
Property Testing on Product Distributions:

Optimal Testers for Bounded Derivative Properties

Deeparnab Chakrabarty∗ Kashyap Dixit† Madhav Jha‡ C. Seshadhri§

Abstract

The primary problem in property testing is to decide whether a given function satisfies a
certain property, or is far from any function satisfying it. This crucially requires a notion of dis-
tance between functions. The most prevalent notion is the Hamming distance over the uniform
distribution on the domain. This restriction to uniformity is more a matter of convenience than
of necessity, and it is important to investigate distances induced by more general distributions.

In this paper, we make significant strides in this direction. We give simple and optimal
testers for bounded derivative properties over arbitrary product distributions. Bounded deriva-
tive properties include fundamental properties such as monotonicity and Lipschitz continuity.
Our results subsume almost all known results (upper and lower bounds) on monotonicity and
Lipschitz testing.

We prove an intimate connection between bounded derivative property testing and binary
search trees (BSTs). We exhibit a tester whose query complexity is the sum of expected depths
of optimal BSTs for each marginal. Furthermore, we show this sum-of-depths is also a lower
bound. A fundamental technical contribution of this work is an optimal dimension reduction
theorem for all bounded derivative properties, which relates the distance of a function from the
property to the distance of restrictions of the function to random lines. Such a theorem has
been elusive even for monotonicity for the past 15 years, and our theorem is an exponential
improvement to the previous best known result.

∗Microsoft Research, dechakr@microsoft.com
†Pennsylvania State University, kashyap@cse.psu.edu, supported in part by NSF Grants CCF-0964655 and CCF-

1320814
‡Sandia National Labs, Livermore, mjha@sandia.gov
§Sandia National Labs, Livermore, scomand@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 42 (2014)

1 Introduction

The field of property testing formalizes the following problem: how many queries are needed to
decide if a given function satisfies a certain property? Formally, a property P is a subset of
functions. A tester solves the relaxed membership problem of distinguishing functions in P from
those ‘far’ from P. To formalize ‘far’, one requires a notion of distance, dist(f, g) ∈ [0, 1], between
functions. A function f is ε-far from P if dist(f, g) ≥ ε for all functions g ∈P.

The notion of distance is central to property testing. The most prevalent notion of distance in the
literature is the Hamming distance over the uniform distribution, that is, dist(f, g) := Prx∼U [f(x) 6=
g(x)], where U is the uniform distribution over the input domain. But the restriction to uniformity
is more a matter of convenience than of necessity, and it is important and challenging to investigate
distances induced by more general distributions. This was already underscored in the seminal work
of Goldreich et. al. [GGR98] who “stressed that the generalization of property testing to arbitrary
distributions” is important for applications. Nevertheless, a vast majority of results in property
testing have focused solely on the uniform distribution.

In this paper we investigate property testing of functions defined over the hypergrid [n]d with
respect to distances induced by arbitrary product distributions. Product distributions over this
domain form a natural subclass of general distributions where each individual coordinate is an
arbitrary distribution independent of the other coordinates. They arise in many applications; the
following are a couple of concrete ones.

Differential privacy: Recent work on testing differential privacy [DJRT13] involve product dis-
tributions over the domain [n]d. In this application, each domain point represents a database and
each coordinate is a single individual’s data. A distribution on databases is given by independent
priors on each individual. The goal in [DJRT13] is to distinguish private mechanisms from those
that aren’t private on ‘typical’ databases.

Random testing of hardware: Given an actual silicon implementation of a circuit, it is standard
practice for engineers to test it on a set of random instances. Coordinates represent entities like
memory addresses, data, control flow bits, etc. One chooses an independent but not identical
distribution over each input to generate realistic set of test cases. There are specific commands in
hardware languages like VHDL and Systemverilog [VHD02, ver14] that specify such coordinate-wise
distributions.

From a theoretical perspective, the study of property testing over non-uniform distributions has
mostly led to work on specific problems. For uniform distributions, it is known that broad classes of
algebraic and graphic properties are testable [AS08, AFNS09, KS08a, BSS10]. But little is known
in this direction even for product distributions. One reason for this may be aesthetics: a priori,
one doesn’t expect a succinct, beautiful answer for testing over an arbitrary product distribution.
In this paper we make significant strides in property testing under arbitrary product distributions.
We give simple, optimal testers for the class of bounded derivative properties. This class contains
(and is inspired by) the properties of monotonicity and Lipschitz continuity, which are of special
interest in property testing. In fact, the same tester works for all such properties. Furthermore,
our ‘answer’ is aesthetically pleasing: the optimal query complexity with respect to a product
distribution is the sum of optimal binary search tree depths over the marginals. In particular, our
results resolve a number of open problems in monotonicity testing, and subsume all previous upper
and lower bounds over any product, including the uniform, distribution.

1

Previous Work. We set some context for our work. The property of monotonicity is simple.
There is a natural coordinate-wise partial order over [n]d. For a monotone function, x ≺ y im-
plies f(x) ≤ f(y). Monotonicity is one of the most well-studied properties in the area [EKK+00,
GGL+00, DGL+99, LR01, FLN+02, AC06, Fis04, HK08b, PRR06, ACCL07, BRW05, BGJ+09,
BCGSM12, BBM12, CS13a, CS13b, BRY14b]. A function is c-Lipschitz continuous if for all x, y,
|f(x) − f(y)| ≤ c‖x − y‖1. Lipschitz continuity is a fundamental mathematical property with
applications to differential privacy and program robustness. The study of Lipschitz continuity in
property testing is more recent [JR11, AJMR12, CS13a, DJRT13, BRY14b]. With the exception
of [HK07, HK08b, AC06, DJRT13], all the previous works are in the uniform distribution setting, for
which the story is mostly clear: there is an O(ε−1d log n)-query tester for both properties [CS13a],
and this is optimal for monotonicity [CS13b]. For Lipschitz continuity, an Ω(d log n) non-adaptive
lower bound has been proved [BRY14b] recently.

For general product distributions, the story has been far less clear. Ailon and Chazelle [AC06]
design an O(2dH/ε)-query tester for monotonicity over product distributions, where H is the Shan-
non entropy of the distribution. This work connects property testing with information theory, and
the authors explicitly ask whether the entropy is the “correct answer”. There are no non-trivial
lower bounds known for arbitrary product distributions. For Lipschitz continuity, no upper or
lower bounds are known for general hypergrids, although an O(d2)-query tester is known for the
hypercube ({0, 1}d) domain [DJRT13]. Halevy and Kushilevitz [HK08b, HK07] study monotonicity
testing in the distribution-free setting, where the tester does not know the input distribution but
has access to random samples. Pertinent to us, they show a lower bound of Ω(2d) for monotonicity
testing over arbitrary distributions; for product distributions, Ailon and Chazelle [AC06] give an
O(ε−1d2d log n)-query distribution-free tester.

1.1 Bounded Derivative Properties

To describe the class of bounded derivative properties, we first set some notation. For an integer
k, we use [k] to denote the set {1, 2, . . . , k}. Consider a function f : [n]d 7→ R and a dimension
r ∈ [d]. Define ∂rf(x) := f(x + er) − f(x), where er is the unit vector in the rth dimension (∂rf
is defined only on x with xr < n.).

Definition 1.1. An ordered set B of 2d functions l1, u1, l2, u2, . . . , ld, ud : [n − 1] 7→ R is called a
bounding family if for all r ∈ [d] and y ∈ [n− 1], lr(y) < ur(y).

Let B be a bounding family of functions. The property of being B-derivative bounded, denoted
as P(B), is the set of functions f : [n]d 7→ R such that: for all r ∈ [d] and x ∈ [n]d,

lr(xr) ≤ ∂rf(x) ≤ ur(xr). (1)

This means the rth-partial derivative of f is bounded by quantities that only depend on the rth
coordinate. Note that this dependence is completely arbitrary, and different dimensions can have
completely different bounds. This forms a rich class of properties which includes monotonicity and
c-Lipschitz continuity. To get monotonicity, simply set lr(y) = 0 and ur(y) = ∞ for all r. To get
c-Lipschitz continuity, set lr(y) = −c and ur(y) = +c for all r. The class also includes the property
demanding monotonicity for some (fixed) coordinates and the c-Lipschitz continuity for others;
and the non-uniform Lipschitz property that demands different Lipschitz constants for different
coordinates.

2

Definition 1.2. Fix a bounding family B and product distribution D =
∏
r≤d Dr. Define distD(f, g) =

Prx∼D [f(x) 6= g(x)]. A property tester for P(B) with respect to D takes as input proximity pa-
rameter ε > 0 and has query access to function f . If f ∈P(B), the tester accepts with probability
> 2/3. If distD(f,P(B)) > ε, the tester rejects with probability > 2/3.

1.2 Main Results

Our primary result is a property tester for all bounded-derivative properties over any product
distribution. The formal theorem requires some definitions of search trees. Consider any binary
search tree (BST) T over the universe [n], and let the depth of a node denote the number of edges
from it to the root. For a distribution Dr over [n], the optimal BST for Dr is the BST minimizing
the expected depth of vertices drawn from Dr. Let ∆∗(Dr) be this optimal depth: a classic dynamic
programming solution finds this optimal tree [Knu73, Yao82] in polynomial time. Given a product
distribution D =

∏
r≤d Dr, we abuse notation and let ∆∗(D) denote the sum

∑d
r=1 ∆∗(Dr).

Theorem 1.3. [Main upper bound] Consider functions f : [n]d 7→ R. Let B be a bounding
family and D be a product distribution. There is a tester for P(B) w.r.t. D making 100ε−1∆∗(D)
queries.

The tester is non-adaptive with one-sided error, that is, the queries don’t depend on the answers,
and the tester always accepts functions satisfying the property. Furthermore, the same tester works
for all bounding families, that is, the set of queries made by the tester doesn’t depend on B.

Interestingly, the “worst” distribution is the uniform distribution, where ∆∗(D) is maximized
to Θ(d log n). We remark that the class of bounded derivative properties was not known to be
testable even under uniform distributions. Results were known [CS13a] (only under the uniform
distribution) for the subclass where all lr (and ur) are the same, constant function.

To give perspective on the above result, it is instructive to focus on say just monotonicity (one
can repeat this for Lipschitz). Let H(D) denote the Shannon entropy of distribution D over the
hypergrid. It is well-known that ∆∗(Dr) ≤ H(Dr) (see [Meh75] for a proof), so ∆∗(D) ≤ H(D) for
product distribution D .

Corollary 1.4. Consider functions f : [n]d 7→ R. Monotonicity testing over a product distribution
D can be done with 100H(D)/ε queries.

This is an exponential improvement over the previous best result of Ailon and Chazelle [AC06],
who give a monotonicity tester with query complexity O(2dH(D)/ε). Observe that for uniform
distributions, H(D) = Θ(d log n), and therefore the above result subsumes the optimal testers
of [CS13a]. Now consider the monotonicity testing over the boolean hypercube.

Corollary 1.5. Consider functions f : {0, 1}d 7→ R. Monotonicity testing over any product distri-
bution D =

∏d
r=1 Dr, where each Dr = (µr, 1− µr), can be done with 100ε−1

∑d
r=1 min(µr, 1− µr)

queries.

Given that monotonicity testing over the hypercube has received much attention [GGL+00,
DGL+99, LR01, FLN+02, BBM12, CS13a, CS13b], it is somewhat surprising that nothing non-
trivial was known even over the p-biased distribution for p 6= 1/2; our result implies an O(ε−1pd)-
query tester. The above corollary also asserts that entropy of a distribution doesn’t capture the
complexity of monotonicity testing since the entropy,

∑
r µr log(1/µr)+(1−µr) log(1/(1−µr)), can

3

be larger than the query complexity described above by a logarithmic factor. For example, if each
µr = 1/

√
d, the tester of Corollary 1.5 requires O(

√
d/ε) queries, while H(D) = Θ(

√
d log d).

We complement Theorem 1.3 with a matching lower bound, cementing the connection between
testing of bounded-derivative properties and optimal search tree depths. This requires a technical
definition of stable distributions, which is necessary for the lower bound. To see this consider
a distribution D for which there exists a product distribution D ′ such that ||D ′ − D ||TV ≤ ε/2
but ∆∗(D ′) � ∆∗(D). One could simply apply Theorem 1.3 with D ′ to obtain a tester with a
much better query complexity than ∆∗(D). D is called (ε′, ρ)-stable if ‖D − D‖ ≤ ε′ implies
∆∗(D ′) ≥ ρ∆∗(D), for any product distribution D ′.

Theorem 1.6. [Main lower bound] For any parameter ε, there exists ε′ = Θ(ε) such that for
any bounding family B and (ε′, ρ)-stable, product distribution D , any (even adaptive, two-sided)
tester for P(B) w.r.t. D with proximity parameter ε requires Ω(ρ∆∗(D)) queries.

