
On the complexity of trial and error for constraint satisfaction

problems

Gábor Ivanyos∗ Raghav Kulkarni� Youming Qiao� Miklos Santha§

Aarthi Sundaram¶

Abstract

In a recent work of Bei, Chen and Zhang (STOC 2013), a trial and error model of computing
was introduced, and applied to some constraint satisfaction problems. In this model the input
is hidden by an oracle which, for a candidate assignment, reveals some information about a
violated constraint if the assignment is not satisfying. In this paper we initiate a systematic
study of constraint satisfaction problems in the trial and error model. To achieve this, we first
adopt a formal framework for CSPs, and based on this framework we define several types of
revealing oracles. Our main contribution is to develop a transfer theorem for each type of the
revealing oracle, under a broad class of parameters. To any hidden CSP with a specific type of
revealing oracle, the transfer theorem associates another, potentially harder CSP in the normal
setting, such that their complexities are polynomial time equivalent. This in principle transfers
the study of a large class of hidden CSPs, possibly with a promise on the instances, to the
study of CSPs in the normal setting. We then apply the transfer theorems to get polynomial-
time algorithms or hardness results for hidden CSPs, including satisfaction problems, monotone
graph properties, isomorphism problems, and the exact version of the Unique Games problem.
Most of the proofs of these results are short and straightforward, which exhibits the power of
the transfer theorems.

∗Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary
(Gabor.Ivanyos@sztaki.mta.hu).

�Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (kulraghav@gmail.com).
�Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (cqtqy@nus.edu.sg).
§LIAFA, Univ. Paris 7, CNRS, 75205 Paris, France; and Centre for Quantum Technologies, National University

of Singapore, Singapore 117543 (miklos.santha@liafa.jussieu.fr).
¶Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (aarthims@nus.edu.sg).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 34 (2014)

1 Introduction

In [BCZ13a], Bei, Chen and Zhang proposed a trial and error model to study algorithmic problems
when some input information is lacking. As argued in their paper, the lack of input information can
happen when we have only limited knowledge of and access to the problem. They also described
several realistic scenarios where the inputs are actually unknown. Then, they formalized this
methodology in the complexity-theoretic setting, and proposed a trial and error model for constraint
satisfaction problems. They further applied this idea to investigate the information needed to
solve linear programming in [BCZ13b], and to study information diffusion in a social network in
[BCD+13].

As mentioned, in [BCZ13a] the authors focused on the hidden versions of some specific constraint
satisfaction problems (H–CSPs), whose instances could only be accessed via a revealing oracle. An
algorithm in this setting interacts with this revealing oracle to get information about the input
instance. Each time, the algorithm proposes a candidate solution, a trial, and the validity of this
trial is checked by the oracle. If the trial succeeds, the algorithm is notified that the proposed trial
is already a solution. Otherwise, the algorithm obtains as an error, a violation of some property
corresponding to the instance. The algorithm aims to make effective use of these errors to propose
new trials, and the goal is to minimize the number of trials while keeping in mind the cost for
proposing new trials. When the CSP is already difficult, a computation oracle that solves the
original problem might be allowed. Its use is justified as we are interested in the extra difficulty
caused by the lack of information. Bei, Chen and Zhang considered several natural CSPs in the trial
and error setting, including SAT, Stable Matching, Graph Isomorphism and Group Isomorphism.
While the former two problems in the hidden setting are shown to be of the same difficulty as in
the normal one, the last two cases have substantially increased complexities in the unknown-input
model. They also studied more problems, as well as various aspects of this model, like the query
complexity.

In this paper, following [BCZ13a], we initiate a systematic study of the constraint satisfaction
problems in the trial and error model. To achieve this, we first adopt a formal framework for CSPs,
and based on this framework we define three types of revealing oracles. This framework also helps
to clarify and enrich the model of [BCZ13a]. Our main contribution is to develop a transfer theorem
for each type of the revealing oracle, under a broad class of parameters. For any hidden CSP with
a specific type of revealing oracle, the transfer theorem associates another CSP in the normal
(unhidden) setting, such that their difficulties are roughly the same. This in principle transfers the
study of hidden CSPs to the study of CSPs in the normal setting. We also apply transfer theorems
to get results for concrete CSPs, including some problems considered in [BCZ13a], for which we
usually get much shorter and easier proofs.

The framework for CSPs, and hidden CSPs. To state our results we describe informally
the framework of CSPs. A CSP S is defined by a finite alphabet JwK = {0,1, . . . ,w − 1} and
by R = {R1, . . . ,Rs}, a set of relations over JwK of some fixed arity q. For a set of variables
V = {x1, . . . , x`}, an instance of S is a set of constraints C = {C1, . . . ,Cm}, where Cj = R(xj1 , . . . , xjq)
for some relation R ∈R and some q-tuple of variables. An assignment a ∈ JwK` satisfies C if it satisfies
every constraint in it.

Example 1.1. 1SAT: Here w = 2, q = 1, and R = {Id,Neg}, where Id = {1} is the identity relation,
and Neg = {0} is its complement. Thus a constraint is a literal xi or x̄i, and an instance is just a
collection of literals. In case of 3SAT the parameters are w = 2, q = 3 and ∣R∣ = 8. We will keep for

1

further illustrations 1SAT which is a problem in polynomial time. 3SAT would be a less illustrative
example since the standard problem is already NP-complete.

To allow for more versatility, we often consider some promise W ⊆ JwK` on the assignments, and
only look for a satisfying assignment within this promise. This case happens, say when we look for
permutations in isomorphism problems.

Recall that in the hidden setting, the algorithm interacts with some revealing oracle by repeat-
edly proposing assignments. If the proposed assignment is not satisfying then the revealing oracle
discloses certain information about some violated constraint. This can be in principle an index of
such a constraint, (the index of) the relation in it, the indices of the variables where this relation is
applied, or any subset of the above. Here we will require that the oracle always reveals the index
of a violated constraint from C. To characterize the choices for the additional information, for any
subset U ⊆ {R,V} we say that an oracle is U-revealing if it also gives out the information corre-
sponding to U . For a CSP problem S we use H–SU to denote the corresponding hidden problem
in the trial and error model with U-revealing oracle.

Example 1.1 continued. Let us suppose that we present an assignment a ∈ {0,1}` for an instance
of the hidden version H–1SATU of 1SAT to the U-revealing oracle. If U = {V} and the oracle reveals
j and i respectively for the violated constraint and the variable in it then we learn that the jth
literal is xi if ai = 0, and x̄i otherwise. If U = {R} and say the oracle reveals j and Id then we
learn that the jth literal is positive. If U = ∅ and the oracle reveals j then we only learn that the
jth literal is either a positive literal corresponding to one of the indices where a is 0, or a negative
literal corresponding to an index where a is 1.

In order to explain the transfer theorem and motivate the operations which create richer CSPs,
we first make a simple observation that H–S{R,V} and S are polynomial time equivalent, when the
relations of S are in P. Indeed, an algorithm for H–S{R,V} can solve S, as the answers of the oracle
can be given by directly checking if the proposed assignment is satisfying. In the other direction,
we repeatedly submit assignments to the oracle. The answer of the oracle fully reveals a (violated)
constraint. Given some subset of constraints we already know, to find a new constraint, we submit
an assignment which satisfies all the known constraints. Such an assignment can be found by the
algorithm for S.

With a weaker oracle this procedure clearly does not work and to compensate, we need stronger
CSPs. In the case of {V}-revealing oracles an answer helps us exclude, for the specified clause, all
those relations which were violated at the specified indices of the proposed assignment, but keep
as possibilities all the relations which were satisfied at those indices. Therefore, to find out more
information about the input, we would like to find a satisfying assignment for a CSP instance whose
corresponding constraint is the union of the satisfied relations. This naturally brings us to consider
the CSP ⋃S, the closure by union of S whose relations are from ⋃R, the closure by union of R,
which contains relations by taking union over any subset of R.

The situation with the {R}-revealing oracle is analogous, but here we have to compensate, in
the stronger CSP, for the lack of revealed information about the variable indices. For a relation R
and q-tuple of indices (j1, . . . , jq), we define the `-ary relation R(j1,...,jq) = {a ∈W ∶ (aj1 , . . . , ajq) ∈

R}, and for a set I of q-tuples of indices, we set RI = ⋃(j1,...,jq)∈I R
(j1,...,jq). The arity extension

of S is the constraint satisfaction problem E–S whose relations are from arity extension E–R
= ⋃I{R

I ∶ R ∈R} of R.
The transfer theorem first says that with ⋃S (resp. E–S) we can compensate the information

2

hidden by a {V}-revealing (resp. {R}-revealing) oracle, that is we can solve H–S{V} (resp. H–S{R}).
In fact, with ⋃E–S we can solve H–S∅. Moreover, perhaps more surprisingly, it says that these
statements also hold in the reverse direction: if we can solve the hidden CSP, we can also solve the
corresponding extended CSP.

