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Abstract

We obtain the following new simultaneous time-space upper bounds for the directed reach-
ability problem. (1) A polynomial-time, Õ(n2/3g1/3)-space algorithm for directed graphs em-
bedded on orientable surfaces of genus g. (2) A polynomial-time, Õ(n2/3)-space algorithm for
all H-minor-free graphs given the tree decomposition, and (3) for K3,3-free and K5-free graphs,
a polynomial-time, O(n1/2+ε)-space algorithm, for every ε > 0.

For the general directed reachability problem, the best known simultaneous time-space upper
bound is the BBRS bound, due to Barnes, Buss, Ruzzo, and Schieber, which achieves a space
bound of O(n/2k

√
logn) with polynomial running time, for any constant k. It is a significant open

question to improve this bound for reachability over general directed graphs. Our algorithms
beat the BBRS bound for graphs embedded on surfaces of genus n/2ω(

√
logn), and for all H-

minor-free graphs. This significantly broadens the class of directed graphs for which the BBRS
bound can be improved.

1 Introduction

Given a graph G and two vertices s and t, is there a path from s to t in G? This problem, known as
the reachability problem, is of fundamental importance in the study of space bounded complexity
classes as various versions of it characterize important complexity classes (such as NL, RL, L and
NC1 [Rei08, RTV06, Bar89]). Progress in understanding the space complexity of graph reachability
problems directly relates to the progress in space complexity investigations. We refer the readers
to a survey by Wigderson [Wig92] to further understand the significance of reachability problems
in complexity theory. Because of its central role, designing space and time efficient deterministic
algorithms for reachability problems is a major concern of complexity theory. In this paper we focus
on algorithms for reachability over directed graphs that run in polynomial-time and use sub-linear
space.
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Two basic algorithms for directed reachability are the Breadth First Search algorithm (BFS)
and Savitch’s algorithm [Sav70]. BFS uses linear space and runs in polynomial time, whereas
Savitch’s algorithm uses only O(log2 n) space, but takes super-polynomial (θ(nlogn)) time. Thus
BFS is time-efficient and Savitch’s algorithm is space-efficient. Hence a natural and significant
question that researchers have considered is whether we can design an algorithm for reachability
whose time-bound is better than that of Savitch’s algorithm and the space-bound is better than that
of BFS. A concrete open question is: Can we design a polynomial-time algorithm for the directed
graph reachability problem that uses only O(n1−ε) space for some small constant ε? [Wig92].

The best known result in this direction is the bound due to Barnes, Buss, Ruzzo, and Schieber
[BBRS92]. By cleverly combining BFS and Savitch’s algorithm, they designed a polynomial-time
algorithm for reachability that uses O(n/2k

√
logn) space, for any constant k. Henceforth we refer to

this bound as the BBRS bound. Improving the BBRS bound remains a significant open question
regarding the complexity of the graph reachability problem.

Recently there has been some progress on improving the BBRS bound for certain restricted
classes of directed graphs. Asano and Doerr showed that, for any ε > 0, there is a polynomial-time
algorithm that takes only O(n1/2+ε) space for reachability over directed grid graphs [AD11]. In
[INP+13], it was shown that, for any ε > 0, the directed planar reachability problem can also be
solved in polynomial-time and O(n1/2+ε) space. In [SV12], it was shown that the reachability prob-
lem for directed acyclic graphs with O(n1−ε) sources nodes and embedded on surfaces of O(n1−ε)
genus can be solved in polynomial time and O(n1−ε) space. See a recent survey article [Vin14] for
more details on known results.

In this paper we design reachability algorithms that beat the BBRS bound for a substantially
larger class of graphs than known before. Our main approach is to use a space-efficient kernelization
where we compress the given graph to a smaller kernel graph preserving reachability. Once such
a kernel graph is computed, we can use known algorithms (such as BFS) on the kernel graph to
solve the reachability problem.

There are indications that it may be difficult to improve the BBRS bound for general directed
graphs using earlier known techniques. This is because there are matching lower bounds known for
general reachability on certain restricted model of computation known as NNJAG [CR80, Poo93,
EPA99]. All the known algorithms for the general reachability problem can be implemented in
NNJAG without significant blow up in time and space. However, we believe that our kernel-based
approach has a potential to overcome the NNJAG bottleneck.

Our main motivation to design space-efficient algorithms for reachability problems comes from
their importance in computational complexity theory. However, designing polynomial-time, sub-
linear space algorithms is of clear significance from a general algorithmic perspective, especially in
the context of computations over large data sets. Thus our algorithms may be of interest to a more
general audience.

Our Contributions

Our first result is a new algorithm for the directed reachability problem for surface-embedded
graphs.

Theorem 1. There is an algorithm that, given a directed graph G embedded on an orientable
surface of genus g with the combinatorial embedding and two vertices s and t, decides whether there
is a directed path from s to t in G. This algorithm runs in polynomial-time and uses Õ(n2/3g1/3)
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space, where n is the number of vertices of the graph.

For the case when g = n1−ε, our algorithm uses Õ(n1−ε/3) space and runs in polynomial time
(by Õ(s(n)) we mean O(s(n)(log n)O(1))). In general, for graphs that are embedded on surfaces of
genus g = n/2ω(

√
logn), our algorithm beats the BBRS bound.

For proving the above theorem, we first give an algorithm for constructing a planarizing set (a
set S of nodes of a graph G, so that G \ S is a planar graph) of size O(n2/3g1/3) of the underlying
undirected graph in polynomial-time and space Õ(n2/3g1/3). This space-efficient algorithm for
computing a planarizing set may be of independent interest.

