
Additively efficient universal computers

Daniel Dewey∗

daniel.dewey@philosophy.ox.ac.uk
Oxford Martin Programme on the Impacts of Future Technology,

Future of Humanity Institute

Abstract

We give evidence for a stronger version of the extended Church–Turing thesis:
among the set of physically possible computers, there are computers that can
simulate any other realizable computer with only additive constant overhead in
space, time, and other natural resources. Complexity-theoretic results that hold
for these computers can therefore be assumed to hold up to constant overhead
on any other realizable computer. To support this claim, we offer an infor-
mal argument originally due to Deutsch, a formalization of that argument into
a theorem showing sufficient conditions for the existence of additively efficient
universal computers in arbitrary settings, and arguments that these sufficient
conditions hold on physical resources including time and space. We also pro-
vide a formal setting in which we can prove that additively efficient universal
computers exist.

∗Supported by the Alexander Tamas Research Fellowship on Machine Superintelligence and the
Future of AI.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 44 (2014)

1 Introduction
Differences between computing machine models complicate the study of computa-
tional costs, which would ideally give results independent of any particular machine
model. One way to reduce machine-dependence is to take advantage of models’ abili-
ties to efficiently simulate one another, so that complexity-theoretic results that apply
to one computer also apply to the other. The extended1 Church–Turing Thesis, which
states that a probabilistic Turing machine can simulate any realizable (physically pos-
sible) machine model with polynomial time overhead, is a particularly useful thesis
of this type; if it is true, then complexity-theoretic results that hold for PTMs can be
assumed to hold up to polynomial overhead for any other realizable computer.

In this paper, we argue for a stronger thesis: among the set of realizable comput-
ers, there are computers that can simulate any other realizable computer with only
additive constant overhead in space, time, and other natural resources. To do this,
we introduce the general concept of additively efficient universal computers, then give
arguments supporting this concept’s applicability to realizable computers relative to
resources like space and time.

Given a “setting” defined by a collection of computers and a way of measuring
resources used in computation, let additively efficient universal computers in that
setting be computers that can simulate any other computer in that collection with
only additive constant overhead in that resource. We give three main results:

1. The possibility of universal constructors in a setting is sufficient, though not
necessary, for the existence of additively efficient universal computers in that
setting (Theorem 1).

2. Additively efficient universal computers certainly exist in some abstract settings
(shown by construction).

3. There are good reasons to think that the set of realizable (physically possible)
computers include some computers that are additively efficient relative to re-
sources like space and time (plausibility arguments).

Result 1 is achieved by formalizing an informal argument due to Deutsch2 into a
theorem (Sections 3 and 4). The theorem is not difficult or complex to prove, but
it serves to clarify the technical requirements and details of Deutsch’s argument. In
short, Deutsch argues that a universal constructor could efficiently simulate any other
machine by first constructing a copy of that machine, then performing the desired
computation on that copy. Thus, any setting that supports a universal constructor
also supports additively efficient universal computers.

Result 2 is achieved by demonstrating an additively efficient universal computer in
an abstract setting (Section 5). We choose for our setting the collection of programs
that run on a certain universal Turing machine based on Minsky’s 4-symbol, 7-state

1Also called the “complexity-theoretic” (Bernstein and Vazirani, “Quantum complexity theory”)
or “strong” (Arora and Barak, Computational complexity: a modern approach) form of the Church–
Turing Thesis.

2Deutsch, “Constructor theory”.

2

universal machine,3 and exhibit a program that can simulate any other program on
any other input with only additive overhead in time and space. This program works
by “constructing” the program to be simulated on the tape, then placing the Turing
machine in its initial state at the start of that program and allowing the run to proceed
as normal.

Since result 3 concerns computation in the real world, we do not attempt a formal
analysis. Rather, we give plausibility arguments suggesting that a physical universal
constructor is possible, and that it would likely satisfy the sufficient conditions defined
by Theorem 1 with respect to resources like time and space. If this is true, then it
follows that there exist realizable additively efficient universal computers. We are able
to gain additional traction by restricting the scope to physically realizable machines
that could be built by some future human civilization. This probably does not exclude
many machines of interest, and enables significantly stronger arguments in favor of
the possibility of universal construction.

It is worth noting that, although we give evidence that the set of realizable com-
puters includes additively efficient ones, no present-day computer is flexible enough
to be additively efficient. Today’s computers, and tomorrow’s computers for nearby
values of “tomorrow”, will continue to vary in efficiency up to a polynomial. It is
only in the long-term future of computing hardware, as computers become more flex-
ible and diminishing scale further blurs the line between informational and physical
reconfiguration, that we expect additively efficient universal computers to become
relevant. Nevertheless, we argue, additive efficiency is likely to be a fundamental fact
of computation in our physical world, at least in the limits of technological ability.

In general, our arguments proceed in close parallel to the proof and application
of the Invariance Theorem in Kolmogorov complexity4. The Invariance Theorem
states that there exist universal partial recursive functions that are additively optimal
means of description; so long as one of these functions is used, results in program-
length complexity can be made machine-independent up to a constant. Here, we are
working with run-time complexity instead of static complexity, but the spirit and
mechanics are much the same.