Transfer Theorem (informal statement) Let S be a CSP whose parameters are “reasonable”
and whose relations are in P. Then for any promise W on the assignments, the complexities of the
following problems are polynomial time equivalent: (a) H–S{V} and ⋃S, (b) H–S{R} and E–S, (c)
H–S∅ and ⋃E–S.

The precise dependence on the parameters can be found in the theorems of Section 3 and
Corollary 3.5 highlights the conditions for polynomial equivalence. Example 1.1 continued.
Since ⋃{Id,Neg} = {∅, Id,Neg,{0,1}}, ⋃1SAT has only the two trivial (always false or always true)
relations in addition to the relations in 1SAT. Therefore it can be solved in polynomial time, and
by the the Transfer Theorem H–1SAT{V} is also in P. On the other hand, for any index set I ⊆ [`],

IdI is a disjunct of positive literals with variables from I, and similarly NegI is a disjunct of negative
literals with variables from I. Thus E–1SAT includes MONSAT, which consists of those instances
of SAT where in each clause either every variable is positive, or every variable is negated. The
problem MONSAT is NP-hard by Schaefer’s characterization [Sch78], and therefore the Transfer
Theorem implies that H–1SAT{R} and H–1SAT∅ are also NP-hard.

In a further generalization, we will also consider CSPs and H–CSPs whose instances satisfy some
property. One such property can be repetition freeness meaning that the constraints of an instance
are pairwise distinct. The promise H–CSPs could also be a suitable framework for discussing
certain graph problems on special classes of graphs. For a promise PROM on instances of S we
denote by SPROM the promise problem whose instances are instances of S satisfying PROM. The
problem H–SPROM

{U} is defined in an analogous way from H–S{U}.
It turns out that we can generalize the Transfer Theorem for CSPs with promises on the

instances. We describe this in broad lines for the case of {V}-revealing oracles. Given a promise
PROM on S, the corresponding promise ⋃PROM for ⋃S is defined in a natural way. We say that
a ⋃S-instance C′ includes an S-instance C if for every j ∈ [m], the constraint C ′

j in C′ and the
constraint Cj in C are defined on the same variables, and seen as relations, Cj ⊆ C

′
j . Then ⋃PROM

is the set of instances C′ of ⋃S which include some C ∈ PROM. The concept of an algorithm solving

⋃S⋃PROM has to be relaxed: while we search for a satisfying assignment for those instances which
include a satisfiable instance of PROM, when this is not the case, the algorithm can abort even if
the instance is satisfiable. With this we have:

Transfer Theorem for promise problems (informal statement) Let S be a constraint sat-
isfaction problem with promise PROM. Then the complexities of H–SPROM

{V} and ⋃S⋃PROM are
polynomial time equivalent when the parameters are “reasonable” and the relations of S are in P.

Example 1.1 continued. Let RF denote the property of being repetition free, in the case of
1SAT this just means that no literal can appear twice in the formula. Then H–1SATRF

∅ , hidden
repetition-free 1SAT with ∅-revealing oracle, is solved in polynomial time. To see this we first
consider X–1SAT, the constraint satisfaction problem whose relations are all `-ary extensions of Id
and Neg. (See Section 2 for a formal definition.) It is quite easy to see that hidden 1SAT with
∅-revealing oracle is essentially the same problem as hidden X–1SAT with {V}-revealing oracle.
Therefore, by the Transfer Theorem we are concerned with ⋃X–1SAT with promise ⋃RF. The
instances satisfying the promise are {C1, . . . ,Cm}, where Cj is a disjunction of literals such that

3

there exist distinct literals z1, . . . , zm, with zj ∈ Cj . It turns out that these specific instances of
SAT can be solved in polynomial time. The basic idea is that we can apply a maximum matching
algorithm, and only output a solution if we can select m pairwise different variables xi1 , . . . , xim
such that either xij or xij is in Cj .

Applications of transfer theorems. Since NP-hard problems obviously remain NP-hard in
the hidden setting (without access to an NP oracle), we investigate the complexity of various
polynomial-time solvable CSPs. We first apply the Transfer Theorem when there is no promise on
the instances. We categorize the hidden CSPs depending on the type of the revealing oracle.

With constraint index revealing oracles, we focus on various monotone graph properties like
Spanning Tree, Cycle Cover, etc.. We define a general framework to represent monotone graph
property problems as H–CSPs and show that they become NP-hard. This framework also naturally
extends to directed graphs.

With constraint and variable index revealing oracles, we obtain results on several interesting
families of CSPs including the exact-Unique Games Problem (cf. Section 5), equality to a member
of a fixed class of graphs, and graph properties as discussed above. Interestingly, many of the graph
properties mentioned in the last paragraph are no longer NP-hard but are in P, as well as some
other CSPs like 2SAT and the exact-Unique Game problem on alphabet size 2. Still, there are
some NP-hard CSPs, like the exact-Unique Game problem on alphabet size ≥ 3, and equality to
some specific graph, such as k-cliques. The latter problem is just the Graph Isomorphism problem
considered in [BCZ13a, Theorem 13], whose proof, with the help of the Transfer Theorem, becomes
very simple.

With constraint and relation index revealing oracles, we show that if the arity and the alphabet
size are constant, any CSP satisfying certain modest requirements becomes NP-hard.

Finally, we investigate hidden CSPs with promises on the instances. We first consider the
repetition freeness promise, as exhibited by the 1SAT example as above. Though the hidden
repetition free 1SAT problem becomes solvable in polynomial time, 2SAT is still NP-hard. The
group isomorphism problem can also be cast in this framework, and we give a simplified proof
of [BCZ13a, Theorem 11]: to compute an explicit isomorphism of the hidden group with Zp is
NP-hard.

Organization. In Section 2 we formally describe the model of CSPs, and hidden CSPs. In Sec-
tion 3, the transfer theorems are stated and proved. Section 4, 5, and 6 contain the applications of
the main theorems in the case of ∅-revealing, {V}-revealing and {R}-revealing oracles respectively.
Finally in Section 7 we present the results for hidden promise CSPs.

2 Preliminaries

The model of constraint satisfaction problems. For a positive integer k, let [k] denote the
set {1, . . . , k}. (Recall that JkK = {0,1, . . . , k − 1}.) A constraint satisfaction problem, (CSP) S, is
specified by its set of parameters and its type, both defined for every positive integer n.

The parameters are the alphabet size w(n), the assignment length `(n), the set of (admis-
sible) assignments W (n) ⊆ Jw(n)K`(n), the arity q(n), and the number of relations s(n). We
suppose that W (n) is symmetric, that is for every permutation π ∈ S`(n), if a1 . . . a`(n) ∈W (n) then
aπ(1) . . . aπ(`(n)) ∈ W (n). To simplify notations, we often omit n from the parameters, and just
write w, `,W, q and s.

4

We denote by Wq the projection of W to q coordinates, i.e. Wq = {u ∈ JwKq ∶ uv ∈W for some v ∈
JwK`−q}. A q-ary relation is R ⊆ Wq. For b in Wq, if b ∈ R, we sometimes write R(b) = T, and
similarly for b /∈ R we write R(b) = F. The type of S is a set of q-ary relations Rn = {R1, . . . ,Rs},
where Rk ⊆Wq, for every k ∈ [s]. As for the parameters, we usually just write R.

We set [`](q) = {(j1, . . . , jq) ∈ [`]q ∶ ∣{j1, . . . , jq}∣ = q}, that is [`](q) denotes the set of distinct
q-tuples from [`]. An instance of S is given by a set of m (m may depend on n) constraints
C = {C1, . . . ,Cm} over a set V = {x1, . . . , x`} of variables, where a constraint is Rk(xj1 , . . . , xjq) for

some k ∈ [s] and (j1, . . . , jq) ∈ [`](q). We say that an assignment a ∈W satisfies Cj = Rk(xj1 , . . . , xjq)
if Rk(aj1 , . . . , ajq) = T. An assignment satisfies C if it satisfies all its constraints. The size of an
instance is n +m(log s + q log `) + ` logw which includes the length of the description of C and the
length of the assignments. In all our applications the instance size will be polynomial in n. A
solution of C is a satisfying assignment if there exists any, and no otherwise.

We further introduce the following notations. For a relation R let comp(R) be the time com-
plexity of deciding the membership of a tuple in R, and for a set of relations R let comp(R) be
maxR∈R comp(R). We denote by dim(R) the dimension of R which is defined as the length of the
longest chain of relations (for inclusion) in R.

We also introduce two new operations which create richer sets of relations from a relation set.
For a given CSP S, these richer sets of relations derived from the type of S, will be the types of harder
CSPs which turn out to be equivalent to various hidden variants of S. The first operation is stan-
dard. We denote by ⋃R the closure ofR by the union operation, that is ⋃R = {⋃R∈R′ R ∶ R′ ⊆R}.
We define the (closure by) union of S as the constraint satisfaction problem ⋃S whose parameters
are the same as those of S, and whose type is ⋃R. We remark that dim(⋃R) ≤ ∣R∣.