There are known algorithms that compute a planarizing set of a high-genus graph [DV95, HM86,
GHT84]. However, we cannot rely on these existing algorithms since the starting point of all these
algorithms is a BFS tree computation of the input graph. In general computing a BFS tree (even
for an undirected graph) is as difficult as the directed reachability problem. Avoiding a BFS tree
computation of the entire graph is the the main technical challenge that we overcome in our space
efficient algorithm for constructing a planarizing set.

Once a planarizing set is computed, we construct a new directed graph G̃, called the kernel
graph on G whose vertex set is the planarizing set, so that reachability in G reduces to reachability
in G̃. This reduction uses the O(n1/2+ε) space algorithm for directed planar reachability from
[INP+13] as a subroutine. Finally we solve reachability on G̃ using BFS. Since the size of G̃ is
O(n2/3g1/3), we get the desired space bound.

Our second contribution is a new reachability algorithm for H-minor-free graphs, that improves
upon the BBRS bound, where H is an arbitrary but fixed graph. To design this algorithm we
assume that we are provided with the tree decomposition of the H-minor-free graph.

Theorem 2. Given a graph H, there is an algorithm that, given any H-minor-free graph G together
with

(i) a tree decomposition (T,X) of G, and

(ii) for every Xi ∈ X, the combinatorial embedding of the subgraph G0 of G[Xi],

and two vertices s and t in G, decides whether there is a directed path from s to t in G. The
algorithm runs in polynomial-time and uses Õ(n2/3) space, where n is the number of vertices of the
graph.

The reader may refer to Section 4.1 to understand the notation that we use in Theorem 2. This
theorem is proved by first designing a Õ(n2/3)-space and polynomial-time algorithm for constructing
a 2/3-separator of size O(n2/3) for the given graph. Once such a separator is obtained, we use ideas
from [INP+13] to design the reachability algorithm. To construct such a separator for H-minor-
free graphs, we use the tree decomposition of the given graph by [RS03] and find a “separating
node” in that tree. Then we construct a bounded-genus graph from the graph induced by the
separating node. Finally by using the planarizing set construction used to prove Theorem 1, we
design an algorithm to construct a planarizing set of size O(n2/3) of the underlying undirected
graph in polynomial-time and Õ(n2/3) space.

For K3,3-free and K5-free graphs we give a better upper bound than the one given in Theorem
2. Kuratowski’s theorem states that planar graphs are exactly those graphs that do not contain
K3,3 and K5 as minors. Hence it is a natural question whether results on planar graphs can be
extended to graphs that do not contain either a K3,3 minor (known as K3,3-free graphs) or a K5
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minor (known as K5-free graphs). Certain complexity upper bounds that hold for planar graphs
have been shown to hold for K3,3-free and K5-free graphs [BTV09, TW09, DLN+09, DNTW09].
On the other hand, there are problems for which upper bounds that hold for planar graphs are
not known to extend to such minor-free graphs (such as computing a perfect matching in bipartite
graphs [MN95]). We show that the time-space bound known for planar graphs can also be obtained
for both these classes of graphs. Here it is important to note that even though directed reachability
in K3,3-free and K5-free graphs reduces to directed planar reachability[TW09], the reduction blows
up the size of the graph by a polynomial factor and hence we can not this approach for our purposes.

Theorem 3. For any constant 0 < ε < 1/2, there is a polynomial time and O(n1/2+ε) space
algorithm that given a directed K3,3-free or K5-free graph G on n vertices, decides whether there is
a directed path from s to t in G.

Although for Theorem 2 we require additional inputs (such as the tree decomposition and the
embeddings of the bounded genus parts), in Theorem 3 we do not have any such requirements. The
proof idea of Theorem 3 is similar to that of Theorem 2. However we use the known algorithm to
compute a planar separator instead of a bounded genus separator. This gives better space bound
compared to the case of H-minor-free graphs.

The rest of the paper is organized as follows. In Section 2 we give some basic definitions and
notations that we use. In Section 3, we give a construction of planarizing set for high-genus graphs
and also provide a proof of Theorem 1. And finally in Section 4, we present the algorithm for
reachability in H-minor-free graphs and as a corollary we show Theorem 3.

2 Preliminaries

We first define some notation which will be used later in this paper. Given a graph G let V (G)
denote the set of vertices present in the graph G. For a set of vertices X, let G[X] denote the
subgraph of G induced by X. Now we define necessary notions on graphs embedded on surfaces.
We refer the reader to the excellent book by Mohar and Thomassen [MT01] for a comprehensive
treatment of this topic. In this paper we only consider closed orientable surfaces. These surfaces
are obtained by adding “handles” to a sphere.

Let G = (V,E) be a graph and for each v ∈ V , let πv be a cyclic permutation of edges incident on
v. Let Π = {πv | v ∈ V }. We say that Π is a combinatorial embedding of G. Given a combinatorial
embedding we can define a Π-facial walk. Let e = 〈v1v2〉 be an edge. Consider the closed1 walk
f = v1e1v2e2v3 · · · vkekv1 where πvi+1(ei) = ei+1, and πv1(ek) = e1. We call f a face of the graph
G.

Given a Π-embedding of a graph G, the Π-genus of G is the unique g such that |V |−|E|+ |F | =
2−2g, where F is the set of all faces of G. This is popularly known as the Euler-Poincaré formula.

It is known that given any graph with Π-genus g, it can be embedded on a closed orientable
surface of genus g such that every face is homeomorphic to an open disc. Let Π be a combinatorial
embedding of a graph G and H be a subgraph of G. The embedding Π naturally induces an
embedding Π′ on G \ H. By abuse of notation, we still refer to the induced embedding as Π-
embedding.