2 Definition
We define a setting to be a pair of a universal partial recursive function U and a cost
function T , such that U(i, x) returns the result of running function i on input x, and
T (i, x) returns the cost of that computation on U . We will think of U as representing
a “world” in which many different computers can be implemented, e.g. Conway’s
Game of Life or our physical universe; different function-indices i will be taken to
represent different computers implemented in this common world, so that U(i, x) is
the function computed by computer i on input x in the world U represents. Similarly,
T (i, x) corresponds to the amount of some resource consumed by computer i in its

3Cocke and Minsky, “Universality of tag systems with P= 2”; Minsky, “Computation: finite and
infinite machines”.

4See e.g. p. 104, Li and Vitanyi, An introduction to Kolmogorov complexity and its applications.

3

computation on input x. We can now define additively efficient universal computers
in the setting defined by U and T :

Definition 1 (Additively Efficient Universal Computers). Given universal partial
recursive function U and cost-function T , computer u is an additively efficient uni-
versal computer if and only if for every other computer i, some program p causes u
to simulate computer i while incurring only constant additional cost:

∀i ∃p, c ∀x : (U(u, px) = U(i, x) ∧ T (u, px) ≤ T (i, x) + c)

∨ U(u, px) and U(i, x) are both undefined.

Two preliminary observations about additively efficient universal computers are in
order here. First, any u fulfilling this definition is additively efficient relative to
other computers within setting U, T ; the definition makes no claims about relative
efficiencies of computers implemented in separate worlds, or with different kinds of
resources (however such comparisons would be made).

Second, it seems unlikely to us that there are elegant necessary and sufficient
conditions for the existence of additively efficient universal computers in a setting.
This is because the existence of universal computers in a setting, a strictly weaker
property, is almost always shown by laborious construction. It seems doubtful that
the additive efficiency part of the property can be extricated cleanly from the universal
computation part, or that the addition of efficiency concerns decreases the difficulty
of demonstration rather than increasing it. We will proceed to outline some sufficient
conditions useful in the application of this concept to physical computers, but we
are pessimistic about the existence of elegant necessary and sufficient conditions for
additive efficiency in a setting, despite its complexity-theoretic usefulness.

3 The universal constructor argument
We have defined additively efficient universal computers, but are they relevant to
computation in the real world? Do they exist among realizable computers? In general,
what settings support additively efficient universal computers? Our first result is that
the possibility of universal constructors in a setting is sufficient, though not necessary,
for the existence of additively efficient universal computers in that setting.

Universal constructors were pioneered by von Neumann in his study of the abstract
problem of self-reproduction.5 In von Neumann’s work, a constructor is a pattern
within a cellular automaton that can, as the automaton steps forward, cause other
patterns to appear nearby. The set of patterns a constructor can be programmed to
construct is called its repertoire. A self-reproducing pattern can then be defined: Let
C be a constructor, and let C(x) denote the pattern of “C loaded with program x”.
Suppose that C’s repertoire includes the pattern C(p), and that p is the program that
causes C to produce C(p). This means that an initial configuration of C(p) will, after
some number of steps, produce a later configuration C(p) C(p) (assuming that C can
do this without altering itself significantly), and thus C(p) has reproduced itself.

5Von Neumann, Burks, et al., Theory of self-reproducing automata; Thatcher, Universality in the
von Neumann cellular model.

4

The traditional meaning of the “universal” part of universal constructors is some-
what fuzzy. Universality of a constructor would most naturally mean that a construc-
tor’s repertoire includes every finite pattern, but this property is impossible if some
finite patterns have no legal predecessor state under the automaton’s rules. These
“Garden of Eden” configurations cannot be constructed by any machine.6 The so-
lution used by von Neumann is to work in an automaton with quiescent cell states,
states which stay unchanged over time unless exposed to non-quiescent neighbors, and
to define universality as the ability to construct any finite pattern of quiescent cells.
This form of universality is often possible, and is well-suited to the problem of self-
reproduction. In this paper, we will use “universality” to mean that a constructor’s
repertoire includes some very large subset of the finite patterns; when the properties
of this subset are important for our arguments, we will specify them.

Many automata support many types of universal computers: single- and multi-
tape Turing machines, RAM and register machines, billiard-ball computers, etc. Sup-
pose that some constructor has computers m1, m2, ..., implementing universal partial
recursive functions m1,m2, ..., in its repertoire. Using this constructor, we can design
a new computer, U, with universal function U . U works by constructing a computer,
then feeding it a program: we might arrange that when U is given program nx, it
constructs computer mn and feeds it program x, so that U(nx) = mn(x). If the cost
of delaying and redirecting inputs to the newly constructed computer is constant, U
can thus “simulate” the actions of each computer in its repertoire on any program
while using only a constant c more resources, the amount of resources it takes U to
construct that computer. Thus, U is additively efficient relative to the computers in
its repertoire.

