is straightforward to prove, due to the self-reducibility of LPN).
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Theorem 16. For n,m, t, η as above, and a function g : {0, 1}m → {−1, 1}, if distributions (2)
and (3) are within statistical distance ε, then Bias[g]2 ≥ 1 − m

η · (5
√
δ +
√
ε+ 1/2n) for δ = 1

t ·
(nm ln 2 + ln(1−

√
ε)).

We remark that Theorem 16 can be generalized to the case where f(x) = gx(Ax) ie g depends
on x. Specifically, we can conclude for most choice of x, gx is biased (gx is close to constant
conditioned on x) thus f(x) = gx(Ax) cannot be weak PRF.

5.1 Proof of Theorem 16

In this section we prove Theorem 16 by showing that the following holds for a random matrix A
(with high probability over the choice of the input x and the noise e): First we give a statistical test
and show that if this test cannot distinguish distributions (2) and (3) then we can eliminate the
noise e by replacing A with a related matrix A′; namely, g(Ax+ e) = g(A′x) (see Claim 17). Then
we show that even with a slightly higher noise rate the above still holds, ie, g(Ax+e+e′) = g(A′x);
implying that g(Ax+e+e′) = g(Ax+e) (see Claim 19). Next, we employ the above to upper bound
the noise-sensitivity of g. Specifically, we observe that Ax + e is uniform (because A is uniform),
thus replacing Ax + e by u in the above we conclude that g(u + e′) = g(u) with high probability;
namely, g has low noise-sensitivity (see Claim 20). Finally we employ a simple relation between
the noise-sensitivity and the bias to conclude that g has high bias (see Proposition 21). The proof
details follow.

First we show that for most matrices A there is a matrix A′ s.t. g(Ax+ e) = g(A′x) with high
probability over the choice of x, e.

Claim 17. With probability at least 1 −
√
ε over the choice of A ∼ {0, 1}m×n, there exists A′ ∈

{0, 1}m×n such that
Prx,e[g(Ax+ e) = g(A′x)] ≥ 1− δ

where x ∼ {0, 1}n, e ∼ {0, 1}mη .

Proof. Consider statistical test T : on input (x1, b1, . . . , xt, bt), output 1 if and only if there exists
A ∈ {0, 1}m×n such that g(Axi) = bi for all 1 ≤ i ≤ t. Since distributions (2) and (3) are ε
statistically close and D always accepts distribution (2),

PrA,xi,ei [T (x1, g(Ax1 + e1), . . . , xt, g(Axt + em)) = 1] ≥ 1− ε.

By Markov’s inequality, with probability at least 1−
√
ε over the choice of A,

Prxi,ei [T (x1, g(Ax1 + e1), . . . , xt, g(Axt + em)) = 1] ≥ 1−
√
ε. (4)

For any such A, by definition of T ,

Prx1,e1,...,xt,et [∃A′∀i, g(Axi + ei) = g(A′xi)] ≤
∑

A′∈{0,1}m×n

Prx1,e1,...,xt,et [∀i, g(Axi + ei) = g(A′xi)]

≤
∑

A′∈{0,1}m×n

(Prx,e[g(Ax+ e) = g(A′x)])t

≤ 2mn maxA′∈{0,1}m×n(Prx,e[g(Ax+ e) = g(A′x)])t.
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Assuming that maxA′∈{0,1}m×n Prx,e[g(Ax+ e) = g(A′x)] < 1− δ, then

maxA′∈{0,1}m×n 2mn(Prx,e[g(Ax+ e) = g(A′x)])t < 2mn(1− δ)t ≤ 2mne−tδ = 1−
√
ε,

which contradicts inequality (4). Therefore, maxA′∈{0,1}m×n Prx,e[g(Ax+ e) = g(A′x)] ≥ 1− δ.

Next we show that g(Ax+ e+ e′) = g(Ax+ e) (for most matrices A, and with high probability
over x, e, e′) in Claim 19. To prove this, we show how to eliminate noise of a slightly higher rate
than considered in Claim 17, ie, g(Ax+ e+ e′) = g(A′x) which relies on following lemma.

