
On Unification of QBF Resolution-Based Calculi

Olaf Beyersdorff1, Leroy Chew1, and Mikoláš Janota2

1School of Computing, University of Leeds, United Kingdom
2INESC-ID, Lisbon, Portugal

Abstract. Several calculi for quantified Boolean formulas (QBFs) exist, but relations between
them are not yet fully understood. This paper defines a novel calculus, which is resolution-
based and enables unification of the principal existing resolution-based QBF calculi, namely
Q-resolution, long-distance Q-resolution and the expansion-based calculus ∀Exp+Res. All these
calculi play an important role in QBF solving. This paper shows simulation results for the new
calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for
the universal player from proofs in the calculus. We believe that this new proof system provides
an underpinning necessary for formal analysis of modern QBF solvers.

1 Introduction

Traditionally, classifying a problem as NP hard was ultimately understood as evidence for its
infeasibility. Sharply contrasting this view, we have today fast algorithms for many important
computational tasks with underlying NP-hard problems. One particularly compelling example
of tremendous success is the area of SAT solving [26] where fast algorithms are being developed
and tested for the classical NP-complete problem of satisfiability of propositional formulas
(SAT). Modern SAT-solvers routinely solve industrial instances with even millions of variables.
However, from a theoretical perspective, this success of SAT solvers is not well understood.
The main theoretical approach to it comes via proof complexity. In particular, resolution
and its subsystems have been very successfully analysed in terms of proof complexity and
sharp bounds are known on the size and space for many important principles in resolution
(cf. [31,7]). This is very important information as the main algorithmic approaches to SAT
such as DPLL and CDCL are known to correspond to (tree-like) resolution [3,8,15,27], and
therefore bounds on size and space of proofs directly translate into bounds on running time
and memory consumption of SAT solvers.

In the last decade, there has been ever increasing interest to transfer the successful ap-
proach of SAT-solving to the more expressive case of quantified propositional formulas (QBF).
Due to its PSPACE completeness, QBF is far more expressive than SAT and thus applies to
further fields such as formal verification or planning [28,5]. As for SAT, proof complexity pro-
vides the main theoretical approach towards understanding the performance and limitations
of QBF-solving. However, compared to proof complexity of classical propositional logic, QBF
proof complexity is at a much earlier stage and also poses additional challenges. Currently,
a handful of systems exist, and they correspond to different approaches in QBF-solving. In
particular, Kleine Büning et al. [21] define a resolution-like calculus called Q-resolution. There
are several extensions of Q-resolution; notably long-distance Q-resolution [2], which has been
shown to be more powerful than plain Q-resolution [11]. Q-resolution and its extensions are
important as they model QBF solving based on CDCL [13]. Apart from CDCL, another main
approach to QBF-solving is through expansion of quantifiers [6,4,17]. Recently, a proof system
∀Exp+Res was introduced with the motivation to trace expansion-based QBF solvers [16].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 36 (2014)

∀Exp+Res also uses resolution, but is conceptually very different from Q-resolution. The pre-
cise relation of ∀Exp+Res to Q-resolution is currently open (cf. [18]), but we conjecture that
the two systems are incomparable as it has been shown that expansion-based solving can
exponentially outperform DPLL-based solving.

In general, it is fair to say that relations between the different types of QBF systems
mentioned above are currently not well understood. The objective of the present paper is to
unify these approaches. Towards this aim we define a calculus that is able to capture the
existing QBF resolution-based calculi and yet remains amenable to machine manipulation.
Our main contributions are as follows. (1) We introduce two novel calculi IR-calc and IRM-
calc, which are shown to be sound and complete for QBF. (2) IR-calc p-simulates Q-resolution
and ∀Exp+Res, i.e., proofs in either Q-resolution or ∀Exp+Res can be efficiently translated
into IR-calc. (3) The variant IRM-calc p-simulates long-distance Q-resolution. (4) We show
how to extract winning strategies for the universal player from proofs in IR-calc and IRM-calc.
Indeed, unified certification of QBF solvers or certification of solvers combining expansion and
DPLL is of immense practical importance [14,2,11] and presents one of the main motivations
for our research. To the best of our knowledge, constructions of strategies from expansion-
based solvers were not known prior to this paper.

The rest of the paper is structured as follows. Section 2 introduces concepts and notation
used throughout the paper. Section 3 introduces novel calculi and Section 4 shows how winning
strategies for the universal player are constructed; this is used as an argument for soundness.
Section 5 shows p-simulation results for the new calculi. Finally, Section 6 concludes the paper
and points to directions of future work.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is complementary
to the literal ¬x and vice versa. If l is a literal, ¬l denotes the complementary literal, i.e.
¬¬x = x. A clause is a disjunction of zero or more literals. The empty clause is denoted by ⊥,
which is semantically equivalent to false. A formula in conjunctive normal form (CNF) is a
conjunction of clauses. Whenever convenient, a clause is treated as a set of literals and a CNF
formula as a set of sets of literals. For a literal l = x or l = ¬x, we write var(l) for x and
extend this notation to var(C) for a clause C and var(ψ) for a CNF ψ.