For a relation R ∈ R and for (j1, . . . , jq) ∈ [`](q) we define the `-ary relation R(j1,...,jq) = {a ∈

W ∶ (aj1 , . . . , ajq) ∈ R}, and X–R = {R(j1,...,jq) ∶ R ∈ R and (j1, . . . , jq) ∈ [`](q)}. The set
X–R contains the natural extension of relations in R from arbitrary coordinates. If we want
to consider unions of the same relation from arbitrary coordinates, then for I ⊆ [`](q), we set
RI = ⋃(j1,...,jq)∈I R

(j1,...,jq), and define the arity extension of R, as E–R = ⋃R∈R{R
I ∶ I ⊆ [`](q)}.

Observe that E–R ⊆ ⋃ X–R = ⋃ E–R. The arity extension of S is the constraint satisfaction
problem E–S whose parameters are the same as those of S except for the arity which becomes `.
The type of E–S is E–R. The problem X–S is defined similarly, but with type X–R.

Hidden CSP in the trial and error model. Suppose that we want to solve a CSP problem
S whose parameters and type are known to us, but for the instance C, we are explicitly given
only n and the number of constraints m. The instance is otherwise specified by a revealing oracle
V for C which can be used by an algorithm to receive information about the constraints in C.
The algorithm can propose a ∈ W to the oracle which is conceived as its guess for a satisfying
assignment. If a indeed satisfies C then V answers yes. Otherwise there exists some violated
constraint Cj = Rk(xj1 , . . . , xjq), and the oracle has to reveal some information about that. We
will require that the oracle always reveals j, the index of the constraint Cj in C, but in addition, it
can also make further disclosures. These can be k, the index of the relation Rk in R; (j1, . . . , jq),
the q-tuple of indices of the ordered variables xj1 , . . . , xjq in V; or both of these. To characterize
the choices for the additional information, for any subset U ⊆ {R,V}, we require that a U-revealing
oracle VU give out the information corresponding to {C}⋃U ⊆ {C,R,V}. Thus for example a
∅-revealing oracle V∅ reveals the index j of some violated constraint but nothing else, whereas a
V-revealing oracle V{V} also reveals the indices (j1, . . . , jq) of the variables of the relation in the
clause Cj , but not the name of the relation.

5

Analogously, for every CSP S, and for every U ⊆ {R,V}, we define the hidden constraint
satisfaction problem (H–CSP) with U-revealing oracle H–SU whose parameters and type are those
of S, but whose instances are specified by a U-revealing oracle. An algorithm solves the problem
H–SU if for all n,m, for every instance C for S, specified by any U-revealing oracle for C, it outputs
a satisfying assignment if there exists any, and no otherwise. The complexity of an algorithm for
H–SU is the number of steps in the worst case over all inputs and all U-revealing oracles, where a
query to the oracle is counted as one step.

3 Transfer Theorems for Hidden CSPs

In this section we precisely state our transfer theorems between H–CSPs and CSPs with extended
types.

Theorem 3.1. (a) If ⋃S is solvable in time T then H–S{V} is solvable in time O((T+s×comp(R))×

m ×min{dim(⋃R), ∣Wq ∣}).
(b) If H–S{V} is solvable in time T then ⋃S is solvable in time O(T ×m × comp(⋃R)).

Proof. We first prove (a). Let A be an algorithm which solves ⋃S in time T . We define an
algorithm B for H–S{V}. The algorithm will repeatedly call A, until it finds a satisfying assignment
or reaches the conclusion no. The instance Ct = {Ct1, . . . ,C

t
m} of the tth call is defined as Ctj =

⋃R∈R∶R∩At
j=∅R(xjt1 , . . . , xjtq) where Atj ⊆ Wq and (jt1, . . . , j

t
q) ∈ [`](q), for j ∈ [m], are determined

successively by B. Initially A1
j = ∅ and (j11 , . . . , j

1
q) is arbitrary. If the output of A for Ct is no

then B outputs no. If the output of A for Ct is a ∈W then B submits a to the {V}-revealing oracle
V. If V answers yes then B outputs a. If the oracle does not find a satisfying, and reveals j and
(j1, . . . , jq) about the violated constraint, then B does not change Ati and (i11, . . . , i

1
q) for i ≠ j, but

sets At+1j = Atj ⋃{(aj1 , . . . , ajq)}, and (jt+11 , . . . , jt+1q) = (j1, . . . , jq). Observe that the q-tuple for the
jth constraint is changed at most once, the first time when the revealing oracle gives the index of
the jth constraint.

To prove that the algorithm correctly solves H–S{V}, let C = {C1, . . . ,Cm} be an instance of
S and let V be any {V}-revealing oracle for C. We have to show that if B answers no then C
is unsatisfiable. If B answers no, then for some t, the tth call of A resulted in output no. By
construction Atj and (jt1, . . . , j

t
q), for every j ∈ [m], are such that if R ∩ Atj ≠ ∅ then Cj can’t be

R(xj1 , . . . , xjq). Indeed, if Cj = R(xj1 , . . . , xjq) and b ∈ R ∩Atj then at the call when b was added

to Atj the oracle’s answer is incorrect. Therefore all possible remaining Rjs are included in Ctj , and

since Ct is unsatisfiable, so is C.
For the complexity of the algorithm let us remark that if for some j and t, the constraint Ctj

is the empty relation then B stops since Ct becomes unsatisfiable. This happens in particular if
Atj =Wq. Since for every call to A one new element is added to one of the Atj and at least one new

relation in R is excluded from Ctj , the number of calls is upper bounded by m×min{dim(R), ∣Wq ∣}.
To compute a new constraint, some number of relations in R have to be computed on a new
argument, which can be done in time s × comp(R).

We now prove (b). Let A be an algorithm which solves H–S{V} in time T . Without loss of
generality we suppose that A only outputs a satisfying assignment a after submitting it to the
verifying oracle. We define an algorithm B for ⋃S. Let C = {C1, . . . ,Cm} be an instance of ⋃S
where for j ∈ [m], Cj = ⋃R∈Rj

R(xj1 , . . . , xjq), for some Rj ⊆ R and (j1, . . . , jq) ∈ [`](q). The

6

algorithm B runs A, and outputs no whenever A outputs no. During A’s run B simulates a
{V}-revealing oracle V for A which we describe now. Simultaneously with V’s description we also
specify instances Ct = {Ct1, . . . ,C

t
m} of ⋃S which will be used in the proof of correctness of the

algorithm. For j ∈ [m], the constraints of Ct are defined as Ctj = ⋃R∈R∶R∩At
j=∅R(xjt1 , . . . , xjtq), where

the sets Atj ⊆ Wq are determined by the result of the tth call to the oracle. Initially A0
j = ∅. For

every request a ∈W , the algorithm B checks if a satisfies C. If it is the case then V returns a and
B outputs a. Otherwise there exists j ∈ [m] such that a violates Cj , and the answer of the oracle
is j and (j1, . . . , jq) (where j can be chosen arbitrarily among the violated constraints, if there are
several). Observe that this is a legitimate oracle for any instance of H–S{V} whose jth constraint
is arbitrarily chosen from Rj . We define At+1j = Atj ⋃{(aj1 , . . . , ajq)}, and for i ≠ j we set At+1i = Ati.

To show the correctness of B, we prove that whenever A outputs no, the instance C is unsat-
isfiable. Let us suppose that A made t queries before outputting no. An algorithm for H–S{V}
can output no only if all possible instances of S which are compatible with the answers received
from the oracle are unsatisfiable. In such an instance the jth constraint has necessarily empty
intersection with Atj , therefore we can deduce that the ⋃S instance Ct is unsatisfiable. It also holds

that Atj ⋂Cj = ∅ for every j ∈ [m], since if b ∈ Atj ⋂Cj then the request to the oracle because of

which b was added to Atj wouldn’t violate the jth constraint. Thus Cj ⊆ C
t
j , and C is unsatisfiable.

For the complexity analysis we observe that during the algorithm, for every query to the oracle
and for every constraint, one relation in ⋃R is evaluated.

Theorem 3.2. (a) If E–S is solvable in time T then H–S{R} is solvable in time O((T + ∣[`](q)∣ ×

comp(R)) ×m × ∣[`](q)∣).
(b) If H–S{R} is solvable in time T then E–S is solvable in time O(T ×m × comp(E–R)).

Proof. The proof is very similar to the proof of Theorem 3.1. We first prove (a). Let A be an
algorithm which solves E–S in time T . We define an algorithm B for H–S{R}. The algorithm will
repeatedly call A, until it finds a satisfying assignment or reaches the conclusion no. Initially, in
the first call there is no constraint, which we formally describe by C1 = {C1

1 , . . . ,C
1
m} where C1

j =W .