This lower bound is new even for monotonicity testing over one dimension. Ailon and Chazelle [AC06]
explicitly ask for lower bounds for monotonicity testing for domain [n] over arbitrary distributions.
Our upper and lower bounds completely resolve this problem. For Lipschitz testing, the state of
the art was a non-adaptive lower bound of Ω(d log n) for the uniform distribution [BRY14b]. Since
the uniform distribution is stable, the previous theorem implies an optimal Ω(d log n) lower bound
even for adaptive, two-sided testers over the uniform distribution.

The previous upper bounds are in the setting where the tester knows the distribution D . In the
distribution-free setting, the tester only gets random samples from D although it is free to query
any point of the domain. As a byproduct of our approach, we also get results for this setting. The
previous best bound was an O(ε−1d2d log n) query tester [AC06].

Theorem 1.7. Consider functions f : [n]d 7→ R. There is a distribution-free (non-adaptive, one-
sided) tester for P(B) w.r.t. D making 100ε−1d log n queries.

1.3 Technical highlights

Optimal dimension reduction. The main engine running the upper bounds is an optimal
dimension reduction theorem. Focus on just the uniform distribution. Given f : [n]d 7→ R that is
ε-far from P(B), what is the expected distance of the function restricted to a uniform random line
in [n]d? This natural combinatorial question has been at the heart of various monotonicity testing
results [GGL+00, DGL+99, AC06, HK08b]. The best known bounds are that this expected distance
is at least ε/(d2d) [AC06, HK08b]. Weaker results are known for the Lipschitz property [JR11,
AJMR12]. We given an optimal resolution (up to constant factors) to this problem not only for the
uniform distribution, but for any arbitrary product distribution, and for any bounded derivative
property.

In [n]d, an r-line is a combinatorial line parallel to the r-axis. Fix some bounding family B
and product distribution D =

∏
r Dr. Note that D−r =

∏
i 6=r Di is a distribution on r-lines. If we

restrict f to an r-line `, we get a function f |` : [n] 7→ R. It is meaningful to look at the distance
of f |` to P(B) (though this only involves the bounds of lr, ur ∈ B). Let distrD(f,P(B)) :=
E`∼D−r [distDr(f |`,P(B))].

4

Theorem 1.8. [Optimal Dimension Reduction] Fix bounding family B and product distribu-
tion D . For any function f ,

d∑
r=1

distrD(f,P(B)) ≥ distD(f,P(B))/4.

Let us give a short synopsis of previous methods used to tackle the case of monotonicity
in the uniform distribution case. For brevity’s sake, let εrf denote distrU (f, MON) and εf denote

distU (f, MON). That is, εrfn
d modifications makes the function monotone along the r-dimension,

and the theorem above states that 4
∑

r ε
r
fn

d modifications suffice to make the whole function
monotone. Either explicitly or implicitly, previous attempts have taken a constructive approach:
they use the modifications along the rth dimensions to correct the whole function. Although in
principle a good idea, a bottleneck to the above approach is that correcting the function along one
dimension may potentially introduce significantly larger errors along other dimensions. Thus, one
can’t just “add up” the corrections in a naive manner. The process is even more daunting when
one tries this approach for the Lipschitz property.

Our approach is completely different, and is ‘non-constructive’, and looks at all bounded-
derivative properties in a uniform manner. We begin by proving Theorem 3.1 for P(B) over
the uniform distribution. The starting point is to consider a weighted violation graph G, where
any two domains point forming a violation to P(B) are connected (the weight is a “magnitude” of
violation). It is well-known that the size of a maximum matching M in G is at least εfn

d/2. The
main insight is to use different matchings to get handles on the distance εrf rather than using mod-
ifications that correct the function. More precisely, we construct a sequence of special matchings
M = M0,M1, . . . ,Md = ∅, such that the drop in size |Mr−1| − |Mr| is at most 2εrfn

d, which proves
the above theorem. This requires structural properties on the Mr’s proven using the alternating
path machinery developed in [CS13a].

What about a general product distribution D? Suppose we ‘stretch’ every point in every
direction proportional to its marginal. This leads to a ‘bloated’ hypergrid [N]d where each point
in the original hypergrid corresponds to a high-dimensional cuboid. By the obvious association of
function values, one obtains a fext : [N]d 7→ R. If P(B) is monotonicity, then it is not hard to
show that distD(f) = distU (fext). So we can apply dimension reduction for fext over the uniform
distribution and map it back to f over D .

However, such an argument breaks down for Lipschitz (let alone general B), since distU (f ′) can
be much smaller than distD(f). The optimal fix for fext could perform non-trivial changes within
the cuboidal regions, and this cannot be mapped back to a fix for the original f . This is where
the generality of the bounded-derivative properties saves the day. For any B and D , we can define
a new bounding family Bext over [N]d, such that distD(f,P(B)) = distU (fext,P(Bext)). Now,
dimension reduction is applied to fext for P(Bext) over U and translated back to the original
setting.

Search trees and monotonicity. An appealing aspect of our results is the tight connection
between optimal search trees over product distributions to bounded-derivative properties. The
dimension reduction lemma allows us (for the upper bounds) to focus on just the line domain [n].
For monotonicity testing on [n] over an arbitrary distribution D , Halevy and Kushilevitz gave an
O(ε−1 log n)-query distribution free tester [HK08b], and Ailon and Chazelle gave an O(ε−1H(D))-
query tester [AC06]. Pretty much every single result for monotonicity testing on [n] involves some
analogue of binary search [EKK+00, BRW05, ACCL07, PRR06, HK08b, AC06, BGJ+09].

5

But we make this connection extremely precise. We show that any binary search tree can be
used to get a tester with respect to an arbitrary distribution, whose expected query complexity is
the expected depth of the tree with respect to the distribution. This argument is extremely simple
in hindsight, but it is a significant conceptual insight. Firstly, it greatly simplifies earlier results –
using the completely balanced BST, we get an O(ε−1 log n)-distribution free tester; with the optimal
BST, we get O(ε−1H(D))-queries. The BST tester along with the dimension reduction, provides a
tester for [n]d whose running time can be better than H(D) (especially for the hypercube). Most
importantly, optimal BSTs are a crucial ingredient for our lower bound construction.

Lower Bounds for Product Distributions. The first step to general lower bounds is a simple
reduction from monotonicity testing to any bounded-derivative property. Again, the reduction may
seem trivial in hindsight, but note that special sophisticated constructions were used for existing
Lipschitz lower bounds [JR11, BRY14b].

For monotonicity, we use the framework developed in [Fis04, CS13b] that allows us to focus on
comparison based testers. The lower bound for [n] uses a convenient near-optimal BST. For each
level of this tree we construct a ‘hard’ non-monotone function, leading to (roughly) ∆∗(D) such
functions in case of stable distributions. These functions have violations to monotonicity lying in
‘different regions’ of the line, and any bonafide tester must make a different query to catch each
function.

In going to higher dimensions, we face a significant technical hurdle. The line lower bound easily
generalizes to the hypergrid if each marginal distribution is individually stable. However, this may
not be the case – there are stable product distributions whose marginals are unstable. As a result,
each dimension may give ‘hard’ functions with very small distance. Our main technical contribution
is to show how to aggregate functions from various dimensions together to obtain hard functions
for the hypergrid in such a way that the distances add up. This is rather delicate, and is perhaps
the most technical portion of this paper. In summary, we show that for stable distributions, the
total search-tree depth is indeed the lower bound for testing monotonicity, and via the reduction
mentioned above, for any bounded-derivative property.

1.4 Other Related Work.

Monotonicity testing has a long history, and we merely point the reader to the discussions in [CS13a,
CS13b]. The work on testing over non-uniform distributions was performed in [HK08b, HK07,
AC06], the details of which have been provided in the previous section.

Goldreich et al. [GGR98] had already posed the question of testing properties of functions
over non-uniform distributions, and obtain some results for dense graph properties. A serious
study of the role of distributions was undertaken by Halevy and Kushilevitz [HK07, HK08b, HK05,
HK08a], who formalized the concept of distribution-free testing. (Refer to Halevy’s thesis [Hal06]
for a comprehensive study.) Kopparty and Saraf extend the classic linearity test to classes of
distributions, including product distributions [KS08b]. Glasner and Servedio [GS09] and Dolev and
Ron [DR11] give various upper and lower bounds for distribution-free testers for various properties
over {0, 1}n. Non-uniform distributions were also considered recently in the works of Balcan et
al. [BBBY12] and [GR13] which constrain the queries that can be made by the tester to samples
drawn from the distribution. Recent work of Berman et al. [BRY14a] introduces property testing
over `p-distances. We believe work along these lines studying richer notions of distance is critical
to the growth of property testing.

6

Note to the reader. The paper is rather long, although, we hope the extended introduction
above will allow the reader to choose the order in which to peruse the paper. We give a brief
outline of remainder. In §2, we define a particular quasi-metric corresponding to a bounding family
B and give an equivalent definition of the bounded-derivative property with respect to it. This
definition is convenient and will be the one used for the rest of the paper. This section must be read
next. The dimension reduction theorem is presented in its full glory in §3. In §4.1, we describe the
tester when the domain is just the line, and the easy generalization to the hypergrid via dimension
reduction is presented in §4.2. For lower bounds, we prove the reduction to monotonicity in §5.1,
and describe the approach to montonicity lower bounds in §5.2. The hard families for the line is
given in §5.3, for the hypercube in §5.4, and the general hypergrid lowerbound is described in §5.5.

2 Quasimetric induced by a Bounding Family

It is convenient to abstract out P(B) in terms of a metric-bounded property. Such ideas was used
in [CS13a] to give a unified proof for monotonicity and Lipschitz for the uniform distribution. The
treatment here is much more general. We define a quasimetric depending on B denoted by m(x, y).

Definition 2.1. Given bounding family B, construct the weighted directed hypergrid [n]d, where all
adjacent pairs are connected by two edges in opposite directions. The weight of (x+ er, x) is ur(xr)
and the weight of (x, x+ er) is −lr(xr). m(x, y) is the shortest path weight from x to y.

Note that m is asymmetric, can take negative values, and m(x, y) = 0 does not necessarily imply
x = y. For these reasons, it is really a possibly-negative-pseudo-quasi-metric, although we will refer
to it simply as a metric in the remainder of the paper. Since B is a bounding family, any cycle in
the [n]d digraph has positive weight, and m(x, y) is well-defined. Therefore, a shortest path from
x to y is given by the rectilinear path obtained by decreasing the coordinates r with xr > yr and
increasing the coordinates r with xr < yr. A simple calculation yields

m(x, y) :=
∑

r:xr>yr

xr−1∑
t=yr

ur(t)−
∑

r:xr<yr

yr−1∑
t=xr

lr(t) (2)

If a function f ∈ P(B), then applying (1) on every edge of the path described above (the upper
bound when we decrement a coordinate and the lower bound when we increment a coordinate),
we get f(x) − f(y) ≤ m(x, y) for any pair (x, y). Conversely, if ∀x, y, f(x) − f(y) ≤ m(x, y), then
considering neighboring pairs gives f ∈ P(B). This argument is encapsulated in the following
lemma.

Lemma 2.2. f ∈P(B) iff ∀x, y ∈ [n]d, f(x)− f(y) ≤ m(x, y).

When P(B) is monotonicity, m(x, y) = 0 if x ≺ y and ∞ otherwise. For the c-Lipschitz property,
m(x, y) = c‖x − y‖1. The salient properties of m(x, y) are documented below and can be easily
checked.

Lemma 2.3. m(x, y) satisfies the following properties.
1. (Triangle Inequality.) For any x, y, z, m(x, z) ≤ m(x, y) + m(y, z).
2. (Linearity.) If x, y, z are such that for every 1 ≤ r ≤ d, either xr ≤ yr ≤ zr or xr ≥ yr ≥ zr,

then m(x, z) = m(x, y) + m(y, z).

7

3. (Projection.) Fix any dimension r. Let x, y be two points with xr = yr. Let x′ and y′ be the
projection of x, y onto some other r-hyperplane. That is, x′r = y′r, and x′j = xj, y

′
j = yj for j 6= r.

Then, m(x, y) = m(x′, y′) and m(x, x′) = m(y, y′).

Proof. m(x, x) = 0 follows since the RHS of (2) is empty. Triangle inequality holds because m(x, y)
is a shortest path weight. Linearity follows by noting

∑xr−1
t=yr

ur(t) =
∑zr−1

t=yr
ur(t) +

∑xr−1
t=zr

ur(t).
For projection, note that if xr = yr, the RHS of (2) has no term corresponding to r. Thus,

m(x, y) = m(x′, y′). Suppose x′r > xr. Then, m(x, x′) =
∑x′r

t=xr ui(t) = m(y, y′). A similar proof
holds when x′r < xr.

Henceforth, all we need is Lemma 2.2 and Lemma 2.3. We will interchangably use the terms
P(B) and P(m) where m is as defined in (2). In fact, since B and therefore m will be fixed in
most of our discussion, we will simply use P including the parametrization wherever necessary.

