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Abstract. Several calculi for quantified Boolean formulas (QBFs) exist, but relations between
them are not yet fully understood. This paper defines a novel calculus, which is resolution-
based and enables unification of the principal existing resolution-based QBF calculi, namely
Q-resolution, long-distance Q-resolution and the expansion-based calculus ∀Exp+Res. All these
calculi play an important role in QBF solving. This paper shows simulation results for the new
calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for
the universal player from proofs in the calculus. We believe that this new proof system opens
new avenues for further research and provides a suitable formalism for certification of existing
solvers.

1 Introduction

Proof complexity has been the subject of research for a number of reasons. The seminal paper
of Cook and Reckhow showed an important connection between proof complexity and com-
putational complexity [8]; similarly there are strong links to first-order logic, in particular to
bounded arithmetic [7]. In areas like model checking, proofs have turned out to be important
artifacts when solving certain types of problems [27]. Last but not least, for automated the-
orem provers, it is desirable that they provide a proof as a certificate that the given answer
is indeed correct [19,33].

This paper is concerned with the proof systems for quantified Boolean formulas (QBF).
Currently, a handful of systems exist. Kraj́ıček and Pudlák define a Gentzen-style sequent cal-
culus for QBF [25]. Kleine Büning et al. define a resolution-like calculus called Q-resolution [21].
There are several extensions of Q-resolution; notably long-distance Q-resolution, which is im-
portant as it enables tracing certain type of DPLL-based QBF solvers [36,2,24]. It has also
been shown to be more powerful than plain Q-resolution [10].

Recently, a proof system ∀Exp+Res was introduced with the motivation to trace expansion-
based QBF solvers [13]. ∀Exp+Res also uses resolution but is rather different from Q-resolution.
At this point it is only known that ∀Exp+Res cannot p-simulate Q-resolution [16], but it is
unknown whether Q-resolution p-simulates ∀Exp+Res. We conjecture that the two systems
are incomparable as it has been shown that expansion-based solving can exponentially out-
perform DPLL-based solving. (An overview of these calculi is given in Section 2 and some
other variants are mentioned.)

The disparity between the existing resolution-based calculi does not only represent a the-
oretical question. Indeed, it prohibits unified certification of QBF solvers or certification of
solvers combining expansion and DPLL (expansion is also commonly used in preprocess-
ing [5]). The quest for a unified calculus for the aforementioned solvers does not only have
certification as motivation. If we can define a calculus that is able to trace both types of
solvers, we should ask, whether we can develop QBF solvers based on this calculus rather
than on the more limited ones.
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The objective of this paper is to define a calculus that is able to capture the existing
QBF resolution-based calculi and yet remains amenable to machine manipulation. The con-
tributions of the paper are as follows. (1) A novel calculus is defined (with several variants).
(2) It is shown that this calculus is sound and complete. (3) It is shown that this calculus
p-simulates ∀Exp+Res and long-distance Q-resolution (and therefore Q-resolution). (4) It is
shown how to obtain a winning strategy for the universal player from proofs in this calculus.
We note that to our best knowledge, constructions of strategies from expansion-based solvers
were not known prior to this paper.

The rest of the paper is structured as follows. Section 2 introduces concepts and notation
used throughout the paper. Section 3 introduces a novel calculus and shows that it p-simulates
Q-resolution and the expansion-based calculus ∀Exp+Res. Section 4 extends the calculus
from the previous section such that it also p-simulates long-distance Q-resolution; further we
demonstrate how to obtain winning strategies from refutations in that calculus. This also
serves as a soundness proof of the defined calculi. Finally, Section 5 concludes the paper and
points to directions of future work.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is complementary to the
literal ¬x and vice versa. If l is a literal, ¬l denotes the complementary literal, i.e. ¬¬x = x.
A clause is a disjunction of zero or more literals. If a clause contains no literals, it is denoted
as ⊥, which is semantically equivalent to false. A formula in conjunctive normal form (CNF)
is a conjunction of clauses. Whenever convenient, a clause is treated as a set of literals and a
CNF formula as a set of sets of literals. For a literal l = x or l = ¬x, we write var(l) for x.
For a clause C, we write var(C) to denote {var(l) | l ∈ C} and for a CNF ψ, var(C) denotes
{l | l ∈ var(C), C ∈ ψ}.

Substitutions are treated as functions from variables to formulas and are denoted as
ψ1/x1, . . . , ψn/xn, with xi 6= xj for i 6= j. The set of variables x1, . . . , xn is called the do-
main of the substitution. An application of a substitution is denoted as φ[ψ1/x1, . . . , ψn/xn]
meaning that the variables xi are simultaneously substituted with the corresponding for-
mulas ψi in the formula φ. A substitution is called an assignment iff each ψi is one of the
constants 0, 1. An assignment is called total, or complete, for a set of variables X if each x ∈ X
is in the domain of the assignment. Applications of substitutions imply basic simplifications,
e.g. (x ∨ y)[0/y] = x.

A proof system (Cook, Reckhow [8]) for a language L over alphabet Γ is a polynomial-time
computable partial function f : Γ ∗ ⇁ Γ ∗ with rng(f) = L and where Γ ∗ is the set of strings
over Γ . An f -proof of string y is a string x such that f(x) = y.

