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Abstract

Consider a K-uniform hypergraph H = (V,E). A coloring c : V → {1, 2, . . . , k} with k
colors is rainbow if every hyperedge e contains at least one vertex from each color, and is called
perfectly balanced when each color appears the same number of times. A simple polynomial-
time algorithm finds a 2-coloring if H admits a perfectly balanced rainbow k-coloring. For a
hypergraph that admits an almost balanced rainbow coloring, we prove that it is NP-hard to find
an independent set of size ε, for any ε > 0. Consequently, we cannot weakly color (avoiding
monochromatic hyperedges) it with O(1) colors. With k = 2, it implies strong hardness for
discrepancy minimization of systems of bounded set-size.

Our techniques extend recent developments in inapproximability based on reverse hyper-
contractivity and invariance principles for correlated spaces. We give a recipe for converting
a promising test distribution and a suitable choice of a outer PCP to hardness of finding an
independent set in the presence of highly-structured colorings. We use this recipe to prove ad-
ditional results almost in a black-box manner, including: (1) the first analytic proof of (K−1−ε)-
hardness of K-Hypergraph Vertex Cover with more structure in completeness, and (2) hard-
ness of (2Q + 1)-SAT when the input clause is promised to have an assignment where every
clause has at least Q true literals.

1 Introduction

The problem of coloring a hypergraph with few colors is a fundamental optimization problem.
A K-uniform hypergraph H = (V,E) is said to be k-colorable if there exists a coloring c : V →
{1, . . . , k} of its vertices with k colors so that no hyperedge is monochromatic.

The problem of determining if a K-uniform hypergraph is 2-colorable is a classic NP-hard
problem when K > 3. By now, strong inapproximability results are known which show that
coloring 2-colorable hypergraphs with any fixed constant number of colors is NP-hard – this was
first shown for 4-uniform hypergraphs [15, 17] and subsequently also for the 3-uniform case [12].
The best known algorithmic results require nΩ(1) colors, with the exponent tending to 1 as the
uniformity k of the hypergraph increases [8, 1]. Recently, even coloring 2-colorable hypergraphs
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with super-polylogarithmically many colors was shown to be hard (for the 8-uniform case) [9, 14].
This situation contrasts with graphs (K = 2) where it is not known to be hard to color 3-colorable
graphs with just 5 colors unless we assume much stronger conjectures [11].

In this work, we are interested in the question of whether coloring a hypergraph remains hard
even if we are promised that the hypergraph admits a coloring with natural stronger properties.
One such notion, called strong k-colorability, insists that for each hyperedge, all its vertices get
different colors. Note that in the case of graphs (K = 2), the notions of colorability and strong
colorability coincide. Strong coloring of a K-uniform hypergraph H = (V,E) is the same as color-
ing the graph G = (V,E′) with the same vertex set and E′ = {(u, v) : ∃e ∈ E such that {u, v} ⊆ e}
(i.e., we make each hyperedge into a K-clique). The minimum possible number of colors needed
to strongly color aK-uniform hypergraph is of courseK. It is not hard to see that given a strongly
K-colorableK-uniform hypergraphH , one can efficiently find a 2-coloring of its vertices such that
no hyperedge is monochromatic.

There are two natural notions which are weaker than strong colorability but yet impose richer
requirements on the coloring than just avoiding monochromatic edges:

• Rainbow k-coloring: Every hyperedge contains a vertex of each of the k colors.

• Balanced/Low-discrepancy 2-coloring: In every hyperedge, there are a roughly equal num-
ber of vertices of each of the two colors.

Note that rainbow 2-coloring is the same as normal 2-coloring, and the existence of a rainbow
k-coloring for k > 2 implies that the hypergraph is 2-colorable. We can combine the above two
notions and require that every hyperedge has to have roughly the same number of vertices of each
color.

These two notions have been studied independently. For rainbow k-coloring, it is known as
polychromatic coloring where the basic question is: given a certain family of hypergraphs (often
interpreted as set systems representing geometric objects), what is the smallest K that guarantees
rainbow k-coloring? We refer to the recent work of Bollobás et al. [5] and references therein. Find-
ing a good balanced 2-coloring is known as minimizing discrepancy, where the ideas of semidef-
inite programming [3] and random walks [21] have been successfully applied. There are tight
hardness results for general hypergraphs ([7], no constraint on the size of edges) and r-uniform
hypergraphs [2], where a hypergraph is not 2-colorable in the soundness case. Our goal is to show
that a hypergraph is not O(1)-colorable in the soundness case.

Our main result in this work is to prove a strong hardness result that rules out coloring a
hypergraph with O(1) colors even when it is promised to have a rainbow k-coloring with good
balance between colors (for any k > 3) — see Theorem 1.1 below for a formal statement. It is
worth emphasizing that prior to this work, even hardness of 2-coloring a rainbow 3-colorable
hypergraph was not known. Indeed such a result seemed out of reach of the sort of Fourier-based
PCP techniques used for hardness of hypergraph coloring in [15] and follow-ups. In this work we
leverage invariance principle based techniques to analyze test distributions that ensure balanced
rainbow colorability (further details about our methods and those in recent technically related
works appears in Section 2). One of our contributions is to distill a general recipe for combining
test distributions with suitable outer PCPs (various forms of smooth Label Cover) to establish such
inapproximability results. This makes our approach quite flexible and can also be readily applied
to several other problems as described in Section 1.1.

2



1.1 Our Results and Corollaries

The following is our main theorem. Note that in any result in this section that guarantees a color-
ing with some desired properties in the completeness case, each color contains the same fraction
of vertices.

Theorem 1.1. For any ε > 0 and Q, k > 2, given a Qk-uniform hypergraph H = (V,E), it is NP-hard to
distinguish the following cases.

• Completeness: There is a k-coloring c : V → [k] such that for every hyperedge e ∈ E and color
i ∈ [k], e has at least Q− 1 vertices of color i.

• Soundness: Every I ⊆ V of measure ε induces at least εOQ,k(1) fraction of hyperedges. In particular,
there is no independent set of measure ε, and every b1

ε c-coloring of H induces a monochromatic
hyperedge.

Fixing Q = 2 gives a hardness of rainbow coloring with K optimized to be 2k.

Corollary 1.2. For all integers c, k > 2, given a 2k-uniform hypergraph H , it is NP-hard to distinguish
whether H is rainbow k-colorable or is not even c-colorable.

On the other hand, fixing k = 2 gives a strong hardness result of discrepancy minimization
(with 2 colors). A coloring is said to have discrepancy ∆ when in each hyperedge, the difference
between the maximum and the minimum number of occurrences of a single color is at most ∆.

Corollary 1.3. For any c,Q > 2, given a 2Q-uniform hypergraphH = (V,E), it is NP-hard to distinguish
whether H is 2-colorable with discrepancy 2 or is not even c-colorable.

The above result strengthens the result of Austrin et al [2] that shows hardness of 2-coloring
in the soundness case. However, their result also holds in (2Q + 1)-uniform hypergraphs with
discrepancy 1, whereas our method has to rely on the unproven d-to-1 conjecture in this case.1

We also study the effect of a relaxed soundness condition when we seek a rainbow k-coloring
(albeit without any balance requirement). In this case, surprisingly we can ensure a very strong
balance condition in the completeness case — in every hyperedge at most two colors are off by
one occurrence from the perfectly balanced coloring.

Theorem 1.4. For anyQ, k > 2, given aQk-uniform hypergraphH = (V,E), it is NP-hard to distinguish
the following cases.

• Completeness: There is a k-coloring c : V → [k] such that for every hyperedge e ∈ E either (1) each
color appears Q times, or (2) k − 2 colors appear Q times and the other two colors appear Q− 1 and
Q+ 1 respectively.

• Soundness: There is no independent set of size 1− 1
k . In particular, H is not rainbow k-colorable.

Our techniques are general — different combinations of test distributions and outer PCPs,
plugged into our general recipe, yields the following additional results.

1As this work focuses on NP-hardness without any additional assumptions, we exclude this proof from the paper.
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Hypergraph Vertex Cover. Rainbow k-coloring has a tight connection to Hypergraph Vertex
Cover, because it partitions the set of vertices into k disjoint vertex covers. In particular, Corol-
lary 1.2 implies that K-Hypergraph Vertex Cover is NP-hard to approximate within a factor of
(K2 − ε), but the better inapproximability factor of (K−1− ε) is already established by the classical
result of Dinur et al [10]. We give the first analytic proof of the same theorem, with two slight
improvements: the size of the minimum vertex cover in the completeness case is improved to

1
K−1 from ( 1

K−1 − ε), and in the soundness case every set of measure ε induces εOK(1) fraction of
hyperedges.

Theorem 1.5. For any ε > 0 and K > 3, given a K-uniform hypergraph H = (V,E), it is NP-hard to
distinguish the following cases.

• Completeness: There is a vertex cover of measure 1
K−1 .

• Soundness: Every I ⊆ V of measure ε induces at least εOK(1) fraction of hyperedges.

Bansal and Khot [4] and Sachdeva and Saket [28] focused on almost rainbow k-colorable hy-
pergraphs (where one is allowed to remove a small fraction of vertices to ensure rainbow col-
orability) to show hardness of scheduling problems. This notion allows us to prove the following
more structured hardness as well as (K − 1− ε)-inapproximability for hypergraph vertex cover. It
improves [28] in the number of colors used, and almost matches [4] which is based on the Unique
Games Conjecture.

Theorem 1.6. For any ε > 0 and K > 3, given a K-uniform hypergraph H = (V,E), it is NP-hard to
distinguish the following cases.

• Completeness: There exist V ∗ ⊆ V of measure ε and a coloring c : [V \ V ∗]→ [K − 1] such that for
every hyperedge of the induced hypergraph on V \ V ∗, K − 2 colors appear once and the other color
twice. Therefore, H has a vertex cover of size at most 1

K−1 + ε.

• Soundness: There is no independent set of measure ε.

Q-out-of-(2Q + 1)-SAT. Q-out-of-(2Q + 1)-SAT refers to the problem of finding a satisfying as-
signment in a (2Q+ 1)-CNF formula, given the promise that some assignment makes each clause
have at least Q true literals. We give an analytic proof following our recipe of the following result,
which was first established based on simpler combinatorial techniques in Austrin et al [2].

Theorem 1.7. For Q > 2, there exists ε > 0 depending on Q such that given a (2Q+ 1)-CNF formula, it
is NP-hard to distinguish the following cases.

• Completeness: There is an assignment such that each clause has at least Q true literals.

• Soundness: No assignment can satisfy more than (1− ε) fraction of clauses.2

1.2 Discussion and Open Problems: Coloring Highly Structured Hypergraphs

The algorithmic and hardness results of highly structured hypergraphs are summarized in Ta-
ble 1.2.

Fix K > 3 to be the uniformity of the hypergraph. To the best of our understanding, there is
only one general situation under which a K-uniform hypergraph H can be efficiently 2-colored:

2An explicit value of ε as a function of Q in the soundness can be worked out. It might be better than the value
implicit in the proof of [2], but will likely be far from the probably optimal value, so we don’t focus on this aspect.
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Promised Coloring Structure Algorithm Hardness
Rainbow K-colorable (K-partite) 2-colorable Not rainbow K-colorable

(Almost, UG) Not weak O(1)-colorable [4]
Rainbow (K − 1)-colorable (Almost) Not weak O(1)-colorable

Rainbow K
2 -colorable with perfect balance 2-colorable

Rainbow K
2 -colorable with discrepancy 2 Not rainbow K

2 -colorable
Rainbow K

2 -colorable with discrepancy K
2 Not weak O(1)-colorable

2-colorable with perfect balance 2-colorable
2-colorable with discrepancy 1 Not 2-colorable [2]

(d-to-1) Not weak O(1)-colorable
2-colorable with discrepancy 2 Not weak O(1)-colorable

Table 1: Summary of algorithmic and hardness results for coloring a highly structured K-uniform hyper-
graph. Almost means that ε > 0 fraction of vertices and incident hyperedges must be deleted to have the
structure. UG and d-to-1 indicate that the result is based on the Unique Games Conjecture and the d-to-1
Conjecture respectively. The results of this work are in boldface.

when K = Qk and H admits a perfectly balanced k-rainbow coloring. By semidefinite program-
ming, we can find a unit vector for each vertex with the guarantee that the K vectors in each
hyperedge sum to zero, and the hyperplane rounding will give us a 2-coloring without monochro-
matic edges (trivially of discrepancy K − 2). However, the complexity of finding a slightly more
structured coloring (e.g. rainbow 3-coloring or 2-coloring with discrepancy less thanK−2) is wide
open. Via a simple reduction from K-colorability on graphs, one can show that finding a rainbow
K-coloring (on K-uniform hypergraphs) if one exists is NP-hard. It is, however, consistent with
current knowledge (though highly unlikely in our opinion) that a perfectly balanced K

Q -coloring
(Q > 2) can be reconstructed in polynomial time.

If we relax the perfect balance promise in the completeness case in certain ways, our results
show that the resulting hypergraph becomes hard to even weakly O(1)-color. One interesting
open question is to show this when there is a 2-coloring of discrepancy 1 (without relying on
any unproven conjectures). Another tantalizing challenge is to show hardness of O(1)-coloring
(or even 2-coloring) when the hypergraph is rainbow (K − 1)-colorable. We are able to show
hardness in the almost rainbow (K − 1)-colorable case — can we avoid this and achieve perfect
completeness?

2 Techniques and Related Work

We now briefly discuss some closely related works, and then illustrate our main ideas and general
recipe in a simple setting.

2.1 Related Work

Our work is inspired by recent developments concerning the inapproximability of Hypergraph
Vertex Cover and the Constraint Satisfaction Problem (CSP). At a high level, Theorem 1.1 looks
similar to the result of Sachdeva and Saket [28] who proved almost the same statement without
perfect completeness — we need to delete ε > 0 fraction of vertices and all incident hyperedges to
have a similar guarantee in the completeness case. Achieving perfect completeness is a nontrivial
task, as manifested in k-CSP — approximating a (1 − ε)-satisfiable instance of k-CSP is NP-hard
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within a factor of 2k
2k

[6], while the best inapproximability factor for perfectly satisfiable k-CSP is
2O(k1/3)

2k
[18].

In CSP, significant research efforts have been put on proving every predicate strictly dominat-
ing parity is approximation resistant (i.e., no efficient algorithm can beat the ratio achieved by simply
picking a random assignment) even on satisfiable instances. O’donnell and Wu [27] proved this
assuming the d-to-1 conjecture for k = 3, and recently this was proven to be true assuming only
P 6= NP by Håstad (k = 3, [16]) and Wenner (k > 4, [31]). Many of these works are based on
invariance principle based techniques, and it is natural to ask whether they let us to achieve per-
fect completeness in Hypergraph Coloring as well. To the best of our knowledge, our work is the
first to apply invariance based techniques to prove NP-hardness of Hypergraph Coloring / Vertex
Cover problems (Khot and Saket [20] used them to prove hardness of finding an independent set
in 2-colorable 3-uniform hypergraphs, assuming the d-to-1 conjecture).

