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Abstract

We prove exponential lower bounds on the size of homogeneous depth 4 arithmetic circuits
computing an explicit polynomial in VP. Our results hold for the Iterated Matrix Multiplication
polynomial - in particular we show that any homogeneous depth 4 circuit computing the (1, 1)
entry in the product of n generic matrices of dimension nO(1) must have size nΩ(

√
n).

Our results strengthen previous works in two significant ways.

1. Our lower bounds hold for a polynomial in VP. Prior to our work, Kayal et al [KLSS14]
proved an exponential lower bound for homogeneous depth 4 circuits (over fields of char-
acteristic zero) computing a poly in VNP. The best known lower bounds for a depth 4
homogeneous circuit computing a poly in VP was the bound of nΩ(logn) by [LSS, KLSS14].

Our exponential lower bounds also give the first exponential separation between general
arithmetic circuits and homogeneous depth 4 arithmetic circuits. In particular they imply
that the depth reduction results of Koiran [Koi12] and Tavenas [Tav13] are tight even for
reductions to general homogeneous depth 4 circuits (without the restriction of bounded
bottom fanin).

2. Our lower bound holds over all fields. The lower bound of [KLSS14] worked only over fields
of characteristic zero. Prior to our work, the best lower bound for homogeneous depth 4
circuits over fields of positive characteristic was nΩ(logn) [LSS, KLSS14].
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1 Introduction

In a seminal work [Val79], Valiant defined the classes VP and VNP as the algebraic analogs of
the classes P and NP. The problem of separating VNP from VP has since been one of the most
important open problems in algebraic complexity theory. Although the problem has received a
great deal of attention in the following years, the best lower bounds known for general arithmetic
circuits are barely super linear [Str73, BS83]. The absence of progress on the general problem has
led to much attention being devoted to proving lower bounds for restricted classes of arithmetic
circuits. Arithmetic circuits of small depth are one such class that has been intensively studied.

Depth Reduction: In a very interesting direction of research, Valiant et al [VSBR83]
showed that every polynomial of degree n in poly(n) variables, which can be computed by a
poly(n) sized arithmetic circuit, can also be computed by a poly(n) sized arithmetic circuit of
depth O(log2 n). In other words, arbitrary depth circuits in VP can be reduced to circuits of
depth O(log2 n) with only a polynomial blowup in size. Thus, in order to separate VNP from
VP, it would suffice to show a super-polynomial lower bound for just circuits of depth O(log2 n).
In an intriguing line of recent works in this direction, Agrawal-Vinay [AV08], Koiran [Koi12]
and Tavenas [Tav13] built upon the results of Valiant et al [VSBR83] and showed that much
stronger depth reductions are possible. In order to separate VNP form VP, it would suffice to
prove strong enough (nω(

√
n)) lower bounds for just homogeneous depth 4 circuits.

Lower bounds for homogeneous bounded depth circuits: In an extremely in-
fluential work, Nisan and Wigderson [NW95] proved the first super-polynomial (and in fact
exponential) lower bound for the class of homogeneous depth 3 circuits. This work used the
dimension of the space of partial derivatives as a measure of complexity of a polyomial, and
used this measure to prove the lower bounds. For several years thereafter, there were no im-
proved lower bounds - even for the case of depth 4 homogeneous circuits, the best lower bounds
were just mildly super-linear [Raz10]. This is contrary to what is known for Boolean circuits,
where we know exponential lower bounds for bounded depth circuits. This seemed surprising
until the depth reduction results of Agrawal-Vinay [AV08] and later Koiran [Koi12] and Tave-
nas [Tav13], which demontrated that in some sense, homogeneous depth 4 circuits capture the
inherent complexity of general arithmetic circuits.

In a breakthrough result in 2012, Gupta, Kamath, Kayal and Saptharishi [GKKS13a], made
the first major progress on the problem of obtaining lower bounds for bounded depth circuits, by
proving 2Ω(

√
n) lower bounds for an explicit polynomial of degree n in nO(1) variables computed

by a homogeneous depth 4 circuit, where the fan-in of the product gates at the bottom level of
the depth 4 circuits is bounded by

√
n. For ease of exposition, let us denote the class of depth 4

circuits with bottom fanin
√
n by ΣΠΣΠ[

√
n] circuits. The lower bounds of [GKKS13a] were later

improved to 2Ω(
√
n logn) in a follow up work of Kayal, Saha, Saptharishi [KSS13]. These results

were all the more remarkable in the light of the results of Koiran [Koi12] and Tavenas [Tav13]
who had in fact showed that 2ω(

√
n logn) lower bounds even for homogeneous ΣΠΣΠ[

√
n] circuits

would suffice to separate VP from VNP. Thus, any asymptotic improvement in the exponent, in
either the upper bound on depth reduction or the lower bound of [KSS13] would separate VNP
from VP. Both papers [GKKS13a, KSS13] used the notion of the dimension of shifted partial
derivatives as a complexity measure, a refinement of the Nisan-Wigderson complexity measure
of dimension of partial derivatives.

The most tantalizing questions left open by these works was to improve either the depth
reduction or the lower bounds. In [FLMS13], the lower bounds of [KSS13] were strengthened by
showing that they also held for a polynomial in VP. These were further extended in [KS], where
the same exponential (nΩ(

√
n)) lower bounds were also shown to hold for very simple polynomial

sized formulas of just depth 4 (if one requires them to be computed by homogeneous ΣΠΣΠ[
√
n]
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circuits). On one hand, these results give us extremely strong lower bounds for an interesting
class of depth 4 homogeneous circuits. On the other hand, since these lower bounds also hold
for polynomials in VP and for homogeneous formulas [FLMS13, KS], it follows that the depth
reduction results of Koiran [Koi12] and Tavenas [Tav13] to the class of homogeneous ΣΠΣΠ[

√
n]

circuits are tight and cannot be improved even for homoegeneous formulas.
Although these results represent a lot of exciting progress on the problem of proving lower

bounds for homogeneous ΣΠΣΠ[
√
n] circuits, and these results seemed possibly to be on the

brink of proving lower bounds for general arithmetic circuits, they still seemed to give almost
no nontrivial results for general homogeneous depth 4 circuits with no bound on bottom fanin
(homogeneous ΣΠΣΠ circuits). Moreover, it was shown in [KS] that general homogeneous
ΣΠΣΠ circuits are exponentially more powerful than homogeneous ΣΠΣΠ[

√
n] circuits1. Till

very recently, the only lower bounds we knew for general homogeneous depth 4 circuits were the
slightly super-linear lower bounds by Raz using the notion of elusive functions [Raz10] (these
worked even for non-homogeneous circuits).