1A priori it is not obvious that that this leads to a closed walk. However, it can shown that this walk comes back
to v1. See [MT01] Chapter 3.2 for a proof.
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Given a cycle C of a graph, we can define the left and the right sides of the cycle C. Informally,
two vertices are on the same side of C if they are path-connected such that the path does not cross
the cycle C. We use Gl(C) and Gr(C) to denote the left and the right sides of G. Given a cycle
C, we say that it is contractible if one of Gl(C) ∪ C or Gr(C) ∪ C has Π-genus zero (i.e. planar).
We say that a cycle is surface separating if Gl(C) and Gr(C) have no edges in common. Note that
every contractible cycle is surface separating. A cycle that is not surface separating is called a
non-separating cycle. We now mention some fundamental facts about these cycles that are used
throughout this paper.

Proposition 2.1. Let C be a cycle of a graph G with Π-genus g. If C is non-separating, then
Π-genus of G \ C is ≤ g − 1. If C is surface separating, then sum of Π-genera of Gl(C) ∪ C and
Gl ∪ C equals g.

An edge that appears on a facial walk f may appear once or twice on f . Any edge that appears
twice on a facial walk is called singular edge.

Proposition 2.2. Let G be a graph with Π-genus g, and e be a singular edge such that G \ e is
connected. The Π-genus of G \ e is g − 1.

The notions of a planarizing set and a separator defined below are crucial in this paper. A set S
of vertices of a graph G is called a planarizing set if G \S is a planar graph. An (α, β)-separator of
a graph G = (V,E) having n vertices, is a subset S of V such that |S| ≤ O(α) and every connected
component in V \ S has at most βn vertices.

Next we state two theorems about planar graphs that are used in this paper. In [INP+13] the
authors construct a (n1/2, 8/9)-separator for a given planar graph. By running their algorithm
repeatedly (a constant number of times), we can obtain a (n1/2, 1/3) separator for a given planar
graph.

Theorem 4. [INP+13] Given a planar graph G there is an algorithm that computes a (n1/2, 1/3)-
separator of G in polynomial time and Õ(n1/2) space.

We refer to the algorithm of this theorem as PlanarSeparator algorithm. In [INP+13], this
algorithm is used to obtain a time-space efficient algorithm for reachability on directed planar
graphs

Theorem 5. [INP+13] For any constant 0 < ε < 1/2, there is an algorithm that, given a directed
planar graph G and two vertices s and t, decides whether there is a path from s to t in G. This
algorithm runs in time nO(1/ε) and uses O(n1/2+ε) space, where n is the number of vertices of G.

3 A Reachability Algorithm for High Genus Graphs

In this section we prove Theorem 1. We will use a space-efficient construction of a planarizing set
to establish this result. We first assume that the following theorem (Theorem 6) holds and then
prove Theorem 1. Proof of Theorem 6 will appear in Section 3.1.

Theorem 6. There is an algorithm that given a combinatorial embedding of an undirected graph
G embedded on an orientable surface of genus g, outputs a planarizing set of G of size O(n2/3g1/3).
This algorithm runs in polynomial time and uses space Õ(n2/3g1/3). Here n denotes the number of
vertices of G.
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Proof of Theorem 1. Let 〈G, s, t〉 be an instance of reachability where Π-genus of G is g. Consider
the underlying undirected graph Gun. By using the algorithm from Theorem 6 we first compute a
planarizing set S of Gun. Let S = S ∪ {s, t}. Let Gp be the planar graph obtained by removing all
vertices (and the edges incident on them) of S from G.

Consider the following reduction that outputs a reachability instance 〈G, s, t〉, where G = (S, E).
Given two nodes a and b in S, we place a directed edge from a to b in E , if there is a directed edge
from a to b in the original directed graph G. Additionally, we place an edge from a to b in E , if
there exist vertices u and v in the vertex set of Gp such that all of the following conditions hold:
1) there is a directed edge from a to u in G, 2) there is a directed edge from v to b in G, and 3)
there is a directed path from u to v in the directed planar graph Gp. Determining whether there
is path from u to v in Gp can be done in polynomial-time and O(n1/2+ε) space, by Theorem 5. By
Theorem 6, S can be computed in polynomial time and Õ(n2/3g1/3) space. Thus this reduction
runs in polynomial time and uses Õ(n2/3g1/3 + n1/2+ε) = Õ(n2/3g1/3) space (by setting ε = 1/6).

We now claim that there is a path from s to t in G if and only if there is a path from s to t in G.
Consider any s-t path in G, let e1, e2, · · · ek be the edges of this path. Consider an edge ei = (a, b).
Note that the reduction places this edge in G when, either there is a directed path or an edge from
a to b in G. This implies that there is path from s to t in G. Now we prove the converse direction.
Let P be a path from s to t in G. We can decompose P into p1e1q1h1p2e2q2h2 · · · pk. Here ei is an
edge from a vertex in S to a vertex in Gp and hi is an edge from a vertex in Gp to a vertex in S,
qi is the part of the path P from head of ei to the tail of hi so that it completely lies within Gp,
and pi is the part of the path P that completely lies in the graph induced by the planarizing set
S. By the construction of G, there is an edge oi from the tail of ei to the head of hi in G. Thus
p1o1p2o2 · · · pk is a path from s to t in G.

Reachability in the directed graph G can be solved using BFS. Since the number of vertices in
G is O(n2/3g1/3), the BFS algorithm runs in polynomial-time and uses in Õ(n2/3g1/3) space. By
combing the above reduction with the reachability algorithm on G, we obtain an algorithm that
solves reachability in G that runs in polynomial time and uses Õ(n2/3g1/3) space. This completes
the proof of Theorem 1.