Fourier-analytic proofs of harndess ofK-Hypergraph Vertex Cover are known for smallK [15,
17, 19, 29]. Even though they cannot be easily generalized to large K, the recent work of Saket [29]
for K = 4 uses general reverse hypercontractivity studied by Mossel et al. [22], and we extend his
result to present a framework to study general K-uniform hypergraphs. In the rest of the section,
for simplicity of illustration we fix Q = k = 2 (so that the test distribution becomes that of [29])
and give a high level glimpse into our proof strategy.

2.2 Techniques

We reduce Label Cover to 4-uniform hypergraph coloring. Given a Label Cover instance based
on a bipartite graph G = (U ∪ V,E) with projections πe : [R] → [L] (see Section 3 for the formal
definition), let U be the small side and V be the big side. Let Ω = {1, 2}. Our hypergraph H =
(V ′, E′) is defined by V ′ := V × ΩR, and E′ is described by the following procedure to sample a
hyperedge.

• Sample u ∈ U and its neighbors v, w ∈ V .

• Sample x1, x2, y1, y2 ∈ ΩR as the following: for 1 6 i 6 L,

– With probability half, (x1)π−1
(u,v)

(i), (x2)π−1
(u,v)

(i), (y1)π−1
(u,w)

(i) are sampled i.i.d., but (y2)j =

3− (y1)j for every j ∈ π−1
(u,w)(i).

– With probability half, (y1)π−1
(u,w)

(i), (y2)π−1
(u,w)

(i), (x1)π−1
(u,v)

(i) are sampled i.i.d., but (x2)j =

3− (x1)j for every j ∈ π−1
(u,v)(i).

Completeness is obvious from the above distribution. For each block that corresponds to
π−1

(u,v)(i) or π−1
(u,w)(i), one of (x1, x2) and (y1, y2) is allowed to be sampled independently, but the

other pair has to satisfy that two points are different in every coordinate in that block.
For soundness, let I be an independent set, let fv : ΩR → {0, 1} be the indicator function of

I ∩ ({v}× [k]R). As usual, our goal is to find a good decoding strategy to the Label Cover instance
using the fact that

E
u,v,w

E
x1,x2,y1,y2

[fv(x1)fv(x2)fw(y1)fw(y2)] = 0.

2.2.1 Dealing with noise and influences

Before proceeding to the analysis, we discuss two issues that highlight technical difficulties in
proving NP-hardness (as opposed to Unique Games-hardness) of coloring with perfect complete-
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ness (as opposed to imperfect completeness) in terms of noise.

Implicit vs Explicit, Strong vs Weak Noise. Given a function f : ΩR → [0, 1], consider the noise
operator T1−γ defined by T1−γf(x) = Ey[f(y)|x] where y resamples each coordinate of x with
probability γ. It is central to most decoding strategies that we actually analyze noised functions
T1−γfv and T1−γfw instead of the original functions. We call the step of passing from the original
functions to the noised functions strong noise. The easiest way to give strong noise is to include it
in the test distribution, independently for all points — what we call explicit noise. However, such
explicit and strong noise breaks perfect completeness, since all points might be noised together
and we cannot control the behavior.

To deal with this issue, we call weak noise to be a property inherent in the test distribution,
bounding the correlation between the points we sample. In the test distribution we gave above,
it refers to sampling exactly one of (x1, x2) or (y1, y2) completely independently (for each block).
The fact that only one pair is noised is not strong enough to be directly applicable to decoding,
but the bounded correlation allows us to apply the result of Mossel [22] to show that the expected
value of the product does not change much we replace each f by the noised version only for the
sake of analysis. This idea of implicit but strong noise allows us maintain perfect completeness.

Block Noise, Block Influence. Consider the projections π(u,v), π(u,w) : [R] → [L]. Let d > 1 be the
degree of the projections. d coordinates of x1, x2 and d coordinates of y1, y2 must be treated in the
same block which is often regarded as one coordinate.

The aforementioned result of Mossel in fact shows that we can replace f by T 1−γf , where
T 1−γ is the block noise operator when we view each block as one coordinate. This is not strong
enough for our decoding strategy, but the idea of Wenner [31] lets us to replace T 1−γf by the
individually noised function T1−γf if f almost depends on only shattered parts (roughly, shattered
parts of a function under a projection do not distinguish whether the projection is 1-to-1 or not).
This shattering behavior can be achieved by Smooth Label Cover defined by Khot [19].

At the end of analysis, our invariance principle will show that
∑

16i6L Infi[T1−γfv] Infi[T1−γfw]

is large where Inf indicates the influence when we view each block as one coordinate. It turns out
to suffice to deal with these block noises, since they appear only in the analysis of the decoding;
our decoding procedure itself does not depend on the projections, and the goal of the decoding
is to have two vertices output the coordinates in the same block. To summarize, we put an effort
to pass from block noise to individual noise in the beginning of our analysis, but we keep block
influence to the end of analysis where it is naturally integrated with the decoding.

2.2.2 Recipe

We briefly discuss the five main steps in the soundness analysis and how they relate to each other.
We view distilling and clearly articulating this recipe and highlighting its versatility also as one of
the contributions of this work.

1. Fixing a good pair: Given an independent set I of measure ε, using smoothness of Label
Cover, we show that in the original instance of Label Cover, there is a large fraction u ∈ U
and its neighbors v, w ∈ V with the following properties. E[fv],E[fw] > ε

2 , and they almost
depend on shattered parts. In the subsequent steps, we fix such u, v, w and analyze the
probability that either (u, v) or (u,w) is satisfied by our decoding strategy.

2. Lower bounding in each hypercube: In Theorem 4.3, we show

E[fv(x1)fv(x2)],E[fw(y1)fw(y2)] > ζ(ε) > 0.
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It uses reverse hypercontractivity [23, 24], which is discussed in Section C. Roughly, it says
the noise operator Tρ increases q-norm ‖Tρf‖q when q < 1, so that ‖f‖q > ‖f‖p for some
q < p < 1 depending on ρ (note that ‖Tρf‖q 6 ‖f‖p). The case k = 2 follows directly from
the previous result, but for larger k we generalize the reverse hypercontractivity to more
general operators, even between different spaces. This step does not depend on noise or the
degree of projections (e.g. the same ζ works for T1−γf and T 1−γf ).

3. Introducing implicit noise (based on 1.): Based on the bounded correlation of the test dis-
tribution, we use the result of Mossel [22] to pass from f to T 1−γf . The fact that fv, fw
almost depend on shattered parts allows us to use Theorem 4.5 to pass from T 1−γf to T1−γf .
Therefore we have

E
x1,x2,y1,y2

[fv(x1)fv(x2)fw(y1)fw(y2)] ≈ E
x1,x2,y1,y2

[T1−γfv(x1)T1−γfv(x2)T1−γfw(y1)T1−γfw(y2)].

For simplicity, let f ′ = T1−γf .

4. Invariance (based on 2. and 3.): Since I is independent, the above results imply

0 ≈ E
x1,x2,y1,y2

[f ′v(x1)f ′v(x2)f ′w(y1)f ′w(y2)]� ζ2 6 E
x1,x2

[f ′v(x1)f ′v(x2)] E
y1,y2

[f ′w(y1)f ′w(y2)].

In Theorem 4.6, we use an invariance principle inspired by that of Wenner [31] and Chan [6]
to conclude that

∑
16i6L Infi[f

′
v] Infi[f

′
w] > τ . The crucial property we used is that xi is inde-

pendent of (y1, y2) — one point is independent of the joint distribution of the points not in
the same hypercube.

5. Decoding Strategy (based on 3. and 4.): The standard decoding strategy based on Fourier
coefficients of f shows that either (u, v) or (u,w) will be satisfied with good probability. As
previously discussed,

∑
16i6L Infi[f

′
v] Infi[f

′
w] > τ gives large common block influences of

individually noised functions, and they are sufficient for the decoding.

2.2.3 Organization

Section 3 introduces basic definitions and their properties used in the paper. Section 4 proves
the main Theorem 1.1, deferring the technical proofs about Label Cover, invariance / noise, and
reverse hypercontractivity to Appendix A, B, and C respectively. In Appendix D, E, and F, we
show the versatility of our approach by proving Theorem 1.4, 1.5, 1.6, and 1.7, using the same
procedure.

3 Preliminaries

For a positive integer k, let [k] := {1, 2, . . . , k}. Let Sk be the set of k-permutations — (x1, . . . , xk) ∈
[k]k such that xi 6= xj for all i 6= j. For a vector x ∈ Rm and S ⊆ [m], xS denotes the projection
of x onto the coordinates in S. Definitions and simple properties introduced from Section 3.1 to
Section 3.4 are from Mossel [22].

3.1 Correlated Spaces

Given a probability space (Ω, µ) (we always consider finite probability spaces), let L(Ω) be the set
of functions {f : Ω→ R} and for an interval I ⊆ R, LI(Ω) be the set of functions {f : Ω→ I}. A
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collection of probability spaces are said to be correlated if there is a joint probability distribution on
them. We will denote k correlated spaces Ω1, . . . ,Ωk with a joint distribution µ as (Ω1×· · ·×Ωk;µ).

Given two correlated spaces (Ω1 × Ω2, µ), we define the correlation between Ω1 and Ω2 by

ρ(Ω1,Ω2;µ) := sup {Cov[f, g] : f ∈ L(Ω1), g ∈ L(Ω2),Var[f ] = Var[g] = 1} .

The following lemma of Wenner [31] gives a convenient way to bound the correlation.

Lemma 3.1 (Corollary 2.18 of [31]). Let (Ω1×Ω2, δµ+ (1− δ)µ′) be two correlated spaces such that the
marginal distribution of at least one of Ω1 and Ω2 is identical on µ and µ′. Then,

ρ(Ω1,Ω2;µ+ (1− δ)µ′) 6
√
δ · ρ(Ω1,Ω2;µ)2 + (1− δ) · ρ(Ω1,Ω2;µ′)2.

Given k correlated spaces (Ω1 × · · · × Ωk, µ), we define the correlation of these spaces by

ρ(Ω1, . . . ,Ωk;µ) := max
16i6k

ρ(
∏

16j6i−1

Ωj ×
∏

i+16j6k

Ωj ,Ωi;µ).

3.2 Operators

Let (Ω1×Ω2, µ) be two correlated spaces. The Markov operator associated with them is the operator
mapping f ∈ L(Ω1) to Tf ∈ L(Ω2) by

(Tf)(y′) = E
(x,y)∼µ

[f(x)|y = y′].

The noise operator or Bonami-Beckner operator Tρ (0 6 ρ 6 1) associated with a single probability
space (Ω, µ) is the Markov operator associated with (Ω×Ω, ν), where ν(x, y) = (1− ρ)µ(x)µ(y) +
ρI[x = y]µ(x) and I[·] is the indicator function — ν samples (x, y) independently with probability
1− ρ, and samples x = y with probability ρ. Note that Tρf(y) = ρf(y) + (1− ρ)Eµ[f(x)].

3.3 Functions and Influences

Let (Ω, µ) be a probability space. Given a function f ∈ L(Ω) and p ∈ R, let ‖f‖p := Ex∼µ[|f(x)|p]1/p.
We also use ‖f‖p,µ for the same quantity if it is instructive to emphasize µ. We note that ‖f‖p for
p < 0 is also used throughout the paper, but in this case we ensure that f > 0. For f, g ∈ L(Ω),
〈f, g〉 := Ex∼µ[f(x)g(x)].

Consider a product space (ΩR, µ⊗R) and f ∈ L(ΩR). The Efron-Stein decomposition of f is given
by

f(x1, . . . , xR) =
∑
S⊆[R]

fS(xS)

where (1) fS depends only on xS and (2) for all S 6⊆ S′ and all xS′ , Ex′∼µ⊗R [fS(x′)|x′S′ = xS′ ] = 0.
The influence of the ith coordinate on f is defined by

Infj [f ] := E
x1,...,xj−1,xj+1,...,xR

[Var
xj

[f(x1, . . . , xR)].

Given the noise operator Tρ for (Ω, µ), we let T⊗Rρ be the noise operator for (ΩR, µ⊗R) (i.e. nois-
ing each coordinate independently) and call it Tρ. The noise operator and the influence has a
convenient expression in terms of the Efron-Stein decomposition.

Tρ[f ] =
∑
S

ρ|S|fS ; Infj [f ] = ‖
∑
S:j∈S

fS‖22 =
∑
S:j∈S

‖fS‖22

9



The following lemma lets us to reason about the influences of the product of functions. The proof
is in Section B.1.

Lemma 3.2 ([20]). Let (Ω1 × · · · ×Ωk, µ) be k probability spaces and (ΩL
1 × · · · ×ΩL

k , µ
⊗L) be the corre-

sponding product spaces. Let fi ∈ L[−1,1](Ω
L
i ), and F ∈ L[−1,1](Ω

L
1 ×· · ·×ΩL

k ) such that F (x1, . . . , xk) =∏
16i6k fi(xi). Then for 1 6 j 6 L, Infj(F ) 6 k

∑k
i=1 Infj(fi).

3.4 Blocks

Let R,L, d be positive integers satisfying R = dL. Let (ΩR, µ⊗R) be a product space and π : [R]→
[L] be a projection such that |π−1(j)| = d for 1 6 j 6 L. Define Ω := Ωd. Given x ∈ ΩR, we block x
to have x ∈ (Ω)L defined by

xj := (xj′)π(j′)=j .

Given f ∈ L(ΩR), its blocked version f ∈ L(Ω
L

) is defined by f(x) := f(x). These blocked versions
of functions and arguments depend on the projection π. For each function f , the associated pro-
jection will be clear from the context, and the same projection is used to block its argument x. The
influence Infj [f ] and the noise operator Tρf are naturally defined. Define

Infj [f ] := Infj [f ] ; (T ρf)(x) := (Tρf)(x) ,

and call them block influence and block noise operator respectively. They also have the following nice
expressions in terms of f ’s Efron-Stein decomposition.

T ρf =
∑
S

ρ|π(S)|fS ; Infj [f ] =
∑

S:S∩π−1(j) 6=∅

‖fS‖22 .

A subset S ⊆ [R] is said to be shattered by π if |S| = |π(S)|. For a positive integer J , define the bad
part of fv under π and J as

fbad =
∑

S:not shattered and |π(S)|<J

fS .