If we are working in an automaton that supports some form of universal con-
structor, then we can apply the above process to it, obtaining a computer that is
additively efficient relative to a very large subset of the possible computers in the
automaton. Furthermore, if the constructors’ repertoires are large enough, then all
additively efficient universal computers within the automaton (made from different
universal constructors, say) are additively equivalent: for any two computers, there is
a constant c such that either one can simulate the other within c resource overhead.
These computers form an equivalence class of additively efficient universal computers.

This basic argument was first articulated by David Deutsch, in a paper posted to
arXiv in 2012, then published in Synthese in 2013:

In constructor theory a stricter conception of universality is possible, be-
cause when a programmable constructor is programmed to mimic another
constructor C, it may begin by constructing an instance of C, to which it
directs subsequent inputs, so that from then on it performs C’s task using
much the same resources that C would... the overhead of programming
[programmable constructor] P to be capable of performing [task] A is a
constant c(P,A), independent of how often P will then be called upon to
perform A, and which inputs for A it is given.7

6Moore, “Machine models of self-reproduction”.
7Deutsch, “Constructor theory”.

5

We have not been able to find an earlier expression of this idea, but we believe
Deutsch’s insight deserves closer attention, especially in its implications for complexity
theory; this paper is a first attempt.

4 The universal constructor theorem
To formalize the universal constructor argument, we will need little bit more structure.
Let S be a countably infinite set of “states” that computers may pass through. We
will define two subsets, start states and halt states; these subsets may or may not
be disjoint or exhaustive. Start states are written si,x, and there is one start state
for every pair of computer i and input x. Halt states are written h0, h1, h2..., and
there is at least one halt state for each natural number. Let each state have a single
successor state, reflecting some deterministic rule by which a computation proceeds.
We will write the sequence of consecutive states following s as “s...”. A sequence of
consecutive states has a non-negative integer cost, written cost(s...).

Two rules link the set of states to the our U and T : U restricts which states are
consecutive, and T restricts costs of certain sequences.

1. U(i, x) = y if and only if si,x..., contains a first halt state hy.

2. T (i, x) = c if and only if ∃y : U(i, x) = y and cost(si,x...hy) = c.

So long as these rules are followed, the set of states, their sequence relations, and
sequence costs will all be consistent with the setting U, T .

If we augment a setting with a set of states, we can state the universal construction
argument as a theorem:

Theorem 1. The following conditions are sufficient for a universal function U and
cost-function T , augmented with a set of states S, to have a non-empty equivalence
class of additively efficient universal computers.

1. Subadditivity: For any sequence of consecutive states s1...sn...,

cost(s1...sn...) ≤ cost(s1...sn) + cost(sn...).

If a subsequence has no defined cost, then the overall sequence has no defined
cost.

2. Universal Construction: There exists a constructor u, a computer that can be
programmed to reach certain states, that is universal in then following sense: u
can be programmed to construct any other computer i, then give that computer
input x, while incurring a cost c that is independent of x, and without first
encountering a halt state. Formally:

∀i ∃p, c ∀x : si,x ∈ su,px...

∧ ∀j : hj /∈ su,px...si,x

∧ cost(su,px...si,x) ≤ c.

6

Proof. The proof is not difficult; u is a member of the desired class. Consider any
computer i. Condition 2 implies that there is a program px that causes u to construct
i and load input x in constant time, and condition 1 implies that the overall cost of
construction and simulation is no greater than the sum of the costs. Therefore, this
program causes u to simulate i with additive constant overhead.

Since any other additively efficient universal computer u′ is also a computer in U ,
the above applies to it as well, and so u and u′ can simulate one another with an
additive constant overhead dependent only on u and u′. Thus, the additively efficient
universal computers in the setting form an equivalence class up to additive constant
overhead. The full proof is given in Appendix 1.

This theorem establishes a pair of conditions, subadditivity and universal construc-
tion, that are sufficient for the existence of additively efficient universal computers.
From a mathematical perspective, the conditions are not particularly elegant, and
they are certainly not necessary. From a complexity standpoint, however, these suf-
ficient conditions are interesting because it is plausible that resources like physical
space and time obey them. This means that additively efficient universal comput-
ers are relevant to the study of physical computation and cost, and that restricting
the choice of machine model to these computers is not unreasonable is some cases,
allowing us to use the property of additive machine-independence in analysis of real
computing machines.

4.1 Physical plausibility of subadditivity
The first condition, subadditivity, requires that the cost of a sequence of consecutive
states is no greater than sum of the costs of any partitioning set of subsequences: for
any sequence of consecutive states s1...sn...,

cost(s1...sn...) ≤ cost(s1...sn) + cost(sn...).

What kinds of resources are subadditive? Loosely define the set of states as physical
configurations that a set of computers can take: a sequence of states si,x... con-
tains states corresponding some of the physical configurations that computer i passes
through while computing U(i, x), a series of snapshots with a frequency and regularity
depending on the granularity desired for the setting.