Definition 2.4 (Violation Graph). The violation graph of a function f with respect to property
P, denoted as Gviol(f,P), has [n]d as vertices, and edge (x, y) if it forms a violation to P, that is
either f(x)− f(y) > m(x, y) or f(y)− f(x) > m(y, x).

The triangle inequality of m suffices to prove the following version of a classic lemma [FLN+02]
relating the distance of a function to P to the vertex cover of the violation graph.

Lemma 2.5. For any distribution D on [n]d, any bounded-derivative property P, and any func-
tion f , distD(f,P) = minX µD(X) where the minimum is over all vertex covers of Gviol(f,P).
Thus, if M is any maximal matching in Gviol(f,P), then for the uniform distribution, |M | ≥
distU (f,P)nd/2.

3 The Dimension Reduction Theorem

For any combinatorial line ` in [n]d, f |` : [n] 7→ R is f restricted to `. It is natural to talk of P for
any restriction of f , so distDr(f|`,P) is well-defined for any r-line `. For any 1 ≤ r ≤ d, define the
r-distance of the function:

distrD(f,P) := E`∼D−r [distDr(f|`,P)] (3)

Call a function f r-good if there are no violations along r-lines, that is, for any x and y on the
same r-line, we have f(x)− f(y) ≤ m(x, y). Observe that distrD(f,P) is the minimum µD -mass of
points on which f needs to be modified to make it r-good. The following is the optimal dimension
reduction theorem which connects the r-distances to the real distance.

Theorem 3.1 (Dimension Reduction). For any function f , any bounded-derivative property P,
and any product distribution D =

∏
1≤r≤d Di,

d∑
r=1

distrD(f,P) ≥ distD(f,P)/4.

(It can be easily shown that
∑d

r=1 dist
r
D(f,P) ≤ distD(f,P), by simply putting the same 1D

function of all, say, 1-lines.) We first prove the above theorem for the uniform distribution. Recall

8

the violation graph Gviol(f,P) whose edges are violation to P. We define weights on the edges
(x, y).

w(x, y) := max(f(x)− f(y)−m(x, y), f(y)− f(x)−m(y, x)) (4)

Note that w(x, y) > 0 for all edges in the violation graph. Let M be a maximum weight matching of
minimum cardinality (MWmC). (Introduce an arbitrary tie-breaking rule to ensure this is unique.)
A pair (x, y) ∈ M is an r-cross pair if xr 6= yr. The following theorem (proof defered to §3.2)
establishes the crucial structural result about these MWmC matchings in violated graphs of r-good
functions.

Theorem 3.2 (No r-violations⇒ no r-cross pairs). Let f be an r-good function. Then there exists
an MWmC matching M in Gviol(f,P) with no r-cross pairs.

We proceed with the proof of Theorem 3.1 over the uniform distribution starting with some
definitions.

Definition 3.3 (Hypergrid slices). Given an r-dimensional vector a ∈ [n]r, the a-slice is Sa :=
{x ∈ [n]d : xj = aj , 1 ≤ j ≤ r}.

Each a-slice is a (d− r)-dimensional hypergrid, and the various a-slices for a ∈ [n]r partition [n]d.
Let f|a denote the restriction of f to the slice Sa. For two functions f, g we use ∆(f, g) := |{x :

f(x) 6= g(x)}| = distU (f, g) · nd. The following claim relates the sizes of MWmC matchings to
∆(f, g).

Claim 3.4. Let f, g : [n]d 7→ R. Let M and N be the MWmC matchings in the violation graphs
for f and g, respectively. Then, ||M | − |N || ≤ ∆(f, g).

Proof. The symmetric difference of M and N is a collection of alternating paths and cycles. ||M |−
|N || is at most the number of alternating paths. Each alternating path must contain a point at
which f and g differ, for otherwise we can improve either M or N , either in weight or cardinality.

Define a sequence of d + 1 matchings (M0,M1, . . . ,Md) in Gviol(f,P) in non-increasing order
of cardinality as follows. For 0 ≤ r ≤ d, Mr is the MWmC matching in Gviol(f,P) among
matchings that do not contain any i-cross pairs for 1 ≤ i ≤ r. By Lemma 2.5, we have |M0| ≥
distU (f,P)nd/2. The last matching Md is empty and thus has cardinality 0.

Lemma 3.5. For all 1 ≤ r ≤ d, we have |Mr−1| − |Mr| ≤ 2 · distrU (f,P) · nd.

Adding the inequalities in the statement of Lemma 3.5 for all r, we get distU (f,P)nd/2 ≤ |M0| −
|Md| ≤ 2

∑d
r=1 dist

r
U (f,P) · nd. This completes the proof of Theorem 3.1 for the uniform distribu-

tion. Now we prove Lemma 3.5.

Proof. Since Mr−1 has no j-cross pairs for 1 ≤ j ≤ r − 1, all pairs of Mr−1 have both endpoints
in the same slice Sa for some a ∈ [n]r−1. Thus, Mr−1 partitions into sub-matchings in each Sa.
Let Ma

r−1 be the pairs of Mr−1 with both endpoints in slice Sa, so |Mr−1| =
∑

a∈[n]r−1 |Ma
r−1|.

Similarly, Ma
r is defined. Since Mr has no r-cross pairs either, ∀a ∈ [n]r−1, |Ma

r | =
∑n

i=1 |M
(a◦i)
r |,

where (a ◦ i) is the r-dimensional vector obtained by concatenating i to the end of a. Observe that
for any a ∈ [n]r−1, Ma

r−1 is an MWmC matching in Sa w.r.t. f|a. Furthermore, for any i ∈ [n],

M
(a◦i)
r is an MWmC matching in S(a◦i) w.r.t. f|(a◦i). Let f (r) be the closest function to f with no

violations along dimension r. By definition, ∆(f, f (r)) = distr(f,P) · nd.

9

Now comes the crucial part of the proof. Fix a ∈ [n]r−1 and focus on the a-slice Sa. Since f (r)

has no violations along the r-lines, neither does f (r)
|a. By Theorem 3.2, there exists an MWmC

matching Na in Sa w.r.t. f (r)
|a which has no r-cross pairs. Therefore, Na partitions as Na =⋃n

i=1N
(a◦i). Furthermore, each matching N (a◦i) is an MWmC matching in S(a◦i) with respect to

the weights corresponding to the function f
(r)
|(a◦i). Since Ma

r−1 is an MWmC matching w.r.t. f|a and

Na is an MWmC matching w.r.t. f
(r)
|a in Sa, Claim 3.4 gives

|Na| ≥ |Ma
r−1| −∆(f|a, f

(r)
|a) (5)

Since M
(a◦i)
r is an MWmC matching w.r.t. f|(a◦i) and N (a◦j) is an MWmC matching w.r.t. f

(r)
|(a◦i)

in S(a◦i), Claim 3.4 gives us |M (a◦i)
r | ≥ |N (a◦i)| −∆(f|(a◦i), f

(r)
|(a◦i)). Summing over all 1 ≤ i ≤ n,

|Ma
r | ≥ |Na| −∆(f|a, f

(r)
|a) (6)

Adding (5), (6) over all a ∈ [n]r−1, |Mr| ≥ |Mr−1| − 2
∑

a∈[n]r−1 ∆(f|a, f
(r)
|a) = |Mr−1| − 2 ·

distr(f,P) · nd.

3.1 Reducing from arbitrary product distributions

We reduce arbitrary product distributions to uniform distributions on what we call the bloated
hypergrid. Assume without loss of generality that all µDr(j) = qr(j)/N , for some integers qr(j)
and N . Consider the d-dimensional N -hypergrid [N]d. There is a natural many-to-one mapping
from Φ : [N]d 7→ [n]d defined as follows. First fix a dimension r. Given an integer 1 ≤ t ≤ N , let
φr(t) denote the index ` ∈ [1, n] such that

∑
j<` qr(j) < t ≤

∑
j≤` qr(j). That is, partition [N] into

n contiguous segments of lengths qr(1), . . . , qr(n). Then φr(t) is the index of the segment where t
lies. The mapping Φ : [N]d 7→ [n]d is defined as

Φ(x1, x2 . . . , xd) = (φ1(x1), φ2(x2), . . . , φm(xd)) .

We use Φ−1 to define the set of preimages, so Φ−1 maps a point in [n]d to a ‘cuboid’ in [N]d.
Observe that for any x ∈ [n]d,

|Φ−1(x)| = Nd
d∏
r=1

µDr(x) = NdµD(x). (7)

Claim 3.6. For any set X ⊆ [n]d, define Z ⊆ [N]d as Z :=
⋃
x∈X Φ−1(x). Then µD(X) = µU (Z).

Proof. The set Z =
⋃
x∈X Φ−1(x) is the union of all the preimages of Φ over the elements ofX. Since

preimages are disjoint, we get |Z| =
∑

x∈X |Φ−1(x)| = NdµD(X). Therefore, µU (Z) = µD(X).

Given f : [n]d 7→ R, we define its extension fext : [N]d 7→ R:

fext(x1, . . . , xd) = f(Φ(x1, . . . , xd)). (8)

10

Thus, fext is constant on the cuboids in the bloated hypergrid corresponding to a point in the
original hypergrid. Define the following metric on [N]d.

For x, y ∈ [N]d, mext(x, y) = m(Φ(x),Φ(y)) (9)

The following statements establish the utility of the bloated hypergrid, and the proof of the di-
mension reduction of f over [n]d w.r.t. D follows easily from these and the proof for the uniform
distribution.

Lemma 3.7. If m satisfies the conditions of Lemma 2.3 over [n]d, then so does mext over [N]d.

Proof. Consider x, y, z ∈ [N]d. Triangle inequality and well-definedness immediately follow from
the validity of m. Now for linearity. If xr ≤ yr ≤ zr, then so is φr(xr) ≤ φr(yr) ≤ φr(zr). Thus,
Φ(x),Φ(y),Φ(z) satisfy linearity w.r.t. m. So, mext(x, z) = m(Φ(x),Φ(z)) = m(Φ(x),Φ(y)) +
m(Φ(y),Φ(z)) = mext(x, y) + mext(y, z).

Now for projection. Suppose xr = yr and x′r = y′r. Note that Φ(x) and Φ(y) have same
rth coordinate, and so do Φ(x′) and Φ(y′). Furthermore, Φ(x′) (resp. Φ(y′)) is the projection of
Φ(x) (resp. Φ(x)). Thus we get mext(x, y) = m(Φ(x),Φ(y)) = m(Φ(x′),Φ(y′)) = mext(x

′, y′), and
similarly mext(x, x

′) = mext(y, y
′).

Theorem 3.8. distD(f,P(m)) = distU (fext,P(mext)).

Proof. (≥). Let X ⊆ [n]d be a vertex cover in Gviol(f,P(m)) minimizing µD(X). From Lemma 2.5,
distD(f,P(m)) = µD(X). We claim Z =

⋃
x∈X Φ−1(x) is a vertex cover of Gviol(fext,P(mext)).

This implies distU (fext,P(mext)) ≤ µU (Z) = µD(X) = distD(f,P(m)), where the first equal-
ity follows from Claim 3.6. Consider a violated pair (u, v) in this graph and so wlog fext(u) −
fext(v) > mext(u, v). Hence, f(Φ(u)) − f(Φ(v)) > m(Φ(u),Φ(v)) implying (Φ(u),Φ(v)) is an edge
in Gviol(f,P(m)). Thus, either Φ(u) or Φ(v) lies in X implying either u or v lies in Z.

(≤). Let Z ⊆ [N]d be a vertex cover in Gviol(fext,P(mext)) minimizing µU (Z). Therefore,
distU (fext,P(mext)) = µU (Z). Define X ⊆ [n]d as X = {x ∈ [n]d : Φ−1(x) ⊆ Z}. Therefore,
Z ⊇

⋃
x∈X Φ−1(x) and from Claim 3.6 we get µU (Z) ≥ µD(X). It suffices to show that X is a vertex

cover of Gviol(f,P(m)). Consider a violated edge (x, y) in this graph such that f(x)−f(y) > m(x, y).
Suppose neither x nor y are in X. Hence, there exists u ∈ Φ−1(x) \ Z and v ∈ Φ−1(y) \ Z. So
fext(u)− fext(v) = f(Φ(u))− f(Φ(v)) = f(x)− f(y) > m(x, y) = mext(Φ(u),Φ(v)), implying (u, v)
is a violation in Gviol(fext,P(mext)). This contradicts the fact that Z is a vertex cover.

Fix a dimension r and r-line `. Abusing notation, let Φ−1(`) denote the collection of r-lines
in [N]d that are mapped to ` by Φ. Note that |Φ−1(`)| = Nd−1µD−r(`). A proof identical to one
above yields the following theorem.

Theorem 3.9. For any r-line, distDr(f|`,P(m)) = distUr(fext|`′ ,P(mext)) for all `′ ∈ Φ−1(`).

