
Vector convolution in O(n) steps and matrix
multiplication in O(n2) steps :-)

Andrzej Lingas1 ? and Dzmitry Sledneu2

1 Department of Computer Science, Lund University
Andrzej.Lingas@cs.lth.se

2 Centre for Mathematical Sciences, Lund University
Dzmitry.Sledneu@math.lu.se

Abstract. We observe that if we allow for the use of division and the
floor function besides multiplication, addition and subtraction then we
can compute the arithmetic convolution of two n-dimensional integer
vectors in O(n) steps and perform the arithmetic matrix multiplication
of two integer n×n matrices in O(n2) steps. Hence, any method for prov-
ing superlinear (in the input size) lower bounds for the aforementioned
problems has to assume a more restricted set of arithmetic operations
and/or an upper bound on the size of allowed integers.

1 Introduction

Two n×n integer matrices can be multiplied using O(n3) additions and multipli-
cations following the definition of matrix product. Similarly, the convolution of
two n-dimensional vectors can be computed using O(n2) additions and multipli-
cations. Both are optimal if neither other operations nor negative constants are
allowed [6, 8, 10]. If additionally subtraction or negative constants are allowed
then the so called fast matrix multiplication algorithms can be implemented
using O(nω) operations [3, 11, 14], where ω < 3. They rely on algebraic equa-
tions following from the possibility of term cancellation. Vassilevska has recently
shown the exponent ω of fast matrix multiplication to be smaller than 2.373 in
[14]. Next, the convolution of two n-dimensional vectors over a commutative
ring with the so called principal n-th root of unity can be computed via Fast
Fourier Transform using O(n log n) operations of the ring (section 7.2 in [1], for
bit complexity of FFT see section 7.3). On the other hand, Raz proved that if
only addition, multiplication and products with constants of absolute value not
exceeding one are allowed then n× n matrix multiplication requires Ω(n2 log n)
operations [9].

Yval was first to describe a reduction of the distance matrix product (equiv-
alently, the (min,+) matrix product) of two n× n matrices to matrix multipli-
cation of two n × n matrices over a ring, using O(n2) operations [13] (cf. [12]).
The idea of the reduction is relatively simple [2, 15]. Two input n × n matrices
A = (ai,j) and B = (bi,j) with integer entries in [−M,M] are transformed to two
? Research supported in part by Swedish Research Council grant 621-2011-6179.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 39 (2014)

n×n matrices A′ = ((n+1)M−ai,j) and B′ = ((n+1)M−bi,j). It is not too diffi-
cult to see that if C = (ci,j) is the distance product of A and B and C ′ = (c′i,j)
is the arithmetic matrix product of A′ and B′, then ci,j = 2M − blog c′i,jc. Note
that the reduction uses the exponentiation, logarithm and floor functions besides
the arithmetic ring operations.

By combining the reduction with fast matrix multiplication, we obtain an al-
gorithm for the distance matrix product, using O(nω) multiplications, additions
and subtractions, and O(n2) exponentiation, logarithm and floor operations.

Since the entries in the transformed matrices A′, B′ are huge numbers that
require O(M) computer words of log n bits each, the matrix multiplication of A′
and B′ requires O(Mnω) algebraic operations on O(log n) bit numbers [2, 15].
For this reason, the described algorithm for distance matrix product is interesting
solely for smaller values of M and approximation purposes [15].

Recently, also a nondeterministic algorithm for n × n matrix multiplication
using O(n2) arithmetic operations has been presented [5]. It results from a deran-
domization of Freivalds’ randomized algorithm for matrix product verification
[4]. Simply, the algorithm guesses first the product matrix and then verifies its
correctness. Again, the derandomization involves huge numbers requiring O(n)
times more bits than the input numbers [5].