3.5 Q-Hypergraph Label Cover

An instance of Q-Hypergraph Label Cover is based on a Q-uniform hypergraph H = (V,E). Each
hyperedge-vertex pair (e, v) such that v ∈ e is associated with a projection πe,v : [R] → [L] for
some positive integers R and L. A labeling l : V → [R] strongly satisfies e = {v1, . . . , vQ} when
πe,v1(l(v1)) = · · · = πe,vQ(l(vQ)). It weakly satisfies e when πe,vi(l(vi)) = πe,vj (l(vj)) for some i 6= j.
The following are two desired properties of instances of Q-Hypergraph Label Cover.

• Weakly dense: any subset of V of measure at least ε vertices induces at least εQ

2 fraction of
hyperedges.

• T -smooth: for all v ∈ V and i 6= j ∈ [R], Pre∈E:e3v[πe,v(i) = πe,v(j)] 6 1
T .

The following theorem asserts that it is NP-hard to find a good labeling in such instances.
The proof is in Appendix A.1, and closely follows the work of Gopalan et al. [13] that proves the
hardness of the same problem without T -smoothness.
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Theorem 3.3. For any Q > 2, large enough T , and η > 0, the following is true. Given an instance of
Q-Hypergraph Label Cover that is weakly-dense and T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that strongly satisfies every hyperedge.

• Soundness: No labeling l can weakly satisfy η fraction of hyperedges.

4 Hardness of Rainbow Coloring

Fix Q, k > 2. In this section, we show a reduction from Q-Hypergraph Label Cover to Qk-
Hypergraph Coloring, proving Theorem 1.1.

4.1 Distributions

We first define the distribution for each block. Qk points xq,i ∈ [k]d for 1 6 q 6 Q and 1 6 i 6 k
are sampled by the following procedure.

• Sample q′ ∈ [Q] uniformly at random.

• Sample xq′,1, . . . , xq′,k ∈ [k]d i.i.d.

• For q 6= q′ and 1 6 j 6 d, Sample ((xq,1)j , . . . , (xq,k)j) ∈ Sk uniformly at random.

1 3 2 2 

2 1 3 1 

3 2 1 3 

2 1 3 1 

2 3 2 3 

1 3 2 2 

3 2 1 1 

2 1 3 3 

1 3 2 2 

Ω𝑘, 𝜇  

Ω,𝜔  

Ωd = Ω,𝜔⊗𝑑  

Ω𝑘𝑑 , 𝜇 = 𝜇⊗𝑑  

Ω𝑄𝑘𝑑 , 𝜇′  

Figure 1: An example for Q = k = 3, d = 4.
q′ = 2 so that all columns of the first and third
block are permutations.

There are several distributions involved.
Let Ω := [k] and ω be the uniform distri-

bution on Ω. For any 1 6 q 6 Q, 1 6 i 6 k
and 1 6 j 6 d, the marginal of (xq,i)j follows
(Ω, ω).

For any 1 6 q 6 Q and 1 6 i 6 k, the
marginal of (xq,i) follows (Ωd, ω⊗d). Let Ω :=
Ωd.

Let (Ωk, µ) be the marginal distribution of
((xq,i)j , . . . , (xq,i)j), which is the same for all q
and i. Note that µ is not uniform — with prob-
ability 1

Q it is uniform on [k]k, but with proba-
bility Q−1

Q it samples from k! permutations.

Let (Ωdk, µ) be the marginal distribution of
(xq,1, . . . , xq,k), which is the same for all q.

Finally, let (ΩQkd, µ′) be the entire distribu-
tion of (xq,i)q∈[Q],i∈[k].

We first consider (ΩQkd, µ′) as Qk corre-
lated spaces (Ω

Qk
, µ′), and bound ρ(Ω

Qk
;µ′).

Let Ωq,i denote the copy of Ω associated with
xq,i, and Ω

′
q,i be the product of the other Qk−1

copies.
Fix some q and i. Note that µ′ = 1

Qαq +
Q−1
Q βq where αq denotes the distribution given

11



q′ = q (so that each entry of xq,1, . . . , xq,k is sampled i.i.d.), and βq denotes the distribution given
q′ 6= q. Since each entry of xq,i is sampled i.i.d. in αq, ρ(Ωq,i,Ω

′
q,i;αq) = 0. Observed that, in both

αq and βq, the marginal of xq,i is ω⊗d. By Lemma 3.1, we conclude that ρ(Ωq,i,Ω
′
q,i;µ

′) 6
√

Q−1
Q .

Therefore we have

ρ((Ωq,i)q,i;µ
′) = max

q,i
ρ(Ωq,i,Ω

′
q,i;µ

′) 6

√
Q− 1

Q
.

4.2 Reduction and Completeness

We now describe the reduction from Q-Hypergraph Label Cover. Given a Q-uniform hypergraph
H = (V,E) with Q projections from [R] to [L] for each hyperedge, the resulting instance of Qk-
Hypergraph Coloring is H ′ = (V ′, E′) where V ′ = V × [k]R. Let Cloud(v) := {v}× [k]R. The set E′

consists of hyperedges generated by the following procedure.

• Sample a random hyperedge e = (v1, . . . , vQ) ∈ E with associated permutations πe,v1 , . . . , πe,vQ
from E.

• Sample (xq,i)16q6Q,16i6k ∈ ΩR in the following way. For each 1 6 j 6 L, independently
sample ((xq,i)π−1

e,vq (j))q,i from (ΩQkd, µ′).

• Add a hyperedge between Qk vertices {(vq, xq,i)}q,i to E′. We say this hyperedge is formed
from e ∈ E.

Given the reduction, completeness is easy to show.

Lemma 4.1. If an instance of Q-Hypergraph Label Cover admits a labeling that strongly satisfies every
hyperedge e ∈ E, there is a coloring c : V ′ → [k] such that every hyperedge e′ ∈ E′ has at least (Q − 1)
vertices of each color.

Proof. Let l : V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E. For any
v ∈ V, x ∈ [k]R, let c(v, x) = xl(v). For any hyperedge e′ = {(vq, xq,i)}q,i ∈ E

′, c(vq, xq,i) = (xq,i)l(vq),
and all but one q satisfies

{
(xq,1)l(vq), . . . , (xq,k)l(vq)

}
= [k]. Therefore, the above strategy ensures

that every hyperedge of E′ contains at least (Q− 1) vertices of each color.

4.3 Soundness

Lemma 4.2. For any ε > 0, there exists η := η(ε,Q, k) such that if I ⊆ V ′ of measure ε induces less than
εOQ,k(1) fraction of hyperedges, the corresponding instance of Q-Hypergraph Label Cover admits a labeling
that weakly satisfies a fraction η of hyperedges.

As introduced in Section 2, the proof of soundness consists of the following five steps.

STEP 1. Fixing a Good Hyperedge. Let I ⊆ V ′ be of measure ε. For each vertex v ∈ V , let
fv : [k]R → {0, 1} be the indicator function of I ∩ Cloud(v). Call a vertex v heavy when E[fv] > ε

2 .

By averaging, at least ε
2 fraction of vertices are heavy. Since H is weakly-dense, at least δ :=

( ε
2

)Q

2
fraction of hyperedges are induced by the heavy vertices.
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Recall that we can require the original Q-Hypergraph Label Cover instance to be T -smooth for
T that can be chosen arbitrarily large. Let J be a positive integer. The parameters J and T will be
determined later as large constants depending on Q, k, and ε.

Fix fv and S ⊆ [R]. Over a random hyperedge e containing v and the associated permutation
πe,v, we bound the probability that |S| is not shattered and |πe,v(S)| < J . If |S| 6 J , by union
bound over all pairs i 6= j, the probability that S is not shattered is at most J2

T . If |S| > J , the
probability that |πe,v(S)| < J is at most the probabilty that a fixed J-subset of S is not shattered,
which is at most J

2

T . Since
∑

S ‖(fv)S‖22 = ‖fv‖22 6 1, we have

E
e
[‖fbadv ‖22] 6

J2

T
.

where fbadv denotes the bad part of fv under πe,v and J (we suppress the dependence on the
projection πe,v and J for notational convenience). Therefore, Ee[‖fbadv ‖2] 6 (J

2

T )1/2 and at least
1 − (J

2

T )1/4 fraction of hyperedges containing v satisfy ‖fbadv ‖2 6 (J
2

T )1/4. Call such hyperedges
good for v.

By union bound, at least 1 − Q(J
2

T )1/4 fraction of hyperedges are good for every vertex they
contain. By setting Q(J

2

T )1/4 6 δ
2 , we can conclude that at least a fraction δ

2 of hyperedges are
induced by the heavy vertices and good for every vertex they contain.

Throughout the rest of the section, fix such a hyperedge e = (v1, . . . , vQ) and the associated
permutations πe,v1 , . . . , πe,vQ . For simplicity, let fq := fvq and πq := πe,vq for q ∈ [Q]. We now
measure the fraction of hyperedges formed from e that are wholly contained within I . The fraction
such hyperedges is

E
xq,i

[
∏

16q6Q,16i6k

fq(xq,i)] . (1)

STEP 2. Lower Bounding in Each Hypercube. Fix any q ∈ [Q]. We prove that E[
∏

16i6k T1−γfq(xq,i)] >
ζ for some ζ > 0 and every γ ∈ [0, 1]. The main tool in this part is a generalization of reverse hy-
percontractivity, which is discussed in Appendix C. The final result is the following.

Theorem 4.3. Let (Ωk, ν) be k correlated spaces with the same marginal σ for each copy of Ω. Suppose that
ν is described by the following procedure to sample from Ωk.

• With probability ρ (0 6 ρ < 1), it samples from another distribution on Ωk, which has the same
marginal σ for each copy of Ω.

• With probability 1− ρ, it samples from σ⊗k.

Let F1, . . . , Fk ∈ L[0,1](Ω
L) such that E[Fi] > ε > 0 for all i. Then there exists ζ := ζ(ρ, ε, k) = εOρ,k(1) >

0 (independent of L) such that
E

x1,...,xk
[
∏

16i6k

Fi(xi)] > ζ

where for each 1 6 j 6 L, ((x1)j , . . . , (xk)j) is sampled according to ν.

For each 1 6 j 6 L, ((xq,1)j , . . . , (xq,k)j) is sampled according to (Ω
k
, µ). µ satisfies the re-

quirement of Theorem 4.3 — with probability 1
Q , it samples from ω⊗kd, and with probability Q−1

Q ,
it samples from d permutations from Sk independently so that the marginal of each (xq,i)j is ω⊗d

for all i and j.
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Therefore, we can apply Theorem 4.3 (setting Ω ← Ω, k ← k, σ ← ω⊗d, ν ← µ, ρ ← Q−1
Q ,

F1 = · · · = Fk ← fq, ε← ε
2 ) to conclude that there exists ζ := ζ(Q−1

Q , ε2 , k) = εOQ,k(1) > 0 such that

E
xq,1,...,xq,k

[
∏

16i6k

fq(xq,i)] = E
xq,1,...,xq,k

[
∏

16i6k

fq(xq,i)] > ζ.

The only properties of fq used were E[fq] > ε
2 and fq ∈ L[0,1](L

R). For any 0 6 γ 6 1, T1−γfq have
the same properties, so we have the following lower bound for every q ∈ [Q]

E[
∏

16i6k

T1−γfq(xq,i)] > ζ . (2)

STEP 3. Introducing Implicit Noise. From unnoised functions to block noised functions, we use
the following theorem from Mossel [22].

Theorem 4.4 ([22]). Let (Ω1 × · · · × ΩK , ν) be K correlated spaces with ρ(Ω1, . . . ,ΩK ; ν) 6 ρ < 1.
Consider K product spaces ((Ω1)L × · · · × (ΩK)L, ν⊗L), and Fi ∈ L((Ωi)

L) for i ∈ [K] such that
Var[Fi] 6 1. For every ε > 0, there exists γ := γ(ε, ρ) > 0 such that∣∣∣E[

∏
16i6K

Fi]− E[
∏

16i6K

T1−γFi]
∣∣∣ 6 Kε.

Since ρ(Ω
Qk
, µ′) 6

√
Q−1
Q , we can apply the above theorem (K ← Qk, Ω1 = · · · = ΩK ← Ω,

ν ← µ′, ε← ζQ

4K , Fk(q−1)+i ← fq for q ∈ [Q] and i ∈ [k]) to have γ := γ(Q, k, ζ) ∈ (0, 1) such that

∣∣∣ E
xq,i

[
∏

16q6Q,16i6k

fq(xq,i)]− E
xq,i

[
∏

16q6Q,16i6k

T 1−γfq(xq,i)]
∣∣∣ 6 ζQ

4
. (3)

From block noised functions to individual noised functions, we state the following general
theorem inspired by Wenner [31]. The proof is in Appendix B.2.

Theorem 4.5. Let (Ωd1
1 × · · · × ΩdK

K , ν) be joint probability spaces such that the marginal of each copy of
Ωi is νi, and the marginal of Ωdi

i is ν⊗dii . Fix Fi : (Ωdi
i )L → R for each i = 1, . . . ,K with an associated

projection πi : [diL] → [L] such that |π−1
i (j)| = di for 1 6 j 6 L. For any 0 6 ρ 6 1, the noise operator

TρFi and the block noise operator T ρFi under πi is defined as in Section 3. Fix a positive integer J and
consider F bad

i under πi and J . Suppose max16i6K ‖Fi‖2 6 1 and ξ := max16i6K ‖F bad
i ‖2. Then we

have,∣∣∣ E
(x1,...,xK)∼ν⊗L

[
∏

16i6K

T 1−γFi(xi)]− E
(x1,...,xK)∼ν⊗L

[
∏

16i6K

T1−γFi(xi)]
∣∣∣ 6 2 · 3K((1− γ)J + ξ).

By applying the above theorem with K ← Qk, L ← L, Ω1, . . . ,ΩK ← Ω, d1, . . . , dK ← d,
ν ← µ′, Fk(q−1)+1 = · · · = Fk(q−1)+k ← fq, πk(q−1)+1 = · · · = πk(q−1)+k ← πq, ξ ← (J

2

T )1/4, we have∣∣∣ E
xq,i

[
∏

16q6Q,16i6k

T 1−γfq(xq,i)]− E
xq,i

[
∏

16q6Q,16i6k

T1−γfq(xq,i)]
∣∣∣ 6 2 · 3Qk((1− γ)J + (

J2

T
)1/4).
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Fixing J and T to satisfy 2 · 3Qk((1 − γ)J + (J
2

T )1/4) 6 ζQ

4 as well as the previous constraint,
and combining with (3), we can conclude that∣∣∣ E

xq,i
[

∏
16q6Q,16i6k

fq(xq,i)]− E
xq,i

[
∏

16q6Q,16i6k

T1−γfq(xq,i)]
∣∣∣ 6 ζQ

2
. (4)

In particular, if I induces less than ζQ

4 fraction of hyperedges formed from e, combining (1) and
(4), we have

E
xq,i

[
∏

16q6Q,16i6k

T1−γfq(xq,i)] 6
3ζQ

4
. (5)

STEP 4. Invariance. We now want to show

E
xq,i

[
∏

16q6Q,16i6k

T1−γfq(xq,i)] ≈
∏

16q6Q

E
xq,i

[
∏

16i6k

T1−γfq(xq,i)]|,

unless fq’s share influential coordinates. Our invariance principle is similar to ones used in Wen-
ner [31] and Chan [6]. With the goal of showing

E
x1,...,xK

[
∏

16i6K

Fi(xi)] ≈ E
x1

[F1(x1)]E[
∏

26i6K

Fi(xi)],

one crucial property they used is that x1 is independent of xi for each i = 2, . . . ,K (even though
any three xi’s are dependent).