Lower bounds for general homogeneous depth 4 circuits: Recently, the first
super-polynomial lower bounds for general homogeneous depth 4 (ΣΠΣΠ) circuits were proved
independently by the authors of this paper [KS13] who showed a lower bound of nΩ(log logn)

for a polynomial in VNP and Limaye, Saha and Srinivasan [LSS], who showed a lower bound
of nΩ(logn) for a polynomial in VP. Subsequently, Kayal, Limaye, Saha and Srinivasan greatly
improved these lower bounds to obtain exponential (2Ω(

√
n logn)) lower bounds for a polynomial

in VNP (over fields of characteristic zero). Notice that this result also extends the results
of [GKKS13a] and [KSS13] who proved similar exponential lower bounds for the more restricted
class of homogeneous ΣΠΣΠ[

√
n] circuits. The result by [KLSS14] shows the same lower bound

without the restriction of bottom fanin. Again, any asymptotic improvement of this lower bound
in the exponent would separate VP from VNP.

This class of results represents an important step forward, since homogeneous depth 4 circuits
seem a much more natural class of circuits than homogeneous depth 4 circuits with bounded
bottom fanin. The results of the current paper build upon and strengthen the results of Kayal
et al [KLSS14]. Before we describe our results we first highlight some important questions left
open by [KLSS14] and place them in the context of several of the other recent results in this
area.

• Dependence on the field: Several of the major results on depth reduction and lower
bounds have heavily depended on the underlying field one is working over. In a beautiful
result [GKKS13b], it was shown that if one is working over the field of real numbers, one
can get surprising depth reduction of general circuits to just depth 3 circuits2! Indeed
it was shown that any arithmetic circuit over the reals (in particular one computing the
determinant) can be reduced to a depth 3 circuit of size nO(

√
n). Thus proving nω(

√
n) lower

bounds for depth 3 non-homogeneous circuits over the reals would imply super-polynomial
lower bounds for general arithmetic circuits. We know that such a depth reduction is not
possible over small finite fields. Lower bounds of the form 2Ω(n) were shown for depth 3
(non-homogeneous) circuits over small finite fields (even for the determinant) by Grigoriev
and Karpinksi [GK98] and Grigoriev and Razborov [GR98] 3. Thus at least for depth
3 circuits, we know that there is a vast difference between the computational power of
circuits for different fields.

1It was demonstrated that even very simple homogeneous ΣΠΣΠ circuits of polynomial size might need nΩ(
√
n)

sized homogeneous ΣΠΣΠ[
√
n] circuits to compute the same polynomial.

2albeit with loss of homogeneity.
3Recently, Chillara and Mukhopadhyay [CM14] showed 2Ω(n log n) lower bounds for depth 3 circuits over small

finite fields for a polynomial in VP.
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The lower bounds of [KLSS14] work only over fields of characteristic zero. This is because
in order to bound the complexity of the polynomial being computed, the proof reduces the
question to lower bounding the rank of a certain matrix. This computation ends up being
highly nontrivial and is done by using bounds on eigenvalues. However a similar analysis
does not go through for other fields. In particular it was an open question if working over
characteristic zero was necessary in order to prove the lower bounds.

• Explicitness of the hard polynomial: The result of [KLSS14] only proved a lower
bound for a polynomial in VNP. It is conceivable/likely that much more should be true,
that even polynomials in VP should not be computable by depth 4 homogeneous circuits.
The best lower bound known for homogeneous depth 4 circuits computing a poly in VP
is the lower bound of nΩ(logn) by [LSS, KLSS14]. Recall that when one introduces the
restriction on bounded bottom fanin, then stronger exponential lower bounds are indeed
known [FLMS13, KS]. This fact is also related to the next bullet point below.

• Tightness of depth reduction: The result of [FLMS13] (which showed an explicit
polynomial of degree n in nO(1) variables in VP requiring an nΩ(

√
n) sized homogeneous

ΣΠΣΠ[
√
n] to compute it), in particular showed the the depth reduction results of Koiran [Koi12]

and Tavenas [Tav13] (showing that every polynomial of degree n in nO(1) variables in VP
can be computed by an nO(

√
n) sized homogeneous ΣΠΣΠ[

√
n] circuit) are tight. In [KSS13]

it was shown that the depth reduction results can in fact be improved for the class of reg-
ular arithmetic formulas, thus suggesting that it might be improvable for general formulas
or at least homogeneous formulas. This was shown to be false in [KS], where it was shown
that the depth reduction results of Koiran and Tavenas are tight even for homogeneous
formulas. In all these cases, when it was shown that depth reduction is tight, it was shown
that if one wants to reduce to the class of homogeneous ΣΠΣΠ[

√
n] circuits, then one can-

not do better. The significance of studying depth reduction to homogeneous ΣΠΣΠ[
√
n]

circuits stemmed from the matching strong lower bounds for that class.

Given the new lower bounds for the more natural class of depth 4 homogeneous cir-
cuits (with no restriction on bottom fanin), and especially the exponential lower bounds
of [KLSS14], the most obvious question that arises is the following: If one relaxes away
the requirement of bounded bottom fanin, i.e. all one requires is to reduce to the class of
general depth 4 homogeneous circuits, can one improve upon the upper bounds obtained
by Koiran and Tavenas? If we could do this over the reals/complex numbers, then given
the [KLSS14] result, this would also suffice in separating VP from VNP!

• Shifted partial derivatives and variants: The results of [KS13, LSS, KLSS14] all use
variants of the method of shifted partial derivates to obtain the lower bounds. All 3 works
use different variants and they are all able to give nontrivial results. This suggests that
we do not really fully understand the potential of these methods, and perhaps they can
be used to give even much stronger lower bounds for richer classes of circuits. Thus it
seems extremely worthwhile to develop and understand these methods - to understand
how general a class of lower bounds they can prove as well as to understand if there any
any limitations to these methods.

1.1 Our results

In this paper, we show a lower bound of 2Ω(
√
n logn) on the size of homogeneous depth 4 circuits

computing a polynomial in VP. Moreover, this result holds over all fields. We use the notion of
the dimension of projected shifted partial derivatives as a measure of complexity of a polynomial.
This measure was first used in [KLSS14]. Our results extend those of [KLSS14] in two ways -
they hold over all fields, and they also hold for a much simpler polynomial that is in VP.
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We first give a new, more combinatorial proof of the 2Ω(
√
n logn) lower bound for a polynomial

in VNP, which holds over all fields. This result is much simpler to prove than our result for a
polynomial in VP and thus we prove it first. This will also enable us to develop methods and
tools for the more intricate analysis of the lower bounds for VP.

Theorem 1.1. Let F be any field. There exists an explicit family of polynomials (over F)
of degree n and in N = nO(1) variables in VNP, such that any homogeneous ΣΠΣΠ circuit
computing it has size at least nΩ(

√
n).

The lower bound in Theorem 1.1 is shown for a family of polynomials (denoted by NWn,D)
whose construction is based on the idea of Nisan-Wigderson designs . These are the same poly-
nomials for which [KLSS14] show their lower bounds. We give a formal definition in Section 3.
The main difference in our proof of the above result from the proof in [KLSS14] is that our proof
of the lower bound on the complexity of the polynomial is completely combinatorial, while the
proof in [KLSS14], used matrix analysis that works only over fields of characteristic zero. The
combinatorial nature of our proof allows us to prove our results over all fields. The combinatorial
nature of the proof also gives us much more flexibility and this is what enables the proof of our
lower bounds for a polynomial in VP. Though our lower bound for the polynomial in VP is at
a high level similar to the VNP lower bound, the analysis is much more delicate and the choice
of parameters ends up being quite subtle. We will elaborate more on this in the proof outline
given in Section 2.