3.1 Proof of Theorem 6

The structure of the proof is as follows. Given an embedded graph, we decompose the graph
into several regions. We first look for a small non-contractible cycle C inside some region. If
we find one, then we add the vertices of C into the planarizing set. If C is non-separating, by
Proposition 2.1, removal of the vertices of C will result in a graph whose genus ≤ g − 1. If C is
surface separating, since C is non-contractible, by Proposition 2.1, we get two components each
with genera 0 < g1, g2 < g so that g1 + g2 = g. In both cases, since the genus of each component
is < g, we can iterate this process. If this iteration stops, then all the regions of all the resulting
components are homeomorphic to an open disk. In this case, for each component we identify a
small subgraph based on the regions, and argue that this subgraph is a planarizing set of that
component. Our final planarizing set is the collection of the planarizing sets of each component
together with the non-contractible cycles. Notice that at any stage the components obtained can be
implicitly represented by the original graph and the cycles that are removed. Thus we do not have
to explicitly store the components. We only store the non-contractible cycles that are removed.
We now proceed to give a formal proof. The algorithm given in the following lemma is the core of
the planarizing set algorithm.
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Lemma 3.1. There is an algorithm that given a connected undirected graph G, its Π-embedding,
and an integer k as input, outputs one of the following:

1. A non-separating cycle of size O(k) or a singular edge e so that G \ e is connected (this a
genus reduction set).

2. A non-contractible and surface-separating cycle of size O(k)

3. A planarizing set of size O((n/k + g)
√
k)

The algorithm runs in polynomial-time and uses Õ(n/k + k) space.

The proof of the above lemma is given in Subsection 3.1.1. Now using this lemma, we prove
Theorem 6.

Proof of Theorem 6. The planarizing set construction algorithm applies the algorithm from Lemma 3.1
iteratively. We will describe the algorithm by describing an iteration. After the ith iteration, we
will have a collection of components G1, G2, . . . , Gm. We will describe the (i+ 1)st iteration: The
algorithm considers the first component Ĝ whose Π-genus ĝ is non-zero and apply the algorithm
from Lemma 3.1 on Ĝ. This results in either (1) a genus-reduction set of Ĝ (2) or a non-contractible
surface separating cycle of Ĝ (3) or a planarizing set of Ĝ. In cases (1) and (2) the algorithm stores
the corresponding cycles. In case (3) it adds the planarizing set obtained to the final planarizing
set. This process stops when all the components are planar.

We claim that after any iteration, the total number of vertices in all of the components together
is at most n, and the total genera of all of the components together is at most g. Assume that this
claim holds after ith iteration. Let Ĝ be the component considered at the (i + 1)st iteration. In
case (1), by Propositions 2.1 and 2.2, Ĝ is reduced to a component whose genus is at most ĝ − 1.
In case (2), since we have a non-contractible surface separating cycle, by Proposition 2.1, we get
two components whose sum of the genera is at most ĝ. In case (3), Ĝ is reduced to a planar graph.
Thus sums of the genera of all components is ≤ g and, since no vertex is repeated in more than
one component, vertices in all of the components together is at most n.

Clearly this algorithm produces a planarizing set and runs in polynomial-time. We will now
bound the size of the planarizing set and the space used by the algorithm.

Notice that the algorithm stores only the cycles and singular edges and will not store the
components: At any stage, given the original graph, the cycles or singular edges computed so far,
and an index of the component, the edge relations of that component can be computed without
additional space. After at most g iterations, we are left with at most g components each of whose
genus is at most 1. Since each iteration may produce a cycle of length O(k), the algorithm will
store at most 2g cycles each of length O(k). Consider a component Gi for which case (3) of the
lemma happens. The size of the corresponding planarizing set produced is O(ni/k + gi)

√
k. Since∑

i ni ≤ n and
∑

i gi ≤ g, the total size of the planarizing set is O((n/k+ g)
√
k+ kg). Total space

used is Õ(n/k + k + kg + (n/k + g)
√
k) (including the space to store the planarizing set).

By choosing k = max{(n/g)2/3, 1}, we get that the total space-bound of the algorithm to com-
pute the planarizing set is Õ(n2/3g1/3), and the size of the planarizing set produced is O(n2/3g1/3).
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3.1.1 Proof of Lemma 3.1

As mentioned in the beginning of Section 3.1, we first decompose the input graph into several
regions. For this decomposition we use the notion of “Voronoi regions” introduced by Gazit and
Miller [GM87] in the context of planar graphs. We find this notion applicable to surface-embedded
graphs also.

Let G be a Π-embedded graph and let f be a face. Two faces of G are edge-connected if they
share an edge. A set of faces R is edge-connected if for every pair of faces f and g in R, there exist
faces f1, · · · , fi in R such that f and f1 are edge-connected, fi and g are edge-connected, and fj
and fj+1 are edge-connected for all j, 1 ≤ j ≤ i − 1. A region of a surface-embedded graph is a
set of edge-connected faces. The boundary of a region is the set of edges such that each edge lies
on exactly one face of the region. Given a region R, we denote the boundary with B(R). We next
define the notions of face-vertex graph and neighborhood introduced by Gazit and Miller [GM87].

Definition 1. The face-vertex graph of G is a graph denoted as G′ = (V ′, E′) where V ′ is the set
of faces of G and E′ is the set of pairs (f1, f2) of faces of G such that f1 and f2 share a vertex in
G.

The distance between two vertices v1 and v2 (denoted as dist(v1 , v2 )) is the length (i.e., the
number of edges) of the shortest path between them. Similarly, for any faces f1 and f2 in G, the
distance between f1 and f2 (denoted by dist(f1 , f2 )) is the length of the shortest path between f1

and f2 in G′. Note that if every face of G is a triangle, then for any v1 and v2 of G that lie on
triangle faces f1 and f2 respectively, we have dist(v1 , v2 ) ≤ dist(f1 , f2 ) + 1 .

For a face f and an integer r, let `(f, r) denote the set of faces that are at distance exactly r from
f . For any d ≥ 1, the d-radius ball around f is the set Bd(f) = {g ∈ V ′ | dist(f , g) ≤ d}. Given a
face f and a region R, the distance between f and R is defined by dist(f ,R) = ming∈R{dist(f , g)}.