Our (xq,i) do not have such a property (any xq,i is dependent on xq,i′ for i 6= i′), but it satisfies
another property that any xq,i is independent of the joint distribution of (xq′,i′)q′ 6=q,i′∈[k] — every-
thing not in the same hypercube. This property allows us to achieve the goal stated above. We
formalize this intuition and prove the following general theorem, which will also be used in our
other results. The proof appears in Appendix B.3.

Theorem 4.6. Let (Ωk1
1 × · · · × Ω

kQ
Q , ν) be correlated spaces (k1, . . . , kQ−1 > 2, kQ > 1) where each copy

of Ωq has the same marginal and independent of
∏
q′ 6=q Ω

kq
q′ . Let kmax = maxq kq and ksum =

∑
q kq. For

1 6 q 6 Q, let Fq ∈ L[0,1](Ω
L
q ). Suppose that for all 1 6 q < Q,

∑
16j6L Infj [Fq] 6 Γ and∑

16j6L

Infj [Fq](Infj [Fq+1] + · · ·+ Infj [FQ]) 6 τ.

Then, ∣∣∣ E
xq,i

[
∏

16q6Q,16i6kq

Fq(xq,i)]−
∏

16q6Q

E
xq,i

[
∏

16i6kq

Fq(xq,i)]
∣∣∣ 6 Q · 2kmax+1

√
Γk2

sumτ .

By Wenner [26], there exists Γ = O( 1
γ ) such that∑

16j6L

Infj [T1−γfq] 6
∑

16j6R

Infj [T1−γfq] 6 Γ.
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Fix τ to satisfy Q · 2k+1
√

Γ(Qk)2τ < ζQ

4 . We have∣∣∣ E
xq,i

[
∏

16q6Q,16i6k

T1−γfq(xq,i)]−
∏

16q6Q

E
xq,i

[
∏

16i6k

T1−γfq(xq,i)]
∣∣∣

>
∣∣∣ ∏
16q6Q

E
xq,i

[
∏

16i6k

T1−γfq(xq,i)]
∣∣∣− ∣∣∣ E

xq,i
[

∏
16q6Q,16i6k

T1−γfq(xq,i)]
∣∣∣

>
ζQ

4
by (2) and (5) .

Thus, applying Theorem 4.6 with Q← Q, k1 = · · · = kQ ← k,Ω1 = · · · = ΩQ = Ω, ν ← µ′, L← L,
Fq ← T1−γfq, Infj [Fq]← Infj [T1−γfq], there exists q ∈ {1, . . . , Q− 1} such that∑

16j6L

Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ]) > τ.

STEP 5. Decoding Strategy. We use the standard strategy — each vq samples a set S ⊆ [R]
according to ‖(fq)S‖22, and chooses a random element from S. For each 1 6 j 6 L, the probability
that v chooses a label in π−1(j) is

∑
S:S∩π−1(j)6=∅

‖(fq)S‖22
|S ∩ π−1(j)|

|S|
>

∑
S:S∩π−1(j)6=∅

‖(fq)S‖22 · γ(1− γ)
|S|

|S∩π(j)|

> γ
∑

S:S∩π−1(j)6=∅

‖(fq)S‖22 · (1− γ)|S|

= γ Infj [T1−γfq]

where the first inequality follows from the fact that α > γ(1 − γ)1/α for α > 0 and 0 < γ < 1. Fix
q to be the one obtained from Theorem 4.6. The probability that πq(l(vq)) = πq′(l(vq′)) for some
q < q′ 6 Q is at least

γ2
∑

16j6L

Infj [T1−γfq] max
q<q′6Q

Infj [T1−γfq′ ]

>
γ2

Q

∑
16j6L

Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ])

>
γ2τ

Q
.

Suppose that the total fraction of hyperedges (ofE′) wholly contained within I is less than δ
4 ·

ζQ

4 =

εOQ,k(1). Since δ
2 fraction of hyperedges (ofE) are good, for at least δ2−

δ
4 = δ

4 fraction of hyperedges
the above analysis works, and these edges are weakly satisfied by the above randomized strategy
with probability γ2τ

Q . Setting the soundness parameter in Theorem 3.3 η := δ
4 ·

γ2τ
Q completes the

proof of the soundness Lemma 4.2, and therefore also Theorem 1.1.

Acknowledgment We thank Siu On Chan for sharing the latest version of his J. ACM paper [6]
and explaining the underlying invariance principle.
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A Variants of Label Cover

A.1 Hypergraph Label Cover

Theorem A.1 (Restatement of Theorem 3.3). For every integer Q > 2, all T > 1, and η ∈ (0, 1), the
following is true. Given an instance of Q-Hypergraph Label Cover that is weakly-dense and T -smooth, it is
NP-hard to distinguish

• Completeness: There exists a labeling l that strongly satisfies every hyperedge.

• Soundness: No labeling l can weakly satisfy η fraction of hyperedge.

Proof. We reduce from T -smooth Label Cover first defined in Khot [19] to T -smoothQ-Hypergraph
Label Cover using the technique of Gopalan et al. [13].

An instance of Label Cover consists of a biregular bipartite graph G = (U ∪ V,E) where each
edge e = (u, v) is associated with a projection πe : [R]→ [L] for some positive integers R and L. A
labeling l : U ∪ V → [R] satisfies e when πe(l(v)) = l(u). It is called T -smooth when for any i 6= j,
Pre[πe(i) = πe(j)] 6 1

T . The following theorem shows hardness of T -smooth Label Cover.

Theorem A.2 ([19]). For large enough T , and η′ > 0, the following is true. Given an instance Label Cover
that is T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that satisfies edge.

• Soundness: No labeling l can satisfy η′ fraction of hyperedge.

Given an instance of Label Cover G = (UG ∪ VG, EG), the corresponding instance of H =
(VH , EH) is produced by

• VH = VG

• For u ∈ UG andQ distinct neighbors v1, . . . , vQ ∈ VG, we add a hyperedge e = {v1, . . . , vQ} ∈
EH with the associated permutations πe,vi := π(u,vi). Say this hyperedge is formed from u. We
can have the same hyperedges formed from different vertices.

Fix v ∈ VH and i 6= j ∈ [R].

Pr
e∈EH :v∈e

[πe,v(i) = πe,v(j)] = Pr
e=(u,v)∈EG

[πe(i) = πe(j)] 6
1

T
,

so the resulting instance is also T -smooth.
For weak density, fix I ⊆ VH of measure ε, and let ε(u) be the fraction of neighbors of u con-

tained in I . By requiring the degree of u much larger than Q, the fraction of hyperedges induced
by I , out of the hyperedges formed from u, is at least ε(u)Q

2 . Then the fraction of hyperedges
induced by I is at least

E
u∈UG

[
ε(u)Q

2
] =

1

2
E

u∈UG
[ε(u)Q] >

1

2
( E
u∈UG

[ε(u)])Q >
εQ

2
.

For completeness, given a labeling l : UG∪VG → [R] that satisfies every edge ofG, its projection
to VG = VH will strongly satisfy every hyperedge of H .

19



For soundness, let l : VH → [R] be a labeling that weakly satisfies η fraction of hyperedges
for some η > 0. Let η(u) be the fraction of hyperedges satisfied by l formed from u, out of all
hyperedges formed from u. Consider the following randomized strategy for G: VG is labelled by
l, and each u ∈ UG independently samples one of its neighbor v and set l(u) ← π(u,v)(l(v)). The
expected fraction of edges incident on u satisfied by this decoding strategy is (letN(u) be the set of
neighbors of u and (N(u)PQ) be the set of Q-tuples of the neighbors where Q vertices are pairwise
distinct)

E
v1∈N(u)

[ Pr
v2∈N(u)

[π(u,v1)(l(v1)) = π(u,v2)(v2)]]

= Pr
(v1,...,vQ)∈N(u)Q

[π(u,v1)(l(v1)) = π(u,v2)(v2)]

> Pr
(v1,...,vQ)∈(N(u)PQ)

[π(u,v1)(l(v1)) = π(u,v2)(v2)]

>
1(
Q
2

) Pr
(v1,...,vQ)∈(N(u)PQ)

[e := {v1, . . . , vQ} is weakly satisfied]

=
1(
Q
2

) Pr
{v1,...,vQ}∈(N(u)

Q )
[e := {v1, . . . , vQ} is weakly satisfied]

=
η(u)(
Q
2

) .
Overall, the strategy satisfies η

(Q2)
fraction of edges of G in expectation. Setting η′ < η

(Q2)
, we have

contradiction, completing the proof of soundness.

A.2 (Q+ 1)-Bipartite Hypergraph Label Cover

An instance of (Q+ 1)-Bipartite Hypergraph Label Cover is based on a (Q+ 1)-uniform bipartite
hypergraph H = (U ∪ V,E), where each hyperedge e contains one vertex from U and Q vertices
from V . For every hyperedge e = {u, v1, . . . , vQ} such that u ∈ U and vq ∈ V , each vq is associated
with a projection πe,vq : [R] → [L] for some positive integers R and L. A labeling l : U ∪ V → [R]
strongly satisfies e = {v1, . . . , vQ} when l(u) = πe,v1(l(v1)) = · · · = πe,vQ(l(vQ)) (we can imagine
that πe,u is also defined as the identity). It weakly satisfies e when πe,vi(l(vi)) = πe,vj (l(vj)) for some
i 6= j or πe,vi(l(vi)) = l(u) for some i. As usual, the instance is T -smooth if for any v ∈ V and i 6= j,

Pr
e∈E:v∈e

[πe,v(i) = πe,v(j)] 6
1

T
.

Theorem A.3. For any Q > 2, large enough T , and η > 0, the following is true. Given an instance of
(Q+ 1)-Bipartite Hypergraph Label Cover that is weakly-dense and T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that strongly satisfies every hyperedge.

• Soundness: No labeling l can weakly satisfy η fraction of hyperedges.

Proof. As in Theorem 3.3, we reduce from T -smooth Label Cover.
Given an instance of Label Cover G = (UG ∪ VG, EG), the corresponding instance of H =

(UH ∪ VH , EH) is produced by

• UH = UG, VH = VG
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• For u ∈ UG andQ distinct neighbors v1, . . . , vQ ∈ VG, we add a hyperedge e = {u, v1, . . . , vQ} ∈
EH with the associated permutations πe,vi := π(u,vi). Say this hyperedge is formed from u.

Fix v ∈ VH and i 6= j ∈ [R].

Pr
e∈EH :v∈e

[πe,v(i) = πe,v(j)] = Pr
e=(u,v)∈EG

[πe(i) = πe(j)] 6
1

T
,

so the resulting instance is also T -smooth.
For completeness, given a labeling l : UG ∪ VG → [R] that satisfies every edge of G, it is easy to

check that the same l will strongly satisfy every hyperedge of H .
For soundness, let l : VH → [R] be a labeling that weakly satisfies η fraction of hyperedges

for some η > 0. Let η(u) be the fraction of hyperedges satisfied by l formed from u, out of all
hyperedges formed from u. Consider the following randomized strategy for G:

• VG is labeled by l.

• Each u ∈ UG is assigned l(u) with probability half. With the remaining 1/2 probability, it
independently samples one of its neighbors v and sets l(u)← π(u,v)(l(v)).

Let N(u) be the set of neighbors of u and (N(u)PQ) be the set of Q-tuples of the neighbors where
Q vertices are pairwise distinct. The expected fraction of edges incident on u satisfied by this
decoding strategy is

1

2
E

v1∈N(u)
[ Pr
v2∈N(u)

[π(u,v1)(l(v1)) = π(u,v2)(l(v2))]] +
1

2
Pr

v∈N(u)
[π(u,v)(l(v)) = l(u)]

=
1

2
Pr

(v1,...,vQ)∈N(u)Q
[π(u,v1)(l(v1)) = π(u,v2)(l(v2)) or π(u,v1)(l(v1)) = l(u)]

>
1

2
Pr

(v1,...,vQ)∈(N(u)PQ)
[π(u,v1)(l(v1)) = π(u,v2)(l(v2)) or π(u,v1)(l(v1)) = l(u)]

>
1

2
(
Q
2

) Pr
(v1,...,vQ)∈(N(u)PQ)

[e := {v1, . . . , vQ} is weakly satisfied]

=
1

2
(
Q
2

) Pr
{v1,...,vQ}∈(N(u)

Q )
[e := {v1, . . . , vQ} is weakly satisfied]

=
η(u)

2
(
Q
2

) .
Overall, the strategy satisfies η

2(Q2)
fraction of edges of G in expectation. Setting η′ < η

2(Q2)
, we

have contradiction, completing the proof of soundness.

B Proofs about Influence, Noise, and Invariance

B.1 Influences

Lemma B.1 (Restatement of Lemma 3.2). Let (Ω1 × · · · × Ωk, µ) be k probability spaces and (ΩL
1 ×

· · · ×ΩL
k , µ

⊗L) be its product space. Let fi : (Ωi)
L → [−1, 1], and F : ΩL

1 × · · · ×ΩL
k → [−1, 1] such that

F (x1, . . . , xk) =
∏

16i6k fi(xi). Then for 1 6 j 6 L, Infj(F ) 6 k
∑k

i=1 Infj(fi).
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Proof. We use (xi)−j ∈ (Ωi)
L−1 to denote xi except the jth coordinate.