A proof system (Cook, Reckhow [9]) for a language L over alphabet Γ is a polynomial-time
computable partial function f : Γ ∗ ⇁ Γ ∗ with rng(f) = L. An f -proof of string y is a string
x such that f(x) = y. In the systems that we consider here, proofs are sequences of clauses;
a refutation is a proof deriving >.

Quantified Boolean Formulas (QBFs) [20] extend propositional logic with quantifiers with
the standard semantics that ∀x. Ψ is satisfied by the same truth assignments as Ψ [0/x]∧Ψ [1/x]
and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified otherwise, we assume that QBFs are in closed
prenex form with a CNF matrix, i.e., we consider the form Q1X1 . . .QkXk. φ, where Xi are
pairwise disjoint sets of variables; Qi ∈ {∃,∀} and Qi 6= Qi+1. The formula φ is in CNF and
is defined only on variables X1 ∪ . . .∪Xk. The propositional part φ of a QBF is called the
matrix and the rest the prefix. If a variable x is in the set Xi, we say that x is at level i
and write lv(x) = i; we write lv(l) for lv(var(l)). A closed QBF is false (resp. true), iff it is
semantically equivalent to the constant 0 (resp. 1).

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as a game between the universal
and the existential player. In the i-th step of the game, the player Qi assigns values to the

2

variables Xi. The existential player wins the game iff the matrix φ evaluates to 1 under the
assignment constructed in the game. The universal player wins iff the matrix φ evaluates to 0.
A QBF is false iff there exists a winning strategy for the universal player, i.e. if the universal
player can win any possible game [1, Sec. 4.2.2].

2.1 Resolution-based Calculi for QBF

This section gives a brief overview of the main existing resolution-based calculi for QBF.
Q-resolution (Q-Res), by Kleine Büning et al. [21], is a resolution-like calculus that operates
on QBFs in prenex form where the matrix is a CNF. The rules are given in Figure 1.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is
existential, then lv(x) < lv(u).

Fig. 1. The rules of Q-Res [21]

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang and Ma-
lik [35] and was formalized into a calculus by Balabanov and Jiang [2]. It merges comple-
mentary literals of a universal variable u into the special literal u∗. These special literals
prohibit certain resolution steps. In particular, different literals of a universal variable u may
be merged only if lv(x) < lv(u), where x is the resolution variable. The rules are given in
Figure 2. Note that the rules do not prohibit resolving w∗ ∨ x ∨ C1 and u∗ ∨ ¬x ∨ C2 with
lv(w) ≤ lv(u) < lv(x) as long as w 6= u.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2 contain
only universal literals with var(U1) = var(U2). For each u ∈ var(U1) we require lv(x) < lv(u). If for
w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is defined as
{u∗ | u ∈ var(U1)}.

Fig. 2. The rules of LD-Q-Res [2]

A different calculus ∀Exp+Res based on expansions was introduced in [19]. In Figure 3 we
present an adapted version of this calculus so that it is congruent with the other resolution-
based calculi (semantically it is the same as in [19]). The ∀Exp+Res calculus operates on

3

(Axiom)
{lτl | l ∈ C, l is existential}∪ {τ(l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is an assignment to all universal variables.
τl are partial assignments obtained by restricting τ to variables u with lv(u) < lv(l).

C1 ∪ {xτ} C2 ∪ {¬xτ}
(Res)

C1 ∪ C2

Fig. 3. The rules of ∀Exp+Res (adapted from [19])

clauses that comprise only existential variables from the original QBF; but additionally, each
existential variable x is annotated with a substitution to those universal variables that precede
x in the quantification order. For instance, the clause x∨b0/u can be derived from the original
clause x ∨ u under the prefix ∃x∀u∃b.

Besides the aforementioned resolution-based calculi, there is a system by Klieber et al. [24,23],
which operates on pairs of sets of literals, rather than clauses; this system is in its workings
akin to LD-Q-Res. Van Gelder defines an extension of Q-Res, called QU-resolution, which
additionally supports resolution over universal variables [34]. Another extension of Q-Res are
variable dependencies [30,32,33] which enable more flexible ∀-reduction than traditional Q-
Res. For proofs of true QBFs term-resolution was developed [12] or models in the form of
Boolean functions [22] but those do not provide polynomially-verifiable proof system. Some
limitations of term-resolution were shown by Janota et al. [16]. A comparison of sequent
calculi [25] and Q-Res was done by Egly [10].