The most commonly used resources in complexity, time (as in machine steps)
and space (memory read or written) are subadditive: the time or space used by
a sequence is no greater than the sums of the time or space used by partitioning
subsequences. Physical time is also subadditive, as is physical space, both in the
sense of the maximum envelope the computer occupies during its computation and
in the sense of the “volume” the computation occupies (integrating space over time).
Bits of additional input or output, physical energy, and waste products are examples
of more unusual subadditive resources.

Subadditivity holds on many resources, but not all. If the cost of a particular
sequence of states varies according to when it occurs, or depending on states that are
not part of the sequence (e.g. by using some resource that gets more expensive as
additional units are taken), then subadditivity will not hold.

7

4.2 Physical plausibility of universal construction
The universal construction condition divides roughly into two parts: there must be
a computer that can be programmed to construct any other computer, and further
input must be set aside during construction, then passed to the new computer, without
incurring non-constant cost.

The first part, the existence of the universal constructor for a given setting, is
difficult to verify non-constructively. Just as Turing-completeness is typically shown
by construction, or assumed as an axiom of an acceptable Gödel numbering, it may
be the case that there are no simple properties of a setting that are necessary and
sufficient for the existence of a universal constructor. In the case of the physical world,
there are some reasons to suspect that universal contruction is possible, at least for
some reasonable meanings of “universal”:

If, as seems plausible, physical laws are time-reversible, then there can be no
Garden-of-Eden states; any state’s predecessor can be found by applying the time-
reversed laws. This is evidence in favor of a strong form of physical universal con-
struction. However, this is not sufficient. Not only must every state be reachable,
they must all be reachable from one set of states corresponding to a constructor with
different programs. Imagine a directed graph of physical states, with arrows pointing
from past to future states under physical laws. Conservation laws imply that this
graph is split into separate components, islands that cannot be reached from one an-
other. If a strongly universal constructor existed, its programs would need to include
whatever alterations to conserved quantities (energy, angular momentum, etc.) are
needed to bridge the gaps between these components. Otherwise, universality in phys-
ical systems might be best defined within only one of these conservation sub-graphs.
Another difficulty is raised by the irreversible accumulation of entropy within a closed
mechanical system, and the loss of usable energy through heat; it may be that some
theoretically possible trajectories are not in practice realizable in physical computing
machines.

To avoid depending too heavily on deep properties of physical laws, we suggest
a kind of universality that is weaker, but still useful from a complexity-theoretic
point of view: there could exist machines with the ability to construct any object that
humanity could ever build, provided we were appropriately motivated. Since humans
are biological machines, and since we already use machines to build most of our
machines, it is very plausible that there could exist machines with the ability to
construct any object that humanity could ever build. Naïvely, it would only require
the unification in one machine of every manufacturing ability we currently possess
(which could then construct all of our future manufacturing technologies, and so
on). A more practical approach would be to create a programmable, general-purpose
nanofactory.8 If this factory is at least as capable as a ribosome, there is strong reason
to think it could eventually build anything we could. With the benefit of purposeful
design, a general-purpose nanofactory could proceed to the construction of arbitrary
objects much more quickly than ribosomes have.

Based on this argument, it seems plausible that the physical universe supports
a universal constructor that can construct anything humans could ever build, and

8Drexler and Minsky, Engines of creation.

8

therefore that it also supports an equivalence class of universal computers that are
additively efficient relative to any computer humans could ever build. While this set
does not contain every physically possible object, it is so large that such a constructor
can be usefully called “universal”.

The second part of universal construction, the ability to “set aside” inputs without
cost, is easier to work with non-constructively. The remaining input is perhaps best
thought of as “deferred”, or left on the tape while the machine is constructed, then
passed to the new machine; settings that penalize this redirection with a non-constant
cost will not satisfy the condition. For example, the “volume” the computation occu-
pies (integrating space over time) does not satisfy the universal construction condition,
since when the constructor is building a machine, the cost of that construction is not
constant, but proportional to the length of the input, to account for the volume taken
up by the input while it is deferred.

On the other hand, most of the subadditive resources we have mentioned above
do not penalize the storage of input, and so they can fulfill the universal construction
condition if a suitable machine exists. It seems that time (machine steps or physical)
and space (memory read or written, or physical space altered by the machine), bits of
additional input or output, physical energy, and waste products are all independent
of deferred input, and so all meet this part of the condition.

5 A concrete example
We have focused on realizable, physical computing machines, and although this set is
of interest for obvious reasons, it is hard to analyze formally. To give a more rigorous
example, in this section, we will limit ourselves to a set of computers that are programs
on a particular universal Turing machine. In this setting, we can show an example of a
universal constructor of the type needed for Theorem 1, and thus that these programs
include an equivalence class of additively efficient universal computers. That is, there
is a program on this Turing machine that can simulate any other program on any other
input with only additive constant overhead; it does so by constructing, in constant
time and space with respect to the input, the program to be simulated on the tape,
then placing the Turing machine in its initial state at the start of that program and
allowing the run to proceed as normal. We have posted an implementation online9,
along with some examples of construction and constant-overhead simulation.