We say that a proof system f p-simulates g (g ≤p f) if there exists a polynomial p such
that for every g-proof πg there is an f -proof πf with f(πf ) = g(πg) and |πf | ≤ p(|πg|) (they
have polynomially similar size) and πf can be constructed from πg in polynomial time.

Quantified Boolean Formulas (QBFs) [20] are an extension of propositional logic with
quantifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth assignments
as Ψ [0/x] ∧ Ψ [1/x] and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x].

Unless specified otherwise, we assume that QBFs are in closed prenex form with a CNF
matrix, i.e., we consider the form Q1X1 . . .QkXk. φ, where Xi are pairwise disjoint sets of
variables; Qi ∈ {∃,∀} and Qi 6= Qi+1. The formula φ is in CNF and is defined only on
variables X1 ∪ . . .∪Xk. The propositional part φ of a QBF is called the matrix and the rest
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the prefix. If a variable x is in the set Xi, we say that x is at level i and write lv(x) = i; we
write lv(l) for lv(var(l)). A closed QBF is false (resp. true), iff it is semantically equivalent to
the constant 0 (resp. 1).

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as a game between a universal
and an existential player. In the i-th step of the game, the player Qi assigns value to the
variables Xi. The existential player wins the game iff the matrix φ evaluates to 1 under the
assignment constructed in the game. The universal player wins iff the matrix φ evaluates to
0 under the assignment. A QBF is false if and only if there exists a winning strategy for the
universal player, i.e. the universal player can win any possible game.

2.1 Resolution-based Calculi for QBF

This section gives a brief overview of the main existing resolution-based calculi for QBF.
Q-resolution (Q-Res), by Kleine Büning et al. [21], is a resolution-like calculus that operates
on QBFs in prenex form where the matrix is a CNF. The rules are given in Figure 1.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is existential, then lv(x) < lv(u).

Fig. 1. The rules of Q-Res [21]

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang and Ma-
lik [36] and was formalized into a calculus by Balabanov and Jiang [2]. It allows merging
complementary literals of a universal variable u into the special literal u∗. These special lit-
erals prohibit certain resolution steps. In particular, different literals of a universal variable u
may be merged only if lv(x) < lv(u), where x is the resolution variable. The rules are given
in Figure 2. Note that the rules do not prohibit resolving w∗ ∨ x ∨C1 and u∗ ∨ ¬x ∨C2 with
lv(w) ≤ lv(u) < lv(x) as long as w 6= u.

Janota et al. [17] formalized a proof system ∀Exp+Res, whose objective is to emulate the
behavior of expansion-based solving, cf. [3,4,5,15,14]. Here we present an adapted version of
this calculus so that it is congruent with the other resolution-based calculi (semantically it is
the same as in [17]). The calculus is presented in Figure 3. The ∀Exp+Res calculus operates
on clauses that comprise only existential variables from the original QBF; but additionally,
these existential variables are annotated with the substitutions to universal variables. Any
existential variable x is annotated with substitutions to those variables that precede it in the
quantification order. For instance, the clause x ∨ b0/u can be derived from the original clause
x ∨ u ∨ x under the prefix ∃x∀u∃b.

Besides the aforementioned resolution-based calculi, there is a system by Klieber et al. [24,23],
which operates on pairs of sets of literals, rather than clauses; this system is in its workings
akin to LD-Q-Res. Van Gelder defines an extension of Q-Res, called QU-resolution, which
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(Axiom)
C

C ∪ {u}
(∀-Red)

C

C ∪ {u∗}
(∀-Red∗)

C

Variable u is universal and lv(u) ≥ lv(l) for all l ∈ C.

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C1 ∪ {x, u} C2 ∪ {¬x,¬u}
(LD0)

C1 ∪ C2 ∪ {u∗}

C1 ∪ {x, u} C2 ∪ {¬x, u∗}
(LD1)

C1 ∪ C2 ∪ {u∗}

C1 ∪ {x, u∗} C2 ∪ {¬x, u∗}
(LD2)

C1 ∪ C2 ∪ {u∗}

Variable x is existential, variable u is universal, and lv(x) < lv(u). There may be several universal literals
u with lv(x) < lv(u) that are merged in the resolution step.

Fig. 2. The rules of LD-Q-Res [2]

(Axiom)
{lτl | l ∈ C, l is existential }∪ {τ(l) | l ∈ C, l is universal}

C is a clause from the matrix. τ is an assignment to all universal variables, τl are assignments from τ to
only variables u with u < l.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(Res)

C1 ∪ C2

Fig. 3. The rules of ∀Exp+Res (adapted from [17])
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additionally supports resolution over universal variables [35]. Another extension of Q-Res
are variable dependencies [30,32,34] which enable more flexible ∀-reduction than traditional
Q-Res; this leads to speedups in solving [26]. For proofs of true QBFs term-resolution was
developed [11] or models in the form of Boolean functions [22] but those do not provide
polynomially-verifiable proof system. Some limitation of term-resolution were shown by Jan-
ota et al. [13]. A comparison of sequent calculi [25] and Q-Res was done by Egly [9].

3 IRF-calc, an Instantiation Calculus for QBF

This section introduces a calculus called an instantiation calculus as it effectively enables
instantiating a variable in a clause by a constant; such instantiation is recorded in the form of a
superscript of appropriate existential or variables. The calculus operates on clauses where any
existential variable is annotated with a cube on universal variables of the formula. Formally,
a cube is a partial assignment to universal variables. Further, if there is a clause C containing
the literal xt, the cube t contains only universal variables with level smaller than the level of x,
i.e. l < x for any l ∈ t. A cube is contradictory if it contains 0/u and 1/u for any universal
variable u. The calculus ensures that the cubes in annotations are non-contradictory.