3 Instantiation-based Calculi IR-calc and IRM-calc

We begin by setting up a framework allowing us to define our new calculi. The framework
hinges on the concept of annotated clauses. An extended assignment is a partial mapping
from the boolean variables to {0, 1, ∗}. Two assignments τ and µ are called contradictory if
there exists a variable x ∈ dom(τ) ∩ dom(µ) with τ(x) 6= µ(x). An annotated clause is a
clause where each literal is annotated by an extended assignment to universal variables. For
an extended assignment σ to universal variables we write l[σ] to denote an annotated literal
where [σ] = {c/u ∈ σ | lv(u) < lv(l)}.

Further we define operations that let us modify annotations of a clause by instantiation.
For (extended) assignments τ and µ, we write τ Y µ for the assignment σ defined as follows:
σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = µ(x) if x ∈ dom(µ). The operation τ Y µ
is referred to as completion because µ provides values for variables that are not defined in
τ . The operation is associative and therefore we can omit parentheses. In contrast, it is not
commutative.

Lemma 1. The following equalities hold.

1. (µ Y τ) Y σ = µ Y (τ Y σ)
2. For non-contradictory µ and τ , it holds that µ Y τ = τ Y µ.
3. τ Y τ = τ .
4. For non-contradictory µ and τ , it holds that µ Y τ = µ∪ τ .

4

We consider an auxiliary function inst(τ, C), which for an extended assignment τ and an
annotated clause C returns the annotated clause

{
l[σ Y τ] | lσ ∈ C

}
.

Our first new system IR-calc operates on clauses annotated with usual assignments with
range {0, 1}. The calculus introduces clauses from the matrix and allows to instantiate and
resolve clauses; hence the name IR-calc. It comprises the rules in Figure 4.

(Axiom){
x[τ] | x ∈ C, x is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where the notation 0/u for
literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables.

Fig. 4. The rules of IR-calc.

Our second system IRM-calc is an extension of IR-calc where we allow extended assign-
ments with range {0, 1, ∗}. To introduce ∗ we include a new rule called merging. IRM-calc is
defined in Figure 5. The resolution rule has been adapted to deal with ∗, but when σ, ξ are
empty we have exactly the resolution rule from Figure 4.

(Axiom){
x[τ] | x ∈ C, x is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1)∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ (Merging)
C ∨ bξ

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ}∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}
C (Instantiation)

inst(τ, C)
τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 5. The rules of IRM-calc.

Example 2. Consider the (true) QBF ∃x∀uw∃b. (x ∨ u ∨ b) ∧ (¬x ∨ ¬u ∨ b) ∧ (u ∨ w ∨ ¬b).
In both calculi axioms yield x ∨ b0/u, ¬x ∨ b1/u, and ¬b0/w,0/u. In IR-calc we resolve to get
b0/u ∨ b1/u. IRM-calc further derives b∗/u by merging. Intuitively, b0/u ∨ b1/u means that the
existential player must play so that for any assignment to w either b = 1 if u = 0, or b = 0
if u = 1. So for instance, the player might choose to play b = 1 if w = 0 and u = 1, and if

5

w = 1 and u = 0. The clause b∗/u means that b must be 1 but the existential player has the
freedom to chose whether b = 1 when u = 0 or when u = 1, based on the value of w, i.e. it
is a more compact representation of the previous clause. Note that it would be unsound to
derive that b = 1 for any move of the universal player as b needs to be 0 when u = w = 0 due
to the third axiom.

If the third clause of the formula is changed to ¬b, the formula becomes false, which is
shown by instantiating ¬b to ¬b0/u and to ¬b1/u, using those to obtain x and ¬x by resolution
and deriving the empty clause.

Example 3. Consider the QBF ∃x∀u∃bc. (x ∨ u ∨ b) ∧ (¬x ∨ ¬u ∨ c) ∧ (¬b ∨ c) ∧ (¬c). The
following derivation is possible in IR-calc. Resolving x∨ b0/u and ¬x∨ c1/u yields b0/u ∨ c1/u.
Instantiating ¬b∨ c by 0/u gives ¬b0/u∨ c0/u, resolving this with the previous resolvent yields
c0/u ∨ c1/u. Refutation can be obtained by instantiation of ¬c once by 0/u and once by 1/u
and subseqent two resolution steps. In IRM-calc it is possible to obtain c∗/u by merging and
resolve that directly with ¬c, which yields ⊥.

4 Soundness and Extraction of Winning Strategies

The purpose of this section is twofold: show how to obtain a winning strategy for the universal
player given an IRM-calc proof, and, to show that IRM-calc is sound (and therefore also IR-
calc). First we show how to obtain a winning strategy for the universal player from a proof.
From this, the soundness of the calculus follows because a QBF is false if and only if such
strategy exists.