For t > 1, the instance of the tth call will be described via Atj ⊆ W and Itj ⊆ [`](q), for j ∈ [m],

where initially A1
1 = . . . = A1

m = ∅ and I11 = . . . = I1m = [`](q). If the output of A for Ct−1 is no
then B outputs no. If the output of A for Ct−1 is a ∈ W then B submits a to the {R}-revealing
oracle V. If V answers yes then B outputs a. If the oracle does not find a satisfying, and reveals
j and R ∈ R about the violated constraint, then B does not change At−1i and It−1i for i ≠ j, but
sets Atj = Aj ⋃{(aj1 , . . . , ajq)}, and Itj = {(j1, . . . , jq) ∶ Atj ⋂R

(j1,...,jq) = ∅}. Then the instance

Ct = {Ct1, . . . ,C
t
m} of the tth call is defined by Ctj = R

Itj .
To prove that the algorithm correctly solves H–S{R}, let C = {C1, . . . ,Cm} be an instance of

S and let V be any {R}-revealing oracle for C. We have to show that if B answers no then C
is unsatisfiable. If B answers no then for some t, the tth call of A resulted in output no. By
construction Atj and Itj are such that for every constraint Cj whose relation R has been already

revealed, if R(j1,...,jq) ∩Atj ≠ ∅ then Cj can not be R(xj1 , . . . , xjq). Indeed, if Cj = R(xj1 , . . . , xjq)

and a ∈ R ∩Atj then at the call when a was added to Atj the oracle answer is incorrect. Therefore

Ctj is the union of all possible remaining R(j1,...,jq), and since Ct is unsatisfiable, so is C.

For the complexity of the algorithm let us remark that if for some j and t, the constraint Ctj is

the empty relation then B stops since Ct becomes unsatisfiable. This happens in particular if Itj = ∅.

7

Since for every call to A, for some j the size of Itj decreases by at most one, the total number of

calls is upper bounded by m× ∣[`](q)∣.To compute a new constraints, at most ∣[`](q)∣ relations from
R evaluated in a new argument. Therefore the overall complexity is as claimed

We now prove (b). Let A be an algorithm which solves H–S{R} in time T . Without loss of
generality we suppose that A only outputs a satisfying assignment a after submitting it to the
verifying oracle. We define an algorithm B for E–S. Let C = {C1, . . . ,Cm} be an instance of E–S
where for j ∈ [m], we have Cj = R

Ij for some R ∈ R and Ij ⊆ [`](q). The algorithm B runs A,
and outputs no whenever A outputs no. During A’s run B simulates an {R}-revealing oracle
V for A which we describe now. Simultaneously with V’s description we also specify instances
Ct = {Ct1, . . . ,C

t
m} of E–S which will be used in the proof of correctness of the algorithm. Initially

C0
j = W for every j ∈ [m]. For t ≥ 1, the constraints of Ct are defined as Ctj = R

Itj , where the sets

Itj ⊆ [`](q) are Itj = {(j1, . . . , jq) ∶ Atj ⋂R
(j1,...,jq) = ∅}, and the sets Atj ⊆ Wq are determined by

the result of the tth call to the oracle. Initially A0
j = ∅. For every request a ∈W , the algorithm B

checks if a satisfies C. If it is the case then ((V returns a and)) B outputs a. Otherwise there exist
j ∈ [m] such that a violates Cj , and the answer of the oracle is j and R ∈ R. Observe that this
is a legitimate oracle for any instance of H–S{R} whose jth constraint is arbitrarily chosen from

{R(j1,...,jq) ∶ (j1, . . . , jq) ∈ Ij}. We define At+1j = Aj ⋃{(aj1 , . . . , ajq)}, and for i ≠ j we set At+1i = Ati.
To show the correctness of B, we prove that whenever A outputs no, the instance C is unsatis-

fiable. Let us suppose that A made t queries before outputting no. An algorithm for H–S{R} can
output no only of all possible instances of S which are compatible with the answers received from
the oracle are unsatisfiable. In such an instance the jth constraint has necessarily empty intersec-
tion with Atj , therefore we can deduce that the E–S instance Ct is unsatisfiable. It also holds that

Atj ⋂Cj = ∅ for every j ∈ [m], since if a ∈ Atj ⋂Cj then the request to the oracle because of which

a was added to Atj wouldn’t violate the jth constraint. Thus Cj ⊆ C
t
j , and C is unsatisfiable.

For the complexity analysis we just have to observe that during the algorithm, for every query
to the oracle and for every constraint, one relation in E–R is evaluated.

Theorem 3.3. (a) If ⋃E–S is solvable in time T then H–S∅ is solvable in time O((T +s× ∣[`](q)∣×
comp(R)) ×m × dim(⋃E–R)).
(b) If H–S∅ is solvable in time T then ⋃E–S is solvable in time O(T ×m × comp(⋃E–R)).

Theorem 3.4. (a) If ⋃X–S is solvable in time T then H–S∅ is solvable in time O((T +s× `!
(`−q)! ×

comp(R)) ×m × dim(X–R)).
(b) If H–S∅ is solvable in time T then ⋃X–S is solvable in time O(T ×m × comp(⋃X–R)).

Proof. Apply Theorem 3.1 to X–S and observe that H–X–S{V} and H–S∅ are essentially the same
in the sense that an algorithm solving one of the problems also solves the other one. Indeed,
the variable index disclosure of the {V}-revealing oracle is pointless since the relations in X–S
involve all variables. Moreover, the map sending a constraint R(xj1 , . . . xjq) of S to the constraint

R(j1,...,jq)(x1, . . . x`) of X–S is a bijection which preserves satisfying assignments.

Corollary 3.5. Let comp(R) be polynomial. Then the complexities of the following problems are
polynomial time equivalent: (a) H–S{V} and ⋃S if the number of relations s is constant, (b) H–S{R}
and E–S if the arity q is constant, (c) H–S∅ and ⋃E–S if both s and q are constant.

8

The polynomial time equivalence of Theorems 3.1, 3.2, 3.4 and Corollary 3.5 remain true when
the algorithms have access to the same computational oracle. Therefore, we get generic easiness
results for H–CSPs under an NP oracle.

4 Constraint-index Revealing Oracle

In this section, we present some applications of our transfer theorems in the context of the
constraint-index revealing oracle. Here we propose a framework for monotone graph properties
to present our examples. Recall that a monotone graph property of an n-vertex graphs is a mono-
tone Boolean function P on (

n
2
) variables. The the CSP SP associated with P has parameters

w = 2, q = 1, ` = (
n
2
), WP = {A ∣ A is a graph with minimal number of edges satisfying P}, and

R = {Neg}, where Neg is the negation function. The goal is to decide, given a graph G = (V,E),
whether there exists an A ∈WP such that A ⊆ G. The corresponding constraints are e ∉ A for every
e ∉ E. We have X–R = {Nege ∣ e ∈ (

n
2
)}, where Nege(α1, . . . , α(n

2
)) = ¬αe. Thus, the ⋃X–SP prob-

lem becomes the following: given a graph G = (V,E), and E1, . . . ,Em ⊆ (
[n]
2
), does there exist an

A ∈WP such that A ⊆ E and A excludes at least one edge from each Ei? This framework naturally
extends to directed graphs. Also monotone decreasing properties can be treated by replacing Neg
with Id.

From Theorem 3.3, the complexity of H–SP can be analyzed by considering the complexity of

⋃X–SP . We do this for the following graph properties:
1. Spanning Tree (ST): the property of being connected
2. Directed Spanning Tree (DST): the property of containing a directed spanning tree rooted at
vertex (say) 1 such that all the edges of the spanning tree are directed towards the root.
3. Undirected Cycle Cover (UCC): the property of containing an undirected cycle cover (union of
vertex disjoint cycles such that every vertex belongs to some cycle)
4. Directed Cycle Cover (DCC): the property of containing a directed cycle cover (union of vertex
disjoint directed cycles such that every vertex belongs to some cycle)
5. Bipartite Perfect Matching (BPM): the property of having a perfect matching in a bipartite
graph
6. Directed Path (DPATH): the property of containing a directed path between two specified
vertices s and t.
7. Undirected Path (UPATH): the property of containing an undirected path between two specified
vertices s and t.

Theorem 4.1. The following problems are NP-hard: (1) H–ST∅, (2) H–DST∅, (3) H–UCC∅, (4)
H–DCC∅, (5) H–BPM∅, (6) H–DPATH∅, (7) H–UPATH∅.

Proof. We show that the following problems in the hidden model with the constraint index revealing
oracle are NP-hard.

(1) Spanning Tree (H–ST∅)
Here P is connectedness and A is the set of Spanning Trees on n-vertices.

Proof. Given G = (V,E), for every vertex v ∈ V, we consider (
n−1
3

) subsets Evijk ∶ 1 ≤ i < j <
k ≤ n, where Evijk ∶= {{v, i},{v, j},{v, k}}. With this choice of Evijks the ⋃X–ST problem
becomes: does there exist a spanning tree in G which avoids at least one edge from each

9

Evijk. This is exactly the HAM−PATH problem in G, i.e., does G contain a Hamiltonian path.
Hence from Theorem 3.3(b), the former is NP-hard.