Infj(F ) = E
[(x1)−j ,...,(xk)−j ]

E
[(x1)j ,...,(xk)j ,(x′1)j ,...,(x′k)j ]

[(F (x1, . . . , xk)− F (x′1, . . . , x
′
k))

2]

= E
[(x1)−j ,...,(xk)−j ]

E
[(x1)j ,...,(xk)j ,(x′1)j ,...,(x′k)j ]

[(
∏
i

fi(xi)−
∏
i

fi(x
′
i))

2]

6 k
∑
i

E
[(x1)−j ,...,(xk)−j ]

E
[(x1)j ,...,(xk)j ,(x′1)j ,...,(x′k)j ]

[(fi(xi)− fi(x′i))2]

= k
∑
i

E
[(xi)−j ]

E
[(xi)j ,(x′i)j ]

[(fi(xi)− fi(x′i))2]

= k
∑
i

Infj(fi)

where the inequality follows from the fact that

∀a1, . . . , ak, b1, . . . , bk ∈ [−1, 1] : (
∏
i

ai −
∏
i

bi)
2 6 k ·

∑
i

(ai − bi)2

proven in Lemma 4 of Samorodnitsky and Trevisan [30].

B.2 Block Noise to Individual Noise

Theorem B.2 (Restatement of Theorem 4.5). Let (Ωd1
1 × · · · × ΩdK

K , ν) be joint probability spaces such
that the marginal of each copy of Ωi is νi, and the marginal of Ωdi

i is ν⊗dii . Fix Fi : (Ωdi
i )L → R for each

i = 1, . . . ,K with an associated projection πi : [diL] → [L] such that |π−1
i (j)| = di for 1 6 j 6 L.

For any 0 6 ρ 6 1, the noise operator TρFi and the block noise operator T ρFi under πi is defined as in
Section 3. Fix a positive integer J and consider F bad

i under πi and J . Suppose max16i6K ‖Fi‖2 6 1 and
ξ := max16i6K ‖F bad

i ‖2. Then we have,

| E
(x1,...,xK)∼µ⊗L

[
∏

16i6K

T 1−γFi(xi)]− E
(x1,...,xK)∼µ⊗L

[
∏

16i6K

T1−γFi(xi)]| 6 2 · 3K((1− γ)J + ξ).

Proof. For each 1 6 i 6 K, we decompose Fi as the follows:

F shattered
i =

∑
S⊆[diL]:S shattered under πi

(Fi)S

F large
i =

∑
S⊆[diL]:S not shattered and |πi(S)|>J

(Fi)S

F bad
i =

∑
S⊆[diL]:S not shattered and |πi(S)|<J

(Fi)S .

Consider C := {shattered, large, bad}K . Expanding Fi = (F shattered
i + F large

i + F bad
i ), we have∏

16i6K

T 1−γFi =
∑
c∈C

∏
16i6K

T 1−γF
ci
i

and ∏
16i6K

T1−γFi =
∑
c∈C

∏
16i6K

T1−γF
ci
i
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The quantity we want to bound can be also decomposable as∣∣∣∑
c∈C

E[
∏

16i6K

T 1−γF
ci
i −

∏
16i6K

T1−γF
ci
i ]
∣∣∣.

Since T 1−γF
shattered
i = T1−γF

shattered
i , the contribution of the case c = {shattered}K is 0. We bound

the other two cases of c.

• ci′ = large for some i′:

|E[
∏

16i6K

T 1−γF
ci
i ]| 6 ‖T 1−γF

large
i′ ‖2‖

∏
i 6=i′

T 1−γF
ci
i ‖2

6 (1− γ)J‖F large
i′ ‖2 6 (1− γ)J .

Similarly, |E[
∏

16i6K T1−γF
ci
i ]| 6 (1− γ)J and the contribution from such c is at most 2(1−

γ)J .

• ci′ = bad for some i′:

|E[
∏

16i6K

T 1−γF
ci
i ]| 6 ‖T 1−γF

bad
i′ ‖2‖

∏
i 6=i′

T 1−γF
ci
i ‖2 6 ξ .

Similarly, |E[
∏

16i6K T1−γF
ci
i ]| 6 ξ and the contribution from such c is at most 2ξ.

Since there are at most 3K choices for c, the total error is bounded by 2 · 3K((1− γ)J + ξ).

B.3 Invariance

The following lemma is the basic building block that enables the induction used in proof of the
main invariance principle (Theorem 4.6) used in our framework. It is essentially implied by a
theorem stated in a more general setup by Wenner [31, Theorem 3.12]. For completeness, we
present a proof below in simpler notation that fits for our purposes.

Lemma B.3. Let (Ωk
1 ×Ω2, ν) be (k+ 1) correlated spaces (k > 2) such that each copy of Ω1 has the same

marginal, and any one copy of Ω1 and Ω2 are independent. Let F ∈ L[0,1](Ω
L
1 ), and G ∈ L(ΩL

2 ). Suppose
that

∑
16j6L Infj [F ] 6 Γ and ∑

16j6L

Infj [F ] Infj [G] 6 τ.

Then, ∣∣∣ E
x1,...,xk,y

[
∏

16i6k

F (xi)G(y)]− E
x1,...,xk,y

[
∏

16i6k

F (xi)]E
y
[G(y)]

∣∣∣ 6 2k+1
√

Γτ .

Proof. Let ν ′ be the distribution where the marginals of Ωk
1 and Ω2 are the same as those of ν, but Ωk

1

and Ω2 are independent. Fix j ∈ [L]. Let (x1, . . . , xk, y) be sampled such that ((x1)j′ , . . . , (xk)j′ , yj′) ∼
ν for j′ < j and ((x1)j′ , . . . , (xk)j′ , yj′) ∼ ν ′ for j′ > j. Let (x′1, . . . , x

′
k, y
′) be the same except that

((x′1)j , . . . , (x
′
k)j , yj) ∼ ν. We want to bound∣∣∣ E

x1,...,xk,y
[
∏

16i6k

F (xi)G(y)]− E
x′1,...,x

′
k,y
′
[
∏

16i6k

F (x′i)G(y′)]
∣∣∣,
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since the LHS with j = 1 and the RHS with j = L are the two expectations we are interested in.
Decompose F into the following two parts.

F relevant =
∑
S:j∈S

FS

F not =
∑
S:j 6∈S

FS

Note that ‖F relevant‖22 = Infj [F ]. Decompose G = Grelevant + Gnot in the same way. Let C =

{relevant, not}k+1. The term we wanted to bound now becomes∣∣∣∣∑
c∈C

(
E

x1,...,xk,y
[
∏

16i6k

F ci(xi)G
ck+1(y)]− E

x′1,...,x
′
k,y
′
[
∏

16i6k

F ci(x′i)G
ck+1(y′)]

) ∣∣∣∣ . (6)

If ck+1 = not or c1 = · · · = ck = not, the contribution from c is zero because the marginals of
((x1)j , · · · , (xk)j) and yj are the same with those of ((x′1)j , . . . , (x

′
k)j) and y′j respectively. Further-

more, the same conclusion holds when ck+1 = relevant and exactly one of c1, . . . , ck is relevant,
since one copy of Ω1 and Ω2 are independent and ((xi)j , yj) and ((x′i)j , y

′
j) have the same distri-

bution. Thus a c ∈ C with nonzero contribution to (6) must satisfy ci1 = ci2 = ck+1 = relevant for
some i1 6= i2. For such c,∣∣ E

x1,...,xk,y
[
∏

16i6k

F ci(xi)G
ck+1(y)]

∣∣
6 ‖F relevant(xi1)Grelevant(y)‖2‖F relevant(xi2)‖2‖

∏
i 6=i1,i2

F ci‖∞ By Hölder inequality

= ‖F relevant‖2‖Grelevant‖2‖F relevant‖2‖
∏

i 6=i1,i2

F ci‖∞ By independence

6
√
Infj [F ]2 Infj [G],

where the last inequality used the fact that F not(x) = Ex′ [F (x′)|x′[L]\j = x[L]\j ] ∈ [0, 1] and
F relevant(x) = F (x)− F not(x) ∈ [−1, 1]. There are at most 2k choices for such c and∣∣∣ E

x′1,...,x
′
k,y

[
∏

16i6k

F ci(x′i)G
ck+1(y′)]

∣∣∣ 6√Infj [F ]2 Infj [G]

can be shown similarly, so∣∣∣ E
x1,...,xk,y

[
∏

16i6k

F (xi)G(y)]− E
x′1,...,x

′
k,y
′
[
∏

16i6k

F (x′i)G(y′)]
∣∣∣ 6 2k+1

√
Infj [F ]2 Infj [G].

Summing over all 1 6 j 6 J , we conclude that∣∣∣ E
x1,...,xk,y

[
∏

16i6k

F (xi)G(y)]− E
x1,...,xk

[
∏

16i6k

F (xi)]E
y
[G(y)]

∣∣∣
6 2k+1

∑
16j6L

√
Infj [F ]2 Infj [G]

6 2k+1

√ ∑
16j6L

Infj [F ] Infj [G]

√ ∑
16j6L

Infj [F ] (by Cauchy-Schwartz)

6 2k+1
√

Γτ .
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Theorem B.4 (Restatement of Theorem 4.6). Let (Ωk1
1 ×· · ·×Ω

kQ
Q , ν) be correlated spaces (k1, . . . , kQ−1 >

2, kQ > 1) where each copy of Ωq has the same marginal and independent of
∏
q′ 6=q Ω

kq
q′ . Let kmax =

maxq kq and ksum =
∑

q kq. For 1 6 q 6 Q, let Fq ∈ L[0,1](Ω
L
q ). Suppose that for all 1 6 q < Q,∑

16j6L Infj [Fq] 6 Γ and ∑
16j6L

Infj [Fq](Infj [Fq+1] + · · ·+ Infj [FQ]) 6 τ.

Then, ∣∣∣ E
xq,i

[
∏

16q6Q,16i6kq

Fq(xq,i)]−
∏

16q6Q

E
xq,i

[
∏

16i6kq

Fq(xq,i)]
∣∣∣ 6 Q · 2kmax+1

√
Γk2

sumτ .

Proof. . We use induction on Q. When Q = 2, the application of Lemma B.3 (setting F ← F1, k ←
k1, Ω2 ← Ωk2

2 , G(x2,1, . . . , x2,k2) ←
∏

16i6k2 F2(x2,i)) and applying Lemma 3.2 to have Infj [G] 6
k2

2 Infj [F2]) implies the theorem.
Assuming the theorem holds for Q− 1, the application of Lemma B.3 with

• F ← F1, k ← k1, Ω2 ← Ωk2
2 × · · · × Ω

kQ
Q , G(xq,i)←

∏
26q6Q,16i6k2 Fq(xq,i)

• Infj [G] 6 k2
sum(Infj [F2] + · · ·+ Infj [FQ]) by Lemma 3.2

gives ∣∣∣ E
xq,i

[
∏

16q6Q,16i6kq

Fq(xq,i)]−
∏

16q6Q

E
xq,i

[
∏

16i6kq

Fq(xq,i)]
∣∣∣

6
∣∣∣ E
xq,i

[
∏

16q6Q,16i6kq

Fq(xq,i)]− E
x1,i

[
∏

16i6k1

F1(x1,i)] E
xq,i

[
∏

26q6Q,16i6kq

Fq(xq,i)]
∣∣∣

+
∣∣∣ ∏

16q6Q

E
xq,i

[
∏

16i6kq

Fq(xq,i)]− E
x1,i

[
∏

16i6k1

F1(x1,i)] E
xq,i

[
∏

26q6Q,16i6kq

Fq(xq,i)]
∣∣∣

62kmax+1
√

Γk2
sumτ + (Q− 1)2kmax+1

√
Γk2

sumτ

=Q · 2kmax+1
√

Γk2
sumτ .

C Reverse Hypercontractivity

The version of reverse hypercontractivity we use is stated below.

Theorem C.1 ([24]). Let (Ω, µ) be a probability space. Fix 0 6 ρ < 1. There exist q < 0 < p < 1 such
that for any f ∈ L[0,∞)(Ω),

‖Tρf‖q > ‖f‖p.

We now generalize the above reverse hypercontractivity result to more general operators, ex-
tending the noise operator Tρ in two ways.

• Between two difference spaces: while Tρ is the Markov operator associated with two cor-
related copies of the same probability space (Ω1 × Ω1, ν), we are interested in the Markov
operator T associated with two correlated spaces (Ω1 × Ω2, ν

′), possibly Ω1 6= Ω2.
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• Arbitrary distribution instead of diagonal distribution: ν samples x, y independently accord-
ing to the marginal and output (x, x) with probability ρ and (x, y) with probability 1 − ρ.
Since Ω1 6= Ω2, the former does not make sense. Instead, with probability ρ, ν ′ samples
(x, y) according to another arbitrary distribution ν ′′, as long as the marginals of x and y are
preserved.

This extension is based on simple observation that such an operator T can be expressed as
T = PTρ for some Markov operator P : L(Ω1) → L(Ω2) which shares the marginals with T . The
following lemma shows that any Markov operator does not decrease q-norm when q 6 1.

Lemma C.2. Let (Ω1 × Ω2, µ) be two correlated spaces, with the marginal distribution µi of Ωi. Let P be
the Markov operator associated with it. For any q 6 1 and f ∈ L(0,∞)(Ω1),

‖Pf‖q > ‖f‖q.

Proof. Since x 7→ xq is concave,

‖Pf‖qq = E
y∼µ2

[(Tf(y))q] = E
y∼µ2

[( E
x∼µ1

[f(x)|y])q] > E
y∼µ2

[ E
x∼µ1

[f(x)q|y])] = E
x∼µ1

[f(x)q] = ‖f‖qq .

The following main lemma says that whenever Tρ exhibits the reverse hypercontractive be-
havior for some p, q, the same conclusion holds for Markov operators with the same parameters.

Lemma C.3 (Reverse Hypercontractivity of two correlated spaces). Let (Ω1×Ω2, µ) be two correlated
spaces, and with the marginal distribution µi of Ωi. Let T be the Markov operator associated with it.
Suppose that T = ρP + (1 − ρ)J1,2 for 0 6 ρ < 1, where J1,2 is the Markov operator associated with
(Ω1 × Ω2, µ1 ⊗ µ2) and P is the Markov operator associated with (Ω1 × Ω2, ν) for some ν with the same
marginals as µ. Let q < p < 1 be such that ‖Tρf‖q > ‖f‖p for any f ∈ L[0,∞). Then,

‖Tf‖q > ‖f‖p.

Proof. Note that Tρ = ρI1 + (1 − ρ)J1, where I1 is the identity operator, and J1 is the Markov
operator associated with (Ω2

1, µ
⊗2
1 ). The following simple relationship holds between T and Tρ.

PTρ = ρPI1 + (1− ρ)PJ1 = ρP + (1− ρ)J1,2 = T

With T = PTρ, it is easy to see that

‖Tf‖q = ‖PTρf‖q > ‖Tρf‖q > ‖f‖p,

where the first inequality follows from Lemma C.2.

Along the way to apply the above result to our setting, we introduce a basic intermediate
problem which may be of independent interest.