Theorem 1.2 (Main Theorem). Let F be any field. There exists an explicit family of poly-
nomials (over F) of degree n and in N = nO(1) variables in VP, such that any homogeneous
ΣΠΣΠ circuit computing it has size at least nΩ(

√
n).

As an immediate corollary of the result above, we conclude that the depth reduction results
of Koiran [Koi12] and Tavenas [Tav13] are tight even when one wants to depth reduce to the
class of general homogeneous depth 4 circuits.

Corollary 1.3 (Depth reduction is tight). There exists a polynomial in VP of degree n in
N = nO(1) variables such that any homogeneous ΣΠΣΠ circuit computing it has size at least
nΩ(
√
n). In other words, the upper bound in the depth reduction of Tavenas [Tav13] is tight, even

when the bottom fan-in is unbounded.

The polynomial in Theorem 1.2 is the Iterated Matrix Multiplication (IMMñ,n) polynomial.
From the fact that the determinant polynomial is complete for the class VQP [Val79], we obtain
the first exponential lower bounds for the polynomial Detn (which is the determinant of an n×n
generic matrix) computed by a homogeneous ΣΠΣΠ circuit.

Corollary 1.4. There exists a constant ε > 0 such that any homogeneous ΣΠΣΠ circuit com-
puting the polynomial Detn has size at least 2Ω(nε).

We have not optimized the value of ε in the statement above, but our proof gives a value of
ε > 1/22.

1.2 Organisation of the paper

In Section 2, we provide a broad overview of the proofs of Theorem 1.1 and Theorem 1.2. In
Section 3, we define some preliminary notions and set up some notations used in the rest of the
paper. We prove an upper bound on the dimension of the projected shifted partial derivatives
of a homogeneous depth 4 circuit of bounded bottom support in Section 4. We lay down
our strategy for obtaining a lower bound on the complexity of the polynomials of interest in
Section 5. Finally in Sections 6 and 7, we prove Theorem 1.1 and in Sections 8 and 9, we prove
Theorem 1.2. We conclude with some open problems in Section 10.
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2 Proof Overview

Let C be a homogeneous ΣΠΣΠ circuit computing the polynomial P (eitherNWn,D or IMMñ,n).
The broad outline of the proof of lower bound on the size of C is as follows.

1. If C is large (≥ nε
√
n) to start with, we have nothing to prove. Else, the size of C is small

(< nε
√
n).

2. We choose a random subset V of the variables from some carefully defined distribution
D, and then restrict P and C to be the resulting polynomial and circuit after setting the
variables not in V to zero. We will let C|V and P |V be the resulting circuit and polynomial.
Since C computed P , thus C|V still computes P |V . This choice of distribution D has to
be very carefully designed in order to enable the rest of the proof to go through. When
P = NWn,D, V will be a random subset of variables which is chosen by picking each
variable independently with a certain probability. In the case that P = IMMñ,n, our
distribution is much more carefully designed.

3. We show that with a very high probability over the choice of V ← D, no product gate in
the bottom level of C|V has large support. Thus C|V is a homogeneous ΣΠΣΠ{

√
n} circuit

(this is the class of ΣΠΣΠ circuits where every product gate at the bottom layer has only√
n distinct variables feeding into it, and we formally define this class in Section 3).

4. For any homogeneous ΣΠΣΠ{
√
n} circuit, we obtain a good estimate on the upper bound

on its complexity ΦM,m(C|V ) (this is the complexity measure of projected shifted partial
derivatives that we use, and we define it formally in Section 3) in terms of its size. This
step is very similar to that in [KLSS14], and is fairly straightforward.

5. We show that with a reasonably high probability over V ← D, the complexity of P |V re-
mains large. This step is the most technical and novel part of the proof. Unlike the proof
of the earlier exponential bound by [KLSS14], our proof is completely combinatorial. We
lower bound the complexity measure ΦM,m(P |V ) by counting the number of distinct lead-
ing monomials that can arise after differentiating, shifting and projecting. This calculation
turns out to be quite challenging. We first define three related quantities T1, T2 and T3

and show that T1− T2− T3 is a lower bound on ΦM,m(P |V ). We elaborate on what these
quantities are in Section 5. These quantities are easier to compute when P = NWn,D, and
we are able to show that EV←D[T1 − T2 − T3] is large. Using variance bounds then lets us
conclude that ΦM,m(P |V ) is large with high probability. When P = IMMñ,n however,
all we are able to show is that T2 + T3 is not too much larger than T1 in expected value
(it will still be exponentially larger). We then use some sampling arguments to handle
this and deduce anyway that ΦM,m(P |V ) is large. We elaborate more on this step in
Section 5.1 and give formal proofs in Sections 8 and 9. In this step of the proof, the choice
of the distribution D turns out to be extremely crucial, and we need to construct it quite
carefully. We describe the distribution in Section 8.

6. Then, we argue that both the events in the above two items happen simultaneously with
non-zero probability. Now, comparing the complexities P |V and C|V , we deduce that the
size of C|V and hence C must be large.

At a high level, the proof uses several ingredients from [KS13] and [KLSS14]. We now
highlight the differences between our proof and the proof in each of these.

Comparison to [KS13] The random restriction procedure and the complexity measure
in [KS13] is different from the one we use in this work. However the high level strategy of
lower bounding the complexity of the polynomial by counting the number of distinct leading
monomials that can arise is the same. In this paper these calculations use much more sophisti-
cated arguments.
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Comparison to [KLSS14] Although the complexity measure and the random restrictions in
this paper are the same as the one used in [KLSS14], the proofs are different in a key aspect.
Kayal et al prove a lower bound on the complexity of the polynomial by using a lemma in real
matrix analysis to transform the problem into that of bounding traces of some matrices. This
transformation does not work over all fields. In this paper, we lower bound the complexity of the
polynomial using a purely combinatorial argument that counts the number of distinct leading
monomials that can arise. Hence our proof works over all fields. Although it is hard to say that
one of these proofs is simpler than the other (our calculations of the number of distinct leading
monomials is fairly nontrivial), we remark that our proof is based on a set of more elementary
combinatorial ideas, and the techniques seem to be more flexible (and this is what allowed us
to prove the more explicit lower bounds for a polynomial in VP).