(2) Directed Spanning Tree (H–DST∅)
Here P is the property that the graph contains a directed spanning tree rooted at vertex (say)
1 such that all the edges of the spanning tree are directed towards the root. Then A is the
set of directed spanning trees rooted at vertex 1.

Proof. Let G = (V,E), be a directed planar graph such that the indegree and the outdegree
for every vertex is at most 2. The DHAM−PATH problem in such a G, i.e, does G contain a
directed Hamiltonian path ending at node 1, is NP-hard [GJ79]. Our goal is to reduce the
DHAM−PATH problem in G to the H–DST∅ problem in G.

For every vertex v ∈ V, let Ev ∶= {(i, v) ∣ (i, v) ∈ E}, where ∣Ev ∣ ≤ 2 by our choice of G.

With this choice of Evs the ⋃X–DST problem becomes the DHAM−PATH problem in G.
Hence from Theorem 3.3(b), the former is NP-hard.

(3) Undirected Cycle Cover (H–UCC∅)
Here P is the property of containing an undirected cycle cover (union of vertex disjoint cycles
such that every vertex belongs to some cycle) and A is the set of undirected cycle covers on
n-vertices.

Proof. From Hell et al. [HKKK88] we know that the problem of deciding whether a graph
has a UCC that does not use the cycles of length (say) 5 is NP-hard. This problem can be
expressed as ⋃X–UCC by choosing the subsets EC ∶= {e ∣ e ∈ C} for every length 5 cycle C in
G.

(4) Directed Cycle Cover (H–DCC∅)
Here P is the property of containing a directed cycle cover (union of vertex disjoint directed
cycles such that every vertex belongs to some cycle) and A is the set of directed cycle covers
on n-vertices.

Proof. From [GJ79] we know that the problem of deciding whether a graph has a DCC that
does not use cycles of length 1 and 2 is NP-hard. This problem can be expressed as ⋃X–DCC
by choosing the subsets EC ∶= {e ∣ e ∈ C} for every length 1 and length 2 cycle C in G.

(5) Bipartite Perfect Matching (H–BPM∅)
Here P is the property of containing a perfect matching in a bipartite graph and A is the set
of perfect matchings in a complete bipartite graph with n-vertices on each side.

Proof. There is a one to one correspondence between perfect matchings in a bipartite graph
G = (A∪B,E) with n vertices on each side and the directed cycle covers in graph G′ = (V ′,E′)
on n vertices. Every edge (i, j) ∈ E′ corresponds to an undirected edge {iA, jB} ∈ E. With
this correspondence H–BPM∅ in G becomes H–DCC∅ in G′. Thus from Theorem 4.1(4) the
former becomes NP-hard.

10

(6) Directed Path (H–DPATH∅)
Here P is the property of containing a directed path between two specified vertices s and t.
A is the set of directed paths from s to t.

Proof. It is known that given a layout of a graph on a plane possibly containing crossings,
the problem of deciding whether there is a crossing-free path from s to t is NP-hard [KLN91].
One can express this condition by picking Eis to be the set of pairs of edges that cross.

(7) Undirected Path (H–UPATH∅)
Here P is the property of containing a undirected path between two specified vertices s and
t. A is the set of undirected paths from s to t.

Proof. Apply the same proof method as the one used for the H–DPATH∅ problem on an
undirected graph.

This completes the proof for Theorem 4.1

5 Constraint-index and Variable-index Revealing Oracle

In this section, we present some applications of our transfer theorem when the index of the constraint
and the indices of the variables participating in that constraint are revealed. We consider following
CSPs:

1. Deltas on Triplets (∆): w = 2, q = 3, and R = {Rabc ∶ {0,1}3 → {T,F} ∣ a, b, c ∈ {0,1}}, where
Rabc(x, y, z) ∶= (x = a) ∧ (y = b) ∧ (z = c).

2. Subgroup Non-cover (SUBGRP−NC[S]): Given a group G of size n and a class, S, of
subgroups of G, i.e. S ⊆ {H ∣ H ≤ G}, the subgroup non-cover problem asks if ∃ g ∈ G such that
g ∉ ⋃H∈S′H where S′ ⊆ S. Formally, ` = 1, w = n, q = 1, W = G and RS = {RH ∣ H ∈ S} where
RH(a) evaluates to T if and only if a ∉ H. A special case is Hyperplane Non-Cover (HYP−NC):
G = ZNp and S = {all hyperplanes in ZNp }.

3. Arbitrary sets of binary relations on Boolean alphabet, in particular, the 2-SAT Prob-
lem (2SAT): w = 2, q = 2, and R = {RT ,RF ,Ra,Rb,R¬a,R¬b,Ra∨b,Ra∨¬b,R¬a∨b,R¬a∨¬b}, where
for (α,β) ∈ {T,F}q, RT (α,β) ∶= T,RF (α,β) ∶= F,Ra(α,β) ∶= α,Rb(α,β) ∶= β,R¬a(α,β) ∶= ¬α,
R¬b(α,β) ∶= ¬β,Ra∨b(α,β) ∶= α ∨ β,Ra∨¬b(α,β) ∶= α ∨ ¬β,R¬a∨b(α,β) ∶= ¬α ∨ β,R¬a∨¬b(α,β) ∶=
¬α ∨ β.

4. Exact-Unique Game Problem (UG[k]): Given an undirected graph G = (V,E) and given a
permutation πe ∶ JkK→ JkK, for every edge e ∈ E, the goal is to decide if one can assign labels αv ∈ JkK
for every vertex v ∈ V such that for every edge e = {u, v} ∈ E with u < v we have πe(αu) = αv.
Formally: w = k, q = 2 and R = {π ∶ JkK→ JkK ∣ π is a permutation}.

5. k-Clique Isomorphism (kCLQ–ISO): Given an undirected graph G = (V,E), does there exist a
permutation π on [n] such that: (a) ∀(i, j) ∈ E, R≤k(π(i), π(j)); (b) ∀(i, j) ∉ E, ¬R≤k(π(i), π(j)).
Formally: W = set of permutations on [n], w = n, q = 2, and R = {R≤k,¬R≤k}, where R≤k(α,β) ∶=
T ⇐⇒ α ≤ k & β ≤ k.

6. Polynomial time Solvable Graph Properties (Ppoly): The framework for graph properties is
the same as defined in Section 4. Here we study them with {V}-revealing oracle.

11

7. Equality to some member in a fixed class of graphs (EQK): For a fixed class K of graphs on

n vertices, we denote by PK ∶ {0,1}(
n
2
) → {T,F} the property of being equal to a graph from K.

Formally, W = K, w = 2, q = 1, ` = (
n
2
), and R = {Id,Neg}.

(a) Equality to k-Clique (EQkCLQ): Given a graph, decide if it is equal to a k-clique.

(b) Equality to Hamiltonian Cycle (EQHAMC): Decide if G is a cycle on all n vertices.

(c) Equality to Spanning Tree (EQST): Given a graph, decide if it is a spanning tree.

Theorem 5.1. The following problems are in polynomial time: (a) H–2SAT{V}, (b) H–UG[2]{V},

(c) H–Ppoly{V}, (d) H–EQST{V}.

Theorem 5.2. The following are NP-hard: (a) H–∆{V}, (b) H–HYP−NC{V}, (c) H–UG[k]{V} for
k ≥ 3, (d) H–kCLQ–ISO{V}, (e) H–EQkCLQ{V}, (f) H–EQHAMC{V}.

Proof of Theorem 5.1. We show that the following problems in the hidden model with the con-
straint and variable index revealing oracle are solvable in polynomial time.

(a) Arbitrary binary Boolean relations (H–2SAT{V})

Proof. We claim that ⋃R =R. Hence, ⋃2SAT = 2SAT, which is in P.

Therefore, from Theorem 3.1(a), H–2SAT{V} is also in P.

The above proof can be extended to an arbitrary set R′ of binary relations as follows. Let R′′

stand for the set of all binary relations in Boolean variables. We trivially have ⋃R′ = R′′,
therefore an instance of H–2SAT{V} can actually be described by a conjunction of the form

⋀
m
k=1Rk(xik , xjk) where Rk is a binary relation. Expressing each Rk by a Boolean formula in

conjunctive normal form, we obtain an instance of 2SAT consisting of O(m) clauses, which
can be solved in polynomial time.

(b) Unique Games (H–UG[2]{V})

Proof. Note that UG[2] is an instance of 2SAT, hence from Theorem 5.1(a), H–UG[2]{V} is
in P.