Definition 2. For any face f of G, the k-neighborhood of f (denoted as Nk(f)) is the set of k faces
closest to f with respect to the distance function dist. More formally, Nk(f) = Br(f)∪ F , where r
is the maximum integer such that |Br(f)| ≤ k, and F is an edge-connected subset of `(f, r + 1) so
that |Nk(f)| becomes exactly k.

Definition 3. A set I of faces is a k-maximal independent set if (a) for every f, g ∈ I, Nk(f) ∩
Nk(g) = ∅, and, (b) for every f ′ /∈ I, there exists a face f ∈ I such that Nk(f ′) ∩Nk(f) 6= ∅.

Note that the size of a k-maximal independent set is O(n/k). We can compute a k-maximal
independent set with time and space stated below by a straight forward greedy algorithm that
considers faces in the lexicographic order. Thus, in our discussion, we may assume that some
k-maximal independent set I is given (as a part of the input).

Lemma 3.2. There is an algorithm that takes a Π-embedded graph G and an integer k as an input,
outputs a k-maximal independent set in polynomial time and Õ(n/k + k) space.

Next, we define the notion of a “Voronoi region” [GM87]. We fix some k-maximal independent
set I. For every face g of G, we associate a unique member of I as follows: If g ∈ Nk(f) for
some f ∈ I, then g is associated to f . For g 6∈ Nk(f) for any f ∈ I, g is associated with the
lexicographically first f ∈ I such that dist(Nk(f), g) is the smallest among all faces in I. The
Voronoi region of f ∈ I, denoted as V (f), is the set of faces that are associated with f .

We now state a lemma that shows that the BFS of any Voronoi region can be computed space-
efficiently. The proof is identical to the proof given in [INP+13].
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Lemma 3.3 ([INP+13]). There is a polynomial-time and Õ(n/k + k)-space algorithm that, given
a triangulated Π-embedded graph G, a k-maximal independent set I, and f ∈ I, constructs a BFS
tree of V (f) rooted at f . The diameter of this tree is O(k).

Note that the above lemma assumes that the input graph G is triangulated. In general a
surface-embedded graph G can be triangulated (given its π-embedding) easily, by adding a vertex
in the interior of each face and connecting this vertex to all other vertices of that face. However,
this process increases the number of vertices of the graph and will be a problem for us. We need a
slightly different triangulation that can be done if the graph does not have singular edges.

Without loss of generality we may assume that the input graph is 2-edge connected, if not we
can identify an edge (a, b) that disconnects the graph (by using Reingold’s algorithm) and another
edge between a and b. Thus the first step of our algorithm looks for a singular edge e in the graph,
and if such an edge exist it returns e. Since the graph is 2-edge connected, G− e is connected.

Therefore, from now we assume that the graph does not have any singular edges. If a graph
does not have any singular edges, then we can triangulate the graph as follows. In this case, each
face is homeomorphic to a closed disc. For each face, identify a lexicographically smallest vertex
on it, and add an edge from that vertex to all other vertices of that face. This will triangulate the
graph. Note that this triangulation is done implicitly, we need not store these newly added edges.
Given any pair of vertices, we can easily test whether there is an edge between them by either
looking at the input graph or by testing whether the above triangulation process places an edge
between them.

Lemma 3.4. Let V (f) and V (g) be two Voronoi regions that share their boundary. If V (f)∪V (g)
has a non-contractible cycle, then it has a non-contractible cycle of size O(k). Moreover, we can
find such a cycle in polynomial-time and space Õ(n/k + k).

Proof. We first claim that there is a spanning tree of V (f) ∪ V (g) with diameter O(k). Consider
BFS trees Tf and Tg of V (f) and V (g) respectively. Consider all vertices of G that are common to
both these trees; such vertices must be leaf nodes of these BFS trees. Consider the lexicographically
smallest such vertex, disconnect all other common vertices from Tf . We now are left with a spanning
tree of V (f)∪V (g). We denote this spanning tree as Tfg. Since the depth of each BFS tree is O(k),
the diameter of this spanning tree is O(k). Note that Tfg can be computed in polynomial-time and
space Õ(n/k + k).

It is known that all non-contractible cycles of any graph G satisfy the 3-path condition (see
Chapter 4 of [MT01] for a proof). The same proof shows that all non-contractible cycles that lie
within V (f) ∪ V (g) also satisfy the 3-path condition. Consider the spanning tree Tfg. Since its
diameter is O(k), any fundamental cycle of this tree is of size O(k). The 3-path condition implies
that one of the fundamental cycles is non-contractible [MT01]. The tree Tfg can be computed using
space Õ(n/k + k), and checking whether a cycle is contractible is equivalent to checking planarity
which can be done in O(log n) space [AM04]. Thus if V (f) ∪ V (g) has a non-contractible cycle,
then we can find one such cycle of size O(k) using Õ(n/k + k) space and polynomial-time.

The algorithm now proceeds as follows: For every two Voronoi regions V (f) and V (g) that
share a boundary, it attempts to find a non-contractible cycle C in V (f) ∪ V (g) using Lemma 3.4.
If such a cycle is found, then it outputs C. Note that C is either a non-separating cycle or a
non-contractible, surface-separating cycle.
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If the algorithm does not find a non-contractible cycle, then we would like to output a small
subgraph which is a planarizing set. A natural candidate for this subgraph is the set of all edges
that are common to the boundaries of Voronoi regions. Since none of the Voronoi regions have non-
contractible cycles, each region is planar. Thus removal of all the boundary edges will planarize
the graph. However, the number of boundary edges could be very large and thus we do not
obtain a small planarizing set. To get around this problem, we need additional notions such as
the core and the Voronoi nodes. These notions have been found to be useful in planar separator
constructions [LT79, GM87, Kle93, INP+13].