Question C.4. Let (Ω1 × Ω2, µ) be two correlated spaces. Given two (biased, not necessarily Boolean)
hypercubes ΩL

1 and ΩL
2 , their subsets S ⊆ ΩL

1 , T ⊆ ΩL
2 , and two random points x ∈ ΩL

1 , y ∈ ΩL
2 such that

each (xi, yi) is sampled from µ independently, what is the probability that x ∈ S and y ∈ T?
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By using the standard technique of the reverse Hölder inequality [23] and two-function hy-
percontractivity induction [25], the following theorem shows that as long as µ contains nonzero
copy of product distributions (equivalent to T = ρP + (1− ρ)J1,2 for ρ < 1), the above probability
is a positive number depending only on the measure of S and T , and ρ (but crucially it does not
depend on L).

Lemma C.5. Let (Ω1,Ω2, µ), ρ, T, P be defined as Lemma C.3. There exist 0 < p, q < 1 such that for any
f ∈ L[0,∞)(Ω

L
1 ) and g ∈ L[0,∞)(Ω

L
2 ),

E
(x,y)∼µ⊗L

[f(x)g(y)] = E
y∼µ⊗L2

[g(y)T⊗Lf(y)] > ‖f‖p‖g‖q

Proof. The equality holds by definition, so it only remains to prove the inequality. We first prove
it L = 1, and do the induction on L. Invoke Theorem C.1 to get q′ < 0 < p < 1 such that
‖Tρf‖q′ > ‖f‖p. Let 0 < q < 1 be such that 1

q + 1
q′ = 1. By the reverse Hölder inequality and

Lemma C.3,
E

(x,y)∼µ
[f(x)g(y)] = E

y∼µ2
[g(y)Tf(y)] > ‖Tf‖q′‖g‖q > ‖f‖p‖g‖q

as desired.
For L > 1, we use the notation x = (x′, xL) where x′ = (x1, . . . , xL−1), and similar notation for

y. Note that (x′, y′) ∼ µ⊗L−1 and (xL, yL) ∼ µ. We also write fxL for the restriction of f in which
the last coordinate is fixed to value xL, and similarly for g.

E
(x,y)∼µ⊗L

[f(x)g(y)] = E
(xL,yL)∼µ

E
(x′,y′)∼µ⊗L−1

[fxL(x′)gyL(y′)] > E
(xL,yL)∼µ

[‖fxL‖p,µ⊗L−1
1
‖gyL‖q,µ⊗L−1

2
]

by induction. Let F,G be the function defined by F (xL) = ‖fxL‖p, G(yL) = ‖gyL‖q.

E
(xL,yL)∼µ

[F (xL)G(yL)] > ‖F‖p,µ1‖G‖q,µ2

by the base case. Finally,

‖F‖p,µ1 = E
xL∼µ1

[|F (xL)|p]1/p = ( E
xL∼µ1

E
x′∼µ⊗L−1

1

[|fxL |
p])1/p = ‖f‖p,µ⊗L1

and similarly ‖G‖q,µ2 = ‖g‖q,µ⊗L2
. The induction is complete.

By another induction on the number of functions, we can extend the answer to the previous
question to k > 2.

Question C.6. Let (Ωk, µ) be k correlated copies of the same space. Given a hypercube ΩL, its subsets
S ⊆ ΩL, and k random points x1, . . . , xk ∈ ΩL such that each ((x1)1, . . . , (xk)i) is sampled from µ
independently, what is the probability that xi ∈ S for all i?

Theorem C.7 (Restatement of Theorem 4.3). Let (Ωk, ν) be k correlated spaces with the same marginal
σ for each copy of Ω. Suppose that ν is described by the following procedure to sample from Ωk.

• With probability ρ (0 6 ρ < 1), it samples from another distribution on Ωk, which has the marginal
σ for each copy of Ω.

• With probability 1− ρ, it samples from σ⊗k.
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Let F1, . . . , Fk ∈ L[0,1](Ω
L) such that E[Fi] > ε > 0 for all i. Then there exists ζ := ζ(ρ, ε, k) = εOρ,k(1) >

0 (independent of L) such that
E

x1,...,xk
[
∏

16i6k

Fi(xi)] > ζ

where for each 1 6 j 6 L, ((x1)j , . . . , (xk)j) is sampled according to ν.

Proof. We proceed by the induction on k. For k = 1, ζ = ε works.
For k > 1, consider two correlated spaces (Ω × Ωk−1, ν) where the marginal of Ω is σ and the

marginal of Ωk−1 is ν ′. Note that the marginal of ν ′ on each copy of Ω is still σ. Invoke Lemma C.5
to obtain 0 < p, q < 1 be such that

E
(x,y)∼ν⊗L

[F (x)G(y)] > ‖F‖p,σ⊗L‖G‖q,ν′⊗L

for any F ∈ L[0,∞)(Ω
L) and G ∈ L[0,∞)(Ω

k−1)L.

E
x1,...,xk

[
∏

16i6k

Fi(xi)] > ‖F1‖p,σ⊗L‖
k∏
i=2

Fi(xi)‖q,ν′⊗L

Since Fi ∈ L[0,1](Ω
L), ‖Fi‖p > ε1/p. Since ν ′ can be also described by the procedure in the statement

of the theorem (except that it is on Ωk−1), we obtain ζ(ρ, ε, k − 1) such that

‖
k∏
i=2

Fi(xi)‖q,ν′⊗L >
(

E
x2,...,xk

[

k∏
i=2

Fi(xi)]
)1/q

> ζ(ρ, ε, k − 1)1/q

Therefore, ζ(ρ, ε, k) = ζ(ρ, ε, k − 1)1/qε1/p completes the induction. Since p, q depend only on ρ,
ζ(ρ, ε, k) = εOρ,k(1) in every step of induction.

Remark C.8. The same statement holds even when we replace Ωk by the product of k different spaces
Ω1 × · · · × Ωk.

D Hardness of Rainbow Coloring in More Balanced Colorable Graphs

In this section, we prove the following theorem that shows hardness of finding a rainbow k-
coloring even in presence of an almost balanced rainbow k-coloring.

Theorem D.1 (Restatement of Theorem 1.4). For any Q, k > 2, there exists given a Qk-uniform hyper-
graph H = (V,E), it is NP-hard to distinguish the following cases.

• Completeness: There is a k-coloring c : V → [k] such that for every hyperedge e ∈ E and color
i ∈ [k], either (1) each color appears Q times, or (2) k − 2 colors appear Q times and the other two
colors appear Q− 1 and Q+ 1 respectively.

• Soundness: There is no independent set of size 1− 1
k . In particular, H is not rainbow k-colorable.

28



D.1 Distribution

We first define the distribution of Qk points (xq,i)q∈[Q],i∈[k]. The distribution is quite similar to the
one used for Theorem 1.1, but is more structured. Let Ω = [k], Ω = Ωd, and ω be the uniform
distribution on Ω. Qk points xq,i ∈ Ω are sampled by the following procedure.

• For q ∈ [Q] and 1 6 j 6 d, sample ((xq,1)j , . . . , (xq,k)j) ∈ Sk uniformly at random.

• Sample q ∈ [Q], i ∈ [k], and resample xq,i uniformly and independently from ω⊗d.

Let µ′ be the whole distribution of (xq,i)q,i. For any q ∈ [Q], let µ be the marginal distribution of
(xq,i)i ∈ Ω

k, which is the same for all q. For any q ∈ [Q] and i ∈ [k], with probability 1
Qk , each xq,i

is completely independent from all the other x’s. By the same argument as before, the correlation

of these Qk spaces satisfies ρ(Ω
Qk

;µ′) 6
√

1− 1
Qk .

D.2 Reduction and Completeness

We reduce from Q-Hypergraph Label Cover. Given a Q-uniform hypergraph H = (V,E) with Q
projections from [R] to [L] for each hyperedge, the resulting instance of Qk-Hypergraph Coloring
is H ′ = (V ′, E′) where V ′ = V × [k]R. Let Cloud(v) := {v} × [k]R. The set of hyperedges E′ is
described by the following procedure.

• Sample a random hyperedge e = (v1, . . . , vQ) with associated permutations πe,v1 , . . . , πe,vQ
from E.

• Sample (xq,i)16q6Q,16i6k ∈ ΩR in the following way. For each 1 6 j 6 L, sample ((xq,i)π−1
e,vq (j))q,i

from (Ω
Qk
, µ′).

• Add a hyperedge between Qk vertices {(vq, xq,i)}q,i to E′. We say this hyperedge is formed
from e ∈ E.

Given the reduction, completeness is easy to show.

Lemma D.2. If an instance of Q-Hypergraph Label Cover admits a labeling that strongly satisfies every
hyperedge e ∈ E, there is a coloring c : V ′ → [k] such that every hyperedge e ∈ E′ has either (1) each color
appears Q times, or (2) k− 2 color appears Q times, and the other two colors appear Q− 1 and Q+ 1 times
respectively.

Proof. Let l : V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E. For any v ∈
V, x ∈ [k]R, let c(v, x) = (x)l(v). For any hyperedge e = {(vq, xq,i)}q,i ∈ E

′, c(vq, xq,i) = (xq,i)l(vq).
All but one q satisfies

{
(xq,1)l(vq), . . . , (xq,k)l(vq)

}
= [k], and the other q satisfies

|
{

(xq,1)l(vq), . . . , (xq,k)l(vq)
}
| > k − 1 .

Therefore, the strong condition stated in the lemma is satisfied.
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D.3 Soundness

Lemma D.3. There exists η := η(Q, k) such that if I ⊆ V ′ of measure 1− 1
k is independent, the correspond-

ing instance of Q-Hypergraph Label Cover admits a labeling that weakly satisfies η fraction of hyperedges.

The proof is almost identical to the one presented in Section 4.3, replacing reverse hypercon-
tractivity by a simple union bound argument.

STEP 1. Fixing a Good Hyperedge. Let I ⊆ V ′ be of measure 1 − 1
k . Let fv be the indicator

function of I ∩ Cloud(v). Let ε := 1
2k2

so that (k − 1)( 1
k + 2ε) = k2−1

k2
< 1. By averaging, at least ε

fraction of vertices has E[fv] > 1− 1
k − ε — call these vertices heavy.

By the same argument given in Section 4.3, for a large enough integer J and smoothness pa-
rameter T , we have δ := δ(ε,Q) fraction of hyperedges of E are induced by heavy vertices and
good for every vertex they contain. Throughout the rest of the section, fix such a hyperedge
e = (v1, . . . , vQ) and the associated permutations πe,v1 , . . . , πe,vQ . For simplicity, let fq := fvq and
πq := πe,vq for q ∈ [Q]. We now measure the fraction of hyperedges induced by I out of the
hyperedges formed from e, which is

E
xq,i

[
∏

16q6Q,16i6k

fq(xq,i)] (7)

STEP 2. Lower Bounding in Each Hypercube. Fix q ∈ [Q]. Let ν be µ conditioned on that
xq,1 is chosen to rerandomized (which happens with probability 1

Qk ). Since E[fq] > 1 − 1
k − ε,

Pr[fq(xq,i) 6 ε] 6 1
k + 2ε.

E[
∏

16i6K

fq(xq,i)] = E[fq(x1)]E[
∏

26i6K

fq(xq,i)]

>
1

2
· εk−1 Pr[fq(xq,2), . . . , fq(xq,k) > ε]

>
1

2
· εk−1(1− (k − 1)(

1

k
+ 2ε))

=
1

2
· εk−1 · 1

k2
.

Let ζ := εk−1

2k2
. The only property of fq used is nonnegativity and the expectation which are pre-

served by any noise operator, so for any γ,

E[
∏

16i6k

T1−γfq(xq,i)] > ζ. (8)

STEP 3. Introducing Implicit Noise. This step is completely identical to Section 4.3. As a result,
by choosing J and T large enough, if I is independent, for some γ, from (7) we have

E
q,i

[
∏

16q6Q,16i6k

T1−γfq(xq,i)] 6
ζQ

2
. (9)
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STEP 4. Invariance. This step is also completely identical to Section 4.3. As a result, from (8)
and (9), there exists τ and q ∈ {1, . . . , Q− 1} such that∑

16j6L

Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ]) > τ.

STEP 5. Decoding Strategy. The decoding strategy and the analysis are also identical to Sec-
tion 4.3. η := δ · γ

2τ
Q completes the proof of soundness.

E K-Hypergraph Vertex Cover

In this section, we prove the following two theorems, both implying that it is NP-hard to approx-
imate K-Hypergraph Vertex Cover with in a factor of K − 1− ε.

Theorem E.1 (Restatement of Theorem 1.5). For any ε > 0 and K > 3, given a K-uniform hypergraph
H = (V,E), it is NP-hard to distinguish the following cases.

• Completeness: There is a vertex cover of measure 1
K−1 .

• Soundness: Every I ⊆ V of measure ε induces at least εOK(1) fraction of hyperedges.

Theorem E.2 (Restatement of Theorem 1.6). For any ε > 0 and K > 3, given a K-uniform hypergraph
H = (V,E), it is NP-hard to distinguish the following cases.

• Completeness: There exist V ∗ ⊆ V of measure ε and a coloring c : [V \ V ∗]→ [K − 1] such that for
every hyperedge of the induced hypergraph on V \ V ∗, K − 2 colors appear once and the other color
twice. Therefore, H has a vertex cover of size at most 1

K−1 + ε.

• Soundness: There is no independent set of measure ε.

The above two theorems are not comparable to each other. In the completeness case, The-
orem 1.5 ensures a smaller vertex cover, while Theorem 1.6 guarantees richer structure. In the
soundness case, Theorem 1.5 gives a stronger density. Since they differ only in the test distribu-
tion, we prove Theorem 1.6 in details and introduce the distribution for Theorem 1.5 at the end of
this section.

E.1 Multilayered Label Cover

We reduce Multilayered Label Cover defined by Dinur et al. [10] with the smoothness property to
K-Hypergraph Vertex Cover. An instance of Multilayered Label Cover with A layers is based on
a graph G = (V,E) where V = V1 ∪ · · · ∪ VA and E = ∪16i<j6AEi,j . Let [Ri] be the label set of
the variables in the Vi such that Ri divides Rj for all i < j. Any edge e ∈ Ei,j is between u ∈ Vi
and v ∈ Vj , and associated with a projection πe : [Rj ] → [Ri]. Given a labeling l : V → [RA], an
edge e = (u, v) with u ∈ Vi and v ∈ Vj (i < j) is satisfied when πe(l(v)) = l(u). The following are
desired properties of an instance.