11

Now we can complete the proof of Theorem 3.1.

distrD(f,P(m)) =
∑
r-line `

µD−r(`) · distDr(f|`,P(m))

=
1

Nd−1

∑
r-line `

|Φ−1(`)| · distDr(f|`,P(m))

=
1

Nd−1

∑
r-line `

∑
`′∈Φ−1(`)

distUr(fext|`′ ,P(mext))

= E`′∼U−r [distUr(fext|`′ ,P(mext))] = distrU (fext,P(mext)).

We can apply the dimension reduction to fext for property P(mext) over the uniform distribution.
The proof of Theorem 3.1 for f follows directly.

3.2 No r-violations imply no r-cross pairs.

In this subsection we prove Theorem 3.2. This closely follows the techniques and proofs from [CS13a].

Theorem 3.2 (No r-violations⇒ no r-cross pairs). Let f be an r-good function. Then there exists
an MWmC matching M in Gviol(f,P) with no r-cross pairs.

This requires the alternating path setup of [CS13a]. Recall the weight function w(x, y) =
max(f(x)−f(y)−m(x, y), f(y)−f(x)−m(y, x)) defined on pairs of the domain. Note that (x, y) is
a violation iff w(x, y) > 0. Let M be a maximum weight minimum cardinality (MWmC) matching
of Gviol(f,P(m)) with the minimum number of r-cross pairs. Recall an r-cross pair (x, y) has
xr 6= yr. We will prove that this minimum value is 0.

Let cr(M) be the set of r-cross pairs in M . Let st(M) := M \ cr(M). For contradiction’s sake,
assume cr(M) is nonempty. Let (x, y) ∈ cr(M) be an arbitrary r-cross pair with xr = a and yr = b
with a 6= b. Define matching H := {(u, v) : ur = a, vr = b, uj = vj , j 6= i}. This is a matching by
projection between points with rth coordinate a and b. For convenience, we denote the points with
rth coordinate a (resp. b) as the a-plane (resp. b-plane).

Consider the alternating paths and cycles in H∆ st(M). The vertex y is incident to only an H-
pair, since (x, y) ∈ cr(M). Let y = s1, s2, . . . , st be the alternating path starting from y, collectively
denoted by S. We let s0 := x. The end of S, st, may be either M -unmatched or cr(M)-matched.
In the latter case, we define st+1 to be such that (st, st+1) ∈ cr(M). For even i, (si−1, si) is an
H-pair and (si, si+1) is an M -pair. We list out some basic claims about S.

Claim 3.10. If strictly positive j ≡ 0, 1 mod 4, then sj is in the b-plane. Otherwise, sj is in the
a-plane.

Claim 3.11. For strictly positive even i, f(si−1) − f(si) − m(si−1, si) ≤ 0 and f(si) − f(si−1) −
m(si, si−1) ≤ 0.

Proof. Since f is r-good and H-pairs differ only in the rth coordinate, w(si−1, si) ≤ 0 for all even
i. The definition of w(si−1, si) completes the proof.

Claim 3.12. For strictly positive i ≡ 0 mod 4, m(si−1, si) = m(s2, s1). For i ≡ 2 mod 4,
m(si, si−1) = m(s2, s1).

12

Proof. The point s0 (which is x) lies in the a-plane. Hence, for any i ≡ 2 mod 4, si lies in the
b-plane. Similarly, for i ≡ 0 mod 4, si lies in the a-plan. For strictly positive even i, (si−1, si) is
an H-pair. An application of the projection property completes the proof.

Claim 3.13. For strictly positive even i, m(si, si+1) = m(si−1, si+2) and m(si+1, si) = m(si+2, si−1).

Proof. Consider st(M)-pair (si, si+1). Both points are on the same (a or b-)plane. Observe that
si−1 is the projection of si and si+2 is the projection of si+1 onto the other plane. Apply the
projection property of d to complete the proof.

Now we have all the ingredients to prove the theorem. The strategy is to find another matching
M ′ such that either w(M ′) > w(M) or w(M ′) = w(M) and M ′ has strictly fewer cross pairs. Let
us identify certain subsets of pairs to this end. For even k, define

E−(k) := (s0, s1), (s2, s3), . . . , (sk, sk+1) = {(sj , sj+1) : j even, 0 ≤ j ≤ k}

These are precisely the st(M)-pairs in S in the first k-steps. Note that |E−(k)| = k/2 + 1. Now we
define E+(k). In English: first pick pair (s0, s2); subsequently pick the first unpaired si and pair it
with the next unpaired sj of the opposite parity. More precisely, for even k,

E+(k) := (s0, s2), (s1, s4), (s3, s6), . . . , (sk−3, sk) = (s0, s2) ∪ {(sj−3, sj) : j even, 4 ≤ j ≤ k}

Note that |E+(k)| = k/2.
Wlog, assume that w(x, y) = f(x)−f(y)−m(x, y). It turns out the weights of all other M -pairs

in S are determined. We will assert that the pattern is as follows.

w(si, si+1) =

{
f(si)− f(si+1)−m(si, si+1) if i ≡ 0 mod 4

f(si+1)− f(si)−m(si+1, si) if i ≡ 2 mod 4
(♣)

The following lemma determines the weights of all other M -edges in the alternating path S.
Recall (si, si+1) ∈ st(M) for even i.

Lemma 3.14. Suppose si exists. If (♣) holds for all even indices < i, then si is matched in M .

Proof. Assume i ≡ 2 mod 4. (The other case is analogous and omitted.) We prove by contradic-
tion, so suppose si is not matched in M . We set M ′ := M − E−(i − 2) + E+(i). Note that M ′ is
a valid matching, since si is not matched. We compare w(M ′) and w(M). By (♣), we can express
w(E−(i− 2)) exactly.

w(E−(i− 2)) =
∑

j:even, 0≤j≤i−2

w(sj , sj+1)

= [f(s0)− f(s1)−m(s0, s1)] + [f(s3)− f(s2)−m(s3, s2)] +

[f(s4)− f(s5)−m(s4, s5)] + [f(s7)− f(s6)−m(s7, s6)] + · · ·
[f(si−2)− f(si−1)−m(si−2, si−1)] (10)

We lower bound w(E+(i)). Since each individual weight term is a maximum of two expressions, we
can choose either. We set the expression up to match w(E−(i− 2)) as best as possible.

w(E+(i)) ≥ [f(s0)− f(s2)−m(s0, s2)] + [f(s4)− f(s1)−m(s4, s1)] +

[f(s3)− f(s6)−m(s3, s6)] + [f(s8)− f(s5)−m(s8, s5)] +

[f(si−3)− f(si)−m(si−3, si)] (11)

13

Note that w(M ′)−w(M) = w(E+(i))−w(E−(i−2)). Observe that any f term that occurs in both
(10) and (11) has the same coefficient. By Claim 3.13, m(s3, s2) = m(s4, s1), m(s4, s5) = m(s3, s6),
etc.

w(E+(i))− w(E−(i− 2)) ≥ f(si−1)− f(si)−m(s0, s2) + m(s0, s1)

The points s0 and s1 lie is different planes, and (s1, s2) ∈ H. We can apply the linearity property
to get m(s0, s1) = m(s0, s2) +m(s2, s1). Plugging this in, applying Claim 3.11 and Claim 3.12 for i,

w(E+(i))− w(E−(i− 2)) ≥ f(si−1)− f(si) + m(s2, s1) = −[f(si)− f(si−1)−m(si, si−1)] ≥ 0

Hence w(M ′) ≥ w(M). Note that |M ′| − |M | = |E+(i)| − |E−(i − 2)| = i/2 − ((i − 2)/2 + 1) =
0. Finally, observe that E+(i) has no r-cross pairs, but E−(i − 2) has one (pair (s0, s1)). This
contradicts the choice of M as a MWmC matching with the least r-cross pairs.

Claim 3.15. If (♣) holds for all even indices < i, then s0, s1, . . . , si+1 are all distinct.

Proof. (This is trivial if i < t. The non-trivial case if when S ends as si.) The points s1, . . . , si are all
distinct. If si 6= x, the claim holds. So assume si = x = s0. By Claim 3.10, i ≡ 2 mod 4. Replace
pairs A = {(s0, s1), (si−2, si−1)} by (si−2, s1). Note that m(s0, s1) = m(s0, si−1) + m(si−1, s1). By
(♣),

w(A) = [f(s0)− f(s1)−m(s0, s1)] + [f(si−2)− f(si−1)−m(si−2, si−1)]

= [f(si−2)− f(s1)−m(si−2, si−1)−m(si−1, s1)] + [f(s0)− f(si−1)−m(s0, si−1)]

≤ [f(si−2)− f(s1)−m(si−2, s1)] ≤ w(si−2, s1)

The total number of pairs has decreased, so we complete the contradiction.

Lemma 3.16. Suppose si exists. If (♣) holds for all even indices < i, then (♣) holds for i.

Proof. We prove by contradiction, so (♣) is false for i. (Again, assume i ≡ 2 mod 4. The other
case is omitted.) By Claim 3.15, E+(i − 2) ∪ (si−3, si+1) is a valid set of matched pairs. Let
M ′ := M − E−(i) + (E+(i− 2) ∪ (si−3, si+1)). Observe that |M ′| = |M | − 1 and the vertices si−1

and si are left unmatched in M ′. By (♣) for even indices < i and the opposite of (♣) for i,

w(E−(i)) = [f(s0)− f(s1)−m(s0, s1)] + [f(s3)− f(s2)−m(s3, s2)] +

[f(s4)− f(s5)−m(s4, s5)] + [f(s7)− f(s6)−m(s7, s6)] + · · ·
[f(si−2)− f(si−1)−m(si−2, si−1)] + [f(si)− f(si+1)−m(si, si+1)] (12)

We stress that the last weight is “switched”. We lower bound w(E+(i− 2)∪ (si−3, si+1)) appropri-
ately.

w(E+(i− 2) ∪ (si−3, si+1)) ≥ [f(s0)− f(s2)−m(s0, s2)] + [f(s4)− f(s1)−m(s4, s1)] +

[f(s3)− f(s6)−m(s3, s6)] + [f(s8)− f(s5)−m(s8, s5)] + · · ·
[f(si−7)− f(si−4)−m(si−7, si−4)] + [f(si−2)− f(si−5)−m(si−2, si−5)] +

[f(si−3)− f(si+1)−m(si−3, si+1)] (13)

As before, we subtract (12) from (13). All function terms from (13) cancel out. By Claim 3.13, all
m-terms except the first and last cancel out.

w(M ′)−w(M) ≥ f(si−1)− f(si)−m(s0, s2)−m(si−3, si+1) +m(s0, s1) +m(si−2, si−1) +m(si, si+1)

14

By linearity, m(s0, s1) = m(s0, s2) +m(s2, s1). Furthermore, by Claim 3.12, m(s2, s1) = m(si, si−1).
By Claim 3.13, m(si−2, si−1) = m(si−3, si). By triangle inequality, −m(si−3, si+1) + m(si−3, si) +
m(si, si+1) ≥ 0. Putting it all together and applying Claim 3.11,

w(M ′)− w(M) ≥ −[f(si)− f(si−1)−m(si, si−1)] ≥ 0

So M ′ has at least the same weight but lower cardinality than M . Contradiction.

Lemma 3.17. Suppose si exists. If (♣) holds for all even indices < i, then si is matched in st(M).

Proof. Suppose not. (Again, assume i ≡ 2 mod 4.) By Lemma 3.14, si is matched in M , so
(si, si+1) ∈ cr(M). We set M ′ = M − E−(i) + (E+(i) ∪ (si−1, si+1)). By Claim 3.15, M ′ is a valid
matching. We have |M ′| = |M |. M has two r-cross pairs (s0, s1) and (si, si+1), but M ′ has at most
one (si−1, si+1). It suffices to show that w(M ′) ≥ w(M) to complete the contradiction.

By Lemma 3.16 and (♣),

w(E−(i)) = [f(s0)− f(s1)−m(s0, s1)] + [f(s3)− f(s2)−m(s3, s2)] +

[f(s4)− f(s5)−m(s4, s5)] + [f(s7)− f(s6)−m(s7, s6)] + · · ·
[f(si−2)− f(si−1)−m(si−2, si−1)] + [f(si+1)− f(si)−m(si+1, si)]

w(E+(i) ∪ (si−1, si+1)) ≥ [f(s0)− f(s2)−m(s0, s2)] + [f(s4)− f(s1)−m(s4, s1)] +

[f(s3)− f(s6)−m(s3, s6)] + [f(s8)− f(s5)−m(s8, s5)] + · · ·
[f(si−3)− f(si)−m(si−3, si)] + [f(si+1)− f(si−1)−m(si+1, si−1)]

All function terms and all but the first and last m-terms cancel out. The second inequality below
holds by linearity and triangle inequality. The last equality is an application of Claim 3.12.

w(M ′)− w(M) ≥ m(s0, s1)−m(s0, s2) + m(si+1, si)−m(si+1, si−1)

≥ m(s2, s1)−m(si, si−1) = 0

Finally, we prove Theorem 3.2.