Though it would be most satisfying to do this construction in a simple, well-
known setting like Conway’s Game of Life, this is beyond the scope of the current
paper. Universal construction (for a variety of meanings of “universal”) in Life is
a very complex problem. Accounts of how universal or near-universal construction
could be achieved began appearing shortly after Life itself was created, with perhaps
the earliest near-complete account published by Conway in 1982.10 Technical imple-
mentations are still an active area of research, and recent results (like Wade’s 2010

9http://www.danieldewey.net/turing-machine-M.html
10Berlekamp, Conway, and Guy, Winning Ways for Your Mathematical Plays, 2nd Ed., Volume

4, Chapter 25 ; Poundstone, The recursive universe: cosmic complexity and the limits of scientific
knowledge.

9

Gemini design) are quite promising, offering large improvements in size and speed
over previous attempts.11 It seems likely that the obstacles remaining are more prac-
tical than conceptual, but the complexity of this domain makes it unsuitable for this
paper. Similarly, von Neumann’s 29-state machine has been more-or-less shown to
support universal construction (modulo quiescent states), but this machine’s com-
plexity makes it too difficult to use here.

Universal construction on a Turing machine tape is significantly easier. In a uni-
versal Turing machine, “construction” of a computer amounts to writing a program on
the tape. While Life configurations are rarely stable, data on a tape does not change
unless rewritten, and so it is easier to build up complex structures without worrying
about them falling apart mid-construction.

As Minsky points out in his exposition of a minimal universal Turing machine,12
one must not be too permissive in the input conventions considered for a universal
machine. Minsky’s example is that a simple identity function might technically be a
“universal function” if the input convention itself is allowed to be a universal function.
Similarly, an identity function is a “universal constructor” if the input convention
itself is allowed to be universal. For this reason, we adopt a restriction: our universal
constructor will take programs in a subset of the UTM’s symbol set, and must be
able to construct any string using the full symbol set.

Our Turing machine, which we’ll refer to as M , is based on Minsky’s 4-symbol,
7-state universal machine. We augment Minsky’s machine with twenty-one additional
states and one additional symbol. On M , the program y1yA0 is a universal construc-
tor, able to be programmed with finite sequences from alphabet {A, y} to construct
any finite sequence from the full alphabet {0, 1, A, y, x} and leave M in its starting
state at the head of the constructed string. M ’s full action table is given in Table 1.

5.1 How M works
We designed M with two objectives: M should be obviously universal because it can
easily simulate Minsky’s machine, and M should support a relatively simple universal
constructor using the same input alphabet {A, y} as Minsky’s machine.

M ’s simulation of Minsky’s machine is quite simple, since Minsky’s machine’s
action table is contained entirely in M ’s table (states q1–q7). Minsky’s machine can
simulate any two-tag system, which is enough to show that it is universal; for details,
see Minsky, “Computation: finite and infinite machines”. For our purposes, it is
enough to know that the simulation of a tag system requires that the tape be loaded
with a production table in the form of a sequence of 1s and 0s, followed by a tag list
in the form of a sequences of ys and As, and that the read-write head start in state
q2 on the leftmost symbol in the tag list.

M , by contrast, starts by convention on the leftmost nonzero symbol on the
tape in state “ready”. To simulate Minsky’s machine on a tag system, M must be
loaded with exactly the same string as Minsky’s machine would be, but with an x

11Goucher, “Universal Computation and Construction in GoL Cellular Automata”; Greene, Repli-
cator Redux.

12Minsky, “Computation: finite and infinite machines”.

10

0 1 A y x

ready right, clean right, buffer1 right, inc1 right 0, right, cue
buffer1 right, buffer2 right right right -
buffer2 left, fail1 right x, right, buffer3 right right
buffer3 y, left, succ1 right right right -
inc1 right, inc2 right right right -
inc2 left, fail1 right 1, right, endinc1 1, right, inc3 -
inc3 right, inc4 right right right -
inc4 1, left, inc5 A, left, inc5 y, left, inc5 x, left, inc5 -
inc5 left, inc6 - - - -
inc6 right, inc2 left left left -

endinc1 left, endinc2 right right right -
endinc2 - - - 0, left, succ1 -
succ1 left, succ2 left left left left
succ2 right, succ3 left left left -
succ3 right, clean 0, right, buffer1 0, right, inc1 right, ready 0, right, cue
fail1 left, fail2 left left left A, left, fail1
fail2 right, fail3 left left left -
fail3 right, clean 0, right, buffer1 0, right, inc1 0, right, erase 0, right, cue
erase - 0, right, ready 0, right, ready - -
clean right, ready 0, right, clean 0, right, clean - -
cue right right y, right, q6 0, left, q1 -
q1 left left, q2 1, left 0, left -
q2 y, right A, right y, right, q6 0, left, q1 -
q3 halt A, left 1, left, q4 left -
q4 y, right, q5 left, q7 1, left left -
q5 y, left, q3 A, right 1, right right -
q6 A, left, q3 A, right 1, right right -
q7 y, right, q6 right 0, right, q2 0, right -

Table 1: The action table for M . This universal Turing machine has at least one
universal constructor, y1yA0, able to be programmed with finite sequences from al-
phabet {A, y} on an infinite tape of background 0 to construct any finite sequence
from the full alphabet {0, 1, A, y, x}. States q1–q7 are identical to Minsky’s 4-symbol,
7-state UTM.