(c) Polynomial time solvable graph Properties (H–Ppoly{V})

Proof sketch. Note that the variable indices being returned for a violated edge allow us to
learn the exact endpoints of the edge. Since there are at most n2 edges in a graph, we can
learn which of those n2 edges are absent in the graph using a polynomial number of queries.
Hence, we can reconstruct the hidden graph and solve for the required graph property in
polynomial time.

(d) Equality/Isomorphism to a member in a fixed class of graphs
We define the H–EQK{V} problem in more detail. Let K be a class of graphs on n vertices.

Similar to the definitions in Section 4, we define PK ∶ {0,1}(
n
2
) → {T,F} as the graph property

of being equal to a graph from K. Correspondingly, W = K.

12

Formally, for PK we consider the CSP EQK with w = 2, q = 1, W = {α ∈ {0,1}(
n
2
) ∣ α ∈ K}, ` =

(
n
2
), and R = {Id,¬}. Given a graph instance G1 = (V1,E1) in this model, the (

n
2
) constraints

for G1 are such that Ce = Id(αe) for e ∈ E and Ce = ¬(αe) otherwise.

This implies that ⋃R = {Id,¬,T} and the ⋃EQK problem becomes: given sets E1,E2 such
that E1 ⊆ E2, does there exist a graph G ∈ K such that E1 ⊆ G ⊆ E2?

From Theorem 3.1, the complexity of H–EQK, can be analyzed by considering the complexity
of ⋃EQK. Hence, we analyze the complexity of ⋃EQK for some examples below.

Remark 5.3. For any K, if we take E1 = ∅, then solving EQK becomes equivalent to finding
out if there exists G ∈ K which is a subgraph of E2.

Remark 5.4. Note that if we assume that K is the set of all graphs isomorphic to some G0

and E1 = E2 as arbitrary graphs on n vertices, then solving EQK becomes equivalent to finding
out if E2 is isomorphic to G0.

Proof for Equality to a Spanning Tree (H–EQST{V}). Here, K is the set of all possible Span-
ning Trees on n vertices and E1 without loss of generality is a forest F . E2 is any arbitrary
graph on n vertices containing E1. In this case, the ⋃EQK problem becomes equivalent to
finding a spanning tree on E2 which also contains the forest F . This problem is in P .

This completes the proof for Theorem 5.1.

Proof of Theorem 5.2. We show that the following problems in the hidden model with the con-
straint and variable index revealing oracle are NP-hard.

(a) Deltas on Triplets (H–∆{V})

Proof. We claim that ⋃R is the set of all Boolean predicates on 3 variables. Thus, 3SAT can
be expressed as the ⋃∆ problem. Hence, from Theorem 3.1(b), H–∆{V} is NP-hard.

(b) Subgroup non-cover
Let B = {⋂H∈S′H ∣ S′ ⊆ S}. Thus, ⋃RS = {R′

D ∣ D ∈ B} where R′
D evaluates to T if a ∉ D

and F otherwise. Then the ⋃SUBGRP−NC[S] problem asks if ∃ g ∈ G such that g ∉ ⋃D∈BD

Remark 5.5. If S was just the set of all subgroups of G then any B = ⋂H∈H′H where
H ′ ⊆ S is also a subgroup of G. Hence, the ⋃SUBGRP−NC[S] problem is the same as the
SUBGRP−NC[S] problem.

Proof for Hyperplane Non-cover (H–HYP−NC{V}). Consider the hyperplane non-cover prob-

lem (HYP−NC) which is the solvability of homogeneous linear in-equations in ZNp . The

HYP −NC problem over ZN3 includes the 3COL problem and is already NP-hard. Hence, we
consider the H–HYP−NC{V} problem over ZN2 . In this setting, ⋃HYP−NC problem becomes

equivalent to the SUBGRP−NC[S] problem where S is the set of all possible subgroups of ZN2 .
This problem becomes NP-hard as the it includes non-cover by subgroups of index 4 which
encompasses the 4COL problem. Hence, the former will be NP-hard using Theorem 3.1.

13

(c) Unique games (H–UG[k]{V} for k ≥ 3)

Proof. UG[3] is a CSP with w = 3, q = 2, and R = {π ∶ J3K→ J3K ∣ π is a permutation}. Let

R○
∶= ⋃
π∶(∀i)(π(i)≠i)

π.

Note that R○ ∈ ⋃R. Choosing R○ as the constraint for every edge gives us the 3COL problem.

Hence, from Theorem 3.1(b), H–UG[3]{V} is NP-hard.

Remark 5.6. Our proof method also shows that H–UG[k]{V} is NP-hard for any k > 2.

(d) k-clique Isomorphism (H–UG[k]{V} for k ≥ 3)

Proof. If we omit Constraint (1), i.e., replace it by the constraint ∀(i, j) ∈ E, R≤k ∨¬R≤k, we
obtain the kCLQ problem (deciding whether the graph contains a k-clique) which is NP-hard.

Hence from Theorem 3.1(b), the H–kCLQ–ISO{V} problem is NP-hard.

(e) Equality to a k-Clique (H–EQkCLQ{V})
We use the framework defined in the previous proof for the H–EQST{V} problem.

Proof. As mentioned in the previous remark, consider K to be the set of all possible k-cliques
on n vertices and E1 = E2 parametrized by the hidden input. For this K, the ⋃EQK problem
now becomes equivalent to finding a k-clique on E2 which is NP-hard.

Remark 5.7. The above proof also serves as an alternate proof for Theorem 5.2(d).

(f) Equality to a Hamiltonian Cycle (H–EQHAMC{V})
We use the framework defined in the previous proof for the H–EQST{V} problem.

Proof. Here, K is the set of all possible Hamiltonian Cycles on n vertices and E1 without loss
of generality is a Hamiltonian Cycle C = {1,2, . . . , n}. E2 is any arbitrary graph containing
E1. In this case, the ⋃EQK problem becomes equivalent to deciding if E2 has a Hamiltonian
Cycle, which is NP-hard.

This completes the proof for Theorem 5.2

6 Constraint-index and Relation-index Revealing Oracle

Theorem 6.1. Let S be a CSP with constant arity and alphabet size w. Assume that for every
α ∈ JwK, there is a non-empty relation Rα ∈R such that (α, . . . , α) /∈ R. Then, H–S{R} is NP-hard.

14

Proof. We show that E–S is NP-hard. We will reduce to it the problem E–3SAT which consists
of those instances of 3SAT where in each clause either every variable is positive, or every vari-
able is negated. That MONSAT is NP-complete can be deduced, for example, from Schaefer’s
characterization [Sch78].

Let q′ = (w − 1)q + 1 and let R′ ⊆ JwKq
′

be the set of q′-ary relations that can be obtained
as an extension of an element of R ∖ {∅} from any q coordinates. Since q and w are constant,
the cardinality of R′ is also constant. We claim that ⋂R∈R′ R = ∅. Indeed, every a ∈ JwKq

′

has
a subsequence (α, . . . , α) of length q for some α ∈ JwK, therefore the extension of Rα from these
q coordinates does not contain a. Let {R0,R1, . . . ,Rh} be a minimal subset of R′ such that

⋂
h
i=0R

i = ∅. Since the empty relation is not in R′, we have h ≥ 1. Let us set A0 = ⋂i≠1R
i and

A1 = ⋂i≠0R
i. Then A0

⋂A1 = ∅, and because of the minimality condition, A0 ≠ ∅ and A1 ≠ ∅. For
a boolean variable x, we will use the notation x1 = x and x0 = x̄. The main idea of the proof is
to encode a boolean variable x1 by the relation A1 and x0 by A0. We think about the elements of
A1 as satisfying x1, and about the elements of A0 as satisfying x0. Then x1 and x0 can be both
satisfied, but not simultaneously.

We suppose without loss of generality that ` is a multiple of q′, and we set `′ = `/q′. Since q′ is
constant, MONSAT on `′ variables is still NP-hard. We take `′ pairwise disjoint blocks of size q′ of
the index set [`] and on each block we consider relations R0, . . . ,Rh. We denote by Rik the `-ary
relation which is obtained by extending Ri from the kth block. Observe that the relations Rik are
just extensions of elements of R.

Let K = ⋀
u
t=1Kt be an instance of E–3SAT in `′ variables, with each 3-clause of the form

Kt = x
bt
t1
∨ xbtt2 ∨ x

bt
t3
, where t1, t2, t3 are indices from [`′] and bt is either 0 or 1. Then we map K to

the instance C whose constraints are
Rbtt1 ∪R

bt
t2
∪Rbtt3 ,

for each t ∈ [u], and
Cik = R

i
k,

for each k ∈ [`′] and i ∈ {2, . . . , h}. This is an instance of MONSAT since the three relations Rbtt1 ,

Rbtt2 and Rbtt3 are the extensions of the same relation in R. It is quite easy to see that K is satisfiable
if and only if C is satisfiable. Indeed, a satisfying assignment a for the C can be translated to a
satisfying assignment for K by assigning 0 or 1 to xk according to whether the kth block of a was in
A0
k or A1

k (taking an arbitrary value if it was in none of the two). Similarly, a satisfying assignment

b for K can be translated to a satisfying assignment a for C by picking any element of Abkk for the
kth block of a.