The approach we follow is similar to the one used for Q-Res [14] or LD-Q-Res [11]. Consider
a QBF Γ = ∃E∀U.Φ, where E and U are sets of variables and Φ is a QBF (potentially with
further quantification). Let π be an IRM-calc refutation of Γ , and let ε be a total assignment
to E. The assignment ε represents a move of the existential player. Reduce π to a refutation
πε of ∀U.Φ|ε. To obtain a response of the universal player, we construct an assignment µ to
the variables U such that reducing πε by µ gives a refutation of Φ|ε∪µ.

Let πε,µ be the proof resulting from reducing πε by µ. The game continues with φ|ε∪µ
and πε,µ. In each of these steps, two quantifier levels are removed from the given QBF and
a refutation for each of the intermediate formulas is produced. This guarantees a winning
strategy for the universal player because in the end the existential player will be faced with
an unsatisfiable formula without universal variables. We follow this notation for the rest of
the section.

To reduce a refutation π by the existential assignment ε, we reduce the leaves of π by ε
and repeat the steps of π with certain modifications. Instantiation steps are repeated with no
discrimination. Merging is repeated in the reduced proof unless either of the merged literals
is not in the reduced clause and then the clause is left as it is. Whenever a resolution step is
possible, just repeat it in the reduced proof. If it is not possible, the resolvent in the reduced
proof is obtained from the antecedent that is not > and that does not contain the pivot
literal. If such does not exist, the resolvent is marked as > (effectively removing it from
the proof). When producing a resolvent from a single antecedent, additional instantiation
is required. This instantiation is the same one as done by the original resolution step but
any ∗ is replaced by 0 (indeed, we can choose the constant arbitrarily). Like so, domains of
annotations are preserved. In the end, any clauses marked as > are removed. An algorithmic
description of this transformation is given in Algorithm 1.

6

Algorithm 1: Reduction of an IRM-calc proof by existential assignment ε. The lit-
eral xτ

′
denotes literal that resulted in reduction from xτ ; such τ ′ may contain 0 or 1

instead of some ∗. Likewise for xσ
′
.

1 Function Reduce (C, ε)

2 begin
3 if C is an axiom derived from C′ then
4 return D derived from C′|ε by the axiom rule

5 if C is derived by resolution of xτ ∨ C1 and ¬xσ ∨ C2 then
6 D1 ← Reduce(C1, ε)
7 D2 ← Reduce(C2, ε)

8 if D1 6= > and xτ
′
/∈ D1 then

9 return inst({c/u | u /∈ dom(τ), either c/u ∈ σ, c ∈ {0, 1} or c = 0, ∗/u ∈ σ} , D1)

10 else if D2 6= > and ¬xτ
′
/∈ D2 then

11 return inst({c/u | u /∈ dom(σ), either c/u ∈ τ, c ∈ {0, 1} or c = 0, ∗/u ∈ τ} , D2)

12 else if D1 6= > and D2 6= > and xτ
′
∈ D1 and ¬xσ

′
∈ D2 then

13 return resolvent of D1 and D2

14 else return >
15 if C is obtained from C′ by merging literals lτ and lσ then
16 D′ ← Reduce(C′, ε)

17 if lτ
′
∈ D′ ∧ lσ

′
∈ D′ then

18 return D′ where lτ
′

and lσ
′

are merged

19 else return D′

20 if C = inst(τ, C′) then
21 return inst(τ,Reduce(C′, ε))

To obtain an assignment to the variables U , collect all the assignments µ to U appearing
in annotations in πε; any variables not appearing in πε are given an arbitrary value. To obtain
πε,µ, remove occurrences of U -variables from the annotation in the of proof πε. This will leave
us with a valid refutation because we will show in Lemma 5 that only a single value constant
annotation can appear in the entire proof πε for each variable in U .

To show that this procedure is correct, we need to argue that the reduction returns a valid
IRM-calc refutation πε, and that πε does not contain annotations giving contradictory values
to variables in U . We start with the first claim.

Lemma 4. The above reduction yields a valid IRM-calc refutation πε of ∀U.Φ|ε.

Proof. By induction on the derivation depth. The induction hypothesis states that any derived
clause C ′ in the reduced proof has a valid derivation πC′ . Further, if there is a literal lσ

′ ∈ C ′,
then the original clause C corresponding to the clause C ′ contains a literal lσ, where σ satisfies
the following: for every c/u ∈ σ′ there is exactly one d/u ∈ σ where d = c or d = ∗. Further
dom(σ′) = dom(σ), i.e. a ∗ may become a constant in the reduction.

Base Case. Since ε assigns only existential variables, the clause in the reduced proof is
either unchanged, or some literals are removed from the axiom clause, or the whole axiom is
set to >.

Instantiation. If an instantiation step was present in the original proof, it is also present
after the reduction. Having already replaced ∗ by constants does not affect the instantiation
step as the value of that annotation does not change in either the reduced or original proof.