Proof. We started with a MWmC matching M with the minimum number of r-cross pairs. If there
exists at least one such cross pair (x, y), we can define the alternating path sequence S. Wlog, we
assumed (♣) holds for i = 0. Applications of Lemma 3.16 and Lemma 3.17 imply that S can never
terminate. Contradiction.

4 Search Trees and Bounded Derivative Property Testing.

As a result of dimension reduction, we can focus on designing testers for the line [n]. Our analysis
is simple, but highlights the connection between bounded-derivative property testing and optimal
search trees.

15

4.1 Testers for the Line [n].

Let T be any binary search tree (BST) with respect to the totally ordered domain [n]. Every node
of T is labeled with a unique entry in [n], and the left (resp. right) child, if it exists, has a smaller
(resp. larger) entry. The depth of a node v in the tree T , denoted as depthT (v), is the number of
edges on its path to the root. So the root has depth 0. Given a distribution D on [n], the expected
depth of T w.r.t. D is denoted as ∆(T ; D) = Ev∼D [depthT (v)]. The depth of the optimal BST
w.r.t. D is denoted by ∆∗(D).

It has long been observed that the transitivity of violations is the key property required for
monotonicity testing on [n] [BRW05, EKK+00, ACCL07, JR11]. We distill this argument down to
a key insight: Given any BST T , there exists the following tester BST(T) for P on the line.

BST Tester (T)
1. Sample v ∼ D .
2. If v is the root of T , do nothing.
3. Else, query f(u) for all vertices lying on the path from v to root (including the root and v).
4. Reject if any pair of these vertices form a violation to P.

It is clear that the tester never rejects a function satisfying P. (To connect with previous work,
observe that the list of ancestor-descendant pairs forms a 2-Transitive Closure spanner [BGJ+09].)

Lemma 4.1. For any bounded derivative property P, Pr[BST tester rejects] ≥ distD(f,P).

Proof. Let X be the set of non-root nodes v of T with the following property: (u, v) is a violation to
P for some node u on the path from v to the root of T . The probability of rejection of the BST tester
is precisely µD(X). We claim that X is a vertex cover of Gviol(f,P) which proves the lemma using
Lemma 2.5. Pick any violation (x, y) and assume without loss of generality f(x)− f(y) > m(x, y).
Let z be the lowest common ancestor of x and y in T . By the BST property, either x < z < y of
x > z > y. By the linearity property of m, we get m(x, y) = m(x, z) + m(z, y). This implies either
f(x)− f(z) > m(x, z) or f(z)− f(y) > m(z, y), that is, either (x, z) or (y, z) is a violation implying
one of them is in X.

Lemma 4.2. For any BST T , there is a 24ε−1∆(T ; D)-query line monotonicity-tester.

Proof. The expected number of queries made by the BST tester is
∑

v: non-root Pr[v] · (depthT (v) +
1) = (1− Pr[root]) + ∆(T ; D) ≤ 2 ·∆(T ; D).∑

v: non-root

Pr[v] · (depthT (v) + 1) = (1− Pr[root]) + ∆(T ; D) ≤ 2 ·∆(T ; D)

The expected depth is at least (1−Pr[root]) since non-roots have depth at least 1. To get a bonafide
tester with deterministic query bounds, run the BST tester 2/ε times, aborting (and accepting)
if the total number of queries exceeds 24∆(T ; D)/ε. The expected total number of queries is at
most 4∆(T ; D)/ε. By Markov’s inequality, the probability that the tester aborts is ≤ 1/6. By
Lemma 4.1, if distD(f ; P) > ε, the probability that this tester does not find a violation is at most
(1− ε)2/ε ≤ 1/6. With probability ≥ (1−1/6−1/6) = 2/3, the tester rejects an ε-far function.

16

Choose T to be the optimal BST to get the following theorem.

Theorem 4.3. There exists a 24ε−1∆∗(D)-query tester for any bounded derivative property over
the line.

Note that once the tree is fixed, the BST tester only needs random samples from the distribution.
Pick T to be the balanced binary tree of depth O(log n) to get a distribution-free tester.

Theorem 4.4. There exists a 24ε−1 log n-query distribution free tester for any bounded-derivative
property over the line.

4.2 Testers for the Hypergrid.

Given a series of BSTs T1, T2, . . . , Td corresponding to each dimension, we have the following hy-
pergrid BST tester.

Hypergrid BST Tester (T1, T2, . . . , Td)
1. Sample x ∼ D .
2. Choose dimension r u.a.r. and let ` be the r-line through x.
3. Run BST Tester(Tr) on f|`.

Lemma 4.5. For any set of BSTs T1, T2, . . . , Td, the probability of rejection is at least distD(f,P)/4d.

Proof. Condition on an r-line being chosen. The probability distribution over r-lines for this tester
is D−r. By Lemma 4.1, the rejection probability is at least E`∼D−r [distDr(f|`,P)] = distrD(f,P).

The overall rejection probability is at least
∑d

r=1
distiD(f,P)

d ≥ distD(f,P)
4d , by Theorem 3.1.

The expected number of queries made by this procedure is at most 1
d·
∑d

r=12∆(Tr; Dr). Repeating it
O(d/ε) times to get the desired tester. The proof of the following is identical to that of Lemma 4.2
and is omitted.

Lemma 4.6. For any collections of BSTs (T1, . . . , Td), there is a 100ε−1
∑d

i=1 ∆(T ; D)-query tester
for any bounded derivative property.

As in the case of the line we get the following as corollaries.

Theorem 1.3. [Main upper bound] Consider functions f : [n]d 7→ R. Let B be a bounding
family and D be a product distribution. There is a tester for P(B) w.r.t. D making 100ε−1∆∗(D)
queries.

Theorem 1.7. Consider functions f : [n]d 7→ R. There is a distribution-free (non-adaptive, one-
sided) tester for P(B) w.r.t. D making 100ε−1d log n queries.

The upper bound
∑d

r=1 ∆∗(Dr) is at most H(D), but can be much smaller, and it is clearest
in the case of the hypercube. In the hypercube, each Dr is given by (µr, 1 − µr). Set θr :=
min(µr, 1 − µr). The optimal BST places the point of larger mass on the root and has expected
depth θr.

17

Corollary 1.5. Consider functions f : {0, 1}d 7→ R. Monotonicity testing over any product distri-
bution D =

∏d
r=1 Dr, where each Dr = (µr, 1− µr), can be done with 100ε−1

∑d
r=1 min(µr, 1− µr)

queries.

It is instructive to open up this tester. It samples a point x from the distribution D and picks a
dimension r uniformly at random. With probability θr, it queries both endpoints of (x, x⊕er). With
probability (1− θr), it does nothing. This process is repeated O(d/ε) times. When θr = µr = 1/2,
this is the standard edge tester.

5 Lower Bounds

We prove that the upper bounds of §4 are tight up to the dependence on the distance parameter ε.
As alluded to in §1.3, we can only prove lower bounds for stable product distributions. These are
distributions where small perturbations to the mass function do not change ∆∗ drastically.

Definition 5.1 (Stable Distributions). A product distribution D is said to be (ε, ρ)-stable if for
all product distributions D ′ with ||D −D ′||TV ≤ ε, ∆∗(D ′) ≥ ρ∆∗(D).

The uniform distribution on [n]d is (ε, 1 − o(1))-stable, for any constant ε < 1. The Gaussian
distribution also shares the same stability. An example of an unstable distribution is the following.
Consider D on [n], where the probability on the first k = log n elements is (1−ε)/k, and is ε/(n−k)
for all other elements. Let D ′ have all its mass uniformly spread on the first k elements. We have
||D −D ′||TV = ε but ∆∗(D) ≈ ε log n and ∆∗(D ′) ≈ log k = log log n.

Theorem 1.6. [Main lower bound] For any parameter ε, there exists ε′ = Θ(ε) such that for
any bounding family B and (ε′, ρ)-stable, product distribution D , any (even adaptive, two-sided)
tester for P(B) w.r.t. D with proximity parameter ε requires Ω(ρ∆∗(D)) queries.

5.1 Reduction from monotonicity to bounded-derivative property

Consider a function f : [n]d 7→ [R] with where R ∈ N. Let m be the distance function obtained
by bounding family B. We let 0 ∈ [n]d be (0, 0, . . . , 0). We use ≺ to denote the natural partial
order in [n]d, and let hcd(x, y) be the highest common descendant of x, y ∈ [n]d. We first prove an
observation about triangle equality.

Observation 5.2. If m(0, x) + m(x, y) = m(0, y), then x ≺ y.

Proof. By linearity, m(x, y) = m(x, hcd(x, y)) + m(hcd(x, y), y). Since hcd(x, y) ≺ x, by linearity
again, m(0, x) = m(0, hcd(x, y)) + m(hcd(x, y), x). (Similarly for y.) Putting it all into the ‘if’
condition,

m(0, hcd(x, y)) + m(hcd(x, y), x) + m(x, hcd(x, y)) + m(hcd(x, y), y) = m(0, hcd(x, y)) + m(hcd(x, y), y)

This yields m(hcd(x, y), x) + m(x, hcd(x, y)) = 0. Suppose hcd(x, y) 6= x. The length (in terms of
B) of the path from hcd(x, y) to x involves a sum of ui(t) terms, and the reverse path involves
corresponding −li(t) terms. Since ui(t) > li(t), the total path length from hcd(x, y) to x and back
is strictly positive. Therefore, hcd(x, y) = x and x ≺ y.

18

Let U be the set of incomparable (ordered) pairs in [n]d. Define δ := min(x,y)∈U{m(0, x) +
m(x, y)−m(0, y)}. By Observation 5.2, δ > 0. Define

g(x) :=
δ

2R
· f(x)−m(0, x)

Lemma 5.3. distD(g,P) = distD(f, MON).

Proof. We show that (u, v) violates P(m) of g iff it violates monotonicity of f . First, the ‘only if’
case. Assume g(u)− g(v) > m(u, v). Plugging in the expression for g(·) and rearranging,

δ

2R
(f(u)− f(v)) > m(0, u) + m(u, v)−m(0, v)

By triangle inequality on the RHS, f(u) > f(v). Note that f(u)− f(v) ≤ R so δ
2R(f(u)− f(v)) ≤

δ/2. So δ/2 > m(0, u)+m(u, v)−m(0, v). By choice of δ, the RHS must be zero. By Observation 5.2,
u ≺ v, and (u, v) is a violation to monotonicity of f .

Now the ‘only if’ case, so u ≺ v and f(u) > f(v). Note that m(0, v) = m(0, u) + m(u, v). We
deduce that (u, v) is also a violation to P(m) for g.

g(u)− g(v) =
δ

2R
(f(u)− f(v)) + m(0, v)−m(0, u) =

δ

2R
(f(u)− f(v)) + m(u, v) > m(u, v)

Our main reduction theorem is the following.

Theorem 5.4. Fix domain [n]d and a product distribution D . Suppose there exists a Q-query
tester for testing a bounded-derivative property P with distance parameter ε. Then there exists a
Q+ 10/ε-query tester for monotonicity for functions f : [n]d 7→ N over D with distance parameter
2ε.

Proof. The monotonicity tester first queries 10/ε points of [n]d, each i.i.d. from D . Let the
maximum f -value among these be this M . Consider the truncated function f ′ : [n]d 7→ [M], where
f ′(x) = M if f(x) ≥ M and f ′(x) = f(x) otherwise. If f is monotone, f ′ is monotone. Note that
distD(f, f ′) < ε. So if f is 2ε-far from monotone, f ′ is ε-far from monotone. We can apply the
P(B) tester on the function g obtained from Lemma 5.3.

5.2 Monotonicity Lower Bound Framework.

The lower bound for monotonicity testing goes by the proof strategy set up in [CS13b]. This is
based on arguments in [Fis04, CS13b] that reduce general testers to comparison-based testers. We
encapsulate the main approach in the following theorem, proven implicitly in [CS13b]. (We use
MON to denote the monotonicity property.)

Theorem 5.5. Fix domain [n]d, distribution D , proximity parameter ε, and positive integer L
possibly depending on D and ε. A pair (x, y) distinguishes function g from h if h(x) < h(y) and
g(x) > g(y). Suppose there is a collection of ‘hard’ functions h, g1, . . . , gL : [n]d 7→ N such that
• The function h is monotone.
• Every distD(gi, MON) ≥ ε.

19

• Pairs in any set Q ⊂ [n]d, can distinguish at most |Q| of the gi’s from h.
Then any (even adaptive, two-sided) monotonicity tester w.r.t. D for functions f : [n]d 7→ N with
distance parameter ε must make Ω(L) queries.

In §5.3 and §5.4, we first describe hard functions for the line and the hypercube domain, re-
spectively. The general hypergrid is addressed in §5.5.