An immediate consequence is that under the same conditions H–S∅ is NP-hard too. For an
application of this consequence, let LINEQ stand for the CSP in which that alphabet is identified
with a finite field F and the `-ary constraints are linear equations over F .

Claim 6.2. H–LINEQ∅ is NP-hard.

Proof. For each i ∈ `, we pick two equations: xi = 0 and xi = 1. Observe that xi = 0 is the same
as {0}i, the `-ary extension of the unary relation {0} on the ith position and we have the same if
we replace 0 by 1. By the above observation, the H–CSPs built from relations of these type are
NP-hard.

15

7 Hidden CSPs with Promise on Instances

In this section we consider an extension of the H–CSP framework where the instances satisfy
some property. For the sake of simplicity, we develop this subject only for the constraint index
revealing model. Formally, let S be a CSP, and let PROM be a subset of all instances. Then S
with promise PROM is the CSP SPROM whose instances are only elements of PROM. One such
property is repetition freeness where the constraints of an instance are pairwise distinct. We denote
by RF the subset of instances satisfying this property. For example 1SATRF, (as well as H–1SATRF)
consists of pairwise distinct literals. Such a requirement is quite natural in the context of certain
graph problems where the constraints are inclusion (or non-inclusion) of possible edges The promise
H–CSPs framework could also be suitable for discussing certain graph problems on special classes
of graphs (e.g, connected graphs, planar graphs, etc.).

We would like to prove an analog of the transfer theorem with promise. Let us be given a
promise PROM for the CSP S of type R = {R1, . . . ,Rs}. The corresponding promise ⋃PROM for

⋃S is defined quite naturally as follows. We say that an instance C = (C1, . . . ,Cm) of S, where
Cj = Rkj(xj1 , . . . , xjq), is included in an instance C′ = (C ′

1, . . . ,C
′
m) of ⋃S if for every j = 1, . . . ,m

C ′
j = Qj(xj1 , . . . , xjq) for Qj ∈ ⋃R such that Rkj ⊆ Qj . Then ⋃PROM is defined as the set of

instances in C′ ∈ ⋃S which include C ∈ PROM. In order for the transfer theorem to work, we relax
the notion of a solution. A solution under promise for C′ ∈ ⋃PROM has to satisfy two criteria: it
is a satisfying assignment when C′ includes a satisfiable instance C ∈ PROM, and it is exception
when C′ is unsatisfiable. However, when all the instances C ∈ PROM included in C′ are unsatisfiable
but C′ is still satisfiable, it can be either a satisfying assignment or exception. We say that an
algorithm solves ⋃S⋃PROM under promise if ∀C′ ∈ ⋃PROM, it outputs a solution under promise.

Using the above definition in the transfer theorem’s proof allows the algorithm for H–S{V} to
terminate, at any moment of time, with the conclusion no as soon as it gets enough information
about the instance to exclude satisfiability and without making further calls to the revealing oracle.
In some ambiguous cases, it can still call the oracle with an assignment which satisfies the ⋃S-
instance. Other cases when the satisfiability of a ⋃S-instance with promise implies the existence
of a satisfiable promise-included instance lack this ambiguity. With these notions the proof of
Theorem 3.1 goes through and we obtain the following.

Theorem 7.1. Let SPROM be a promise CSP. (a) If ⋃S⋃PROM is solvable under promise in time
T then H–SPROM

{V} is solvable in time O((T + s × comp(R)) ×m ×min{dim(⋃R), ∣Wq ∣}).

(b) If H–SPROM
{V} is solvable in time T then ⋃S⋃PROM is solvable under promise in time O(T ×m×

comp(⋃R)).

We apply Theorem 7.1 to the following problems: (1) H–1SATRF
∅ , repetition free H–1SAT; (2)

H–2SATRF
∅ , repetition free H–2SAT; (3) H–2COLRF∅ , repetition free H–2COL; (4) H–kWEIGHTRF

∅
the repetition free hidden version of the following problem. Informally, the problem kWEIGHT
decides if a 0-1 string has Hamming weight at least k. The type of kWEIGHT can be described
as follows. We have w = 2, q = 1 and R = {{0}} and W consists of words of length ` having
Hamming weight k. An instance of kWEIGHT is a collection (C1, . . . ,Cm) of constraints of the
form xij = 0 (formally, Cj = {0}ij). (The string behind these constraints is b where bt = 0 if and
only if t ∈ {i1, . . . , im}.) In a repetition free instance we have ∣{i1, . . . , im}∣ =m.

Theorem 7.2. (a) Repetition free H–1SAT∅ with constraint index revealing oracle is easy, that is
H–1SATRF

∅ ∈ P. (b) H–kWEIGHT∅ is NP-hard for certain k, but H–kWEIGHTRF
∅ ∈ P for every k.

16

(c) Repetition free H–2SAT, with constraint index revealing oracle is easy, that is, H–2SATRF
∅ is

NP-hard. (d)Repetition free H–2COL, that is H–2COLRF∅ is NP-hard.

Proof. We prove each part of the theorem separately:

(a) We consider every literal as its extended n-ary relation where n is the number of variables.
This transforms the ∅-oracle into a {V}-oracle. A repetition free instance of ⋃1SAT is C =

{C1, . . . ,Cm}, where each Cj is a disjunction of literals from {x1, x1, . . . , xn, xn} such that
there exist m distinct literals z1, . . . , zm with zj from Cj . A conjunction of literals is satisfiable,
if for every i ∈ [n], the literals xi and xi are not both among them. Hence an algorithm which
solves H–1SATRF

∅ under promise can proceed as follows. Using a maximum matching algorithm
it selects pairwise different variables xi1 , . . . , xim such that hat xij or xij is in Cj . If such
a selection is not possible it returns exception. Otherwise it can trivially find a satisfying
assignment.

(b) Recall that an instance of kWEIGHT is a collection {C1, . . . ,Cm} of constraints of the form
xij = 0 (formally, Cj = {0}ij). (The string behind these constraints is b where bt = 0 if and only
if t ∈ {i1, . . . , im}.) Again, we consider the `-ary relations so that the ∅-oracle is transformed
into a {V}-oracle.

An instance of ⋃kWEIGHT is C′ = {C ′
1, . . . ,C

′
m}, where there exist subsets S1, . . . , Sm of [`]

such that the relation for Cj is the set {a ∈ JwK` ∶ ai = 0 for some i ∈ Sj}. Finding a satisfying
instance of ⋃R is therefore equivalent to finding a hitting set (a transversal) of size (at most)
` − k for the hypergraph {S1, . . . , Sm}. This problem is NP-hard for, say, 0.01` < k < 0.99`.

A kWEIGHTRF-instance included in an instance of ⋃kWEIGHT⋃RF corresponding to subsets
S1, . . . , Sm consists of constraints xij ≠ 0 for m different indices i1, . . . , im with ij ∈ Sj . Obvi-
ously, such a set of constraints is satisfiable by an element of W if and only if m ≤ `−k. These ob-
servations immediately give the following efficient solution under promise for ⋃kWEIGHT⋃RF.
If m > ` − k we return exception. Otherwise, using a maximum matching algorithm we find
m different places i1, . . . , im with ij ∈ Sj (which must exist by the promise) and return an
assignment from W which can be found in an obvious way.

(c) Again, in order to work in the framework of a {V}-oracle rather than a ∅-oracle, we consider
every clause as its extended n-ary relation where n is the number of variables. This transforms
the ∅-oracle into a {V}-oracle. We reduce 3SAT to ⋃2SAT⋃RF as follows. Let φ = ⋀

m
t=1Cj be

a 3−CNF where
Cj = x

b1(t)
j1(t) ∨ x

b2(t)
j2(t) ∨ x

b3(t)
j3(t).

(Here bi(t) ∈ {0,1} and x1 denotes x, x0 stands for x.) For each t = 1, . . . ,m we introduce a
new variable yt. We will have 2m new clauses:

C ′
j = x

b1(t)
j1(t) ∨ x

b2(t)
j2(t) ∨ x

b3(t)
j3(t) ∨ y

0
t and C ′′

j = x
b1(t)
j1(t) ∨ x

b2(t)
j2(t) ∨ x

b3(t)
j3(t) ∨ y

1
t

for each t. Put φ′ = ⋀mt=1(C
′
j ∧C

′′
j). Then φ is satisfiable if and only if φ′ is satisfiable. In fact,

there is a 1 to 2m correspondence between the assignments satisfying φ and those satisfying
φ′: only the values assigned to the first ` variables matter. Also, the included constraints

(x
b1(t)
j1(t) ∨ y

1
t) and (x

b1(t)
j1(t) ∨ y

0
t) for all t = 1, . . . ,m form a system of 2m different 2−CNFs.