11

appended to the left. For example, to simulate a tag system with production ta-
ble 110101110000010011011 and tag list yyAyyAyy, M requires an initial tape of
x110101110000010011011yyAyyAyy. Reading x in state “ready” causes M to enter
state “cue”, which in turn causes it to move right until it encounters the first symbol
in the tag list. From there, M behaves identically to Minsky’s machine; this follows
from the embedding of Minsky’s action table in M ’s. This example system’s expected
behaviour is described in Minsky, “Computation: finite and infinite machines” p.280
("The four-symbol seven-state universal machine").

M ’s universal constructor is the program y1yA0. To construct and then run an
arbitrary string s, it suffices to append s’s “codeword” to y1yA0. To find a string s’s
codeword, first reverse it, then encode each of its symbols: 0 becomes A, 1 becomes
yA, A becomes yyA, y becomes yyyA, and x becomes yyyyA; and finally, remove
the final A from the resulting string. For example, the codeword for string xAy is
yyyAyyAyyyy. This means that M , starting in state ready on the leftmost symbol
of tape y1yA0yyyAyyAyyyy, will eventually produce tape xAy, leaving M in state
“ready” on the leftmost symbol.

Construction takes place in two parts, corresponding to the two “phrases” y1 and
yA in the constructor program: y1 builds a “buffer”, a series of ys to the right of
the codeword, and then yA “fills in” this buffer by copying each coded symbol into
its proper place. For a step-by-step explanation of how y1yA0 builds this string, see
Appendix 2.

This construction process can be used to build and execute arbitrary programs,
using the encoding scheme given above. Thus, y1yA0 is a universal constructor in
machine M . The contructor can even be used to construct a tag production table,
then execute it on an input as in Minsky’s machine. An example tape achieving this
is the rather long string

y1yA0yAyAAyAyAAAyAAAAAAyAyAyAAyAAyAyAyyyy000000000000000000000000yyAyyAyy

The run of this example is too long to be included here, but can be seen in our
implementation. Its significance is that it shows y1yA0 simulating another program
in M with additive overhead: since only the production table is constructed, the input
(tag list) could have been arbitrarily long without affecting the construction time.

Since M supports a universal constructor, it also supports an equivalence class of
additively efficient universal computers. The details of applying Theorem 1 to M and
y1yA0 are given in Appendix 3.

6 Conclusion
We have given evidence that a strong machine-invariance thesis holds over realiz-
able computers: relative to many kinds of physical computing resource, there exist
equivalence classes of additively efficient universal computers, and if the choice of
computing machine model is restricted to additively efficient universal computers,
results in computational complexity theory can be made machine-independent up to
an additive constant. Our evidence consists of an informal expansion of Deutsch’s

12

insight, followed by a formal definition and a theorem whose sufficient conditions
plausibly hold on many physical resources, including time and space. We have also
given an example of a setting, Turing machine M , in which a universal constructor
enables additively efficient universal computation across all other computers in the
setting.

As we mentioned earlier, these sufficient conditions are not necessary. It is likely
that in the physical world, only a small fraction of universal construction capacity
is actually needed for an additively efficient universal computer. The sufficient con-
ditions even fail to capture some additively efficient universal computers that are
universal-constructor based. For example, the “envelope” of a computation, the size
of the smallest area that the computer and its input do not extend beyond at any
point during a computation, violates the second part of the universal construction
condition: when input is set aside until later, it contributes to the envelope of the
construction proportionally to the length of the input, and so the initial construction
step is not of constant cost. However, the overall simulation is clearly additively ef-
ficient, since the constructed computer must use the same input space, pushing the
envelope out to exactly the same point. Additive efficiency still holds because the
“envelope measure” is extremely subadditive; the same space is frequently re-used,
especially in the case of deferred input.

Additively efficient universal computers enable a pleasing symmetry between static
and run-time complexity measures. For example, the information content of a string
(as measured by Kolmogorov complexity) and the “knowledge” content derived or
deduced from that information (as measured by the logical depth13 of the string) can
both be quantified in a way that depends on the machine model only by a constant
factor.

Additively efficient universal computers, and the evidence that they are realizable,
suggest a deep fact about the relationship between computational problems and phys-
ical systems: computers that suffer from polynomial slowdown are failing, through
limitations in their computing model, to compress some computational regularities
in the problems they solve. Our main proposed application is to make areas such
as complexity theory and logical depth machine-independent up to a constant, but
more elegant sufficient conditions, or more information about necessary conditions,
may also yield deeper insights into the nature and future of computation.