Definition 4 (Core). Let f be a face and Nk(f) be its k-neighborhood. Let r0 be the largest number
such that `(f, r0) ⊆ Nk(f) and |`(f, r0)| ≤

√
k. The core of f is defined as the union of `(f, i),

1 ≤ i ≤ r0.

The following lemma is critical. For a proof see [Kle93].

Lemma 3.5. For every face f , (a) the size of the boundary of the core of f is at most
√
k, and

(b) for every face f ′ ∈ Nk(f) and not in core of f , there is a face g in the core of f such that
dist(f ′, g) ≤

√
k.

We can extend the notion of the core of a face to the core of a vertex. For any vertex v of G,
let f be a triangle face (for consistency we take the lexicographically smallest face) on which v lies.
The core of v is simply the core of f .

For any Voronoi region, consider its boundary and vertices (of G) on the boundary. All such
vertices belong to at least two Voronoi regions. Some of these vertices may belong to three or more
different Voronoi regions. We call such vertices Voronoi vertices.

Now we are ready to describe the algorithm claimed in Lemma 3.1 (given below).

Input : Graph G and a number k

Output the vertices of a singular edge if there exists one and halt;1

for every pair (V (f), V (g)) whose boundaries intersect do2

if there is a non-contractible cycle C then Output C and halt;3

end4

for every Voronoi vertex v do5

if there is a non-contractible cycle C in the core(v) then Output C and halt;6

end7

Output the subgraph G̃ whose description is given below;8

Algorithm 1: Algorithm in Lemma 3.1

We will define the subgraph G̃ in Step 6 of the above algorithm. Identical constructions have
been used in earlier work in the context of planar separator algorithms [GM87, INP+13].

(1) For every f ∈ I, output the boundary of the core of f .

(2) For every v ∈ V , determine if it is a Voronoi vertex. If v is a Voronoi vertex, then output the
boundary of the core of v.
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(3) For every pair of faces f and g in I such that B(V (f)) and B(V (g)) intersect, do the following:
Compute all Voronoi vertices that are common to B(V (f)) and B(V (g)). For every such vertex
v, compute the BFS path P̂f,v from f to v in V (f). Then select the part of P̂f,v that lies
outside of the cores of f and v, and output it as Pf,v. Similarly, output Pg,v.

See Figure 1 for a pictorial description of the graph G̃.

f

Core(f)

Type I Face

g

Core(g)

Type I Face

u

Core(u)

Type I Face

v

Core(u)

Type I Face

P

P
P

V(f) V(g)

Type II Face

Pfu

fv
gv

gu

Figure 1: The graph G̃. The bold lines are the edges of G̃ and the dotted line is the boundary of Voronoi
regions V (f) and V (g).

To complete the proof of the Lemma 3.1, we need to show the following claim.

Claim 3.1. The graph G̃ that the above algorithm outputs is a planarizing set of G. Moreover, G̃
has size O((nk + g)

√
k) and can be computed in polynomial-time and space O(n/k + k).

Proof. We will analyze the graph G̃ by considering its faces which we categorize into Type I and
Type II.

Type I: A face consisting of edges from the boundary of some core that are produced by steps
(1) or (2).

Type II: A face consisting of the edges of four paths Pf,u, Pf,v, Pg,u, Pg,v and some edges in
boundaries of the cores of f , g, u, and v, where f and g are faces of G such that B(V (f))
and B(V (g)) intersect, and u and v are Voronoi vertices that appear in both V (f) and V (g).
Note that the edges belonging to these paths are produced by step (3)

Now we claim that the vertices of G̃ is a planarizing set. Each Type I face of G̃ corresponds to
a core of the original graph. Each Type II face is a sub-region of V (f) ∪ V (g) for some f and g
whose boundaries intersect. Since Step 6 of the algorithm is reached only when none of the cores
or V (f) ∪ V (g) has non-contractible cycle, all faces of G̃ are planar. Hence G̃ is a planarizing set
of G. Now we bound the size of G̃. Consider G̃, contract every degree-two vertex to form a graph
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G̃′. Since contraction does increase the genus, G̃′ has genus at most g. Now every vertex in G̃′ has
degree at least 3. By using Euler-Poincaré formula, we can bound the number of vertices in G̃′ to
be O(n/k + g), and thus the number of faces to be O(n/k + g). This implies that the number of
edges in G′ is O(n/k + g). Note that every edge in G̃′ corresponds to a path in G̃ consisting only
of degree two vertices. This path is either part of the boundary of a core or a path of the form
Pf,v. Thus by Lemma 3.5, the length of this path is O(

√
k). From this it follows that the number

of edges of G̃ is O(n/k + g)
√
k. This completes the proof of the above claim and also the proof of

Lemma 3.1

4 A Reachability Algorithm for H-minor-free Graphs

In this section, we prove Theorem 2 by first giving an algorithm to construct a separator of the
input graph. Towards this we define the notion of a tree decomposition of a graph which is crucial
to the construction.

4.1 Graph Minor Decomposition Theorem

A graph H is said to be a minor of a graph G if H can be obtained from a subgraph of G by
contracting some edges. A graph G is said to be H-minor-free if G does not contain H as a minor,
for some graph H.

Definition 5. A tree decomposition of a graph G = (V,E) is the tuple (T,X) where T = (VT , ET )
is a tree and X = {Xi | i ∈ VT }, such that, (a) ∪iXi = V , (b) for every edge (u, v) in G, there
exists i, such that u and v belong to Xi, and (c) for every v ∈ V , the set of nodes {i ∈ VT | v ∈ Xi}
forms a connected subtree of T .