7

Resolution. If the actual resolution step is performed, consider the resolution of xτ ∪ ξ∨C1

and ¬xτ ∪σ ∨ C2 with the following conditions: dom(τ), dom(ξ) and dom(σ) are mutually
disjoint; rng(τ) = {0, 1}.

By induction hypothesis this is reduced to xτ ∪ ξ
′ ∨ C ′1 and ¬xτ ∪σ′ ∨ C ′2 with dom(ξ′) =

dom(ξ) and dom(σ′) = dom(σ). We can perform a resolution step as τ, ξ′, σ′ have disjoint
domains. Now the instantiation steps are performed: if ∗/u was introduced as annotation in
a literal in the original proof, the literal (if it exists) will be annotated with c/u in the new
proof for c ∈ {0, 1, ∗}. Otherwise, we perform instantiation steps, which by the disjointness of
ξ and σ lead to non-contradictory annotations and preserve the induction hypothesis.

If the resolution step is not performed and instead one of its antecedents is used, then the
induction hypothesis is preserved because in the reduced proof we only modify instantiations
from ∗/u to 0/u.

Merging. Consider a merge of lτ and lσ in the original proof. If in the reduced clause
these literals became lτ

′
and lσ

′
, some ∗ in those annotations might be 0 or 1 due to the

induction hypothesis but the domains of all τ , τ ′, σ, and σ′ are equal. The reduced proof will
contain a merge of lτ

′
and lσ

′
, which preserves the induction hypothesis. If the reduced clause

contains only one of the literals, say lτ
′
, the merge step is not performed in πε. This preserves

the induction hypothesis as the literal resulting from merge of lτ and lσ has an annotation
with domain equal to τ (and therefore to τ ′), and, with some constants 0 or 1 changed to ∗
compared to τ (and therefore to τ ′). ut

Lemma 5. Let π be an IRM-calc refutation of a QBF formula starting with a block of uni-
versally quantified variables U . Consider the set of annotations µ on variables U that appear
anywhere in π. Then µ is non-contradictory and does not contain instances of ∗.

Proof. The proof proceeds by induction on the derivation depth. Let µC denote the set of
annotations to variables in U appearing anywhere in the derivation of C (i.e., we only consider
the connected component of the proof dag with sink C). The induction hypothesis states:

(i) The set µC is non-contradictory.

(ii) For every literal lσ ∈ C, it holds that µC ⊆ σ.

(iii) ∗/u /∈ µC , for any u ∈ U .

Base Case. Condition (i) is satisfied by the axioms because we are assuming there are
no complementary literals in clauses in the matrix. Condition (ii) is satisfied because all
existential literals are at a higher level than the variables of U . Condition (iii) holds because
we do not instantiate by ∗/u in the axiom rule.

Instantiation. Let u ∈ U and C = inst(c/u,C ′) in the proof π. By induction hypothesis,
u either appears in the annotations of all the literals lξ in C ′ or it does not appear in any of
them. In the first case, the instantiation step is ineffective. In the second case, c/u is added to
all literals in C. By induction hypothesis u does not appear in any annotation of any clause
in the sub-proof deriving C ′, and hence C is the first clause containing u.

Resolution. Let C be derived by resolving xτ ∪ ξ∨C1 and ¬xτ ∪σ∨C2. Let u ∈ U , consider
the following cases.

Case 1. For some c ∈ {0, 1}, c/u ∈ σ and u /∈ dom(ξ). By induction hypothesis, u does
not appear in the annotations of C1. Hence inst(σ,C1) adds c/u to all the annotations in C1.

Case 2. c/u ∈ τ . By induction hypothesis, c/u appears in all annotations of C1, C2 and
hence in all annotations of the resolvent.

8

Case 3. u /∈ dom(τ) ∪ dom(σ) ∪ dom(ξ). Then u does not appear as annotation anywhere
in the derivation of either of the antecedents and neither it will appear in the resolvent.

Merging. Because of (i) we do not obtain ∗ for variables in U . ut

Theorem 6. The construction above yields a winning strategy for the universal player.

Proof. For any QBF Γ = ∃E∀U.Φ, and ε, the construction provides an IRM-calc refutation
πε,µ of Φ|ε∪µ. This process is iterated until no universal variables are left in the formula. Hence
we get an IRM-calc refutation of whatever was left from the matrix of Γ . Since an IRM-calc
refutation on a formula with no universal variables is in fact a classical propositional resolution
refutation, we are left with an unsatisfiable formula, i.e. a formula with no winning move for
the existential player. Hence, all the considered assignments correspond to a game won by the
universal player. Since this process works for any assignment made by the existential player,
it yields a winning strategy for the universal player. ut

The soundness of IRM-calc follows directly from Theorem 6.

Corollary 7. The calculi IR-calc and IRM-calc are sound.