Acknowledgements
Thanks to Scott Aaronson, Nick Bostrom, and Toby Ord for their feedback and
suggestions.

References
Arora, Sanjeev and Boaz Barak. Computational complexity: a modern approach. Cam-

bridge University Press, 2009.
13Bennett, “Logical depth and physical complexity”.

13

Bennett, Charles H. “Logical depth and physical complexity”. In: The Universal Tur-
ing Machine A Half-Century Survey. Springer, 1995, pp. 207–235.

Berlekamp, Elwyn R, John H Conway, and Richard K Guy. Winning Ways for Your
Mathematical Plays, 2nd Ed., Volume 4, Chapter 25. AK Peters, Ltd, 2001–2004.

Bernstein, Ethan and Umesh Vazirani. “Quantum complexity theory”. In: Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing. ACM. 1993,
pp. 11–20.

Cocke, John and Marvin Minsky. “Universality of tag systems with P= 2”. In: Journal
of the ACM (JACM) 11.1 (1964), pp. 15–20.

Deutsch, David. “Constructor theory”. In: Synthese 190.18 (2013), pp. 4331–4359.
issn: 0039-7857. doi: 10.1007/s11229-013-0279-z. url: http://dx.doi.org/
10.1007/s11229-013-0279-z.

Drexler, K Eric and Marvin Minsky. Engines of creation. Fourth Estate, 1990.
Goucher, Adam P. “Universal Computation and Construction in GoL Cellular Au-

tomata”. In: Game of Life Cellular Automata. Springer, 2010, pp. 505–517.
Greene, Dave. Replicator Redux. Blog. 2013. url: http://b3s23life.blogspot.co.

uk/2013/01/replicator-redux.html.
Li, Ming and Paul Vitanyi. An introduction to Kolmogorov complexity and its appli-

cations. Springer, 1997.
Minsky, Marvin L. “Computation: finite and infinite machines”. In: Englewood Cliffs,

N.].: Prentice-Hall (1967).
Moore, Edward F. “Machine models of self-reproduction”. In: Proc. Symp. Appl. Math.

Vol. 14. 1962, pp. 17–33.
Poundstone, William. The recursive universe: cosmic complexity and the limits of

scientific knowledge. Courier Dover Publications, 2013.
Thatcher, James W. Universality in the von Neumann cellular model. Tech. rep. DTIC

Document, 1964.
Von Neumann, John, Arthur Walter Burks, et al. Theory of self-reproducing automata.

University of Illinois press Urbana, 1966.

14

Appendix 1— proof of Theorem 1
Proof. u is a member of the desired class. Consider any computer i. Condition 2
implies that there is a program px that causes u to construct i and load input x, and
we can show that this program causes u to simulate i with additive constant overhead.

Through application of the conditions and state consistency rules, we can show
that p causes u to emulate i’s functional properties. If ϕi(x) is undefined, it follows
from the first state consistency rule that si,x... contains no halt state. Since, by
condition 2, su,px...si,x contains no halt state, it follows that su,px...si,x... has no
halt state, and by another application of the first state consistency rule, ϕu(px) is
undefined. On the other hand, if ϕi(x) = y, it follows from the first state consistency
rule that si,x... contains a first halt state hy. Since, by condition 2, su,px...si,x contains
no halt state, su,px...si,x... contains a first halt state hy, and by another application
of the first state consistency rule, ϕu(px) = y.

We can also show that u incurs only additive constant overhead when p causes
it to simulate i, or that both computers fail to halt. Suppose first that Φi(x) is
undefined. By the second state consistency rule, cost(si,x...) is undefined; condition
1 implies that cost(su,px...si,x...) is then undefined, and a second application of the
second state consistency rule implies that Φu(px) is undefined. On the other hand,
suppose Φi(x) is defined. By the second state consistency rule, cost(si,x...) = Φi(x).
Condition 1 implies that

cost(su,px...si,x...) ≤ cost(su,px...si,x) + cost(si,x...)

≤ cost(su,px...si,x) + Φi(x).

By condition 2, cost(su,px...si,x) is less than or equal to c, some constant depending
only on i and u, and independent of x. Thus, cost(su,px...si,x...) ≤ Φi(x) + c, and so
by the second state consistency rule, Φu(px) ≤ Φi(x) + c.

Since any other additively efficient universal computer u′ is also a computer in U ,
the above applies to it as well, and so u and u′ can simulate one another with an
additive constant overhead dependent only on u and u′. Thus, the additively efficient
universal computers of any U, T form an equivalence class up to additive constant
overhead.

Appendix 2— y1yA0 constructs xAy

...y1yA0yyyAyyAyyyy...

Starting in state “ready” on the leftmost y, the head proceeds right, changing to state
“buffer1” when it reads 1 in the constructor string. On reaching the first A in the
codeword, it changes to state “buffer2”; it will now place a buffer-mark y corresponding
to this A at the end of the string, and rewrite the A as an x to show that it has been
marked.

...y1yA0yyyxyyAyyyyy...