Before we give the actual rules of the calculus, let us define an auxiliary function inst(C, c/u),
which for a given clause C and the substitution c/u, where c ∈ {0, 1} and u is a universal
variable, returns a clause C ′ obtained from C by applying c/u and by adding c/u to the anno-
tations of all annotated existential literals lt ∈ C with lv(u) > lv(l). The function inst can be
applied only if it does not lead to a contradictory cube in an annotation, and, if the clause does
not contain a literal that is made true by the substitution. So for instance inst(x1/u, 0/u) or
inst(¬u∨ b, 0/u) are not applicable. We extend the function to a set of non-contradicting sub-
stitutions, i.e. inst(C, {c/u}∪ τ) = inst(inst(C, c/u), τ). Intuitively, the function inst “moves”
universal literals into annotations, e.g. inst(u ∨ b, 0/u) = b0/u if lv(u) < lv(b).

For the calculus we consider the following rules. The side-condition of inst applies to the
whole rule whenever it is invoked.

(A) (Axiom) If C is in the matrix, derive the clause C ′ obtained from C by annotating each
existential literal in C with the empty cube.

(I) (Instantiation) If u ∈ C derive inst(C, 0/u). If ¬u ∈ C derive inst(C, 1/u).

(R) (Resolution) From C1 ∪{¬xt1} and C2 ∪{xt2} derive inst(C1, t2) ∪ inst(C2, t1), where x is
an existential variable. (Note that the side-condition of inst requires that the cubes t1 and
t2 must be non-contradictory and that t2 does not contradict with an existing annotation
of C1 and vice versa.)

(F) (Factoring) From C ∪{lt1 , lt2} where t1 and t2 are non-contradictory, derive C ∪{lt1 ∪ t2}.

The intuition of (R) is that the resolved clauses are brought into a form where the literals
being resolved on have the same annotation in both clauses, e.g. resolving b0/p ∨ c0/p and
¬b1/u ∨ d1/u yields c0/p,1/u ∨ d0/p,1/u for the prefix ∀up∃bcd.

We define calculi IR-calc and IRF-calc, which both contain the axioms (A) and rules (I)
and (R); the calculus IRF-calc additionally contains the factoring (F) rule. First we show that
the calculi can simulate Q-Res and ∀Exp+Res and therefore they are complete. Soundness is
shown later in Section 4.1 along with the soundness of a more general calculus introduced in
Section 4.
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⊥

u

¬b u ∨ b

x ∨ u ∨ b¬x ∨ u ∨ b

0/u

(a) Instantiation at the end

⊥

¬b b0/u

¬x ∨ b0/ux ∨ b0/u

¬x ∨ u ∨ b x ∨ u ∨ b
0/u 0/u

(b) Instantiation at the beginning

Fig. 4. Examples of Q-Res proofs in IR-calc over the prefix ∃x∀u∃b.

3.1 Simulations

Theorem 1. IR-calc p-simulates Q-Res.

Proof. Given a QBF Γ and its Q-Res refutation π, we find an IR-calc refutation π∗ of Γ
where the size of π∗ is polynomial in the size of π. We proceed by induction.

Induction Hypothesis (on the number of clauses in π): Given a QBF Γ and a Q-Res
derivation π of clause C we can find an IR-calc derivation π′ of size polynomial in π, which
is derived from π by annotating each literal with the empty cube.

Base Case (C is an axiom): We can find π′ immediately by applying the axiom rule.

Inductive Step: For any resolution step in π we apply a resolution in IR-calc on the
same clauses, since by the induction hypothesis all cubes are empty, they remain empty by
resolution.

Whenever a universal literal l is ∀-reduced in the Q-Res proof, instantiation is applied
on that literal. Since ∀-reduction is applied on the literal only if the literal is of the highest
level in the clause, the instantiation does not lead to any new annotations in the clause, thus
preserving the induction hypothesis. ut

A simple proof corresponding to a Q-Res proof can be found in Figure 4(a). Alternatively,
one could instantiate all universal variables at the beginning of the proof as in Figure 4(b).

Remark 2. The proof of Theorem 1 shows that IR-calc can be easily extended to support
resolution on universal variables and thus p-simulate QU-resolution [35].

Theorem 3. IR-calc p-simulates ∀Exp+Res.

Proof. We observe that IR-calc and ∀Exp+Res operate similarly to one another as both anno-
tate existential literals with assignments to universal variables. The difference between them
is that ∀Exp+Res requires that all universal variables in the formula are given a value when
an axiom is introduced, whereas in IR-calc this is done only when necessary, i.e. annotations
in ∀Exp+Res are more restrictive than in IR-calc.

For any ∀Exp+Res proof we can construct a similar IR-calc proof by some simple steps.
Remove all universal literals from axioms at the beginning, by instantiation. Perform res-
olution steps as in the ∀Exp+Res proof. This procedure guarantees that an IR-calc clause
contains a literal lt iff the corresponding ∀Exp+Res clause contains a literal lt

′
with t ⊆ t′.