In this short paper, we observe that if we allow for the use of division and
the floor function (or exponentiation, logarithm and the floor function) besides
multiplication, addition and subtraction then we can compute the arithmetic
convolution of two n-dimensional integer vectors in O(n) steps and perform
the arithmetic matrix multiplication of two integer n × n matrices in O(n2)
steps. Similarly, as in the case of the reduction of distance matrix product to the
arithmetic one, the trick is to use numbers requiring about n times more bits than
any entry in the input matrices. If we combine the reduction with our algorithm
for matrix multiplication, we obtain an algorithm for the distance matrix product
using solely O(n2) operations on huge numbers requiring about Mn words of
log n bits each. Our results also indicate that any method for proving superlinear
(in the input size) lower bounds for the aforementioned problems has to assume
a more restricted set of arithmetic operations and/or an upper bound on the
size of allowed integers.

2 Preliminaries

For two n-dimensional vectors with integer coordinates a = (a0, ..., an−1) and
b = (b0, ..., bn−1) their dot product

∑n−1
i=0 aibi is denoted by a � b. The con-

volution of the vectors a and b is a vector c = (c0, ..., c2n−2), where ci =∑min{i,n−1}
l=max{i−n+1,0} albi−l for i = 0, ..., 2n − 2. Note that the (n − 1)-th coordi-

nate cn−1 of the convolution is equal to a� bR, where bR = (bn−1, ..., b0).
For an integer n× n matrix A = (ai,j), its i-th row (ai,1, ..., ai,n) is denoted

by Ai,∗. Similarly, the j-th column (a1,j , ..., an,j) of A is denoted by A∗,j . Given
another integer n × n matrix B, the matrix product A × B of A with B is a
matrix C = (ci,j), where ci,j = Ai,∗ �B∗,j for 1 ≤ i, j ≤ n.

3 The algorithms

For an n-dimensional vector a = (a0, ..., an−1) with integer coordinates let a(x)
denote the polynomial

∑n−1
k=0 akx

k. The following lemma is folklore (see section
7.4 in [1]).

Lemma 1. For k = 0, ..., 2n − 2, the k-th coordinate ck of the convolution of
the vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1) is the coefficient at xk in the
polynomial a(x)b(x). Consequently, the coefficient at xn−1 is the dot product of
a and the reversed vector bR = (bn−1, ..., b0), i.e.,

∑n−1
i=0 aibn−1−i.

By Lemma 1, we obtain a linear algorithm for the convolution of integer
vectors, see Fig. 1.

Input: a natural number M and two n-dimensional vectors a = (a0, ..., an−1) and
b = (b0, ..., bn−1) with integer coordinates in [−M, M].

Output: the convolution c = (c0,, c2n−2) of a and b.
1: d← 4nM2 + 1
2: a(d)←

Pn−1
l=0 ald

l

3: b(d)←
Pn−1

l=0 bld
l

4: c(d)← a(d)b(d)
5: for i = 0 to 2n− 2 do
6: ci ← bc(d)/di + 1

2
c − dbc(d)/di+1 + 1

2
c

7: end for
8: c← (c0, ..., c2n−2)
9: return c

Fig. 1. A linear algorithm for computing the convolution c of two n-dimensional integer
vectors a and b.

Theorem 1. Let n, M, d be natural numbers such that d ≥ 4nM2 + 1. For
k = 0, ..., 2n−2, the k-th coordinate ck of the convolution c = (c0, ..., c2n−2) of two
integer vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1), each with n coordinates
in [−M,M], is equal to ba(d)b(d)d−k + 1

2c−dba(d)b(d)d
−k−1+ 1

2c. Consequently,
the convolution c of the n-dimensional vectors a and b can be computed using
O(n) additions, subtractions, multiplications, divisions and floor operations.