3 Preliminaries

Arithmetic Circuits: An arithmetic circuit over a field F and a set of variables x1, x2, . . . , xN
is a directed acyclic graph with internal nodes labelled by the field operations and the leaf nodes
labelled by input variables or field elements. By the size of the circuit, we mean the total number
of nodes in the underlying graph and by the depth of the circuit, we mean the length of the
longest path from the output node to a leaf node. A circuit is said to be homogeneous if the
polynomial computed at every node is a homogeneous polynomial. By a ΣΠΣΠ circuit or a
depth 4 circuit, we mean a circuit of depth 4 with the top layer and the third layer only have
sum gates and the second and the bottom layer have only product gates. A homogeneous
polynomial P of degree n in N variables, which is computed by a homogeneous ΣΠΣΠ circuit
can be written as

P (x1, x2, . . . , xN ) =

T∑
i=1

di∏
j=1

Qi,j(x1, x2, . . . , xN ) (1)

Here, T is the top fan-in of the circuit. Since the circuit is homogeneous, therefore, for every
i ∈ {1, 2, 3, . . . , T},

di∑
j=i

deg(Qi,j) = n

Support of a polynomial: By the support of a polynomial P , denoted by Supp(P ), we mean
the set of monomials which have a non zero coefficient in P . When we consider this set, we will
ignore the information in the coefficients of the monomials and just treat them to be 1. We will
also use the notion of the support of a monomial α defined as the subset of variables which have
degree at least 1 in α. We will follow the notation that when we invoke the function Supp for
a monomial, we mean the support in the latter sense. When we invoke it for a polynomial, we
mean it in the former sense.

For any monomial α and a set of polynomials S, we define the set α · S = {αβ : β ∈ {S}}.
For two monomials α and β, we say that α is disjoint from β if the supports of α and β are
disjoint.

Multilinear projections of a polynomial: For any monomial α, we define σ(α) to be α if
α is multilinear and define it to be 0 otherwise. The map can be then extended by linearity to
all polynomials and sets of polynomials.

Homogeneous ΣΠΣΠ{s} Circuits: A homogeneous ΣΠΣΠ circuit as in Equation 1, is said
to be a ΣΠΣΠ{s} circuit if every product gate at the bottom level has support at most s (i.e.
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each monomial in each Qij has at most s distinct variables feeding into it). Observe that there
is no restriction on the bottom fan-in except that implied by the restriction of homogeneity.

Restriction of homogeneous ΣΠΣΠ circuit C|V : For a homoegeneous ΣΠΣΠ{s} circuit
C in variables v1, v2, . . . , vN , and a subset of variables V ⊂ {v1, v2, . . . , vN}, we define C|V to
be the new homogeneous ΣΠΣΠ circuit obtained after setting the variables outside V to zero.
Equivalently we can think of this as the circuit obtained after removing all multiplication gates
at the bottom layer which have a variable not in V that feeds into it.

The complexity measure:
The notion of shifted partial derivatives was introduced in [Kay12] and was subsequently used

as a complexity measure in proving several recent lower bound results [FLMS13, GKKS13a,
KSS13, KS13, KS]. In this paper, we use a variant of the method which first introduced
in [KLSS14].

For a polynomial P and a monomial γ, we denote by ∂γ(P ) the partial derivative of P with
respect to γ. For every polynomial P and a set of monomials M, we define ∂M(P ) to be the
set of partial derivatives of P with respect to monomials in M. We now define the space of
(M,m)-projected shifted partial derivatives of a polynomial P below.

Definition 3.1 ((M,m)-projected shifted partial derivatives). For an N variate polynomial
P ∈ F[x1, x2, . . . , xN ], set of monomials M and a positive integer m ≥ 0, the space of (M,m)-
projected shifted partial derivatives of P is defined as

〈∂M(P )〉m
def
= F-span{σ(

∏
i∈S

xi · g) : g ∈ ∂M(P ), S ⊆ [N ], |S| = m} (2)

In this paper, we carefully choose a set of monomials M and a parameter m and use the
quantity ΦM,m(P ) defined as

ΦM,m(P ) = Dim(〈∂M(P )〉m)

as a measure of complexity of the polynomial P .
We will now elaborate on this definition of the measure in words - we look at the space of

(M,m)-projected shifted partial derivatives as the space of polynomials obtained at the end of
the following steps, starting with the polynomial P .

1. We fix a set of monomials M and a parameter m.

2. We take partial derivatives of P with every monomial in M, to obtain the set ∂M(P ).

3. We obtain the set of shifted partial derivatives of P by taking the product of every polyno-
mial in ∂M(P ) with every monomial of degree m. In this paper, we will often be working
with restrictions of polynomial P obtained by setting some of the input variables to zero.
Even for such restrictions, we consider product of the derivatives by all multilinear mono-
mials of degree m over the complete set of input variables {x1, x2, . . . , xN}.

4. Then, we consider each polynomial in the set defined in the item above and project it to
the polynomial composed of only the multilinear monomials in its support. The span of
this set over F is defined to be 〈∂M(P )〉m.

5. We define the complexity of the polynomial ΦM,m(P ) to be the dimension of 〈∂M(P )〉m
over F.

It follows easily from the definitions that the complexity measure is subadditive. We formalize
this in the lemma below.

9



Lemma 3.2 (Sub-additivity). Let P and Q be any two multivariate polynomials in F[x1, x2, . . . , xN ]
any set of monomials. Let M be any set of monomials and m be any positive integer. Then,
for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q)

P |V and ΦM,m(P |V ): For a polynomial P and a subset of its variables V , we define P |V to be
the polynomial obtained after setting variables not in V to zero (i.e. removing all monomials
containing a variable not in V in its support). When we consider ΦM,m(P |V ), we will be
computing the complexity of the new polynomial with respect to the original set of variables,
not just the variables in V . I.e. we set the variables outside V to zero only in order to compute
P |V . Once we get this new polynomial, we do not think of the variables outside V to be set to
zero when computing ΦM,m(P |V ).

Nisan-Wigderson Polynomials: We will now define the family of polynomials NWn,D in
VNP which were used for the first time in the context of lower bounds in [KSS13]. The key
motivation for this definition is that over any finite field, any two distinct low degree polynomials
do not agree at too many points, and hence we use this property to construct a polynomial with
monomials that have large distance. Let Fn be a finite field of size n4 and let Fn2 be its quadratic
extension. For the set of N = n3 variables {xi,j : i ∈ [n], j ∈ [n2]} and D < n, we define the
degree n homogeneous polynomial NWn,D as

NWn,D =
∑

f(z)∈Fn2 [z]
deg(f)≤D−1

∏
i∈[n]

xi,f(i)

From the definition, we can observe the following properties of NWn,D.

1. The number of monomials in NWn,D is exactly n2D.

2. Each of the monomials in NWn,D is multilinear.

3. Each monomial corresponds to evaluations of a univariate polynomial of degree at most
D − 1 at all points of Fn. Thus, any two distinct monomials agree in at most D − 1
variables in their support.

Iterated Matrix Multiplication: Let M1,M2,M3, . . . ,Mb be b generic square matrices,
each of dimension a × a. Then, we define the polynomial IMMa,b as the (1, 1) entry of the
matrix

∏
jMj . It is easy to see that this polynomial can be computed by a polynomial sized

circuit, and so is in VP. In this paper, we show that any homogeneous depth 4 circuit computing
IMMa,b has exponential size.

Monomial Ordering and Distance: We will also use the notion of a monomial being an
extension of another as defined below.

Definition 3.3. A monomial θ is said to be an extension of a monomial θ̃, if θ divides θ̃.