Consequently, IR-calc resolution steps are valid. ut

Corollary 4. The calculi IR-calc and IRF-calc are complete.
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⊥

p∗ ∨ u∗

u∗ ∨ b

x ∨ u ∨ b ¬x ∨ ¬u ∨ b

p∗ ∨ ¬b

x ∨ p ∨ ¬b¬x ∨ ¬p ∨ ¬b

∀u∗,∀p∗

Fig. 5. An LD-Q-Res refutation problematic for IRF-calc under the prefix ∃x∀p∀u∃b.

⊥

b∗/u

b0/u ∨ b1/u

x ∨ b0/u ¬x ∨ b1/u

x ∨ u ∨ b ¬x ∨ ¬u ∨ b
0/u 1/u

(F)

¬b∗/p

¬b0/p ∨ ¬b1/p

x ∨ ¬b0/p¬x ∨ ¬b1/p

x ∨ p ∨ ¬b¬x ∨ ¬p ∨ ¬b
0/p1/p

(F)

Fig. 6. Example of an IRF∗-calc proof under the prefix ∃x∀p∀u∃b.

As another consequence, we obtain a separation:

Corollary 5. The calculi ∀Exp+Res and IR-calc are exponentially separated, i.e., there exist
formulas that require exponential-size proofs in ∀Exp+Res but admit polynomial-size proofs
in IR-calc.

This follows by combining results from [16] (∀Exp+Res does not p-simulate Q-res) and The-
orem 1.

Observe that IRF-calc can immediately replicate certain LD-Q-Res steps by resolution
and subsequent factoring. For instance resolution of ¬x∨¬u∨ b and x∨ u∨ c corresponds to
¬x∨b1/u and x∨c0/u resulting into b1/u∨c0/u (corresponding to u∗∨b∨c). Duplicate literals,
such as b0/p and b1/u, can be merged into one by factoring. Factoring, however, is not enabled
for literals with complementary annotations, e.g. when resolving ¬x ∨ ¬u ∨ b and x ∨ u ∨ b.

4 Extending IRF-calc

We observed a significant difference between LD-Q-Res and IR-calc. LD-Q-Res never creates
different copies of the same literal whereas IR-calc may do so. This issue is illustrated by an
LD-Q-Res proof in Figure 5. In IR-calc, instead of the clauses u∗ ∨ b and p∗ ∨¬b, the clauses
b0/u ∨ b1/u and ¬b0/p ∨¬b1/p would be produced. It is not clear how this LD-Q-Res resolution
step should be replicated. This indicates an issue—one can easily construct such formula with
more universal variables.

Motivated by this issue, we extend IRF-calc with an operation that lets the calculus
“merge” two literals with contradictory annotations. We extend IRF-calc to IRF∗-calc by
the following modification. Extend annotations with the notation ∗/u. The intuition is that ∗
corresponds to both 0 and 1. Additionally to the existing side-condition of inst, in the extended
version of the calculus, inst(C, ∗/u) must not be applied when C contains a literal lt with c/u ∈
t. Conversely, inst(C, c/u) is not applicable if C contains a literal annotated with ∗/u.
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Table 1. Reduction of an IRF∗-calc proof π by τ into πτ . Clauses C1, C2 are part of πτ ; the clauses D1, D2

are the corresponding clauses of π; c ∈ {0, 1}. The condition l ∈ > is considered true for any l.

(a) Axiom reduction

If axiom(D1)

lt ∈ D1 s.t. τ(l) = 1 >
otherwise

{
lt ∈ D1 | τ(l) 6= 0

}
(b) Resolution reduction

If resx(D1, D2)

xt1 ∈ C1 and C2 = > >
C1 = > and ¬xt2 ∈ C2 >
xt1 /∈ C1 and ¬xt2 ∈ C2 C1

xt1 ∈ C1 and ¬xt2 /∈ C2 C2

xt1 /∈ C1 and ¬xt2 /∈ C2 shorter of C1, C2

otherwise resx(C1, C2)

(c) Instantiation reduction

If instant(D1, c/u)

C1 = > >
c = 0 and u /∈ C1 C1

c = 1 and ¬u /∈ C1 C1

otherwise instant(C1, c/u)

(d) Factoring reduction

If factr(D1, x
t1 , xt2)

C1 = > >
xt1 /∈ C1 or xt2 /∈ C1 C1

otherwise factr(C1, x
t1 , xt2)

(A) (Axiom) If C is in the matrix, derive the clause C ′ obtained from C by annotating each
existential literal in C with the empty cube. (Unchanged from the from previous version.)

(F) (Factoring) For a clause C ∪{lt1 , lt2} derive the clause C ∪{lt}, where t is defined as
follows. If c/u ∈ t1 and d/u ∈ t2 s.t. c 6= d, for c, d ∈ {0, 1, ∗}, then ∗/u ∈ t. Otherwise,
for i ∈ {1, 2} and c ∈ {0, 1, ∗}, if c/u ∈ ti then c/u ∈ t. (Substitutions are copied into the
resulting one except for the contradicting ones, which are merged into the ∗ substitution.)

(I) (Instantiation) If u ∈ C derive inst(C, 0/u). If ¬u ∈ C derive inst(C, 1/u).