We will refer to the Xi’s as bags of vertices. Note that each bag corresponds to a node (we call
vertices of T as nodes) in the tree T . The width of a tree decomposition (T,X), is the maximum
over the size of Xi’s minus 1. The treewidth of a graph is the minimum width over all possible tree
decompositions of G. A tree decomposition is said to be a path decomposition if T = (VT , ET ) is a
path and pathwidth of a graph is the minimum width over all possible path decompositions of G.
For a fixed graph H, Robertson and Seymour, gave a tree decomposition for every H-minor-free
graph [RS03]. Before we see this tree decomposition theorem we need to state some definitions. A
graph G is called almost h-embeddable if there exists a set of vertices Y (called the apices) of size
at most h such that, (i) G \ Y can be written as G0 ∪G1 ∪ . . .∪Gh, (ii) G0 has an embedding on a
surface of genus at most h (say S), (iii) for i = 1, · · · , h, Gi’s are pairwise disjoint ( we shall refer
to them as vortices), (iv) there exists faces F1, · · · , Fh of G0 and pairwise disjoint disks D1, · · · , Dh

on S such that for all i ∈ {1, . . . , h}, Di ⊆ Fi and Ui := V (G0) ∩ V (Gi) = V (G0) ∩Di, and (v) for
each graph Gi, there is a path decomposition (Pu)u∈Ui of width at most h such that u ∈ Pu, for all
u ∈ Ui. The sets of vertices in Pu are ordered according to the ordering of the corresponding u’s
as vertices along the boundary of face Fi in G0.

Let G and H be two graphs each containing cliques of equal sizes. The clique-sum of G and H
is formed by identifying pairs of vertices in these two cliques to form a single shared clique, and
then possibly deleting some of the clique edges (may be none). A k-clique-sum is a clique-sum in
which both cliques have at most k vertices. The k-clique-sum of G and H is denoted as G ⊕k H.
The set of shared vertices in this operation is called the join set.
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We are now ready to state the decomposition theorem for H-minor-free graphs.

Theorem 7 ([RS03]). For every graph H, depending only on |V (H)|, there exists an integer h ≥
0 such that every H-minor-free graph can be represented as at most h-clique-sum of “almost h-
embeddable” graphs in some surface on which H cannot be embedded.

Henceforth, we will assume that the tree decomposition of the original graph and the combina-
torial embedding of all subgraphs (the G0’s in each almost h-embeddable graph) that are embedded
on the surface are provided as part of the input. We will refer to this as tree decomposition with
combinatorial embedding of H-minor-free graphs.

4.2 Constructing Separator for H-minor-free Graphs

We will show that given a decomposition of a H-minor-free graph stated in the last subsection,
how to construct a separator. We start with the following lemma.

Lemma 4.1. There exists a log-space algorithm, that given a tree decomposition (T,X) of a graph
G on n vertices, outputs a node i ∈ T such that every connected component in G[V \ Xi] has at
most n/2 vertices.

Proof. Pick a node i ∈ T . We shall refer to i as the current node. If every connected component
in G[V \Xi] has at most n/2 vertices then output i and stop. Otherwise, let C be the connected
component in G[V \Xi] such that |C| > n/2. Let j be the unique neighbour of i in T such that
Xj ∩ C 6= ∅. The reason why j is unique is because, if there are more one neighbours of i (say j1
and j2) in T , such that Xj1 ∩ C 6= ∅ and Xj2 ∩ C 6= ∅, then j1 and j2 are connected by a path in
T \ {i}, since C is a subgraph of G[V \Xi]. Now this path together with the edges (i, j1) and (i, j2)
forms a cycle in T , which is a contradiction.

Now the sum of the number of vertices of all other connected components of G[V \ Xi] other
than C, together with Xi is less than n/2. Therefore, for the node j ∈ T , the largest connected
component in G[V \Xj ] has strictly lesser number of vertices than C. Now we set j as the current
node and repeat the above process. The process terminates since |C| that we obtain in each step,
strictly decreases.

We now give a separator construction for all H-minor-free graphs which is the main contribution
of this section.

Theorem 8. Given a H-minor-free graph G and its tree decomposition with combinatorial embed-
ding, there exists an Õ(n2/3) space, polynomial time algorithm that computes a (n2/3, 2/3)-separator
of G.

Proof. Given an input graph G and its tree decomposition, compute the vertex i using Lemma 4.1.
The separator for G that we would construct would be a subset of Xi. Let i have m neighbours in
T , say i1, . . . , im. Now for every j ∈ [m], G[Xi] is joined with G[Xij ] using the clique-sum operation
of at most h (constant depending only on H) vertices. Let C = {C1, C2, . . . , Cm} where Cj is a set
of at most h vertices in Xi, such that G[Xi] is joined with G[Xij ] via Cj . Let Tj be the connected
subtree of T \ i containing the node j. We define the subgraph Gj to be the induced subgraph of
G corresponding to the vertices in the subtree Tj . In other words, Gj = G[∪l∈Tj

Xl]. Let kj = |Gj |.
Now if |Xi| ≤ O(n2/3), then it follows from Lemma 4.1 that Xi is a (n2/3, 1/2)-separator of

G. Otherwiae, consider the node i and its corresponding almost h-embeddable graph K = G[Xi].
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Now consider the representation of K using apices and vortices. Let Y be the set of apices and
K \Y can be written as K0 ∪K1 ∪ · · · ∪Kh where each of Ki has a path decomposition (Pu)u∈Ui of
width less than h. Now build a new graph K ′ from K0 using the following steps: for i = 1, · · · , h,
add a cycle of length |Pu| attached to the vertex u ∈ Ui inside the face Fi and then connect
those cycles such that they form a path like structure similar to the corresponding path decom-
position. The new graph K ′ is a graph embedded on a constant genus and so from Theorem 6,
we can get a (n2/3, 2/3)-separator S (which is union of planarizing set of K ′, say Z and output of
PlanarSeparator on the graph K ′ \ Z) using Õ(n2/3) space and polynomial time. If S contains
some vertices from a newly added cycle, then we add all the vertices present in the correspond-
ing “bag” of vertices of the respective path decomposition. We also add all the apices of K0 and
we get a new set S′. As the size of S is O(n2/3), so the size of S′ will be at most O(hn2/3) = O(n2/3).