We will also consider the following total order on the variables. xi1,j1 > xi2,j2 if either i1 < i2
or i1 = i2 and j1 < j2. This total order induces a lexicographic order on the monomials. For a
polynomial P , we use the notation Lead-Mon(P ) to indicate the leading monomial of P under
this monomial ordering.

We will use the following notion of distance between two monomials which was also used
in [CM13].

4We are assuming for simplicity that n is a prime power, but the definitions can be easily adapted for when n is
not.

10



Definition 3.4 (Monomial distance). Let m1 and m2 be two monomials over a set of variables.
Let S1 and S2 be the multiset of variables in m1 and m2 respectively, then the distance ∆(m1,m2)
between m1 and m2 is the min{|S1| − |S1 ∩ S2|, |S2| − |S1 ∩ S2|} where the cardinalities are the
order of the multisets.

In this paper, we invoke this definition only for multilinear monomials of the same degree.
In this special case, we have the following crucial observation.

Observation 3.5. Let α and β be two multilinear monomials of the same degree which are at
a distance ∆ from each other. If Supp(α) and Supp(β) are the supports of α and β respectively,
then

|Supp(α)| − |Supp(α) ∩ Supp(β)| = |Supp(β)| − |Supp(α) ∩ Supp(β)| = ∆

For any two multilinear monomials α and β of equal degree, we say that α and β have
agreement t if |Supp(α) ∩ Supp(β)| = t. When t = 0, we say that α and β are disjoint.

Approximations: We will repeatedly refer to the following lemma to approximate expressions
during our calculations.

Lemma 3.6 ([GKKS13a]). Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued functions such
that (f + g) = o(a). Then,

log
(a+ f)!

(a− g)!
= (f + g) log a±O

(
(f + g)2

a

)
In this paper, we invoke Lemma 3.6 only in situations where (f + g)2 will be O(a). In this

case, the error term will be bounded by an absolute constant. Hence, up to multiplication by

constants, (a+f)!
(a−g)! = a(f+g). We will use the symbol ≈ to indicate equality up to multiplication

by constants.

Probability lemmas: We will now state some lemmas using probability which will be useful
to us in the course of the proof.

Lemma 3.7. Let X be a random variable sampled from a distribution R supported on the set
R. Let f and g be functions from R to the set of positive real numbers, such that the following
are true:

• For each x ∈ R, f(x) ≤ g(x)

• EX←R[f(X)] ≥ 0.5 · EX←R[g(X)]

• PrX←R[|g(X)− EX←R[g(X)]| ≥ 0.1 · (EX←R[g(X)])] ≤ 0.01

Then,
PrX←R[f(X) ≥ 0.01 · (EX←R[f(X)])] ≥ 0.1

The proof is given in Appendix A.
We will also need the following lemma, which could be thought of as a strengthened inclusion-

exclusion proved using sampling.

Lemma 3.8 (Strong Inclusion-Exclusion). Let W1,W2,W3, . . . ,Wl be subsets of a finite set
W . For a parameter λ ≥ 1, let the following be true.∑

i,j∈[l],i6=j

|Wi ∩Wj | ≤ λ
∑
i∈[l]

|Wi|

Then,
∣∣∣⋃i∈[l]Wi

∣∣∣ ≥ 1
4λ

∑
i∈[l] |Wi|.

The proof appears in Appendix B.
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4 Upper bound on the complexity of homogeneous ΣΠΣΠ{s}

circuits

In this section, we state and prove the upper bound on the complexity of a ΣΠΣΠ{s} cir-
cuit. A very similar bound was proved by Kayal et al in [KLSS14]. We include a proof for
completeness.

Lemma 4.1. Let C be a depth 4 homogeneous circuit computing a polynomial of degree u in
N variables such that the support of the bottom product gates in C is at most s. Let M be a set
of monomials of degree equal to r and let m be a positive integer. Then,

ΦM,m(C) ≤ Size(C)

(
d 2u
s e+ r

r

)(
N

m+ rs

)
for any choice of m, r, s,N satisfying m+ rs ≤ N/2.

Proof. Let us consider a product gate Q =
∏l
i=1 Pi in C. Without loss of generality, we can

assume that there is at most one i such that degree of Pi is less than s
2 . Otherwise, we could

multiply two such low degree Pi and increase the degree polynomials. Observe that if the support
of the bottom product gates in C was at most s to start with, this operation preserves that
property, since we are only multiplying two polynomials if there degree is at most s

2 .Therefore,
l ≤ d 2u

s e.
Now, let α be a monomial of degree r. The derivative of Q with respect to α is a sum, where

each summand is of the form ∂α(
∏
i∈S Pi) ·

∏
j∈[l]\S Pj where S is a subset of [l] of size at most

r.
We will now focus on one such summand. When this derivative is shifted by a multilinear

monomial γ of degree m, we get a polynomial of the form γ · ∂α(
∏
i∈S Pi) ·

∏
j∈[l]\S Pj . Let

us focus our attention on monomials in γ · ∂α(
∏
i∈S Pi). Every monomial here has support at

least m and most m + rs since γ has support m, each Pi has support at most s and |S| ≤
r. This implies that the polynomial γ · ∂α(

∏
i∈S Pi) ·

∏
j∈[l]\S Pj is in the linear span of the

polynomials {β ·
∏
j∈[l]\S Pj : m ≤ Supp(β) ≤ m + rs}. Moreover, even after taking the

multilinear projections, it is true that the polynomial σ(γ · ∂α(
∏
i∈S Pi) ·

∏
j∈[l]\S Pj) is in the

linear span of the polynomials {σ(β ·
∏
j∈[l]\S Pj) : m ≤ Supp(β) ≤ m + rs}. Note that the

set of polynomials {σ(β ·
∏
j∈[l]\S Pj) : m ≤ Supp(β) ≤ m + rs} does not depend upon α.

In particular, for all α of degree r, it is true that σ(γ · ∂α(
∏
i∈S Pi) ·

∏
j∈[l]\S Pj) is in the

linear span of the polynomials {σ(β ·
∏
j∈[l]\S Pj) : m ≤ Supp(β) ≤ m + rs}. Observe that

any polynomial of the form β ·
∏
j∈[l]\S Pj will be set to zero under multilinear projections if

β is not multilinear. So, σ(γ · ∂α(
∏
i∈S Pi) ·

∏
j∈[l]\S Pj) is in fact in the linear span of the

polynomials {σ(β ·
∏
j∈[l]\S Pj) : m ≤ degree(β) = Supp(β) ≤ m + rs}. The dimension of the

space {σ(β ·
∏
j∈[l]\S Pj) : m ≤ degree(β) = Supp(β) ≤ m + rs} is at most the number of

multilinear monomials β of degree between m and m+ rs. This is at most
∑rs
i=0

(
N
m+i

)
, which

is at most rs ·
(

N
m+rs

)
since m + rs ≤ N

2 and so the terms in the summation increase with an
increase in i.