5 Simulations of Known QBF Proof Systems

In this section we prove that our calculi simulate the main existing resolution-based QBF
proof systems. As a by-product, this also shows completeness of our proof systems IR-calc
and IRM-calc. We start by simulating Q-resolution, which is even possible with our simpler
calculus IR-calc.

Theorem 8. IR-calc p-simulates Q-Res.

Proof. Let C1, . . . , Ck be a Q-Res proof. We translate the clauses into D1, . . . , Dk, which will
form the skeleton of a proof in IR-calc.

– For an axiom Ci in Q-Res we introduce the same clause Di by the axiom rule of IR-calc,
i.e., we remove all universal variables and add annotations.

– If Ci is obtained via ∀-reduction from Cj , then Di = Dj .
– Consider now the case that Ci is derived by resolving Cj and Ck with pivot variable x.

Then Dj = xτ ∨ Kj and Dk = xσ ∨ Kk. We instantiate to get D′j = inst(σ,Dj) and
D′k = inst(τ,Dk). Define D′i as the resolvent of D′j and D′k. In order to obtain Di we must
ensure that there are no identical literals with different annotations. For this consider the
set ζ =

{
c/u | c/u ∈ t, lt ∈ D′i

}
and define Di = inst(ζ,D′i). This guarantees that we will

always have fewer literals in Di than in Ci, and we get a refutation.

We will prove inductively that the resolution steps are valid, by showing that τ and σ are
not contradictory and ζ does not contain contradictory annotations.

Induction Hypothesis. For all existential literals l we have l ∈ Ci iff lt ∈ Di for some
annotation t. Additionally, if 0/u ∈ t for a literal u, then u ∈ Ci (where for a variable x, we
equivalently denote the annotation 1/x by 0/¬x).

Before proving the induction we argue that this yields the claim above. Assume for a
contradiction that τ contradicts σ. This means that for some universal variable u, both u and
¬u appear in Ci, which is not allowed; similarly if ζ contains contradictory annotations.

9

We now show the inductive claim by induction on the proof length.

Base case: Axiom. lt ∈ Di iff l ∈ Cu by definition. As annotations falsify all universal
literals in the original clause, 0/u ∈ t for literal u implies u ∈ Ci.

Inductive step: ∀-Reduction. Suppose Ci is obtained via universal reduction from Cj . We
have lt ∈ Di iff lt ∈ Dj , iff l ∈ Cj . Since l is existential it is not reduced and l ∈ Ci. Assume
now lt ∈ Dj and 0/u ∈ t. By inductive hypothesis we have u ∈ Cj . Further, u cannot be
reduced in this step because it is blocked by l; hence u ∈ Ci.

Resolution. Suppose that Ci is derived by resolving Cj and Ck over variable x, and Dj =
xτ ∨ Kj and Dk = ¬xσ ∨ Kk. Then lt ∈ Di iff l ∈ Cj ∪ Ck\{x,¬x} = Ci. Without loss
of generality, if 0/u ∈ t then there is some literal pt

′ Y σ ∈ D′i (with pt
′ ∈ Dj) such that

0/u ∈ t′ Y σ. If 0/u ∈ t′ then u ∈ Cj by inductive hypothesis, and if 0/u ∈ σ then u ∈ Ck,
again by inductive hypothesis; hence u ∈ Ci. ut

Despite its simplicity, IR-calc is powerful enough to also simulate the expansion based
proof system ∀Exp+Res from [19].

Theorem 9. IR-calc p-simulates ∀Exp+Res.

Proof. Consider an ∀Exp+Res proof C1, . . . , Ck. We use that to form the skeleton of a proof
D1, . . . , Dk in IR-calc.

– If Ci is an axiom from clause C and assignment τ we construct Di by taking the axiom
in IR-calc of C and then instantiating with inst(τ, C).

– If Ci is derived by resolving Cj , Ck over variable xτ , then Di is derived by resolving Dj , Dk

over variable xτ .

This yields a valid IR-calc proof because lt ∈ Di iff lt ∈ Ci, which is preserved under
applications of both rules. ut

We now come to the simulation of a more powerful system than Q-resolution, namely
LD-Q-Res from [2]. We show that this system is simulated by IRM-calc. The proof uses a
similar, but more involved technique as in Theorem 8.

Theorem 10. IRM-calc p-simulates LD-Q-Res.

Proof. Consider an LD-Q-Res refutation C1, . . . , Cn. We construct clauses D1, . . . , Dn, which
will form the skeleton of the IRM-calc proof. The construction proceeds as follows. If Ci is
an axiom, Di is constructed by the axiom rule from the same clause. If Ci is a ∀-reduction
of Cj with j < i, then we set Di equal to Dj . If Ci is obtained by a resolution step from
Cj and Ck with j < k < i, the clause Di is obtained by a resolution step from Dj and Dk,
yielding clause K, and by performing some additional steps on K. Firstly, we let θ = {c/u |
c ∈ {0, 1}, c/u ∈ t, lt ∈ K} ∪ {0/u | ∗/u ∈ t, lt ∈ K} and we perform instantiation on K by θ
(in any order) to derive K ′. Since θ has the same domain as the entire set of annotations in
K ′ we apply merging on K ′ for all literals to derive Di.