5.3 The Line

Theorem 5.6. Fix a parameter ε. If D is (2ε, ρ)-stable, then any ε-monotonicity tester w.r.t. D
for functions f : [n]d 7→ N requires Ω(ρ∆∗(D)) queries.

Not surprisingly, the lower bound construction is also based on BSTs. We specifically use the
median BST [Meh75]. When n = 1, then the tree is the singleton. For a general n, let t ∈ [n] be the
smallest index such that µ({1, · · · , t}) ≥ 1/2 (henceforth, in this section, we use µ to denote µD).
The root of T is t. Recur the construction on the intervals [1, t− 1] and [t+ 1, n]. By construction,
the probability mass of any subtree together with its parent is greater than the probability mass
of the sibling subtree. This median property will be utilized later.

We follow the framework of Theorem 5.5 to construct a collection of hard functions. The
monotone function h can be anything; h(i) = 3i works. We will construct a function gj (j ≥ 1)
for each non-root level of the median BST. Consider the nodes at depth j − 1 (observe the use of
j−1, and not j). Each of these corresponds to an interval, and we denote this sequence of intervals
by I1j , I

2
j , (Because internal nodes of the tree are also elements in [n], there are gaps between

these intervals.) Let L≥j := {x : depthT (x) ≥ j} be the nodes at depth j and higher. We have the
following simple claim.

Claim 5.7. Ikj can be further partitioned into Ik,leftj and Ik,rightj such that
∑

k min
(
µ(Ik,leftj), µ(Ik,rightj)

)
≥

µ(L≥j)
2 .

Proof. Consider the node uk corresponding Ikj , and let the nodes in the left and right subtrees be

S` and Sr. If µ(S`) ≤ µ(Sr), then Ik,leftj = S` ∪ uk and Ik,rightj = Sr. Otherwise, Ik,leftj = S` and

Ik,rightj = uk ∪Sr. By the median property of the BST, min(µ(Ik,leftj), µ(Ik,rightj)) = max(µ(S`), µ(Sr))
≥ (µ(S`) + µ(Sr))/2.

We describe the non-monotone gj ’s and follow up with some claims. Let lca(x, y) denote the
least common ancestor of x and y in T .

gj(x) =


2x if x /∈

⋃
k I
k
j

2x+ 2(b−m) + 1 if x ∈ Ik,leftj = [a,m], where Ikj = [a, b].

2x− 2(m− a)− 1 if x ∈ Ik,rightj = [m+ 1, b], where Ikj = [a, b].

(14)

Claim 5.8. (i) distD(gj , MON)≥ µ(L≥j)
2 . (ii) If (x, y) distinguishes gj from h, then lca(x, y) lies in

level (j − 1).

Proof. All elements in Ik,leftj are in violation with all elements in Ik,rightj for all k. To see this, let

x ∈ Ik,leftj and y ∈ Ik,rightj , and so x ≺ y. Denote Ikj = [a, b],

gj(x)− gj(y) = 2x+ 2(b−m) + 1− 2y + 2(m− a) + 1 = 2(x− a) + 2(b− y) + 2 > 0

20

The vertex cover of the violation graph of gi has mass at least
∑

k min(µ(Ik,leftj), µ(Ik,rightj)) ≥
µ(L≥j)/2 (Claim 5.7). This proves part (i). To prove part (ii), let x ≺ y distinguish gj from

h, so gj(x) > gj(y). We claim there exists a k∗ such that x ∈ Ik
∗,left
j and y ∈ Ik

∗,right
j . For any

Ikj = [a, b], the gj values lie in [2a + 1, 2b + 1]. Hence, if x ∈ Ikj and y /∈ Ikj (or vice versa), (x, y) is

not a violation. So x and y lie in the same Ik
∗
j , But the function restricted to Ik

∗,left
j or Ik

∗,right
j is

increasing, completing the proof.

The following claim is a simple combinatorial statement about trees.

Claim 5.9. Given a subset Q of [n], let lca(Q) = {lca(x, y) : x, y ∈ Q}. Then |lca(Q)| ≤ |Q|−1.

Proof. The proof is by induction on |Q|. The base case of |Q| = 2 is trivial. Suppose |Q| > 2.
Consider the subset P ⊆ Q of all elements of Q, none of whose ancestors are in Q. Also observe
that if P = Q, then lca(Q) are precisely the internal nodes of a binary tree whose leaves are Q, and
therefore |lca(Q)| ≤ |Q| − 1. If P is a singleton, then lca(Q) = lca(Q \P) + 1 ≤ |Q \P | − 1 + 1 =
|Q| − 1 (inequality from induction hypothesis).

So assume P ⊂ Q and |P | 6= 1. For p ∈ P , let Sp be the set of elements of Q appearing in
the tree rooted at p. For every x ∈ Sp and y ∈ Sp′ (p 6= p′), lca(x, y) = lca(p, p′). Furthermore,
the sets Sp non-trivially partition Q. Therefore, lca(Q) = lca(P) ∪

⋃
p∈P lca(Sp). Applying the

induction hypothesis, |lca(Q)| ≤ |P | − 1 +
∑

p∈P |Sp| − |P | = |Q| − 1.

Let `ε be the largest ` such that µ(L≥`) ≥ 2ε. By Claim 5.8.(i), the collection of functions
{g1, . . . , g`ε} are each ε-far from monotone. By Claim 5.8.(ii) and Claim 5.9, a subset Q ⊆ [n] can’t
distinguish more than |Q| of these functions from h. Theorem 5.5 gives an Ω(`ε) lower bound and
Theorem 5.6 follows from Claim 5.10.

Claim 5.10. `ε ≥ ρ∆∗(D).

Proof. Consider the distribution D ′ that transfers all the mass from L≥`ε+1 to the remaining
vertices proportionally. That is, if ν := µ(L≥`ε+1), then µD ′(i) = 0 for i ∈ L≥`ε+1, and µD ′(i) =
µD(i)/(1− ν) for the rest. Observe that ||D −D ′||TV = µD(L≥`ε+1) < 2ε. Also observe that since
T is a binary tree of height `ε, `ε ≥ ∆∗(D ′): the LHS is the max depth, the RHS is the (weighted)
average depth. Now, we use stability of D . Since D is (2ε, ρ)-stable, ∆∗(D ′) ≥ ρ∆∗(D).

5.4 The Boolean hypercube

For the boolean hypercube, the lower bound doesn’t require the stability assumption. Any product
distribution over {0, 1}d is determined by the d fractions (µ1, . . . , µd), where µr is the probability
of 0 on the r-th coordinate. Let θr := min(µr, 1− µr).

Theorem 5.11. Any monotonicity tester w.r.t. D for functions f : {0, 1}d 7→ N with distance

parameter ε ≤ 1/10 must make Ω
(∑d

r=1 min(µr, 1− µr)
)

queries.

We begin with the basic setup. A tester for non-trivial ε makes at least 1 query, so we can
assume that

∑d
r=1 θr > 1. For ease of exposition, assume θr = µr, for all 1 ≤ r ≤ d. (If not,

we need to divide into two cases depending on θr and argue analogously for each case.) Assume
wlog θ1 ≤ θ2 ≤ · · · ≤ θd. Partition [d] into contiguous segments I1, . . . , Ib, Ib+1 such that for each

21

1 ≤ a ≤ b,
∑

r∈Ia θr ∈ [1/2, 1). Observe that b = Θ (
∑

r θr). For 1 ≤ a ≤ b, define the indicator

functions χa : {0, 1}d 7→ {0, 1} as follows:

χa(x) =

{
1 if ∀i ∈ Ia, xi = 1
0 otherwise (∃i ∈ Ia, xi = 0)

By Theorem 5.5, we need to define the set of functions with appropriate properties. The monotone
function h(·) is defined as h(x) =

∑b
a=1 χa(x)2a. The functions g1, . . . , gb are defined as

ga(x) =

{
h(x)− 2r − 1 if χa(x) = 1
h(x) if χa(x) = 0

We prove all the desired properties.

Claim 5.12. For all a, distD(ga, MON) ≥ 1/10.

Proof. Let I denote Ia, and J = [n] \ I. Think of x = (xI , xJ). Fix v in {0, 1}|J |, and define
sets X1(v) := {x|χa(x) = 1, xJ = v} (a singleton) and X0(v) = {x|χa(x) = 0, xJ = v}. Note
that

⋃
v(X1(v) ∪ X0(v)) forms a partition of the cube. For c 6= a, χc(x) is the same for all

x ∈ (X0(v) ∪X1(v)). Hence, for any x ∈ X0(v) and y ∈ X1(v), x ≺ y and ga(x) > ga(y).
Any vertex cover in the violation graph must contain either X1(v) or X0(v), for each v. Let

DI be the conditional distribution on the I-coordinates. In the following, we use the inequalities∑
i∈I θi ∈ [1/2, 1) and 1− t ∈ [e−2t, et] for t ≤ 1/2.

µDI (X1(v)) =
∏
i∈I

(1− θi) ≥ exp(−2
∑
i∈I

θi) ≥ e−2 > 1/10

µDI (X0(v)) = 1−
∏
i∈I

(1− θi) ≥ 1− exp(−
∑
i∈I

θi) ≥ 1− e−1/2 > 1/10.

For each v, the conditional mass of the vertex cover is at least 1/10, and therefore, the µD mass of
the vertex cover is at least 1/10.

A pair x, y in [n]d captures index a if a is the largest index such that χa(x) 6= χa(y). Furthermore,
a set Q captures a if it contains a pair capturing a.

Claim 5.13. If Q distinguishes ga from h, then Q must capture a.

Proof. Consider x, y ∈ Q where h(x) < h(y) but ga(x) > ga(y). It must be that χa(x) = 0 and
χa(y) = 1. Suppose this pair does not capture a. There must exist index c > a (let it be the
largest) such that χc(x) 6= χc(y). Because h(x) < h(y), χc(x) = 0 and χc(y) = 1.

By definition, ga(y)−ga(x) = (h(y)−2a−1)−h(x). We have h(y)−h(x) =
∑c

t=1(χt(y)−χt(x))2t.
Since χa(x) = χc(x) = 0 and χa(y) = χc(y) = 1, h(y)− h(x) ≥ 2c + 2a −

∑
t<c:t6=a 2t. Combining,

ga(y)− ga(x) ≥ 2c + 2a −
∑

t<c:t6=a
2t − 2a − 1 = 2a > 0.

Claim 5.14. [Lifted from [CS13b].] A set Q captures at most |Q| − 1 coordinates.

22

Proof. We prove this by induction on |Q|. When |Q| = 2, this is trivially true. Otherwise, pick
the largest coordinate j captured by Q and let Q0 = {x : xj = 0} and Q1 = {x : xj = 1}. By
induction, Q0 captures at most |Q0|−1 coordinates, and Q1 captures at most |Q1|−1 coordinates.
Pairs (x, y) ∈ Q0 ×Q1 only capture coordinate j. The total number of captured coordinates is at
most |Q0| − 1 + |Q1| − 1 + 1 = |Q| − 1.

We can now invoke Theorem 5.5 to get an Ω(b) = Ω(
∑

r θr) lower bound thereby proving
Theorem 5.11.

The hypercube lower bound can be generalized to give a weak lower bound for hypergrids,
which will be useful for proving the stronger bound. Fix a dimension r. For any 1 ≤ j ≤ n, define
θjr := min(

∑
k≤j µDr(k), 1−

∑
k≤j µDr(k)). Define θr := max1≤j≤nθ

j
r. Note that θr generalizes the

above definition for the hypercube. The following theorem follows by a reduction to the hypercube
lower bound.

Theorem 5.15. Any monotonicity tester on the hypergrid with distance parameter ε ≤ 1/10, makes

Ω
(∑d

r=1 θr

)
queries.

Proof. For 1 ≤ r ≤ d, let 1 ≤ jr ≤ n be the j such that θr = θjr. Project the hypergrid onto
a Boolean hypercube using the following mapping ψ : [n]d → {0, 1}d: for x ∈ [n]d, ψ(x)r = 0
if xr ≤ jr, and 1 otherwise. The corresponding product distribution D ′ on the hypercube puts
µD ′r(0) =

∑
k≤jr µDr(k), for all r. Note that min(µr, 1−µr) = θr. Given any function f on {0, 1}d,

extend it to g over the hypergrid in the natural way: for x ∈ [n]d, g(x) = f(ψ(x)). Note that
distD ′(f, MON) = distD(g, MON). (This is akin to Theorem 3.8.) Any tester for g over [n]d induces
a tester for f on {0, 1}d with as good a query complexity: whenever the hypergrid tester queries
x ∈ [n]d, the hypercube tester queries ψ(x). Therefore, the lower bound Theorem 5.11 for the
hypercube implies Theorem 5.15.

5.5 The Hypergrid.

Our main lower bound result is the following, which implies Theorem 1.6 via Theorem 5.4.