From the above discussion, we can conclude that for a fixed subset S of [l] of size at most r,
the multilinear projections of the shifts of ∂α(

∏
i∈S Pi) ·

∏
j∈[l]\S Pj lie in a space of dimension

at most rs ·
(

N
m+rs

)
. From this it follows that the set of projected shifted partial derivatives of

order r of Q lie in a linear space of polynomials of dimension at most rs ·
(

N
m+rs

)
·
(d 2u

s e+r
r

)
since

there are at most
(d 2u

s e+r
r

)
subsets of [l] of size at most r.
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The bound on the complexity of the circuit now just follows from sub-additivity of the
complexity measure.

5 Strategy for proving a lower bound on the complexity
of NWn,D and IMMñ,n

To show a lower bound on the complexity of the polynomial P (which will be IMMñ,n or NWn,D

in this paper), we choose an appropriate set of monomialsM and a parameter m and then obtain
a lower bound on the value of ΦM,m(P ). When M and m are clear from the context, we use
ΦM,m(P ) and Φ(P ) interchangeably. We will now try to gain a more concrete understanding
of the space of polynomials, whose dimension we want to lower bound. We will need some
notations first.

We denote by M(α) the set of monomials Supp(∂α(P )). We will use the two interchangeably.
For any monomial α ∈M and any monomial β ∈ Supp(∂α(P )), define the set

SPm(α, β) = {γ : deg(γ) = Supp(γ) = m and Supp(γ) ∩ Supp(β) = φ}

to be the set of all multilinear monomials of degree m which are disjoint from β. We define
the set S̃Pm(α, β) to be the subset of multilinear monomials γ in SPm(α, β) such that β · γ is the
leading monomial of σ(γ · ∂α(P )). Define

APm(α, β) = {γ · β : γ ∈ S̃Pm(α, β)}

When the polynomial P is clear from the context, we drop the P from APm(α, β), SPm(α, β) and
S̃Pm(α, β) and instead denote them by Am(α, β), Sm(α, β) and S̃m(α, β) respectively.

The following lemma relates the size of the union of the sets Am(α, β) to ΦM,m(P )

Lemma 5.1. Let P be a polynomial in N variables and let M be any set of monomials on
these variables. Let m ≤ N be a positive integer and let ΦM,m(P ) and Am(α, β) be as defined.
Then,

ΦM,m(P ) ≥

∣∣∣∣∣∣∣∣
⋃
α∈M

β∈Supp(∂α(P ))

Am(α, β)

∣∣∣∣∣∣∣∣
Proof. To prove the lemma, it suffices to show that for α ∈M and β ∈ Supp(∂α(P )), Am(α, β)
are a subset of leading monomials of polynomials in F-span {σ(γ · ∂M(P )) : Supp(γ) = deg(γ) = m}.
This fact just follows from the definition of Am(α, β). The lemma then follows from the fact
that for any linear space of polynomials, its dimension is at least the number of distinct leading
monomials in the space.

By the principle of inclusion-exclusion, we get the following corollary.

Corollary 5.2. Let P be a polynomial in N variables and let M be any set of monomials on
these variables. Let m ≤ N be a positive integer and let ΦM,m(P ) and Am(α, β) be as defined.
Then,

ΦM,m(P ) ≥
∑
α∈M

β∈Supp(∂α(P ))

|Am(α, β)| −
∑

α1,α2∈M
β1∈Supp(∂α1

(P ))

β2∈Supp(∂α2
(P ))

(α1,β1) 6=(α2,β2)

|Am(α1, β1) ∩Am(α2, β2)|
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Therefore, to get a lower bound on ΦM,m(P ), we show that
∑
α∈M,β∈∂α(P ) |Am(α, β)| is

large and the second term in the expression above is small. The following lemma relates∑
β∈∂α(P ) |Am(α, β)| to the size of the sets Sm(α, β), which, in principle are somewhat sim-

pler objects to describe.

Lemma 5.3. Let P be a polynomial in N variables and let α ∈ M be a monomial on these
variables such that ∂α(P ) is not identically zero. Let Sm(α, β) and Am(α, β) be sets as defined.
Then, ∑

β∈Supp(∂α(P ))

|Am(α, β)| ≥

∣∣∣∣∣∣
⋃

β∈Supp(∂α(P ))

Sm(α, β)

∣∣∣∣∣∣
Proof. Consider the sets Z = {(β, γ) : β ∈ Supp(∂α(P )), γ ∈ Am(α, β)} and
W =

⋃
β∈Supp(∂α(P )) Sm(α, β). To prove the lemma, we show the existence of a one one map from

W to Z. Consider any γ ∈ W . By definition, this means that there exists a β ∈ Supp(∂α(P )),
such that γ ∈ Sm(α, β). This implies that γ ·β ∈ Supp(σ(γ ·∂α(P ))). In particular, σ(γ ·∂α(P ))
is not the identically zero polynomial. So, there exists a β′ ∈ Supp(∂α(P )) such that γ · β′ is
the leading monomial of σ(γ · ∂α(P )). From the definitions, this implies that γ · β′ ∈ Am(α, β′).
So, we map γ to (β′, γ · β′). Clearly, this map is one one, since the pre-image of (ρ, ψ) is given
by ψ/ρ. Hence, the cardinality of Z is at least the cardinality of W .

5.1 Obtaining the lower bound on ΦM,m(P )

For a polynomial P , a set of monomials M and a positive integer m, we now outline the
general sequence of arguments which we use to lower bound ΦM,m(P ). The exact sequence of
arguments used in the proofs vary slightly for NWn,D and IMMñ,n. To express this outline
more concretely, we will need some notations. For a polynomial P and a monomials α, α′ ∈M,
we define

T1(α, P ) =
∑

β∈Supp(∂α(P ))

|Sm(α, β)|

T2(α, P ) =
∑

β1,β2∈Supp(∂α(P ))
β1 6=β2

|Sm(α, β1) ∩ Sm(α, β2)|

and
T3(α, α′, P ) =

∑
β1∈Supp(∂α(P ))
β2∈Supp(∂α′ (P ))
(α,β1)6=(α′,β2)

|Am(α, β1) ∩Am(α′, β2)|

We also define
T1(P ) =

∑
α∈M

T1(α, P )

T2(P ) =
∑
α∈M

T2(α, P )

and
T3(P ) =

∑
α,α′∈M

T3(α, α′, P )

At places where P is clear from the context, we drop the P in T1(α, P ), T2(α, P ) and T3(α, α′, P )
and denote them by T1(α), T2(α) and T3(α, α′) respectively.

From the Corollary 5.2 and Lemma 5.3, it follows that for any polynomial P , set of monomials
M and a parameter m,

ΦM,m(P ) ≥ T1(P )− T2(P )− T3(P )
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Outline for Nisan-Wigderson polynomials In the proof of the lower bound for the NWn,D

polynomial, we observe that over the random restrictions of NWn,D, the expected value of
T1 − T2 − T3 is almost as large as the expected value of T1. We will then use Lemma 3.7 to
argue that with a sufficiently high probability, the complexity of a random restriction of NWn,D

is high.