• Weakly dense: for any ε > 0 and A > d4
ε e, given m = d4

ε e layers i1 < · · · < im and given any
sets Iij ⊆ Vij with |Iij | > ε|Vij |, there exist j < j′ such that at least ε3

16 fraction of the edges
between Vij and Vij′ are indeed between Iij and Iij′ .
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• T -smooth: for any 1 6 i < j 6 A, v ∈ Vj and a 6= b ∈ [Rj ],

Pr
u∈Vi:(u,v)∈Ei,j

[πu,v(a) = πu,v(b)] 6
1

T
.

Theorem E.3 ([19]). For every η > 0 and large enough A, T , given an instance of Multilayered Label
Cover with A layers that is weakly dense and T -smooth, it is NP-hard to distinguish the following cases:

• Completeness: There exists a labeling l that satisfies every edge.

• Soundness: No labeling l can satisfy η fraction any Ei,j .

E.2 Distribution

We first define the distribution of K points, one in a single cell and the other K − 1 in a block of
size d. Let Ω = {∗, 1, . . . ,K − 1} and Ω = Ωd. Let ω be the distribution on Ω such that ω(∗) = ε
and ω(1) = · · · = ω(K − 1) = 1−ε

K−1 . The K points x ∈ Ω and y1, . . . , yK−1 ∈ Ω are sampled by the
following procedure.

• Sample x ∼ ω.

• If x = ∗, sample y1, . . . , yK−1 ∼ ω⊗d independently.

• If x 6= ∗, for each 1 6 j 6 d, sample (y1)j , . . . , (yK−1)j ∼ SK−1 uniformly, and independently
noise (yi)j ← ∗with probability ε.

It is easy to see that the marginal distribution of each yi is ω⊗d. Let (Ω × Ω
K−1

, µ′) denote
the K correlated spaces corresponding to the above distribution, and let µ denote the marginal
distribution of (y1, . . . , yK−1). Let Ωi (1 6 i 6 K − 1) denote the copy of Ω associated with yi,
and Ω

′
i be the product of the other K − 1 spaces. With probability ε (when x = ∗), yi is completely

independent of the others. Even when x 6= ∗, yi’s marginal is ω⊗d. By Lemma 3.1, we conclude
that ρ(Ωi,Ω

′
i;µ
′) 6
√

1− ε.
However, bounding ρ(Ω,Ω

K−1
;µ′) (as the correlation between two spaces Ω and Ω

K−1) cannot
be done in the same way. To get around this, we define the distribution µ′β be the same as µ′, but
at the end each yi is independently resampled with probability 1−β. In this distribution, the same
technique yields ρ(Ω,Ω

K−1
;µ′β) 6

√
1− (1− β)K−1, and the correlation of these K spaces under

µ′β is at most
√

1− (1− β)K−1 if 1− β < ε.

E.3 Reduction and Completeness

We now describe the reduction from Multilayered Label Cover with A layers. Given a G =
(∪16i6AVi,∪i<jEi,j) with a projection πe : [Rj ] → [Ri] for each hyperedge e = (u, v) (u ∈ Vi, v ∈
Vj), the resulting instance forK-Hypergraph Vertex Cover is (V ′, E′), where V ′ = ∪16i6AVi×ΩRi .
The weight of (v, x) (v ∈ Vi) is

∏
16j6Ri

ω(xj), so that the sum of the weights of the vertices in
Cloud(v) is 1. For v ∈ Vi, let Cloud(v) := {v} × ΩRi . The set of hyperedges E′ is described by the
following procedure.

• Sample 1 6 a < b 6 A uniformly and e = (u, v) ∈ Ei,j such that u ∈ Vi, v ∈ Vj .
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• Sample x ∈ ΩRa , y1, . . . , yK−1 ∈ ΩRb in the following way. For each 1 6 j 6 Ra, sample
xj , ((yi)π−1

e (j))i∈[K−1] from (Ω× Ω
K−1

, µ′).

• Add a hyperedge ((u, x), (v, y1), . . . , (v, yK−1)) to E′. We say that this hyperedge is formed
from e, and the weight of this hyperedge is the probability that it is sampled given that e is
sampled in the first step.

Given the reduction, completeness is easy to show.

Lemma E.4. If there is a labeling that satisfies every e ∈ E, there exist V ∗ ⊆ V ′ of measure ε and
c : V ′ \ V ∗ → [K − 1] with the same measure for each color, such that in each hyperedge induced by
V ′ \ V ∗, K − 1 colors appear once and the other color appears twice.

Proof. Let l : V → [RA] be a labeling that satisfies every edge in E. Let V ∗ :=
{

(v, x) : (x)l(v) = ∗
}

,
and c(v, x) = (x)l(v). In each Cloud(v), V ∗ contains measure ω(∗) = ε and c(i) contains ω(i) = 1−ε

K−1 .
For each hyperedge ((u, x), (v, y1), . . . , (v, yK−1)) induced by V ′\V ∗,

{
(v, y1)l(v), . . . , (v, yK−1)l(v)

}
=

[K − 1].

E.4 Soundness

Unlike the previous reductions, the resulting instance is weighted — vertices and hyperedges can
have different weights. The only reason is that (1) we used Multilyaered Label Cover and (2) and
ω is not the uniform distribution. Once we fix a edge e of G, our hyperedge weights correspond
to the above probability distribution and vertex weights correspond to its marginals. Therefore all
the following probabilistic analysis works as in previous reductions.

Lemma E.5. For any ε > 0, there exists η := η(ε,K) such that if I ⊆ V ′ of measure ε induces less than
εOQ,k(1) fraction of hyperedges, the corresponding instance of Multilayered Label Cover admits a labeling
that satisfies η fraction of edges in Ea,b for some 1 6 a < b 6 A.

The proof is almost identical to the one presented in Section 4.3, with slightly more technical
details dealing with noise.

STEP 1. Fixing a Good Hyperedge. Let I ⊆ V ′ be of measure ε. Let fv be the indicator function
of I ∩ Cloud(v). By averaging, ε2 fraction of vertices has E[fv] > ε

2 — call these vertices heavy. Let
Wi ⊆ Vi be the set of heavy vertices in the ith layer.

By averaging, at least ε
4 fraction of layers satisfy |Wi| > ε

4 |Vi|. Take A = d ε16e. By weak density,
there exist 1 6 a < b 6 A such that the fraction of edges in Ei,j induced by Wa and Wb is at least
ε3

1024 . Let L = Ra and R = Rb.
By the same argument as in Section 4.3, by adjusting the smoothness paramter T and an integer

J , we can ensure that ε3

2048 fraction of edge (u, v) ∈ Ea,b is good — both u and v are heavy and,

‖fbadv ‖2 6 (
J2

T
)1/4

under πe and J .
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Throughout the rest of the section, fix such an edge e = (u, v) and the associated permutations
π := πe. For simplicity, let f := fu and g := fv. We now measure the weight of hyperedges
induced by I , which is

E
x,y1,...,yK−1

[f(x)
∏

16i6K−1

g(yi)] (10)

STEP 2. Lower Bounding in Each Hypercube. For each 1 6 j 6 L, with probability ε, (yi)π−1(j)

are sampled completely independently from Ω. By Theorem 4.3 (setting Ω ← Ω, k ← K − 1,
σ ← ω⊗d, ν ← µ, ρ ← 1 − ε, F1 = · · · = FK−1 ← g, ε ← ε

2 ), there exists ζ = ζ(ε,K) > 0 such that
for every γ ∈ [0, 1],

E
y1,...,yK∼µ⊗L

[
∏

16i6K−1

T1−γg(yi)] > ζ.

Note that µβ also satisfies the requirement of Theorem 4.3, so

E
y1,...,yK∼(µβ)⊗L

[
∏

16i6K−1

T1−γg(yi)] > ζ. (11)

Let θ := εζ
2 be the lower bound of E[f(x)]E[

∏
i g(yi)], which also holds for any noised versions of

f, g and noised distributions.

STEP 3. Introducing Implicit Noise. Due to the fact that ρ(Ω,Ω
K−1

;µ′) is not easily bounded, we
insert the noise operator for g(y1), . . . , g(yK−1) first using ρ(Ωi,Ω

′
i;µ
′) 6
√

1− ε for 1 6 i 6 K − 1.
This follows from the following lemma from Mossel [22], which is indeed the main lemma for
Theorem 4.4.

Lemma E.6 ([22]). Let (Ω1 × Ω2, ν) be two correlated spaces with ρ(Ω1,Ω2; ν) 6 ρ < 1, and the corre-
sponding product spaces ((Ω1)L× (Ω2)L, ν⊗L), and Fi ∈ L((Ωi)

L) for i = 1, 2 such that Var[Fi] 6 1. For
any ε > 0, there exists γ := γ(ε, ρ) > 0 such that

|E[F1F2]− E[F1T1−γF2] 6 ε.

Applying the above lemma to (Ωi,Ω
′
i;µ
′) iteratively for i = 1, . . . ,K − 1, we have γ1 :=

γ1(ε,K, θ) such that∣∣∣ E
x,yi∼µ′⊗L

[f(x)
∏

16i6K−1

g(yi)]− E
x,yi∼µ′⊗L

[f(x)
∏

16i6K−1

T 1−γ1T 1−γ1g(yi)]
∣∣∣

=
∣∣∣ E
x,yi∼µ′⊗L

[f(x)
∏

16i6K−1

g(yi)]− E
x,yi∼(µ′1−γ1

)⊗L
[f(x)

∏
16i6K−1

T 1−γ1g(yi)]
∣∣∣

6
θ

8
.

Let β := 1 − γ1, and use Ê to denote the expectation over (x, y1, . . . , yK) ∼ (µ′β)⊗L while E
still denotes the expectation over (x, y1, . . . , yK) ∼ µ′⊗L. Since ρ(Ω,Ω

K−1
;µ′β) 6

√
1− (1− β)K−1,

another application of Lemma E.6 will give γ2 such that∣∣∣Ê[f(x)
∏

16i6K−1

T 1−γ1g(yi)]− Ê[T1−γ2f(x)
∏

16i6K−1

T 1−γ1g(yi)]
∣∣∣ 6 θ

8
.
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By applying Theorem 4.5 (K ← K, L ← L, Ω1, . . . ,ΩK ← Ω, ΩK = Ω, d1, . . . , dK−1 ← d,
dK = 1, ν ← µ′β , F1 = · · · = FK−1 ← g, FK ← f , π1 = · · · = πK−1 = π, πK ← the identity,

M ← (J
2

T )1/4), we have∣∣∣Ê[T1−γ2f(x)
∏

16i6K−1

T1−γ1g(yi)]− Ê[T1−γ2f(x)
∏

16i6K−1

T 1−γ1g(yi)]
∣∣∣ 6 2 · 3K((1− γ1)J + (

J2

T
)1/4).

Fixing J and T to satisfy 2 · 3K((1− γ1)J + (J
2

T )1/4) 6 θ
8 as well as the previous constraint, we

can conclude that∣∣∣E[f(x)
∏

16i6K−1

g(yi)]− Ê[T1−γ2f(x)
∏

16i6K−1

T1−γ1g(yi)]
∣∣∣ 6 3θ

8
. (12)

In particular, if I is independent, from (10) and (12)

Ê[T1−γ2f(x)
∏

16i6K−1

T1−γ1g(yi)] 6
θ

2
. (13)

STEP 4. Invariance. The marginal of yi (resp. x) is ω⊗R (resp. ω⊗L) on both µ′⊗L and µ⊗L.
Therefore, the Efron-Stein decomposition of f and g as well as the notion of (block) influence
remain the same between µ′ and µ′β . Since g is noised, there exists Γ = O( 1

γ1
) such that∑

16j6L

Infj [T1−γ1gq] 6 Γ.

Fix τ to satisfy Q · 2K+1
√

ΓK2τ < θ
4 . From (11) and (13),∣∣∣Ê[T1−γ2f(x)

∏
16i6K−1

T1−γ1g(yi)]− Ê[T1−γ2f(x)] Ê[
∏

16i6K−1

T1−γ1g(yi)]
∣∣∣

> Ê[T1−γ2f(x)] Ê[
∏

16i6K−1

T1−γ1g(yi)]| − Ê[T1−γ2f(x)
∏

16i6K−1

T1−γ1g(yi)]

>
θ

2
.

Applying Theorem 4.6 (Q← 2, k1 ← K−1, k2 = 1, Ω1 = Ω, Ω2 ← Ω, ν ← µ′β , L← L, F1 ← T1−γ1g,
F2 ← T1−γ2f , Infj [F1]← Infj [T1−γ1g]),∑

16j6L

Infj [T1−γ1g] Infj [T1−γ2f ] > τ.

Decoding Strategy. We use the following standard strategy — v samples a set S ⊆ [R] according
to ‖gS‖22, and chooses a random element from S. u also samples a set S ⊆ [L] according to ‖fS‖22,
and chooses a random element from S. As shown in Section 4.3, for each 1 6 j 6 L, the probability
that v chooses a label in π−1(j) is at least γ1 Infj [T1−γ1g], and the probability that u chooses j is at
least γ2 Inf[T1−γ2f ].

The probability that πe(l(v)) = π(l(u)) is at least

γ1γ2

∑
16j6L

Infj [T1−γ1g] Infj [T1−γ2f ] > γ1γ2τ.
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Suppose that I is indepenent. For at least ε3

2048 fraction of edges (of Ea,b) the above analysis
works, and these edges are satisfied by the above randomized strategy with probability γ1γ2τ .
Setting η := ε3

2048 · γ1γ2τ completes the proof of soundness.

E.5 STEP 5. Distribution for Theorem 1.5

For Theorem 1.5, we again define the distribution of K points, one in a single cell and the other
K − 1 in a block of size d. Let Ω = {0, 1} and Ω = Ωd. Let ω be the (1 − 1

K−1)-biased distribution
on Ω — ω(0) = 1

K−1 and ω(1) = 1 − 1
K−1 . The K points x ∈ Ω and y1, . . . , yK−1 ∈ Ω are sampled

by the following procedure.

• Sample x ∼ ω.

• If x = 0, sample y1, . . . , yK−1 ∼ ω⊗d independently.

• If x = 1, for each 1 6 j 6 d, sample (y1)j , . . . , (yK−1)j ∼ µ, where µ is the uniform distribu-
tion on K − 1 bit strings with exactly (K − 2) 1’s.

Pr[(yi)j = 1] = 1
K−1 ·(1−

1
K−1)+(1− 1

K−1)(K−2
K−1) = (1− 1

K−1) for all i ∈ [K−1] and j ∈ [d], and

(yi)1, . . . , (yi)d are independent. Let (Ω×Ω
K−1

, µ′) denote the K correlated spaces corresponding
to the above distribution, and let µ denote the marginal distribution of (y1, . . . , yK−1). Let Ωi

(1 6 i 6 K − 1) denote the copy of Ω associated with yi, and Ω
′
i be the product of the other

K − 1 spaces. With probability 1
K−1 (when x = 0), yi is completely independent of the others.