Lemma 18. For any 0 < η < 1/2 and h : {0, 1}m → {0, 1}, Pre,e′ [h(e+ e′) 6= 0] ≤ 3 Pre[h(e) 6= 0]
where e ∼ {0, 1}mη , e′ ∼ {0, 1}mη/m.

Proof. For any z ∈ {0, 1}m , Pre,e′ [e+ e′ = z] ≤ (1− η)m−|z|(1 + 1/m)mη|z| ≤ (1 + 1/m)m Pre[e =
z] < 3 Pre[e = z] so that Pre,e′ [h(e + e′) = 0] =

∑
z:h(z)=0 Pre,e′ [e + e′ = z] ≤ 3

∑
z:h(z)=0 Pre[e =

z] = 3 Pre[h(e) = 0].

Claim 19. With probability at least 1 −
√
ε over the choice of A ∼ {0, 1}m×n, there exists A′ ∈

{0, 1}m×n such that
Prx,e[g(Ax+ e) = g(Ax+ e+ e′)] ≥ 1− 5

√
δ

where x ∼ {0, 1}n, e ∼ {0, 1}mη , e′ ∼ {0, 1}mη/m.

Proof. For A,A′, x, let hA,A′,x(z) = 0 if and only if g(Ax+ z) 6= g(A′x). By union bound,

Pre,e′ [g(Ax+ e) 6= g(Ax+ e+ e′)] ≤ Pre,e′ [g(Ax+ e+ e′) 6= g(A′x)] + Pre[g(Ax+ e) 6= g(A′x)]

= Pre,e′ [hA,A′,x(e+ e′) = 0] + Pre[hA,A′,x(e) = 0]

≤ 4 Pre[hA,A′,x(e) = 0]

where the last inequality is due to Lemma 18. By Claim 17 and Markov’s inequality, for at least
1−
√
ε choice of A such that at least 1−

√
δ choice of x,

Pre[g(Ax+ e) 6= g(A′x)] = Pre[hA,A′,x(e) = 0] ≤
√
δ.

Therefore for at least 1−
√
ε choice of A such that at least 1−

√
δ choice of x,

Pre,e′ [g(Ax+ e) 6= g(Ax+ e+ e′)] ≤ 4 Pre[hA,A′,x(e) = 0] ≤ 4
√
δ,

which implies the desired conclusion.

Next we bound the noise-sensitivity of g, where recall that the noise sensitivity of a Boolean
function g is defined to be

NSe′(g) = Pru,e′ [g(u+ e′) 6= g(u)],

where u ∼ {0, 1}m and e′ ∈ {0, 1}mη/m.

Claim 20. NSe′(g) ≤ 5
√
δ +
√
ε+ 1/2n.
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Proof. Claim 19 implies PrA,x,e,e′ [g(Ax+ e) = g(Ax+ e+ e′)] ≥ 1− 5
√
δ −
√
ε. Since for any fixed

e, e′ and non-zero x, Ax is uniformly distributed, we can derive

Pru,e′ [g(u) = g(u+ e′)] ≥ PrA,x,e,e′ [g(Ax+ e) = g(Ax+ e+ e′)]− 1/2n = 1− 5
√
δ −
√
ε− 1/2n.

Hence NSe′(g) ≤ 5
√
δ +
√
ε+ 1/2n.

To conclude the proof we employ the above bound on the noise-sensitivity to bound the bias.

Proposition 21. For any g : {0, 1}m → {−1, 1} and 0 < η′ < 1/2, Bias[g]2 ≥ 1− NSe′(g)/η′.

Proof. Since
∑

a∈{0,1}m ĝ
2(a) = 1 and 0 < η′ < 1/2,∑

a∈{0,1}m
ĝ2(a)(1− 2η′)|a| ≤ ĝ2(0m) +

∑
a6=0m

ĝ2(a)(1− 2η′) = 1− 2η′(1− ĝ2(0m)).

Recall the fact NSe′(g) = 1
2 −

1
2

∑
a∈{0,1}m ĝ

2(a)(1 − 2η′)|a|. Therefore NSe′(g) ≥ η′(1 − ĝ2(0m))

which implies Bias[g]2 = ĝ2(0m) ≥ 1− NSe′(g)/η′.
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