Proof. By Lemma 1, we have a(d)b(d) =
∑2n−2

l=0 cld
l. Hence, ba(d)b(d)d−k+ 1

2c =∑2n−2
l=k cld

l−k + b
∑k−1

l=0 cld
l−k + 1

2c. On the other hand, for l = 0, ..., 2n − 2,
|cl| < 2nM2 and d ≥ 4nM2 + 1 hold. Let p = d− 1. For k ≥ 1, we obtain

|
k−1∑
l=0

cld
l| ≤ p

2

k−1∑
l=0

(p+1)l =
1
2
p
(p+ 1)k − 1
(p+ 1)− 1

=
1
2
(p+1)k− 1

2
<

1
2
(p+1)k ≤ 1

2
dk.

It follows that b
∑k−1

l=0 cld
l−k + 1

2c = 0 and consequently ba(d)b(d)d−k + 1
2c =∑2n−2

l=k cld
l−k. Analogously, we have ba(d)b(d)d−k−1 + 1

2c =
∑2n−2

l=k+1 cld
l−k−1.

This and the previous inequality yield the equality
ck = ba(d)b(d)d−k + 1

2c − dba(d)b(d)d−k−1 + 1
2c. Hence, we obtain the algo-

rithm for the convolution vector c depicted in Fig. 1. It uses a linear number of
additions, subtractions, multiplications, divisions and floor operations. If M is
not given as an input to the algorithm, we can upper bound M2 by the sum of
squares of the coordinates in the vectors a and b. ut

Assuming the notation of Theorem 1, we obtain the following corollary.

Corollary 1. The dot product of two integer vectors a = (a0, ..., an−1) and b =
(b0, ..., bn−1), each with n coordinates in [−M,M], is equal to ba(d)bR(d)d−n+1+
1
2c − dba(d)b

R(d)d−n + 1
2c, where b

R = (bn−1, ..., b0).

Corollary 1 yields in turn a quadratic algorithm for the matrix product of
two n× n integer matrices, see Fig. 2.

Input: a natural number M and two n × n matrices A = (ai,j) and B = (bi,j) with
integer entries in [−M, M].

Output: the matrix product C = (ci,j) of A and B.
1: d← 4nM2 + 1
2: for i = 1 to n do
3: Ai,∗(d)←

Pn
l=1 ai,ld

l−1

4: end for
5: for j = 1 to n do
6: B∗,j(d)←

Pn
l=1 bl,jd

n−l

7: end for
8: for i = 1 to n do
9: for j = 1 to n do
10: Ci,j(d)← Ai,∗(d)B∗,j(d)
11: ci,j ← bCi,j(d)/dn−1 + 1

2
c − dbCi,j(d)/dn + 1

2
c

12: end for
13: end for
14: C ← (ci,j)
15: return C

Fig. 2. A quadratic algorithm for computing the matrix product C of two integer n×n
matrices A and B.

Theorem 2. The matrix product C of two n×n integer matrices A and B can
be computed using O(n2) additions, subtractions, multiplications, divisions and
floor operations.

Proof. Our algorithm depicted in Fig. 2 is as follows. We set the constant d to
4nM2 + 1. If the range [−M,M] of the entries in A or B is not known, we can
upper bound M2 by taking the sum of the squares of entries in the matrices A
and B. It requires O(n2) additions and multiplications in total.

For i = 1, ..., n, for the i-th row (ai,1, ..., ai,n) of the matrix A, we consider
the polynomial Ai,∗(x) =

∑n
k=1 ai,kx

k−1 and compute Ai,∗(d).
Asymmetrically, for i = 1, ..., n, for the j-th column (b1,j , ..., bn,j) of the

matrix B, we consider the polynomial B∗,j(x) =
∑n

k=1 bk,jx
n−k and compute

B∗,j(d).
The computation of Ai,∗(d) and B∗,j(d), for 1 ≤ i, j ≤ n, requires O(n2)

multiplications and additions.
Finally, for 1 ≤ i, j ≤ n, we compute the products Ai,∗(d)B∗,j(d), and then

bAi,∗(d)B∗,j(d)/dn−1c−dbAi,∗(d)B∗,j(d)/dnc. It requires O(n2) multiplications,
floor operations and subtractions.