We have to show that this construction yields a valid IRM-calc refutation. For this we
claim that the construction preserves the following invariants for i = 1, . . . , n:

(1) For an existential literal l, it holds that l ∈ Ci iff lt ∈ Di for some t.

(2) The clause Di has no literals lt1 and lt2 such that t1 6= t2.

10

(3) If lt ∈ Di with 0/u ∈ t, then u ∈ Ci or u∗ ∈ Ci, likewise if lt ∈ Di with 1/u ∈ t, then
¬u ∈ Ci or u∗ ∈ Ci.

(4) If lt ∈ Di with ∗/u ∈ t, then u∗ ∈ Ci.

We show these invariants by induction on i.

Base case (axiom). Because we do not remove or add any existential literals in the
axiom case, condition (1) holds. Likewise we do not create duplicates, so (2) holds. As we
do not obtain any ∗ annotations from axioms, (4) holds. Any 0/1 annotation corresponds
exactly to the opposite literal appearing in the clause, by definition of the axiom rule, hence
(3) holds.

Inductive step (∀-reduction). Consider a ∀-reduction step from Cj to Ci on universal
variable u. Because we do not alter the existential literals in a ∀-reduction and the correspond-
ing clause Di in the IRM-calc proof remains unchanged, conditions (1) and (2) are satisfied
by induction hypothesis. For conditions (4) and (3) we note that Dj cannot contain any an-
notations involving u. This holds because u would only appear as annotation on existential
literals with level higher than u. These cannot exist as they would be blocking the reduction
by (1).

Resolution step. Consider Cj , Ck being resolved in LD-QRes to obtain Ci. As only the
resolved variable is removed, which is removed completely due to condition (2), Di fulfills
(1). By induction hypothesis we know that there can be at most two copies of each variable
when we derive K. Their annotations have the same domain in K ′, because instantiation by
θ applies the entire domain of all annotations in the clause to all its literals. It then follows
that all copies of identical literals are merged into one literal in Di. Therefore (2) holds for
Di.

To prove (3) consider the case where lt ∈ Di with 0/u ∈ t. The case with 1/u ∈ t is
analogous. We know that 0/u appearing in Di means that 0/u must appear in K ′ as merging
cannot produce a new annotation 0/u. Existence of 0/u in K ′ means that either ∗/u appears
in K or 0/u appears in K (the case with 1/u is simpler as it guarantees that 1/u appears in
K). No new annotations are created in a resolution step, so either ∗/u or 0/u must appear in
one or more of Dj , Dk. By induction hypothesis this means that u or u∗ appears in Cj ∪Ck,
hence also in Ci.

To show condition (4), let lt ∈ Di with ∗/u ∈ t. Then either ∗/u is present in K ′, or
0/u and 1/u are present in K ′ and will be merged. In the first case it is clear that some ∗/u
annotation appears in K and thus in Dj or in Dk, in which case from (4) of the induction
hypothesis u∗ must appear in Ci. In the second case it is possible that 0/u in K ′ was obtained
from ∗/u in K. Thus as already argued, u∗ must appear in Ci. If instead 1/u, 0/u are both
present in K then they must come from the original clauses Dj , Dk. If they both appear in
the same clause Dj , then by condition (3) it must be the case that u∗ appears in Cj and thus
in Ci. If, however, they appear in different clauses, then by (3) either of the clauses Cj , Ck
contains u∗ or they contain literals over u of opposite polarity. Both situations merge the
literals to u∗ ∈ Ci .

We now show that these invariants imply that we indeed obtain a valid IRM-calc proof.
We only need to consider the resolution steps. Suppose xt1 ∈ Dj and ¬xt2 ∈ Dk where Cj
and Ck are resolved on x to get Ci in the LD-Q-Res proof. To perform the resolution step
between Dj and Dk we need to ensure that we do not have c/u ∈ t1, d/u ∈ t2 where c 6= d
or c = d = ∗. Assume on the contrary that ∗/u ∈ t1 and c/u ∈ t2. By (4) we have u∗ ∈ Cj ,
and by (3) some literal of u is in Ck. But as lv(u) < lv(x) the LD-resolution of Cj and Ck on

11

variable x is forbidden, giving a contradiction. Similarly, if there is 0/u ∈ t1 and 1/u ∈ t2,
then either we get the same situation or we have two opposite literals of u in the different
clauses Cj , Ck. In either case the resolution of Cj , Ck is forbidden. Hence the IRM-calc proof
is correct.