Outline for Iterated Matrix Multiplication For iterated matrix multiplication, it turns
out that the expected value of T2 and T3 are in fact larger than the expected value of T1. So,
we first use tail inequalities to argue that for a random restriction P of IMMñ,n, with a high
probability all of T1, T2, T3 take values close to their expected values. We pick such a restriction
P . Since the value of T2(P ) + T3(P ) is larger than T1(P ), T1(P )− T2(P )− T3(P ) does not give
us a meaningful lower bound on ΦM,m(P ).

To get around this problem, we take the help of Lemma 3.8, which can be seen as an strength-
ened form of the principle of Inclusion-Exclusion. We first show that for such a restriction P ,
there is a large subset G ⊆M of monomials such that

1. For each α in G, T1(α) is large.

2. For each α in G, T2(α) is not too large compared to T1(α).

3.
∑
α1,α2∈G T3(α1, α2) is not too large when compared to

∑
α∈G,β∈Supp(∂α(P )) |Am(α, β)|.

We now argue that by multiple invocations of Lemma 3.8, this suffices to show that the
complexity of P is large.

• For each α ∈ G, since T1(α) is large, it follows that
∑
β∈Supp(∂α(P )) |Sm(α, β)| is large.

• For each α ∈ G, since T2(α) is not much larger than T1(α), Lemma 3.8 and Lemma 5.3
imply that for each α ∈ G,

∑
β∈Supp(∂α(P )) |Am(α, β)| is large.

• We also know that
∑
α1,α2∈G T3(α1, α2) =

∑
α1,α2∈G

β1∈Supp(∂α1 (P ))

β2∈Supp(∂α2 (P ))

(α1,β1)6=(α2,β2)

|Am(α1, β1) ∩ Am(α2, β2)| is

not much larger than
∑
α∈G,β∈Supp(∂α(P )) |Am(α, β)|.

• Lemma 3.8 will then imply that

∣∣∣∣⋃ α∈G
β∈Supp(∂α(P ))

Am(α, β)

∣∣∣∣ is large. Hence, by Lemma 5.1,

ΦG,m(P ) is large.

6 Lower bound for NWn,D

In this section, we prove lower bound on the size of homogeneous ΣΠΣΠ circuits which compute
the NWn,D polynomial.

6.1 Random restrictions and proof outline

From the definition, it follows that the total number of variables N in NWn,D is N = n3. Let the
set of all these variables be V. We will now define our random restriction procedure by defining
a distribution D over subsets V ⊂ V. The random restriction procedure will sample V ← D and
then keep only those variables “alive” that come from V and set the rest to zero. The restriction
of the set of variables induces a restriction on any polynomial of these variables. We will use
the notation NWn,D|V for the restriction of NWn,D obtained by setting every variable outside
V to 0. Therefore, any distribution D also induces a distribution on the set of restrictions of
NWn,D. Similarly, the distribution D also induces a distribution over the restrictions of any
circuit computing a polynomial over V. We will use the notation C|V for the restriction of a
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circuit C obtained by setting every input gate in C which is labelled by a variable outside V to
0.

The distribution: Each variable in V is independently kept alive with a probability p = n−ε,
where ε is an absolute constant such that 0 ≤ ε ≤ 0.01. This gives a distribution over the subsets
of V. We call it D.

Steps in the proof: The proof consists of three main steps.

• We consider a depth 4 homogeneous circuit C computing the polynomial NWn,D. If C
was large to start with, we have nothing to prove. Else, C was small. We then analyze the
behavior of C under random restrictions as defined above.

• We show that with high probability, none of the product gates in the bottom level of
C which has support at least s =

√
n survives the random restriction procedure if the

original circuit had size 2O(
√
n logn). So, we are left with a low support circuit computing

a restriction of NWn,D.

• We then argue that with good probability, a random restriction of NWn,D has high com-
plexity.

• Finally, we show that both the events above together happen with some non zero prob-
ability. Then, comparing the complexity of the restriction of NWn,D and the restricted
circuit, gives us the lower bound.

6.2 Choice of parameters

We enumerate the values of the parameters used in this proof below.

1. n. (This is the degree of the polynomial NWn,D)

2. N = n3. (This is the total number of variables)

3. r = 1.1
√
n

5 . (This is the order of the derivatives involved)

4. s =
√
n. (This indicates the support of a product gate in the circuit after random restric-

tions)

5. m = N
2 (1− lnn

5
√
n

). (This is the degree of the multilinear shifts)

6. ε is any absolute constant such that 0 < ε < 0.01.

7. p = n−ε. (This is the probability with which each variable is kept alive independently)

8. k = n− r. (This is the size of the support of the monomials in any rth order derivative of
NWn,D)

9. d = θ
(

n
logn

)
is a parameter chosen such thatn2d = 1/4 · n−2 (N−km )

(N−2k
m−k )

.

10. D = εn
2 + d. (This is the parameter D in NWn,D)

11. D. (This is the distribution on the subsets of V obtained by keeping each variable in V
alive independently with a probability p = n−ε )

In the rest of this paper, we always invoke the definition of the Nisan-Wigderson polynomials
for D = εn

2 + d. So, for the rest of the proof, we use the notation NW for NWn,D.

6.3 Effect of random restrictions on the circuit

The following lemma gives us an upper bound on the complexity of small circuits under the
random restrictions.
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Lemma 6.1. Let s =
√
n, r = 1.1

√
n

5 and let m be a parameter such that m + rs ≤ N/2 and
let ε > 0 be a constant. Let M be any set of monomials of degree equal to r. Let C be a
homogeneous depth 4 circuit of size at most 2

ε
2

√
n logn computing the polynomial NW . Then,

with probability at least 1− o(1) over V ← D

ΦM,m(C|V ) ≤ Size(C)

(
d 2n
s e+ r

r

)(
N

m+ rs

)
Proof. When the variables are kept alive with probability n−ε independently, then the probabil-
ity that a bottom product gate with support at least

√
n survives equals n−ε

√
n. Therefore, the

probability that some gate with support at least s =
√
n survives in C|V is at most Size(C)/nε

√
n.

Substituting the value of size of C, we see that this is at most n−
ε
2

√
n which is o(1).

Now, by Lemma 4.1, the complexity of the circuit is at most Size(C) ·
(d 2n

s e+r
r

)
·
(

N
m+rs

)
, with

probability at least 1− o(1).

Observe that we have just argued that if the circuit was of size at most 2
ε
2

√
n logn, then with

probability at least 1− o(1), at the end of the random restriction process, none of the product
gates with support larger than s =

√
n at the bottom level is alive. Otherwise, the size of the

circuit was larger than 2
ε
2

√
n logn to start with, in which case, we have nothing to prove.

6.4 Effect of random restrictions on NWn,D

In this section, we show that with a reasonably high probability, a random restriction of NW
has a large complexity. We outline the plan and set some notations below.

Plan of the proof: We will show that for V ← D expected value of the expression T1|V −
T2|V − T3|V is large and then use this to obtain a lower bound on the complexity of a random
restriction of NW . We will do this by proving a lower bound on the expected value of T1|V
and upper bounds on the expected values of T2|V and T3|V . At this point, we would like to
argue that the complexity remains close to the expectation with a reasonably high probability.
This observation is proved using Lemma 3.7 and the bound on the variance of the number of
monomials alive at the end of random restrictions obtained in [KLSS14].