Since the head did find an A to add to the buffer, it returns left in the “success” states
“succ1” and “succ2”, bouncing off the leftmost 0 and reaching the leftmost y in state

15

“succ3”. Since the buffering was a success, y moves the head to the right in state
“ready”, allowing the 1’s buffering process to be repeated.

...y1yA0yyyxyyxyyyyyy...

When buffering is attempted again, no, A is found; the buffer is long enough (the
length of the codeword minus one). The head encounters a 0 and returns to the left
in the “fail” states “fail1” and “fail2”, resetting the xs to As and eventually reading
“y” in state “fail3”. Since the buffering is now done, the y and the 1 are erased, and
copying begins.

...yA0yyyAyyAyyyyyy...

Starting in state “ready” on the leftmost “y”, the head proceeds right, changing to
state “inc1” (the first of the “increment” states) when it reads A in the constructor
string. On reaching the first y in the codeword, it changes to state inc2; it will now
move right to the end of the buffer, pass over the 0 there, and increment the next 0.
The head rewrites the first y as a 1 to show that it has been counted.

...yA01yyAyyAyyyyyy01...

The head returns left in state “inc6”, bouncing off the 0 just before the codeword.
It will now continue to increment the same symbol once for each leading y in the
codeword, stopping only when it encounters an A:

...yA011yAyyAyyyyyy0A...

...yA0111AyyAyyyyyy0y...

On encountering the A, it is done writing the string’s final symbol: a y, as coded by
the codeword’s first part yyA. The head marks the A as a 1 and proceeds to the end
of the buffer, where it replaces the last y in the buffer with a 0 and returns in the
“success” states (since it found and copied a symbol from the codeword):

...yA01111yyAyyyyy00y...

Reaching the leftmost y in state “succ3”, the machine repeats the “increment” process,
copying the second symbol from the codeword:

...yA011111yAyyyyy01y...

...yA0111111Ayyyyy0Ay...

...yA01111111yyyy00Ay...

Similarly, it copies the third symbol:

...yA011111111yyy01Ay...

...yA0111111111yy0AAy...

...yA01111111111y0yAy...

16

...yA0111111111110xAy...

The desired string is now constructed. On encountering the rightmost 0 instead of a
y or A, the “increment” process is complete, and the head returns left in “fail” states.
Once again, this causes the y and the A to be erased:

...0111111111110xAy...

In state “ready”, reading 0 means that the construction is done; the machine enters
state “erase”. It moves right, cleaning up the 1s now covering the codeword. On
reaching the 0 to the left of the constructed string, it moves right, entering state
“ready" on the leftmost symbol of the constructed string.

...xAy...

M is now in exactly the state it would be if it were started with program xAy.

Appendix 3: M and y1yA0 satisfy Theorem 1
We will show that the program y1yA0 is a universal constructor with the properties
required to satisfy Theorem 1. First, we will use M to define a universal partial
recursive function U(i, x):

1. On M ’s initial tape (filled with background symbol 0), place the digits of i
expressed in base five with alphabet {0, 1, A, y, x}, with M ’s read-write head on
the leftmost digit.

2. Place the digits of x encoded in base three with alphabet {0, A, y} to the right
of the last digit of i.

3. Starting in state “ready”, run M . If it never halts, U(i, x) is undefined. If it
does halt, let U(i, x) = y, where y is encoded in base two with alphabet {A, y}
to the right of the read-write head.

To apply Theorem 1, we must relate U to a set of states. We will use the set S of
“full states” of M , which include not just the state M is in, but also the string on the
tape and the position of the read-write head. Each starting state si,x will correspond
to the full state of M prepared as above to compute U(i, x). Each halting state hi

will correspond to a full state of M where i is encoded in base two with alphabet
{A, y} to the right of the read-write head and M has halted. For each non-halting
state, the successor state is the next state M will enter, as determined by its table;
halting states are their own successors.

U and S obey the first state consistency rule: Clearly from the definitions
of states in S, U(i, x) = y if and only if si,x... contains a first halt state hy.

⌜y1yA0⌝ is a universal constructor in the sense of Theorem 1: Let ⌜y1yA0⌝
be the input to U corresponding to our construction program y1yA0. Theorem 1
calls for a the existence of a “universal constructor” index u, such that for any index
i, there is an input-prefix p that causes u’s start-state su,px to lead to i’s start-state

17

si,x, without first encountering a halt state, and with a cost that’s independent of the
input-suffix x. Our constructor ⌜y1yA0⌝ can be programmed to bring about any other
starting state without first entering a halt state, and does this construction without
interacting at all with the input x (as shown by example in the previous subsection
and Appendix 2).

This guarantees that for all x, cost(su,px...si,x) is constant for a wide range of
cost functions: for example, the number of steps taken by M , the number of symbols
written, and the number of state changes are all constant relative to the input x. It
so happens that all of these cost functions are subadditive as well, and so Theorem 1
shows that ⌜y1yA0⌝ is an additively efficient universal computer relative to U and any
T defined using resources like steps, symbols written, or state changes (and obeying
the second state consistency rule).

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