(R) (Resolution) From C0 ∪{¬xτ0} and C1 ∪{xτ1} derive inst(C0, τ1)∪inst(C1, τ0). Additionally
to the side-condition of inst, if ∗/u ∈ τi for some u, then c/u /∈ τ1−i for i ∈ {0, 1} and
c ∈ {0, 1, ∗}.

The refutation in Figure 6 is an example of an IRF∗-calc proof replicating the LD-Q-Res
proof from Figure 5.

4.1 Soundness and Strategies for IRF∗-calc

The purpose of this section is twofold: show how to obtain a winning strategy for the universal
player given an IRF∗-calc proof, and, to show that IRF∗-calc is sound (and therefore also IRF-
calc). First we show how to obtain a winning strategy for the universal player from a proof.
From this, the soundness of the calculus follows because a QBF is false if and only if such
strategy exists.

The approach we follow is similar to the one used for Q-Res [12] or LD-Q-Res [10]. Given
an IRF∗-calc proof, we provide an algorithm that responds with the appropriate assignments
to the universal variables after given an assignment to the existential variables. The order of
the assignments follows the game-based point of view on QBF (see Section 2). (An alternative
to this approach would be to construct a set of Boolean functions for the strategy as in [2].)

More precisely, consider a QBF Γ = ∃E∀U.Φ, where E and U are sets of variables and
Φ is a QBF—potentially with further quantification. Let π be an IRF∗-calc refutation of Γ ,
and let τ be a total assignment to E. Reduce π into a πτ by τ so that πτ is a refutation
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⊥

b1/u (b∗/u)

b1/u (b0/u∨b1/u)

> (x∨b0/u) b1/u (¬x∨b1/u)

> (x∨u∨b) ¬u ∨ b (¬x∨¬u∨b)

0/u 1/u

(F)

¬b1/p (¬b∗/p)

¬b1/p (¬b0/p∨¬b1/p)

> (x∨¬b0/p)¬b1/p (¬x∨¬b1/p)

> (x∨p∨¬b)¬p ∨ ¬b (¬x∨¬p∨¬b)

0/p1/p

(F)

Fig. 7. A reduction of proof Figure 6 by 1/x with the original clauses in parentheses; under the prefix ∃x∀p∀u∃b.

of ∀U.Φ[τ ] (recall that assignments are treated as substitutions). We will calculate a total
assignment µ to U from πτ . The assignment µ constitutes a response of the universal player
to the assignment τ made by the existential player. Reduce πτ by µ, obtaining a refutation
πτ,µ of Φ[τ, µ]. Repeat this procedure with the formula Φ[τ, µ] and the refutation πτ,µ. The
process stops when Φ does not contain any universal variables. We follow this notation for
the rest of the section.

Reduction of π by τ is done similarly as for Q-Res [12] or LD-Q-Res [10]. The rules of
the reduction are shown in Table 1. Each operation made in the refutation π is repeated in
πτ according to the rules given by Table 1. In some cases, the reduction produces the special
clause >. Intuitively, the > clause corresponds to deleting the clause from the original proof.

In the case of the axiom clauses (see Table 1(a)), the reduction introduces into πτ the
same axiom as π but performs the substitution τ (recall that the objective is to construct a
refutation of ∀U.Φ[τ ]). Observe that > is produced if the axiom contains a literal l for which
τ(l) = 1 since such clause is no longer available in the matrix of ∀U.Φ[τ ]. In the case of the
instantiation and factoring operation, the reduction performs them only if they are applicable.
The reduction of resolution steps is such that the literal being resolved on does not appear in
the resolvent unless this is impossible, then the resolution step results into > (see Table 1(b)).

Note that the reduction is defined so that the reduced proof πτ contains some “dummy”
steps, i.e. a clause C may be derived from clauses C and D. In such cases, D is not considered
to be part of the proof of C. While in practice such steps would be removed, here they simplify
further discussion as each clause in πτ has its corresponding original clause in π.

Figure 7 illustrates a reduction of the example proof Figure 6. The original clauses are
displayed in parentheses. Observe that there are resolution steps where one of the antecedents
is ignored and the other one is simply copied.

Consider πτ as a directed graph and delete all nodes that are not connected to the sink
⊥.

Consider the proof πτ and collect all substitutions on U that appear in this proof to make
set µ1. We also use a second ingredient, we consider πτ as a sequence and consider the first
clause in πτ that contains only universal variables and take all substitutions (restricted to
substitutions on U) needed to refute it as set µ2. This is similar to the construction in [12].

To obtain an assignment µ to U , we take the union of µ1 and µ2 and make these into a total
assignment by choosing arbitrary values for variables that do not appear in the collection.
So for instance in Figure 7 collect the assignments 1/p and 1/u. To obtain πτ,µ, remove
occurrences of U -variables from the proof of ⊥ in πτ .
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To show that this procedure is correct, we need to show that the reduction returns a valid
IRF∗-calc refutation πτ , and, that πτ does not contain any annotations giving contradictory
values to variables in U . We begin by a lemma showing that πτ is a valid IRF∗-calc proof
(but not necessarily a refutation).

Lemma 6. Consider πτ constructed as above; πτ is a valid IRF∗-calc proof.

Proof. By induction on derivation depth we prove that the derivation of any clause in πτ
is a valid IRF∗-calc proof along with the property that annotations in πτ are “subsets” of
annotations in π. We give a precise version of this.