By Corollary 1, in this way, we obtain the correct values of the entries ci,j of
the product matrix C. ut

By combining the reduction of the distance matrix product to the arith-
metic one outlined in the introduction [2, 12, 13, 15], we obtain also the following
corollary.

Corollary 2. The matrix product C of two n × n matrices A and B over the
semi-ring (Z,min,+) can be computed using O(n2) additions, subtractions, mul-
tiplications, divisions, and exponentiation, logarithm and floor operations.

4 Final remarks

In our matrix multiplication algorithm (Algorithm 2 in Fig. 2), we need to
compute solely the n-th coordinates of the convolutions of (ai,1, ..., ai,n) with
(bn,j , ..., b1,j,). Hence, it is easy to observe that d can be decreased to 2nM2 + 1
in the algorithm.

We can decrease the bit length of the integers occurring in the computation
of matrix product from O(n(log n + logM)) to O(t(log n + logM)) at the cost
of increasing the time complexity by O(n/t) factor as follows. To simplify the
argument assume that n is divisible by t. We simply split each row vector Ai,∗
and each column vector B∗,J into n/t chunks with t coordinates. Next for each
pair of corresponding column and row chunks, we compute their dot product
by reversing the other chunk and computing the (t − 1)-th coordinate of the
convolution of the resulting pair. It remains to sum the n/t partial dot products.

The idea of coding a row or column of the input matrix with a polynomial is
known in the literature [7]. Also, the Fast Fourier Transform is used to compute
the outer products of rows and columns in [7].

Acknowledgments

We thank Christos Levcopoulos for valuable comments.

References

1. A.V. Aho, J.E. Hopcroft and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, Reading, 1974.

2. N. Alon, Z. Galil and O. Margalit. On the exponent of all pairs shortest path
problem. J. Comput. System Sci. , 54 (1997), pp. 25-51.

3. D. Coppersmith, S. Winograd. Matrix Multiplication via Arithmetic Progressions.
J. of Symbolic Computation 9, 251–280 (1990)

4. R. Freivalds. Probabilistic Machines Can Use Less Running Time. IFIP Congress
1977, pp. 839–842.

5. I. Korec and J. Widermann. Deterministic Verification of Integer Matrix Multi-
plication in Quadratic Time. SOFSEM 2014: Theory and Practice of Computer
Science, Lecture Notes in Computer Science Volume 8327, pp 375-382, 2014.

6. K. Mehlhorn and Z. Galil. Monotone Switching Circuits and Boolean Matrix Prod-
uct. Computing 16, pp. 99-111, 1976.

7. R. Pagh Compressed matrix multiplication. TOCT 5(3): 9 (2013).
8. R. Pratt. The Power of Negative Thinking in Multiplying Boolean Matrices. SIAM

J. Comput. 4(3), pp. 326-330, 1975.
9. R. Raz. On the complexity of matrix product. Proc. STOC 2002, pp. 144-151.

10. C.-P. Schnorr. A Lower Bound on the Number of Additions in Monotone Compu-
tations. Theor. Comput. Sci. 2(3), pp. 305-315, 1976.

11. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik 13, pp.
354-356, 1969.

12. F. Romani. Shortest path problem is not harder than matrix multiplication. Infor-
mation Processing Letters vol. 11(3), pp. 134-136, 1980.

13. G. Yuval. An algorithm for finding all shortest paths using N2.81 infinite-precision
multiplication. Information Processing Letters vol. 11(3), pp. 155-156 , 1976.

14. V. Vassilevska Williams, Multiplying matrices faster than coppersmith-winograd,
In: Proc. of STOC 2012, pp. 887–898.

15. U. Zwick. All pairs shortest paths using bridging rectangular matrix multiplication.
Journal of the ACM, 49(3), pp. 289-317, 2002.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