Even when x = 1, yi’s marginal is ω⊗d. By Lemma 3.1, we conclude that ρ(Ωi,Ω
′
i;µ
′) 6

√
K−2
K−1 .

Bounding ρ(Ω,Ω
K−1

;µ′) (as the correlation between two spaces Ω and Ω
K−1) can be done in the

same way in this section to have ρ(Ω,Ω
K−1

;µ′β) 6
√

1− (1− β)K−1.
The fact that for each 1 6 j 6 d, at least one of x, (y1)j , ..., (yK)j is 1 ensures completeness,

and the bounded correlation ensures soundness. Furthermore, the fact that y1, ..., yK−1 become
completely independent with probability 1

K−1 (previously this was ε) implies ζ := εOK(1) and the
same argument in Theorem 1.1 shows density in soundness.

F Q-out-of-(2Q+ 1)-SAT

An instance of (2Q + 1)-SAT is a tuple (V,Φ) consisting of the set of variables V and the set of
clauses Φ. Each clause φ is described by ((v1, z1), . . . , (v2Q+1, z2Q+1)) where vq ∈ V and zq ∈ {0, 1}.
To be consistent with the notation we used for hypergraph coloring, we use the unconventional
notation where 0 denotes True and 1 denotes False. Let f : V → {0, 1} be an assignment to
variables. The number of literals of φ set to True by f is | {q : f(vq)⊕ zq = 0} | where ⊕ denotes
the sum over Z2.

F.1 Distribution

We first define the distribution of 2Q+ 1 points, one in a single cell and the other 2Q in a block of
size d. Let Ω = {0, 1} and Ω = Ωd. Let ω be the uniform distribution on Ω. 2Q + 1 points x0 ∈ Ω
and xq,i ∈ Ω for 1 6 q 6 Q and 1 6 i 6 k are sampled by the following procedure.
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• Sample q′ ∈ {0, . . . , Q} uniformly at random.

• If q′ = 0,

– Sample x0 ∈ Ω uniformly independently.

– For all q ∈ [Q], sample xq,1 ∈ Ωd independently and set xq,2 = 1d−xq,1, where 1d ∈
Ωd := (1, 1, . . . , 1).

• If q′ > 0,

– For all q ∈ [Q] \ {q′}, sample xq,1 ∈ Ωd independently and set xq,2 = 1d−xq,1.

– Sample x0 ∈ Ω independently. If x0 = 0, sample xq,1, xq,2 ∈ Ωd independently. If x0 = 1,
sample xq,1 ∈ Ωd independently and set xq,2 = 1d−xq,1.

Let (Ω×Ω
2Q
, µ′) denote 2Q+ 1 correlated spaces corresponding to the above distribution, and

µ denote the marginal distribution of (xq,1, xq,2), which is the same for all q ∈ [Q]. We bound
ρ(Ω,Ω

2Q
;µ′).

Fix some 1 6 q 6 Q and 1 6 i 6 2. Let Ωq,i denote the copy of Ω associated with xq,i,
and Ω

′
q,i be the product of the other 2Q copies. We have µ′ = 1

2(Q+1)αq + (1 − 1
2(Q+1))βq where

αq denotes the distribution given q′ = q and x0 = 0 (so that xq,1, xq,2 are sampled i.i.d.), and
βq denotes the distribution q′ 6= q or x0 = 1. Since each entry of xq,i is sampled i.i.d. in αq,
ρ(Ωq,i,Ω

′
q,i;αq) = 0. In both αq and βq, the marginal of xq,i is ω⊗d. By Lemma 3.1, we conclude

that ρ(Ωq,i,Ω
′
q,i;µ

′) 6
√

1− 1
2(Q+1) . Similarly, ρ(Ω,Ω

2Q
;µ′) 6

√
1− 1

Q+1 . Therefore we have

ρ(Ω, (Ωq,i)q,i;µ
′) 6

√
1− 1

2(Q+ 1)
.

F.2 Reduction and Completeness

We now describe the reduction from (Q+ 1)-Bipartite Hypergraph Label Cover. Given a (Q+ 1)-
uniform hypergraph H = (U ∪ V,E) with Q projections from [R] to [L] for each hyperedge, the
resulting instance for (2Q + 1)-SAT is (U ′ ∪ V ′,Φ) where U ′ := (U × ΩL) and V ′ := (V × ΩR).
For u ∈ U and v ∈ V , let Cloud(u) := {u} × ΩL and Cloud(v) := {v} × ΩR. The clauses in Φ are
described by the following procedure.

• Sample a random hyperedge e = (u, v1, . . . , vQ) with associated permutations πe,v1 , . . . , πe,vQ
from E.

• Sample x0 ∈ ΩL, (xq,i)16q6Q,16i62 ∈ ΩR in the following way. For each 1 6 j 6 L, sample
(x0)j , ((xq,i)π−1

e,vq (j))q,i from (Ω× Ω
2Q
, µ′).

• Sample z0, (zq,i)16q6Q,16i62 ∈ Ω i.i.d.

• Add a clause
((u, x0 ⊕ z0 1L), z0)× ((vq, xq,i ⊕ zq,i 1R), zq,i)16q6Q,16i62

to Φ. We say this clause is formed from e ∈ E.
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Given the reduction, complteness is easy to show.

Lemma F.1. If an instance of (Q + 1)-Bipartite Hypergraph Label Cover admits a labeling that strongly
satisfies every hyperedge e ∈ E, there is an assignment f : U ′ ∪ V ′ → Ω that sets at least Q literals to 0
(which denotes True in our convention) in every clause of Φ.

Proof. Let l : U ∪ V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E. For any
u ∈ U, x ∈ ΩL, let f(u, x) = xl(u). For any v ∈ V, x ∈ ΩR, let f(v, x) = xl(v). For any clause

((u, x0 ⊕ z0 1L), z0)× ((vq, xq,i ⊕ zq,i 1R), zq,i)16q6Q,16i62,

one of the following is true. Note that f(u, x0⊕z0 1L)⊕z0 = (x0)l(u) and f(vq, xq,i⊕zq,i 1R)⊕zq,i =
(xq,i)l(vq).

• Each q ∈ [Q] satisfies (xq,1)l(vq) 6= (xq,2)l(vq).

• For some q ∈ [Q], all q′ ∈ [Q] \ {q} satisfy (xq′,1)l(v′q) 6= (xq′,2)l(v′q), and if (x0)l(u) = 1, q also
satisfies (xq,1)l(vq) 6= (xq,2)l(vq).

In any case, (2Q + 1)-tuple ((x0)l(u)) × ((xq,i)l(vq))q,i contains at least Q zeros, which means that
any clause has at least Q literals set True.

F.3 Soundness

Lemma F.2. There exists ε, η > 0, only depending on Q, such that if there is an assignment that satisfies
more than (1− ε) fraction of hyperedges, the corresponding instance of Q-Hypergraph Label Cover admits
a labeling that weakly satisfies η fraction of hyperedges.

The proof is almost identical to the one presented in Section 4.3. Let g : U ′ ∪ V ′ → Ω be any
assignment. The fraction of clauses whose literals are all set to False is

E
u,v1,...,vQ

E
x0,(xq ,i)

E
z0,(zq,i)

[(g(u, x0 ⊕ 1L z0)⊕ z0)
∏

16q6Q,16i62

(g(vq, xq,i ⊕ 1R zq,i)⊕ (z0))]

= E
u,v1,...,vQ

E
x0,(xq ,i)

[E
z0

[(g(u, x0 ⊕ 1L z0)⊕ z0)]
∏

16q6Q,16i62

E
zq,i

[g(vq, xq,i ⊕ 1R zq,i)⊕ zq,i]]

= E
u,v1,...,vQ

E
x0,(xq ,i)

[f(u, x0)
∏

16q6Q,16i62

f(v, xq,i)]

where we define

f(u, x) := E
z∈Ω

[f(u, x⊕ 1L z)⊕ z)] u ∈ U

f(v, x) := E
z∈Ω

[f(v, x⊕ 1R z)⊕ z)] v ∈ V.

For u ∈ U , let fu ∈ L[0,1](Ω
L) be the restriction of f to {u} × ΩL, and define fv ∈ L[0,1](Ω

R)

similarly for v ∈ V . Note that E[fu] = E[fv] = 1
2 .
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STEP 1. Fixing a Good Hyperedge. Since E[fu] = E[fv] = 1
2 for all u ∈ U , and v ∈ V , we do not

need to define heavy vertices. By the same argument as in Section 4.3, by adjusting the smoothness
paramter T and the integer J , we can ensure that δ := 1

2 fraction of hyperedges are good for every
vertex they contain, i.e., the hyperedge e = (u, v1, . . . , vQ) satisfies for each q ∈ [Q],

‖fbadvq ‖2 6 (
J2

T
)1/4

under πe,vq and J .
Throughout the rest of the section, fix such a hyperedge e = (u, v1, . . . , vQ) and the associated

permutations πe,v1 , . . . , πe,vQ . For simplicity, let fq := fvq and πq := πe,vq for q ∈ [Q], and fq+1 = fu.
We now measure the fraction of clauses formed from e that are unsatisfied, which is

E
xq,i

[fu(x0)
∏

16q6Q,16i62

fq(xq,i)] (14)

STEP 2. Lower Bounding in Each Hypercube. Fix any q ∈ [Q]. For each 1 6 j 6 L, with
probability 1

2(Q+1) , (xq,1)π−1
q (j) and (xq,2)π−1

q (j) are sampled completely independently from Ω. By

Theorem 4.3 (setting Ω ← Ω, k ← 2, σ ← ω⊗d, ν ← µ, ρ ←
√

2Q+1
2(Q+1) , F1 = F2 ← fq, ε ← 1

2 ), there
exists ζ = ζ(Q) > 0 such that for every γ ∈ [0, 1],

E
xq,1,xq,2

[
T1−γfq(xq,1) T1−γfq(xq,2)

]
> ζ . (15)

STEP 3. Introducing Implicit Noise. Since ρ(Ω, (Ωq,i)q,i;µ
′) 6

√
1− 1

2(Q+1) , we can apply The-

orem 4.4 (K ← 2Q + 1, Ω1 = · · · = ΩK−1 ← Ω, ΩK ← Ω, ν ← µ′, ε ← ζQ

8K , F2q−1 = F2q ← fq,
FK ← fu) to have γ := γ(Q, ζ) ∈ (0, 1) such that∣∣∣ E

xq,i
[fu(x0)

∏
16q6Q,16i62

fq(xq,i)]− E
xq,i

[T1−γfu(x0)
∏

16q6Q,16i62

T 1−γfq(xq,i)]
∣∣∣ 6 ζQ

8
. (16)

By applying Theorem 4.5 (K ← 2Q + 1, L ← L, Ω1, . . . ,ΩK ← Ω, d1, . . . , dK−1 ← d, dK = 1,
ν ← µ′, F2q−1 = F2q ← fq, FK ← fu, π2q−1 = π2q ← πq, πK ← the identity, ξ ← (J

2

T )1/4), we have∣∣∣ E
xq,i

[T1−γfu(x0)
∏

16q6Q,16i62

T 1−γfq(xq,i)]− E
xq,i

[T1−γfu(x0)
∏

16q6Q,16i62

T1−γfq(xq,i)]
∣∣∣

6 2 · 32Q+1((1− γ)J + (
J2

T
)1/4) . (17)

Fixing J and T to satisfy 2 · 32Q+1((1− γ)J + (J
2

T )1/4) 6 ζQ

8 as well as the previous constraint, we
can conclude from (16) and (17) that∣∣∣ E

xq,i
[fu(x0)

∏
16q6Q,16i62

fq(xq,i)]− E
xq,i

[T1−γfu(x0)
∏

16q6Q,16i62

T1−γfq(xq,i)]
∣∣∣ 6 ζQ

4
.

In particular, if among the clauses formed from e, less than ζQ

8 fraction of them are unsatisfied,
from (14),

E
xq,i

[
T1−γfu(x0)

∏
16q6Q,16i62

T1−γfq(xq,i)
]
6

3ζQ

8
. (18)
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STEP 4. Invariance. Since our functions are noised, there exists Γ = O( 1
γ ) such that∑

16j6L

Infj [T1−γfq] 6 Γ.

Fix τ to satisfy 8Q ·
√

Γ(2Q+ 1)2τ < ζQ

8 . We have∣∣∣ E
xq,i

[T1−γfu(x0)
∏

16q6Q,16i62

T1−γfq(xq,i)]− E[T1−γfu]
∏

16q6Q

E
xq,i

[
∏

16i62

T1−γfq(xq,i)]
∣∣∣

>E[T1−γfu] ·
∏

16q6Q

E
xq,i

[
∏

16i62

T1−γfq(xq,i)]− E
xq,i

[T1−γfu(x0)
∏

16q6Q,16i62

T1−γfq(xq,i)]

>
1

2
ζQ − 3ζQ

8
=
ζQ

8
(using (15) and (18)) .

Now, applying Theorem 4.6 (Q ← Q + 1, k1 = · · · = kQ ← k, kQ+1 ← 1, Ω1 = · · · = ΩQ = Ω,
ΩQ+1 ← Ω, ν ← µ′, L ← L, Fq ← T1−γfq for q ∈ [Q], FQ+1 ← T1−γfu, Infj [Fq] ← Infj [T1−γfq] for
q ∈ [Q]), there exists q ∈ {1, . . . , Q} such that∑

16j6L

Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ] + Infj [fu]) > τ.

STEP 5. Decoding Strategy. We use the standard strategy — each vq samples a set S ⊆ [R] ac-
cording to ‖(fq)S‖22, and chooses a random element from S. u also samples a set S ⊆ [L] according
to ‖(fu)S‖22, and chooses a random element from S. As shown in Section 4.3, for each 1 6 j 6 L,
the probability that v chooses a label in π−1(j) is at least γ Infj [T1−γfq], and the probability that u
chooses j is at least γ Infj [T1−γfu].

Fix q to be the one obtained from Theorem 4.6. The probability that πq(l(vq)) = πq′(l(vq′)) for
some q < q′ 6 Q or πq(l(vq)) = l(u) is at least

γ2
∑

16j6L

Infj [T1−γfq] max[ max
q<q′6Q

Infj [T1−γfq′ ], Infj [T1−γfu]]

>
γ2

Q+ 1

∑
16j6L

Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ] + Infj [T1−γfu])

>
γ2τ

Q+ 1
.

If the total fraction of unsatisfied clauses is at most ε := 1
4 ·
ζQ

8 , since at least 1
2 fraction of hyperedges

are good, at least 1
4 fraction of hyperedges are weakly satisfied by the above randomized strategy

with probability γ2τ
Q+1 . Setting η := 1

4 ·
γ2τ
Q+1 completes the proof of soundness.
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