Induction Hypothesis (on the derivation depth): For any clause C in πτ it holds that
if xt ∈ C then there is an xt

′
in the original clause s.t. if c/u ∈ t then c/u ∈ t′ or ∗/u ∈ t′

for c ∈ {0, 1, ∗}. (Intuitively, for the subset notion, we imagine that ∗/u corresponds to
1/u, 0/u ∈ t.) Furthermore πτ up to the clause C is a valid proof.

Base Case: The induction hypothesis is satisfied by the axiom reduction as all annotations
are empty.

Inductive Step: The hypothesis is preserved by the factoring rule. The application of
instantiation is possible due to the induction hypothesis and the fact that the corresponding
instantiation steps are valid in π. Instantiation preserves the induction hypothesis as it only
may add annotations if they are present in the original proof π.

Let us focus now on the resolution step (Table 1(b)). The only problematic case is when
the actual resolution is performed (when xt1 ∈ C1, ¬xt2 ∈ C2, and none of C1, C2 is > from
Table 1(b)), because otherwise the resolvent is just a copy of one of its antecedents. Hence,
consider a resolution step of clauses xt1 ∨ C1 and ¬xt2 ∨ C2 in πτ . These correspond to some
original clauses xt

′
1 ∨D1 and ¬xt′2 ∨D2 in π.

First we need to verify that t1 and t2 can be merged, i.e. there is no c/u ∈ t1 and d/u ∈ t2
s.t. c 6= d, and that there is no ∗/u ∈ t1 and c/u ∈ t2 (without loss of generality, which shall
be assumed for the remainder of this proof).

Due to the induction hypothesis, it cannot be that ∗/u ∈ t1 and c/u ∈ t2 as these would
appear in t′1 and t′2 as well. If 0/u ∈ t1 and 1/u ∈ t2 then due to induction hypothesis the
following scenarios may appear in the original clauses: (1) 0/u ∈ t′1 and 1/u ∈ t′2 (2) 0/u ∈ t′1
and ∗/u ∈ t′2 (3) ∗/u ∈ t′1 and 1/u ∈ t′2 (4) ∗/u ∈ t′1 and ∗/u ∈ t′2. All these scenarios are
prohibited by the side-condition of resolution. Using the same argument, we show that the
operations inst(C2, t1) and inst(C1, t2) are valid. ut

In the following lemma we show that πτ is indeed an IRF∗-calc refutation, i.e. that it
derives ⊥.

Lemma 7. Consider the proof πτ constructed as above; πτ is an IRF∗-calc refutation.

Proof. The proof proceeds by induction on derivation depth.
Induction Hypothesis (on derivation depth): If a clause C in πτ is >, then the corre-

sponding original clause in π contains a literal lP s.t. τ(l) = 1.
To see how the lemma follows from this induction hypothesis we also recall the induction

hypothesis proven in the proof of Lemma 6, which says if a clause in πτ contains some literal
lt, then the original clause π must contain a corresponding literal. This, together with the
induction hypothesis we are about to prove, lets us conclude that the root clause C of πτ
must be ⊥ because it corresponds to the original clause ⊥ in π and therefore C cannot be >
and it cannot contain any literals.
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Base Case: The induction hypothesis is satisfied by the reduction of an axiom as a
clause D is replaced by > if l ∈ D s.t. τ(l) = 1 (see Table 1(a)).

Inductive Step: The hypothesis is preserved by factoring and instantiation as these
produce > iff given > as the argument.

Consider a resolution step of C1 and C2 over xt1 and ¬xt2 with the resolvent R. These
correspond to the original clauses D1, D2, and Z, respectively. For the resolvent R to be >,
either both C1 and C2 are > or one of them is > and the second contains the literal to be
resolved on (Table 1(b)).

Hence, for R to be > at least one of C1, C2 must be >. Without loss of generality, let
C1 = >. From the induction hypothesis, D1 contains a literal lt s.t. τ(l) = 1. This literal is
copied into the original resolvent Z unless it is the literal xt1 . If lt is copied into Z, then the
induction hypothesis is preserved. If τ(x) = 1, then τ(¬x) = 0. Therefore, if R = >, there
must be a different literal in D2 that evaluates to 1, which is copied into Z. ut

The following lemma shows that the refutation πτ enables us to calculate an unambiguous
assignment to U by joining µ1 and µ2.

Lemma 8. Consider the IRF∗-calc proof πτ defined as above and the set µ which is the union
of µ1 and µ2 as defined before Lemma 6. The set µ does not contain both 0/u and 1/u nor
does it contain ∗/u for any u ∈ U .

Proof. By induction on derivation depth we show that the condition holds for any derived
clause in πτ . Consider the set µC comprising all annotations appearing in the proof of C. Let
us consider an induction hypothesis comprising the following conditions on any derived clause
C.

Induction Hypothesis (on the derivation depth):

(1) If c/u ∈ µC for u ∈ U then c/u ∈ t for all lt ∈ C. (Any annotation on U that appears in
the proof of C appears in annotations of all literals of C.)

(2) There is no u ∈ U such that 0/u ∈ µC and 1/u ∈ µC . (There are no complementary
values for variables on U appearing in the proof of C.)

(3) There are no ∗/u ∈ µC for u ∈ U . (Note that this follows from (2) because Factoring
cannot produce ∗/u.)

(4) If u ∈ C for u ∈ U , then 1/u /∈ µC , likewise if ¬u ∈ C for u ∈ U , then 0/u /∈ µC .