Theorem 5.16. For any parameter ε < 1/10, and for any (120ε, ρ)-stable, product distribution
D , any (even adaptive, two-sided) montonicity tester w.r.t. D for functions f : [n]d 7→ N with
proximity parameter ε requires Ω(ρ∆∗(D)) queries.

5.5.1 The intuition

Since we already have a proof for d = 1 in §5.3, an obvious approach to prove Theorem 1.6 is via
some form of induction on the dimension. Any of the gj-functions on [n] in §5.3 can be extended
the obvious way to a function on [n]d. Given (say) gj : [n] 7→ N, we can define f : [n]d 7→ N as
f(x) = gj(x1). Thus, we embed the hard functions for D1 along dimension 1. One can envisage
a way do the same for dimension 2, and so on and so forth, thereby leading to

∑
i ∆∗(Di) hard

functions in all.
There is a caveat here. The construction of §5.3 for (say) D1 requires the stability of D1.

Otherwise, we don’t necessarily get Ω(∆∗(D1)) functions with distance at least ε. For instance,
if the root of the median BST has more than (1 − ε) fraction of the weight, we get at most
one hard function of distance at least ε. So, the above approach requires stability of all the

23

marginals of D . Unfortunately, there exist stable product distributions with all marginals unstable.
Consider D =

∏
r Dr, where each Dr = (1

(n−1)d , . . . ,
1

(n−1)d , 1 −
1
d). Note that ∆∗(D) ≈ log n.

Each Dr is individually unstable (for ε > 1/d), since there is a D ′i with all the mass on the nth
coordinate, such that ‖Di − D ′i‖TV = 1/d and ∆∗(D ′i) = 0. On the other hand, it is not hard to
see that D is (1/100, 1/100)-stable. A new idea is required to construct the lower bound. To see
this, suppose there is a product distribution D ′ such that ∆∗(D ′) < ∆∗(D)/100 = (log n)/100.
Markov’s inequality implies that for Ω(d) dimensions, ‖D ′r −Dr‖TV = Ω(1/d). A calculation shows
that ‖D − D ′‖TV must be at least 1/100. In sum, for any constants ε, ρ, there exist (ε, ρ)-stable
distributions D such that each marginal Dr is only (ε/d, ρ)-stable. This is a major roadblock for a
lower bound construction, and therefore a new idea is required.

We design an aggregation technique that does the following. Start with 1D functions g1
j1

and g2
j2

that are hard functions from §5.3 for D1 and D2 respectively. Suppose the corresponding distances
to monotonicity are ε(1) and ε(2). We construct a function f : [n]d 7→ N that is ε(1) + ε(2)-far, so we
can effectively add their distances. If we can aggregate Ω(d) 1D functions, each with distance ε/d,
then we get a desired hard function.

As can be expected, this construction is quite delicate, because we embed violations in many
dimensions simultaneouly. Furthermore, we need to argue that this aggregation can produce enough
“independent” hard functions, so we get a large enough lower bound (from Theorem 5.5). And that
is where the hard work lies.

5.5.2 Setup and Construction

Fix ε and let ε′ = 120ε. Fix the (ε′, ρ)-stable distribution D . Since D is (ε′, ρ)-stable, for any D ′

with ‖D ′−D‖TV ≤ ε′, we have ∆∗(D ′) ≥ ρ∆∗(D). We denote the median BST for Dr as Tr, ∆r as
the expected depth w.r.t. Dr, and ∆(D) =

∑d
r=1 ∆r. The following shows that the median BST is

near optimal.

Lemma 5.17. For any product distribution D =
∏
r Dr, ∆(D) ≤ 5∆∗(D).

Proof. Fix a coordinate r. The depth of a vertex u in Tr is at most log2(1/µDr(u)), so we get
∆r ≤ H(Dr), the Shannon entropy of Dr. It is also known (cf. Thm 2 in [Meh75]) that H(Dr) ≤
log2 3(∆∗(Dr) + 1). To see this, notice that any BST can be converted into a prefix-free ternary
code of expected length (∆∗(Dr) + 1), say, over the alphabet ‘left’,‘right’, and ‘stop’. Therefore, if
∆∗(Dr) ≥ 1/2, we have ∆r ≤ 5∆∗(Dr).

If ∆∗(Dr) < 1/2, then since ∆∗(Dr) ≥ 1 − Pr[root], we get µ∗ := µDr(u
∗) > 1/2 where u∗ is

the root of the optimal BST T ∗. But this implies u∗ is also the root of Tr by construction of the
median BST. Now we can prove via induction. If p and q are the total masses of the nodes in the
left and right sub-tree of T ∗ (and therefore also Tr), and ∆∗1 (resp. ∆1) and ∆∗2 (resp. ∆2)be the
expected depths of these subtrees in T ∗ (resp. Tr), then we get, ∆∗(Dr) = p∆∗1 + q∆∗2 + (1− µ∗) ≤
5p∆1 + 5q∆2 + (1− µ∗) ≤ 5∆r.

Theorem 5.5 requires the definition of a monotone function and a collection of ε-far from monotone
functions with additional properties. The monotone function is val(x) :=

∑d
r=1 2(2n+ 1)rxr.

The non-monotone functions (which we refer to as “hard” functions) are constructed via ag-
gregation. From §5.3, for each dimension r and each level j ≥ 1 in tree Tr, we have a 1D “hard”
function grj : [n] 7→ N. It is useful to abstract out some of the properties of grj that were proved in
§5.3.

24

Let Lrj be the nodes in Tr at level j. Each level corresponds to a collection of intervals of [n].
We use Lr≥j :=

⋃
j′≥j L

r
j′ and Lr<j =

⋃
j′<j L

r
j′ . We use the shorthand µr≥j to denote µDr(L

r
≥j). The

following lemma is a restatement of Claim 5.7 and Claim 5.8.

Lemma 5.18. Consider grj : [n] 7→ N, for j ≥ 1 All violations to monotonicity are contained in
intervals corresponding to Lrj−1, and the distance to monotonicity is at least µr≥j/2. Furthermore,
any violation (x, y) has lca(x, y) in Lrj−1.

The aggregation process takes as input a map ψ : [d] 7→ {⊥} ∪ {2, 3, 4, . . .}. Note that if
ψ(r) 6= ⊥, then ψ(r) > 1. Informally, ψ(r), when not equating to ⊥, tells us the level of Tr whose
hard function is to be included in the aggregation. We define Ψ−1 := {r|ψ(r) 6= ⊥}, the subset of
relevant dimensions. Given the map ψ, we aggregate the collection of 1D functions {grψ(r)|r ∈ Ψ−1}
into a single hard function for [n]d as follows.

gψ(x) :=
∑
r∈Ψ−1

(2n+ 1)rgrψ(r)(xr) +
∑
r/∈Ψ−1

2(2n+ 1)rxr (15)

Observe that the latter sum is identical to the corresponding portion in val(x). The first
summand takes the hard function corresponding to the ψ(r)th level of Tr for r ∈ Ψ−1 and aggregates
them via multiplying them with a suitable power of (2n+ 1).

Definition 5.19. A map ψ is useful if the following are true.
•
∑

r∈Ψ−1 µr≥ψ(r) ∈ (ε′, 1)

• For all r ∈ Ψ−1, µr≥ψ(r) ≥
µr≥ψ(r)−1

2 .

In plain English, the first point states that total distance of the hard functions picked should be
at least ε′. The second point is a technicality which is required to argue about the distance of the
aggregated function. It states that in each relevant Tr, the total mass on the nodes lying in the
ψ(r)th layer and below shouldn’t be much smaller than the total mass on the nodes lying on the
(ψ(r)−1)th layer and below.

Lemma 5.20. If ψ is useful, distD(gψ, MON) ≥ ε.

Proof. It is convenient to consider restrictions of gψ where all coordinates in [d] \ Ψ−1 are fixed.
This gives rise to |Ψ−1|-dimensional functions. We argue that each such restriction is ε-far from
monotone, which proves the lemma. Abusing notation, we use gψ to refer to an arbitrary such
restriction.

Fix some r ∈ Ψ−1. Define the subset Sr := {x ∈ [n]d : xs ∈ Ls<ψ(s)−1, ∀s 6= r} to be the set of
points x with the sth coordinate appearing in the first (ψ(s)−2) layers of the tree Ts, for all s 6= r.
We stress that this is well-defined because ψ(s) ≥ 2 by definition of ψ.

Note that each Sr is a collection of r-lines and the restriction of gψ on each line exactly a
multiple of grψ(r). By Lemma 5.18, all violations to monotonicity in such lines lie in the intervals
corresponding to Lr≥ψ(r)−1, and the mass of the vertex cover of the violation graph (restricted to
the line) is at least µr≥ψ(r)/2. Thus the total contribution to distance of gψ from Sr is at least
µr≥ψ(r)

2 · µD−r(
∏
s 6=r L

s
<ψ(s)−1).

25

What is crucial to note is that the regions of violations in Sr is disjoint from the regions of
violation in Sr′ for r′ 6= r. Therefore, the contributions to the distance of gψ add up, and this gives

distD(gψ, MON) ≥ 1

2

∑
r∈Ψ−1

µr≥ψ(r) · µD−r

(∏
s 6=r

Ls<ψ(s)−1

)
=

1

2

∑
r∈Ψ−1

µr≥ψ(r)

∏
s 6=r

(1− µs≥ψ(s)−1)

≥ 1

2

∑
r∈Ψ−1

µr≥ψ(r)

∏
s 6=r

(1− 2µs≥ψ(s)) (point 2 in def. of useful map)

We can apply the bound,
∑

r∈Ψ−1 µr≥ψ(r) ∈ (ε′, 1), since ψ is useful. We lower bound the prod-
uct by exp(−4

∑
s 6=r µ

s
≥ψ(s)), which by the above bound, is at least e−4. So, distD(gψ, MON) ≥∑

r∈Ψ−1 µr≥ψ(r)/120 ≥ ε′/120 = ε.

Definition 5.21. Two maps ψ1, ψ2 are disjoint if: {(r, ψ1(r))|r ∈ Ψ−1
1 } and {(r, ψ2(r))|r ∈ Ψ−1

2 }
are disjoint.

That is, for every tree Tr, ψ1 and ψ2 point to different layers of the tree (or they point to ⊥).

Lemma 5.22. Consider a set of maps ψ1, ψ2, . . . that are all pairwise disjoint. A set of Q queries
can distinguish at most |Q| − 1 of these functions from val.

Proof. Say a pair (x, y) of queries captures the (unique) tuple (r, j) if the largest coordinate in
which x and y differ is r, and furthermore lca(xr, yr) in Tr lies in level (j − 1). A set Q captures
(r, j) if some pair in Q captures (r, j). We first show that if (x, y) distinguishes gψ from val for
some map ψ, then (x, y) captures a pair (r, ψ(r)) for some r ∈ Ψ−1.

Assume wlog val(x) < val(y), and so gψ(x) > gψ(y). Let a be the largest coordinate at which x
and y differ; since val(x) < val(y), we get xa < ya. Suppose gaψ(a)(xa) and gaψ(a)(ya) is not a violation.
By the construction, this implies that gaψ(a)(ya)− gaψ(a)(xa) ≥ 1. Furthermore, grψ(r) is always in the
range [1, 2n] for any r.

gψ(y)− gψ(x) = (2n+ 1)a(gaψ(a)(ya)− gaψ(a)(xa)) +
∑

r<a,r∈Ψ−1

(2n+ 1)r(grψ(r)(yr)− grψ(r)(xr))

≥ (2n+ 1)a − (2n)
∑
r<a

(2n+ 1)r

= (2n+ 1)a − (2n) · (2n+ 1)a − 1

2n
> 0,

So (gaψ(a)(xa), g
a
ψ(a)(ya)) is a violation. Immediately, we deduce that ψ(a) 6= ⊥, so a ∈ Ψ−1. By

Claim 5.8, lca(xa, ya) lies in level ψ(a)− 1 of Ta, and hence, (x, y) captures (a, ψ(a)).
As we prove in Claim 5.23, Q queries can capture at most |Q| − 1 such tuples. The proof is

completed by noting the maps ψ1, ψ2, . . . are pairwise disjoint.

Claim 5.23. A nonempty set Q can only capture at most |Q| − 1 tuples (r, j).

26

Proof. Proof is by induction on |Q|. If |Q| = 2, then the claim trivially holds. Assume |Q| > 2. Let
s be the largest dimension such that there are at least two points in Q differing in that dimension.
For c = 1 to n, let Qc := {x ∈ Q : xs = c}. By definition, Qc ⊂ Q. Reorder the dimensions such
that Qc is non-empty for c = 1 . . . q ≤ n. By induction, each Qc captures at most |Qc| − 1 pairs for
1 ≤ c ≤ q. Consider (x, y) with x ∈ Qc and y ∈ Qc′ for c 6= c′. The largest coordinate where they
differ is exactly s. All tuples captured by such pairs is of the form (s, `), where ` is the lca in Ts
of some c, c′ ∈ {1 . . . , q}. By Claim 5.9, the total number of such points is at most q− 1. Thus, the
total number of tuples captured is at most

∑q
a=1 |Qa| − q + (q − 1) = |Q| − 1.