Further, the IRM-calc proof is indeed a refutation. Namely, if we derive ⊥ in an LD-Q-Res
proof, by (1) we derive a clause with no existential literals in the IRM-calc proof. That clause
also contains no universal variables as these are all instantiated at the axioms. Therefore, we
derive the empty clause ⊥.

Finally, we observe that all steps of the construction can be performed in polynomial time,
thus we obtain a p-simulation. ut

6 Conclusion

This paper introduces two novel calculi for quantified Boolean formulas. Both of these cal-
culi are anchored in a common framework of annotated clauses. The first calculus, IR-calc,
provides the rules of resolution and instantiation of clauses. Instantiation resembles specializa-
tion in first-order logic, i.e., an annotated literal b0/u specifies that b is true whenever u = 0.
Resolution in IR-calc can be seen as a simplified version of Robinson’s resolution [29]. The
second calculus, IRM-calc, additionally enables merging contradictory annotations. By merg-
ing, a disjunction b1/u ∨ b0/u is shortened to a single literal b∗/u. The paper demonstrates
that the simple calculus IR-calc already p-simulates Q-resolution and the expansion-based
system ∀Exp+Res. The extended version IRM-calc additionally p-simulates long-distance Q-
resolution. The paper further demonstrates that refutations in the introduced calculi enable
generation of winning strategies of the universal player—a favorable property from a practical
perspective [2].

The contribution of the paper is both practical and theoretical. From a practical per-
spective, a calculus unifying the existing calculi for QBF enables a uniform certification of
off-the-shelf QBF solvers. From a theoretical perspective, a unifying calculus provides an
underpinning necessary for complexity characterizations of existing solvers as well as for fur-
thering our understanding of the strengths of the underlying proof systems.

Acknowledgments

The second author was supported by a Doctoral Training Grant from EPSRC. This work was partially sup-

ported by FCT grants ATTEST (CMU-PT-/ELE/0009/2009), POLARIS (PTDC/EIA-CCO/123051/2010),

INESC-ID’s multiannual PIDDAC funding PEst-OE/EEI/LA0021/2011, and a grant from the John Templeton

Foundation.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press
(2009)

2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System
Design 41(1), 45–65 (2012)

3. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause
learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

4. Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: LPAR (2004)

12

5. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5(1-
4), 133–191 (2008)

6. Biere, A.: Resolve and expand. In: SAT. pp. 238–246 (2004)
7. Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163(7), 906–917 (2012)
8. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refinements that char-

acterize DLL algorithms with clause learning. Logical Methods in Computer Science 4(4) (2008)
9. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1),

36–50 (1979)
10. Egly, U.: On sequent systems and resolution for QBFs. In: SAT. pp. 100–113 (2012)
11. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and strategy extraction in

search-based QBF solving. In: LPAR (2013)
12. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of

quantified Boolean formulas. JAIR 26(1), 371–416 (2006)
13. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Handbook of

Satisfiability, pp. 761–780. IOS Press (2009)
14. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for

both true and false QBF formulas. In: IJCAI (2011)
15. Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively p-simulate general

propositional resolution. In: AAAI (2008)
16. Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: LPAR. pp. 473–489

(2013)
17. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided re-

finement. In: SAT. pp. 114–128 (2012)
18. Janota, M., Marques-Silva, J.: ∀Exp+Res does not P-Simulate Q-resolution. International Workshop on

Quantified Boolean Formulas (2013)
19. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: SAT. pp. 67–82

(2013)
20. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfiability, pp.

735–760. IOS Press (2009)
21. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput.

117(1), 12–18 (1995)
22. Kleine Büning, H., Subramani, K., Zhao, X.: Boolean functions as models for quantified boolean formulas.

J. Autom. Reasoning 39(1), 49–75 (2007)
23. Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.M.: Solving QBF with free variables. In: Schulte, C.

(ed.) CP. vol. 8124, pp. 415–431. Springer (2013)
24. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF solver with game-state

learning. In: SAT (2010)
25. Kraj́ıček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Mathe-

matical Logic Quarterly 36(1), 29–46 (1990)
26. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of

Satisfiability. IOS Press (2009)
27. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif.

Intell. 175(2), 512–525 (2011)
28. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: AAAI. pp. 1045–1050.

AAAI Press (2007)
29. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)
30. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42(1), 77–97

(2009)
31. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4), 417–481 (2007)
32. Slivovsky, F., Szeider, S.: Variable dependencies and Q-Resolution. International Workshop on Quantified

Boolean Formulas (2013)
33. Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee,

J.H.M. (ed.) CP. vol. 6876, pp. 789–803. Springer (2011)
34. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano,

M. (ed.) CP. vol. 7514, pp. 647–663. Springer (2012)
35. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD. pp.

442–449 (2002)

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