Base Case: The induction hypothesis is satisfied by axioms since all annotations are
empty.

Inductive Step: If a literal u ∈ C with u ∈ U is instantiated, then 0/u must be added to
annotations of all existential literals in C because the variables U have the lowest level in πτ
(recall that the first level ∃E was reduced by τ). Thus (1) is preserved. Further, instantiation
can only be performed if it does not lead to contradictory annotations, so (2) is preserved. It
can also not be performed if a literal satisfied by the substitution appears in the clause, so
(4) is preserved. The condition (3) is preserved as no new ∗/u annotation can be produced
by instantiation.

Factoring cannot produce an annotation ∗/u for u ∈ U due to the condition (2) of the
induction hypothesis.

Let us focus now on the resolution step (Table 1(b)). As in Lemma 6, the only problematic
case is when the actual resolution is performed because otherwise the resolvent is just a copy

11



of one of its antecedents. Hence, consider a resolution step of clauses xt1 ∨ C1 and ¬xt2 ∨ C2

in πτ .
Consider all substitutions t′ to U that appear in both t1 and t2, i.e. let t′ = {l ∈ t1 ∪ t2 | var(l) ∈ U}.

Observe that from the definition of resolution, the set t′ must be non-contradictory and all
c/u ∈ t′ appear in s for all ps in the resolvent inst(C2, t1) ∪ inst(C1, t2).

The set t′ contains all literals on U for the proofs of either of the antecedents due to the
condition (1) of the induction hypothesis and thus this condition is preserved. Consequently,
the condition (2) is preserved since τ ′ is non-contradictory. Furthermore the condition (4) is
preserved as the inst function would not be allowed if it added an annotation that satisfied
any literal.

From the induction we have proved that conditions (2) and (3) are true for when C is the
sink hence µ1 is non-contradictory. The set µ2 is easily seen as non-contradictory; the clause
it refutes will not be tautological else we cannot instantiate and we cannot produce a ∗/u in
the set µ2.

We will argue that µ1 and µ2 are mutually non-contradictory. Let C be the first purely
universal clause, then condition (4) gives us this as no annotations appear later in the proof
(only instantiation is performed with no existential literals).

Therefore µ must be non-contradictory. ut

From Lemma 8, the strategy for the universal player is well-defined. We need to show that
this is also a winning strategy.

Theorem 9. The process above constructs a winning strategy for the universal player.

Proof. For any QBF Γ = ∃E∀U.Φ, and τ , the construction provides a πτ,µ that is an IRF∗-
calc refutation of Φ[τ, µ]. After this process is iterated until no universal variables are left in
the formula, we are left with an IRF∗-calc refutation of whatever was left from the matrix
of Γ . Since an IRF∗-calc refutation on a formula with no universal variables is in fact a
classic propositional resolution refutation, we are left with an unsatisfiable formula, i.e. a
formula with no winning move for the existential player. Hence, all the considered assignments
correspond to a game won by the universal player. Since this process works for any assignment
made by the existential player, this process provides a winning strategy for the universal
player. ut

The soundness of IRF∗-calc follows directly from Theorem 9.

Corollary 10. The calculi IR-calc, IRF-calc, and IRF∗-calc are sound.

4.2 Simulation of LD-Q-Res by IRF∗-calc

Consider an LD-Q-Res refutation C1, . . . , Cn. We construct clauses D1, . . . , Dn, which will
form the skeleton of the IRF∗-calc proof. The construction proceeds as follows. If Ci is an
axiom, Di is constructed by the axiom rule from the same clause and instantiation of all
universal literals. If Ci is a ∀-reduction of Cj with j < i, then we set Di equal to Dj . If Ci is
obtained by a resolution step from Cj and Ck with j < k < i, the clause Di is obtained by a
resolution step from Dj and Dk, and factoring of any literals lt1 and lt2 (using the (F) rule).
In order to prove a p-simulation we need the following lemma.

Lemma 11. The construction above yields a valid IRF∗-calc refutation.
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Proof. The construction establishes the following invariant for all Di, i ∈ 1, . . . , n, which we
show by induction on i.

Induction hypothesis (on i):

(1) For an existential literal l, it holds that l ∈ Ci iff lt ∈ Di for some t.
(2) The clause Di has no literals lt1 and lt2 such that t1 6= t2.
(3) If lt ∈ Di with ∗/u ∈ t, then u∗ ∈ Ci.
(4) If lt ∈ Di with 0/u ∈ t, then u ∈ Ci or u∗ ∈ Ci.
(5) If lt ∈ Di with 1/u ∈ t, then ¬u ∈ Ci or u∗ ∈ Ci.

Base Case: All conditions hold for the axioms and initial instantiations.
Inductive Step: We distinguish two cases on the nature of the rule that was applied to

derive Ci in the LD-Q-Res proof.
If Ci is a ∀-reduction of Cj in the LD-Q-Res refutation, then Ci and Di both retain

the same existential literals. Since Di is the same as Dj there are no literals with differing
annotations. For conditions (3)–(5) we argue that if lt ∈ Di and the annotation c/u appears
in t then by condition (1) that literal l appears in Cj . That l blocks the literal of u from being
∀-reduced in that step hence the literal is retained for Ci.