5.5.3 Constructing the maps

Let us go back to the framework of Theorem 5.5. From Lemma 5.20 and Lemma 5.22, it suffices
to construct a sequence ψ1, ψ2, . . . of pairwise disjoint, useful maps. The number of such maps
will exactly be our lower bound. The exact construction is a little tricky, since the conditions of
usefulness are somewhat cumbersone.

We use the following definition.
• Allowed levels: A level j is allowed w.r.t. dimension r if j > 1 and µr≥j ≥ µr≥j−1/2. This is

in lines with point 2 of the usefulness definition.
• Level sets Ar: Ar is the set of allowed levels of tree Tr.

It is convenient to define an abstract procedure that constructs these maps. We have a stack Sr
for each r ∈ [d], whose elements are allowed levels. The stack Sr is initialized with Ar in increasing
order, that is the head (top entry) of the stack is the least (that is, closest to root) level in Ar.
In each round, we will construct a map ψ. Denote the head of Sr by hr. Note that hr > 1 by
definition of allowed levels. Maintain a running count initialized to 0. We go through the stacks
in an arbitrary order popping off a single element from each stack. In a round, we never touch
the same stack more than once. When we pop Sr, we set ψ(r) := hr and add µr≥hr to the running
count. We stop as soon as the running count enters the interval [ε′, 1]. For all r for which ψ(r)
hasn’t been defined, we set ψ(r) = ⊥. This completes the description of a single map. Observe, by
definition of allowed levels and the stopping condition, ψ is useful.

When
∑d

r=1 µ
r
≥hr < ε′, we cannot complete the construction. So the procedure terminates,

discarding the final map. Let the set of maps constructed be Ψ. By construction, the maps are
useful. Furthermore, they are pairwise disjoint, because once a layer is popped out, it never appears
again. We now basically show that |Ψ| is large, using the (ε′, ρ)-stability of D . This proves that
the number of hard functions is large. We have to first deal with an annoying corner case of D .

Theorem 5.24. If
∑

r µ
r
≥1 > ρ∆(D)/12, then any monotonicity tester requires Ω(ρ∆∗(D)) queries.

Proof. We simply apply the hypercube lower bound. Recall the definition of θr described before
Theorem 5.15. Note that µr≥1 is simply the total Dr-mass of everything in Tr other than the root. By
the median property of the Tr, θr is ensured to be at least half of this mass, and hence θr ≥ µr≥1/2.

Combining with Theorem 5.15, we get a lower bound of Ω(
∑

r µ
r
≥1), which by assumption, is

Ω(ρ∆(D)). An application of Lemma 5.17 completes the proof.

Now we come to the main bound of |Ψ|. We need some setup for the proof. The following
simple observation is crucial. This follows since E[Z] =

∑
k∈N Pr[Z ≥ k], for any non-negative,

integer valued random variable.

Claim 5.25. For all r,
∑

j≥1 µ
r
≥j = Ex∼Dr [depthTr(x)] = ∆r.

27

The following lemma completes the entire lower bound.

Lemma 5.26. Suppose
∑

r µ
r
≥1 ≤ ρ∆(D)/12. Then |Ψ| = Ω(ρ∆(D)).

Proof. Let hr denote the head of Sr when the procedure terminates. So,
∑d

r=1 µ
r
≥hr < ε′. For any

ψ ∈ Ψ,
∑

r∈Ψ−1 µr≥ψ(r) ≤ 1. Hence, |Ψ| is at least the total sum over popped elements µr≥j. Writing
this out and expanding out a summation,

|Ψ| ≥
∑
r∈[d]

∑
j<hr,j∈Ar

µr≥j =
∑
r∈[d]

[hr−1∑
j=1

µr≥j − µr≥1 −
∑

1<j<hr:j /∈Ar

µr≥j

]
Recall that hr > 1 and so the summations are well-defined. For any level 1 < j /∈ Ar, we have
µr≥j < µr≥j−1/2. Therefore,

∑
1<j<hr:j /∈Ar µ

r
≥j <

∑hr−2
j=1 µr≥j/2. Plugging this bound in and applying

the lemma assumption,

|Ψ| ≥
∑
r∈[d]

hr−1∑
j=1

µr≥j/2−
∑
r∈[d]

µr≥1 ≥
∑
r∈[d]

hr−1∑
j=1

µr≥j/2− ρ∆(D)/12 (16)

We need to lower bound the double summation above. Observe that the second summation
is
∑

j≥1 µ
r
≥j − (µr≥hr + µr≥hr+1 + · · ·). The first term, by Claim 5.25 is precisely ∆(D), and by

definition of hr, each of the terms in the parenthesis is at most ε′. However, the number of terms in
the parenthesis can be quite large, and this doesn’t seem to get any lower bound on the summation.
Here’s where stability of D saves the day.

Construct a distribution D ′r be the distribution on [n] as follows. Move the entire probability
mass away from Lr≥hr and distribute it on the ancestral nodes in level (hr − 1) of Tr. More
precisely, µD ′r(u) = 0 if u ∈ Lr≥hr , µD ′r(u) = µDr(u) if u ∈ Lr<hr−1, and µD ′r(u) =

∑
v µDr(v) for

u ∈ Lrhr−1 where the summation is over children v of u in Tr. Letting D ′ :=
∏
r D ′i , we see that

||D −D ′||TV ≤
∑d

r=1 µ
r
≥hr < ε′. Since D is (ε′, ρ)-stable, we get ∆∗(D ′) ≥ ρ∆∗(D).

Now we can apply Claim 5.25 on D ′r and Tr to get Ex∼D ′r [depthTr(x)] =
∑

j≥1 µD ′r(L
r
≥j) =∑hr−1

j=1 µr≥j. This expected depth is by definition at least ∆∗(D ′r). Therefore, we get a lower bound

of
∑d

r=1 ∆∗(D ′r)/2 = ∆∗(D ′)/2 on the double summation in (16). Using the stability of D ′ this is
at least ρ∆∗(D)/2. Substituting we get

|Ψ| ≥ ρ∆∗(D)/2− ρ∆(D)/12

≥ ρ∆∗(D)/2− 5ρ∆∗(D)/12 = Ω(ρ∆∗(D)) (by Lemma 5.17)

We put it all together to prove the main lower bound, Theorem 5.16. If
∑

r µ
r
≥1 > ρ∆(D)/12,

Theorem 5.24 proves Theorem 5.16. Otherwise, by Lemma 5.26 we have constructed Ω(ρ∆∗(D))
pairwise disjoint, useful maps. Each map yields a hard function of distance at least ε (by Lemma 5.20),
and these functions satisfy the conditions of Theorem 5.5, which implies Theorem 5.16.

References

[AC06] N. Ailon and B. Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Inform. and Comput., 204(11):1704–1717, 2006. 2, 3, 4,
5, 6

28

[ACCL07] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a mono-
tone function. Random Structures Algorithms, 31(3):371–383, 2007. 2, 5, 16

[AFNS09] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of
the testable graph properties : it’s all about regularity. SIAM J. Comput., 39(1):143–
167, 2009. 1

[AJMR12] P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova. Testing Lipschitz functions
on hypergrid domains. In Proceedings, International Workshop on Randomization and
Computation (RANDOM), 2012. 2, 4

[AS08] N. Alon and A. Shapira. A charaterization of the (natural) graph properties testable
with one-sided error. SIAM J. Comput., 37(6):1703–1727, 2008. 1

[BBBY12] M-F. Balcan, E. Blais, A. Blum, and L. Yang. Active property testing. In Proceedings,
IEEE Symposium on Foundations of Computer Science (FOCS), 2012. 6

[BBM12] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication
complexity. Comp. Complexity, 21(2):311–358, 2012. 2, 3

[BCGSM12] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012. 2

[BGJ+09] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. Woodruff.
Transitive-closure spanners. In Proceedings, ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 531–540, 2009. 2, 5, 16

[BRW05] T. Batu, R. Rubinfeld, and P. White. Fast approximate PCP s for multidimensional
bin-packing problems. Inform. and Comput., 196(1):42–56, 2005. 2, 5, 16

[BRY14a] P. Berman, S. Raskhodnikova, and G. Yaroslavtsev. Testing with respect to lp dis-
tances. In Proceedings, ACM Symp. on Theory of Computing (STOC), 2014. 6

[BRY14b] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing properties
of functions on hypergrid domains. In Proceedings, IEEE Conference on Computa-
tional Complexity (CCC), March 2014. 2, 4, 6

[BSS10] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse
graphs is testable. Adv. in Math., 223(6):2200–2218, 2010. 1

[CS13a] D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings, ACM Symp. on Theory of
Computing (STOC), 2013. 2, 3, 5, 6, 7, 12

[CS13b] D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity test-
ing over hypergrids. In Proceedings, International Workshop on Randomization and
Computation (RANDOM), 2013. 2, 3, 6, 19, 22

[DGL+99] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved testing algorithms for monotonicity. In Proceedings, International Workshop
on Randomization and Computation (RANDOM), 1999. 2, 3, 4

[DJRT13] K. Dixit, M. Jha, S. Raskhodnikova, and A.G. Thakurta. Testing the Lipschitz prop-
erty over product distributions with applications to data privacy. In Proceedings,
Theory of Cryptography Conference (TCC), 2013. 1, 2

29

[DR11] E. Dolev and D. Ron. Distribution-free testing for monomials with a sublinear number
of queries. Theory of Computing, 7(1):155–176, 2011. 6

[EKK+00] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
J. Comput. System Sci., 60(3):717–751, 2000. 2, 5, 16

[Fis04] E. Fischer. On the strength of comparisons in property testing. Inform. and Comput.,
189(1):107–116, 2004. 2, 6, 19

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorod-
nitsky. Monotonicity testing over general poset domains. In Proceedings, ACM Symp.
on Theory of Computing (STOC), 2002. 2, 3, 8

[GGL+00] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing
monotonicity. Combinatorica, 20:301–337, 2000. 2, 3, 4

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. 1, 6

[GR13] O. Goldreich and D. Ron. On sample-based testers. Elect. Coll. on Comp. Complexity
(ECCC), 20:109, 2013. 6

[GS09] D. Glasner and R. A. Servedio. Distribution-free testing lower bound for basic boolean
functions. Theory of Computing, 5(1):191–216, 2009. 6

[Hal06] S. Halevy. Topics in Property Testing. PhD thesis, Tel Aviv University, 2006. 6

[HK05] S. Halevy and E. Kushilevitz. A lower bound for distribution-free monotonicity test-
ing. In Proceedings, International Workshop on Randomization and Computation
(RANDOM), pages 330–341, 2005. 6

[HK07] S. Halevy and E. Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007. 2, 6

[HK08a] S. Halevy and E. Kushilevitz. Distribution-free connectivity testing for sparse graphs.
Algorithmica, 51(1):24–48, 2008. 6

[HK08b] S. Halevy and E. Kushilevitz. Testing monotonicity over graph products. Random
Structures Algorithms, 33(1):44–67, 2008. 2, 4, 5, 6

[JR11] M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with
applications to data privacy. In Proceedings, IEEE Symposium on Foundations of
Computer Science (FOCS), 2011. 2, 4, 6, 16

[Knu73] D. E. Knuth. The Art of Computer Programming Vol III: Sorting and Searching,
volume 3. Addison-Wesley, 1973. 3

[KS08a] T. Kaufman and M. Sudan. Algebraic property testing: the role of invariance. In
Proceedings, ACM Symp. on Theory of Computing (STOC), 2008. 1

[KS08b] S. Kopparty and S. Saraf. Tolerant linearity testing and locally testable codes. In Pro-
ceedings, International Workshop on Randomization and Computation (RANDOM),
2008. 6

[LR01] E. Lehman and D. Ron. On disjoint chains of subsets. J. Combin. Theory Ser. A,
94(2):399–404, 2001. 2, 3

30

[Meh75] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975.
3, 20, 24

[PRR06] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approx-
imation. J. Comput. System Sci., 6(72):1012–1042, 2006. 2, 5

[ver14] Random constraints in systemverilog. http://www.asic-world.com/
systemverilog/random_constraint7.html, 2014. 1

[VHD02] Systemverilog 3.1: Random constraints - proposal. http://www.vhdl.org/sv-ec/
SV_3.1_Web/Random-Constraints_Proposal.pdf, 2002. 1

[Yao82] F. F. Yao. Speed-up in dynamic programming. J. Alg. Discrete Math., 3:532–540,
1982. 3

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.asic-world.com/systemverilog/random_constraint7.html
http://www.asic-world.com/systemverilog/random_constraint7.html
http://www.vhdl.org/sv-ec/SV_3.1_Web/Random-Constraints_Proposal.pdf
http://www.vhdl.org/sv-ec/SV_3.1_Web/Random-Constraints_Proposal.pdf