Furthermore, if φ′ is satisfied by an assignment then we can select a satisfiable system of 2m

17

pairwise distinct sub-constraints: for each t we pick s ∈ {1,2,3} such that xbs
js(t) is evaluated to

1 and take (xbs
js(t) ∨ y

1
t) and (xbs

js(t) ∨ y
0
t) for t = 1, . . . ,m.

(d) Here the alphabet is J2K = {0,1}, q = 2, R has one element ”≠”, that is {(1,0), (0,1)}. An
instance of 2COLRF consists of a set of constraints of the form xu ≠ xv for m pairwise distinct
unordered pairs {u, v} from {1, . . . , `} (corresponding to the edges of a graph). (Here we again
work in the context of the extensions of the relation ”≠” to arity ` = n.)

An instance of ⋃2COL is a collection {C1, . . . ,Cm}, where each Cj is a disjunction of constraints
of the form xu ≠ xv. In an equivalent view, an instance of ⋃2COL can be described by the
collection of edge sets (graphs) E1, . . . ,Em on vertex set [n] and a satisfying assignment can be
described by a coloring c ∶ {1, . . . , n}→ {0,1} such that for every j there exists an edge ej ∈ Ej
with endpoints having different colors. It is clear that if the edge sets E1, . . . ,Em are disjoint
then the instance is repetition free and the solutions under promise coincide with the solutions
in the normal sense.

Let E1, . . . ,Em be edge sets describing an instance of ⋃2COL. Put sj = ∣Ej ∣. For each j
we introduce 2sj new vertices: uvj1, uvj2 for each {u, v} ∈ Ej , 2sj new one-element edge sets
Euvj1 = {{u,uvj1}} and Euvj2 = {{v, uvj2}}; while Ej is replaced with an edge E′

j set consisting
of sj edges: {uvj1, uvj2} for each {u, v} ∈ Ej . It turns out that the ⋃2COL problem on the
n + 2∑mj=1 sj vertices with the new m + 2∑mj=1 sj edge sets is equivalent to the original one and
solutions of the two problems can be easily (and efficiently) mapped to each other. We have
that the new edge sets are pairwise disjoint and hence the repetition free version of the new

⋃2COL is the same as the the non-promise version.

Theorem 6.1 shows that non-promise ⋃2COL is NP-hard. By the reduction above, so is its
repetition free version.

On group isomorphisms

Isomorphism of a hidden multiplication table with a given group, a problem discussed in [BCZ13a],
can also be cast in the framework of promise H–CSPs. We consider the following problem GROUPEQ
(equality with a group from a class). Let G be a family of groups on the set [k], that is, a set of
multiplication tables on [k] such that each multiplication defines a group. The task is to decide
whether a hidden group structure b(,) is equal to some a(,) from G and if yes, find such an a(,).
(Note that a solution of the latter task will give the whole table for b(,).) For instance, G may
consist of all isomorphic copies on [k] of a given group G having k elements. In that case, up to
possibly an overhead of complexity kO(log k), the search problem is equivalent to finding an isomor-
phism between G and the group H given by [k]. This is because given a mapping φ ∶ G→ [k] we can
easily compute the unique multiplication table on [k] which defines a group such that φ becomes
an isomorphism, and, conversely, given a group H with its multiplication table we can find an
isomorphism G→H in time kO(log k). (Of course, for abelian groups this overhead is polynomial.)

We define GROUPEQ(G) as a promise CSP as follows. First we consider the CSP ENTRIES(G)
with the following parameters and type. We have w = k, W = G, R = {{w} ∶ w ∈ [k]}, ` = k2. It
will be convenient to consider assignments as k × k tables with entries from [k], that is, functions
[k]2 → [k]. (Implicitly, we use a bijection between the index set {1, . . . , `} and [k]2.) The number of

18

constrains is m = k2 and an instance is a collection x(uh,vh) = bh (h = 1, . . . ,m). Thus the assignment
satisfying ENTRIES(G) are k × k multiplication tables from G which have prescribed values at k2

(not necessarily distinct) places.
We say that an instance for ENTRIES(G) belongs to the promise GROUP if two conditions

are satisfied. Firstly, there is one constraint for the value taken by each place. Formally, the
map τ ∶ h ↦ (uh, vh) is a bijection between {1, . . . ,m} and [k]2. As a consequence, by setting
b(u, v) ∶= bτ−1(u,v), we have a constraint xu,v = b(u, v) for pair (u, v) ∈ [k]2. The second – essential
– condition is that the multiplication given by b(,) defines a group structure on [k]. The promise
problem GROUPEQ(G) is the problem ENTRIES(G)GROUP.

We consider the promise problem H–ENTRIES(G)GROUP
{V } (which we denote by H–GROUPEQ(G)

for short) and the corresponding problem⋃ENTRIES(G)⋃GROUP
{V } (short notation: ⋃GROUPEQ(G)).

In this H–CSP, if a(,) is different from b(,), the oracle reveals a pair (u, v) such that a(u, v) ≠
b(u, v).

We note here that the case of H–GROUPEQ(G) where G consists of all isomorphic copies of
a group G in fact covers the problem of finding an isomorphism with G discussed in [BCZ13a]
where input to the verification oracle is a bijection φ ∶ [k] → G and, in the case when φ is not an
isomorphism, the oracle has to reveal u, v ∈ [k] such that, given a binary operation g acting on
elements of G, the product g(φ(u), φ(b)) does not equal φ(b(u, v)) in G. Indeed, given φ we can
define (and even compute) the multiplication aφ(,) on [k] – by taking aφ(x, y) = φ

−1(g(φ(x), φ(y))
– such that φ becomes an isomorphism from the group given by aφ(,) to G. Then φ is an
isomorphism from the group given by b(,) if and only if aφ(,) = b(,) and if it is not the case
then the oracle given in [BCZ13a] reveals a pair (u, v) such that aφ(u, v) = b(u, v), exactly what is
expected from a revealing oracle for H–GROUPEQ(G).

An instance of ⋃ENTRIES(G) consists of k2 constraints expressing that a(uh, vh) ∈ Sh where
Sh ∈ 2[k] ∖ ∅ for h = 1, . . . ,m = k2. An instance of the promise version ⋃GROUPEQ(G) (=

⋃ENTRIES(G)⋃GROUP
{V }) should satisfy that {(uh, vh) ∶ h = 1, . . . ,m} = [k]2, that is, our con-

straints are actually x(u,v) ∈ S(u, v) for a map S(,) ∶ [k]2 → 2[k], and, further, there is a map
b(,) ∶ [k]2 → [k] with b(u, v) ∈ S(u, v) for every (u, v) ∈ [k]2 such that b(,) gives a group struc-
ture.

Assume now that k = p, a prime. It is natural to choose G as the set of all group structures on
[k]. As every group having p elements is isomorphic to Zp, G coincides with the group structures
on [k] isomorphic to Zp. We can translate the arguments given in [BCZ13a] to show that already
this case of ⋃GROUPEQ is NP-hard as follows. Let ([k],E) be a Hamiltonian directed graph
(without loops) on [k]. Fix z ∈ [k] and for u ∈ [k] let S(u, z) = {v ∶ (u, v) ∈ E} and S(u, v) = [k]
for v ≠ z. Let φ ∶ [k] → {0, . . . , p − 1} = Zp be a bijection that defines a Hamiltonian cycle in
([k],E). Then b(x, y) = aφ(x, y) ∶= φ

−1(φ(x) + φ(y)) gives a group structure on [k] (isomorphic
to Zp via φ) consistent with the constraints given by S(,). Conversely, if b(,) gives a group
structure (necessarily isomorphic to Zp) consistent with S(,) then the pairs (u, b(u, z)) (u ∈ [k])
form a Hamiltonian cycle in ([k],E). Thus finding Hamiltonian cycles in Hamiltonian digraphs on
p points can be reduced to ⋃GROUPEQ on p elements.

19

References

[BCD+13] Xiaohui Bei, Ning Chen, Liyu Dou, Xiangru Huang, and Ruixin Qiang. Trial and
error in influential social networks. In Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani,
Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and
Ramasamy Uthurusamy, editors, KDD, pages 1016–1024. ACM, 2013.

[BCZ13a] Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages 31–40.
ACM, 2013.

[BCZ13b] Xiaohui Bei, Ning Chen, and Shengyu Zhang. Solving linear programming with con-
straints unknown. CoRR, abs/1304.1247, 2013.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[HKKK88] Pavol Hell, David G. Kirkpatrick, Jan Kratochv́ıl, and Igor Kŕız. On restricted two-
factors. SIAM J. Discrete Math., 1(4):472–484, 1988.

[KLN91] Jan Kratochv́ıl, Anna Lubiw, and Jaroslav Nešetřil. Noncrossing subgraphs in topolog-
ical layouts. SIAM J. Discret. Math., 4(2):223–244, March 1991.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton,
Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors,
STOC, pages 216–226. ACM, 1978.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