If Ci is derived by a resolution step, (1) holds true. Condition (2) holds because we always
perform factoring in the IRF∗-calc refutation. Conditions (3)–(5) hold because universal vari-
ables are not lost in resolution, the only consideration is that the variable is merged in the
LD-Q-Res proof, but conditions (3)–(5) allow that. This finishes the proof of the induction.

It remains to show that all IRF∗-calc steps are valid. Consider resolving Dj = xt0 ∨ D′0
and Dk = ¬xt1 ∨ D′1 in the constructed IRF∗-calc proof, which corresponds to a resolution
step of Cj and Ck in the original LD-Q-Res proof. We need to be show that the side-condition
of resolution is fulfilled. First, t0 and t1 must be mutually non-contradictory and if ∗/u ∈ ti
then u is not in t1−i for i ∈ {0, 1}. Second, the operations inst(D′i, ti−1) must be permitted for
i ∈ {0, 1}. Both conditions are argued for by contradiction. Without a loss of generality, let
1/u ∈ t0 and 0/u ∈ t1 or ∗/u ∈ t0 and c/u ∈ t1, for c ∈ {0, 1, ∗}. Then from conditions (3)–(5),
there is a corresponding literal u, ¬u, or u∗ with u < x in Cj and Ck. These literals, however,
would prohibit such step in LD-Q-Res (contradiction). Now let us assume that c/u ∈ t0 and
d/u ∈ t for some lt ∈ D1 such that c 6= d or one of them is ∗. Observe that u < x since t1
contains substitutions only to variables with level lower than x. As in the previous argument,
this would lead to universal literals in Cj and Ck that are prohibited by LD-Q-Res. ut

Theorem 12. IRF∗-calc p-simulates LD-Q-Res.

Proof. We observe that the stages in the construction allow it to be constructed in polynomial
time. Lemma 11 tells us that it is a valid refutation. Furthermore, if we derive ⊥ in an LD-
Q-Res proof, by (1) from Lemma 11 we derive a clause with no existential literals. It also
contains no universal variables as these are all instantiated at the axioms. Therefore, this
must also be the empty clause ⊥. ut

4.3 Instantiation and First Order Logic

Here we would like to point out an important relation between IRF-calc and first order
logic (FOL). QBF can be easily defined as special case of FOL [31]. Then, Robinson’s FOL-
based resolution [29,1] can be used as a proof system for QBF. Let us briefly review the
FOL formulation of QBF. The translation introduces a predicate P (representing truth) and
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replaces each occurrence of a variable x in the given QBF with P (x). Next it replaces each
existential variable with an appropriate Skolem function. Lastly, it introduces two constants >
and ⊥ along with the axioms P (>) and ¬P (⊥); cf. [31].

Due to the structure of the FOL clauses obtained by this translation, the following op-
erations may take place. If a clause contains a literal P (u), where u is universal, the axiom
¬P (⊥) can be used to remove P (u) from the clause, which effectively replaces u with ⊥ in
that clause. Analogously, > replaces u if the clause contains the literal ¬u. This corresponds
to the operation inst in IRF-calc. If two clauses are resolved over the literals P (f(. . . )) and
¬P (f(. . . )), the function arguments are unified, which effectively means that if some variable
was replaced with c ∈ {>,⊥} in one of the atoms earlier, it must be done so also in the
other atom now. This correspond to the resolution step in IRF-calc. Note, however, that in
FOL resolution, also variables shared between the antecedents must be renamed. Factoring in
FOL corresponds to factoring in IRF-calc. All these correspondences, are not exact. Further,
application of FOL to QBF is not pragmatic—besides the syntactic overhead, unification and
variable renaming is required for any resolution step. It is unclear how IRF∗-calc corresponds
to FOL resolution.

5 Conclusions and Future Work

This paper introduces a novel resolution-based calculus for QBF (with several variations). This
calculus not only provides a formalism needed for unified certification of QBF solvers, namely
DPLL and expansion-based solvers, but also, it provides us with a number of insights. Firstly,
we observe that all the resolution-based calculi are in a way similar to Robinson’s resolution
in first-order logic. Hence, we can view the calculi as reasoning on Skolem functions. Indeed,
the clause u∨ b tells us that the whole QBF is false when the Skolem function b(u) returns 0
whenever u = 0. In the introduced calculus this is recorded directly through the annotation
b0/u. Note that Q-resolution does not enable us to reason about two different values of u,
i.e. u and ¬u cannot appear in the same clause. In long-distance Q-resolution, this is enabled
by the u∗ notation, which represents that u may take either value. The introduced calculus,
through annotations, gives us a more fine-grained approach because instead of u∗ ∨ c ∨ d we
can infer clauses such as c0/u ∨ d1/u, which records what happens for each of the values of u.
The paper further indicates that this fine-grained approach can be sometimes harmful. For
this, the calculus contains the operation of factoring, which lets us merge literals of the form
xt and xt

′
into a single literal.

The paper opens a number of avenues for further research. From theoretical perspective it
is interesting to study the respective strengths of the introduced calculus and its restrictions,
representing the previously existing ones. Extensions of Q-resolution, such as QU-resolution
or variable dependencies, should be explored in the context of the instantiation calculus (QU-
resolution was already mentioned in Remark 2).

From the practical perspective, the new calculus begs the question, whether we can develop
QBF algorithms based on the presented calculus and thus obtain a more efficient approach
to QBF solving.
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