Claim 4.1. S′ is a (n2/3, 2/3)-separator of K.

Proof. Observe that by construction, K ′ is a graph embedded on a bounded genus surface. Moreover
there is a canonical injective map (say σ) from vertices in K to vertices in K ′. To see this, note
that K ′ = K0 ∪ newly added cycles and by construction, for every vertex in the bag Xi there is a
vertex in the newly added cycle in K ′.
Since S is a (n2/3, 2/3)-separator of K ′, S′ is also a (n2/3, 2/3)-separator of K. Let C be a connected
component in K \ S′. Then the vertices corresponding to C in K ′ (via the map σ) also forms a
connected component. Since every connected component in K ′ \ S has size at most 2|K ′|/3, so S′

is a (n2/3, 2/3)-separator of K.

By running the above construction repeatedly (a constant number of times), we can get a
(n2/3, 1/6)-separator S. As according to Lemma 4.1, G[V \ Xi] contains at most n/2 vertices, so
the set S also acts as a (n2/3, 2/3)-separator for the whole graph G. It is clear from the construction
of S that this algorithm will take Õ(n2/3) space and polynomial time.

We also consider the special case when H is either the K3,3 or the K5.

Theorem 9 ([Wag37, TW09]). Let (T,X) be a tree decomposition of a K3,3-free or K5-free graph
G. Then

(i) for every Xi ∈ X, G[Xi] is either a planar graph or the K5 (if G is K3,3-free) or V8 (if G is
K5-free) (see Figure 2), and

(ii) G is the 3-clique-sum of G[Xi] and G[Xj ] for every adjacent vertices i, j in T .

Moreover given a K3,3-free or K5-free graph G, such a tree decomposition can be computed in
logspace.

Thierauf and Wagner have shown how to compute the tree decomposition of a K3,3-free or
K5-free graph given in Theorem 9 in log-space [TW09] and thus we get the following corollary for
these special class of H-minor-free graphs.

Corollary 4.1. Given a K3,3-free or K5-free graph G, there exists an Õ(n1/2) space, polynomial
time algorithm that computes a (n1/2, 2/3)-separator of G.
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Figure 2: The K5 and the V8 (also known as Wagner’s graph)

Proof. Given an input graph G, first compute a decomposition tree and compute the vertex i by
running the algorithm from Lemma 4.1. The separator for G that we would construct would be a
subset of Xi. Let i have m neighbours in T , say i1, . . . , im. Now for every j, G[Xi] is joined with
G[Xij ] using the clique-sum operation of at most 3 vertices. Let C = {C1, C2, . . . , Cm} where Cj
is a set of at most 3 vertices in Xi, such that G[Xi] is joined with G[Xij ] via Cj . Let Tj be the
connected subtree of T \ i containing the node j. We define the subgraph Gj to be the induced
subgraph of G corresponding to the vertices in the subtree Tj . In other words, Gj = G[∪l∈Tj

Xl].
Let kj = |Gj |.

Now if |Xi| ≤ n1/2, then it follows from Lemma 4.1 that Xi is a (n1/2, 1/2)-separator of G.
Otherwise, we know from Proposition 9 that G[Xi] is a planar graph. Construct a graph H by
taking a copy of G[Xi] and replacing Cj with a planar graph of size kj , for every j ∈ [m], such
that connectivity is preserved (for example, the planar graph can be a cycle of length kj). Let Pj
denote the planar graph that replaces Cj . Note that |H| ≤ 2n since every vertex in G has at most
two copies in H (that is if the vertex belongs to some Cj).

Observe that by construction, H is a planar graph. Moreover there is a canonical injective map
(say σ) from vertices in G to vertices in H. To see this, note that every vertex in the bag Xi is
present in H as H contains a copy of G[Xi] and though we replaced the vertices in Cj with the
planar graph Pj , the graph Pj contains vertices corresponding to the vertices in Cj , since both
graphs G[Xi] and G[Xij ] contain a copy of the vertices in Cj .

Now let S be a (n1/2, 1/3)-separator of H as obtained by PlanarSeparator. Define

P = {j ∈ [m] | Pj ∩ S 6= ∅}.

Clearly, |P| ≤ |S|.
Let

S′ = S ∪ (∪j∈PCj) ,

that is, S′ is the separator S together with those sets Cj ’s such that the planar graph in H
corresponding to the set Cj shares at least one vertex with S. Since each Cj has size at most 3,
|S′| ≤ 4 · |S|.

Once we have a tree decomposition, it is easy to see that the set S′ can be computed by a
log-space algorithm with one oracle query to PlanarSeparator.

Proof of Theorem 2. Observe that the planar reachability algorithm of Theorem 5 essentially uses
the properties that (I) a subgraph of a planar graph is also planar, and (II) their exists an algorithm
that computes a (n1/2, 2/3)-separator of a planar graph in polynomial time and Õ(n1/2) space. Note
that by the definition itself, all the subgraphs of a H-minor-free graph is also H-minor-free and
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given a tree decomposition, from Theorem 8 we get an algorithm that computes a (n2/3, 2/3)-
separator of a H-minor-free graph in polynomial time and Õ(n2/3) space. Now using the algorithm
stated in Theorem 5, we get our desired result.

Proof Sketch for Theorem 3. By Corollary 4.1, given a K3,3-free or K5-free graph G, we can com-
pute in Õ(n1/2) space and polynomial time, a (n1/2, 2/3)-separator of G. Once a separator is
computed we can use a recursive method (identical to the proof of Theorem 5 from [INP+13]) to
design a n1/2+ε-space and polynomial time algorithm for the reachability problem. We omit the
details as it is identical to the proof of Theorem 5.
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