Recall that D = n.ε
2 + d for some constant ε and a parameter d = θ( n

logn ).

Let M[r] = {
∏
i∈[r] xi,j : j ∈ [n2]} be a set of monomials. Observe that for r < D,

every monomial in M[r] has an extension in Supp(NW ). This implies that for every α ∈
M[r], ∂α(NW ) is non zero. In fact, it consists of exactly n2(D−r) monomials. For our partial
derivatives, we consider the set of partial derivatives of NW with respect to monomials from
M[r]. For brevity, we call this set M for the rest of the proof.

We will now prove that with a high probability over V ← D, ΦM,m(NW |V ) is large. Recall
that from the discussion in Section 5, it will suffice to show that ΦM,m(NW |V ) = T1(NW |V )−
T2(NW |V ) − T3(NW |V ) is large with a good probability. To this end, we first show that
ΦM,m(NW ) is large in expectation and then argue that with a good probability the complexity
measure is not too much less the mean.

Observe that according to our definitions here, the set of monomials M is fixed and does
not depend upon the random restrictions. Also, the contribution of any monomial α ∈ M is
a random variable. For example, for any α ∈ M and β ∈ M(α), if α and β both survive the
random restriction procedure, then the contribution of β to Am(α, β) is |Sm(α, β)| =

(
N−k
m

)
whereas if either of them is set to zero during the random restrictions, then the contribution is
0. Similarly for T2 and T3. Taking this into account, we state the definitions of T1, T2, T3 which
we use in our expectations calculations below. We need a piece of notation first. For monomials
α1, α2, . . . , αj , we define 1α1,α2,...,αj to be the event that every monomial in {α1, α2, . . . , αj}
survives the random restriction procedure.
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• T1(NW |V ) =
∑

α∈M[r]

β∈M(α)

1α,β · |Sm(α, β)|

• T2(NW |V ) =
∑

α∈M[r]

β,γ∈M(α)
β 6=γ

1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|

• T3(NW |V ) =
∑

α1,α2∈M[r]

β1∈M(α1)
β2∈M(α2)

(α1,β1)6=(α2,β2)

1α1,α2,β1,β2
· |Am(α1, β1) ∩Am(α2, β2)|

For the ease of notations, for the rest of the proof of lower bound for NW , we denote
T1(NW |V ) by T1|V . Similarly, we use T2|V for T2(NW |V ) and T3|V for T3(NW |V ). We know
that for any restriction NW |V ,

ΦM,m(NW |V ) ≥ T1|V − T2|V − T3|V (3)

Therefore, by the linearity of expectation is, the expected complexity of a random restriction of
NW ,

EV←D[ΦM,m(NW |V )] ≥ EV←D[T1|V ]− EV←D[T2|V ]− EV←D[T3|V ] (4)

We will now bound the expected values of T1|V , T2|V , T3|V under random restrictions. More
precisely, we prove the following.

Lemma 6.2.

EV←D[T1|V ] =

(
N − k
m

)
· n2d

Lemma 6.3.

EV←D[T2|V ] ≤ n4d−2r+εr+1 ·
(
N − 2k

m

)
Lemma 6.4.

EV←D[T3|V ] ≤ n4d+2 ·
(
N − 2k

m− k

)
We will now use the bounds given by the lemmas above to complete the proof of the lower

bound. We will prove the above lemmas in Section 7.

6.5 Lower bound on the complexity of NWn,D

Lemma 6.5. For any choice of parameters m, r, d, ε, n,N, k such that

• n2d−2r+εr+1 ≤ 1/4 · (N−km )
(N−2k

m )

• n2d+2 ≤ 1/4 · (N−km )
(N−2k
m−k )

the following is true
EV←D[ΦM,m(NW |V )] ≥ 0.5 · EV←D[T1|V ]

Proof. From the choice of parameters and Lemma 6.2, Lemma 6.3 and Lemma 6.4, it easily
follows that EV←D[T1|V ] ≥ 4 · EV←D[T2|V ] and EV←D[T1|V ] ≥ 4 · EV←D[T3|V ]. Thus

EV←D[ΦM,m(NW |V )] ≥ 0.5 · EV←D[T1].
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Thus for the above choice of parameters, we get a lower bound on the expected value of
ΦM,m(NW |V ). We would like to conclude that with a decent (≥ 0.1) probability, the complexity
is large. Observe that we cannot directly use Markov’s inequality. However we are still able to
prove such a statement (see Lemma 6.10). We make the following crucial observation.

Lemma 6.6. For any V ⊆ V,

ΦM,m(NW |V ) ≤ |Supp(NW |V )|
(
N − k
m

)
.

Proof. To prove the lemma, we prove an upper bound on the size of the set
⋃
α∈M[r] Supp(∂α(NW |V ))

in the following claim.

Claim 6.7. For any V ⊆ V, the following is true.∣∣∣∣∣∣
⋃

α∈M[r]

Supp(∂α(NW |V ))

∣∣∣∣∣∣ ≤ |Supp(NW |V )|

Proof. To prove this claim, we argue that there is a one-one map from the set⋃
α∈M[r] Supp(∂α(NW |V )) to the set Supp(NW |V ). From the definition of M[r], it follows

that all the monomials in M[r] are of degree r and contain exactly one variable from the
set {xi,j : j ∈ [n2]} for each i ∈ [r]. Also, from the definition of NW , it follows that for
every monomial β in Supp(NW |V ), there is exactly one monomial α ∈ M[r] such that β is an
extension of α. Or, in other words, for each β ∈ Supp(NW |V ), there is exactly one α ∈ M[r]

such that ∂α(β) ∈ Supp(∂α(NW |V )). Therefore, the function which maps ∂α(β) to β is a
one-one map.

Now, observe that for any monomial γ in the support of any polynomial in the set

{σ(
∏
i∈S

xi · g) : g ∈ ∂M[r](NW |V ), S ⊆ [N ], |S| = m}

there exists an α ∈M[r], a monomial β ∈ Supp(NW |V ) and a multilinear monomial ρ of degree
m such that the supports of ∂α(β) and ρ are disjoint and γ = ∂α(β) · ρ. For any such β, the
number of ρ, which are multilinear of degree m and disjoint from ∂α(β) is equal to

(
N−k
m

)
,

since ∂α(β) is a multilinear monomial of degree equal to k. Therefore, the number of distinct
monomials in the union of supports of all polynomials in {σ(

∏
i∈S xi ·g) : g ∈ ∂M[r](NW |V ), S ⊆

[N ], |S| = m} is at most the product of |
⋃
α∈M[r] Supp(∂α(NW |V ))| and

(
N−k
m

)
. The lemma

follows from the claim above.

We will now use Lemma 3.7 to argue that with a decent probablity, a random restriction
of NW has a complexity very close to its expected value. For a restriction P = NW |V of
NW , define g(P ) = |Supp(P )| ·

(
N−k
m

)
and define f(P ) = ΦM[r],m(P ). Lemma 6.6 implies that

for every restriction P = NW |V of NW , f(P ) ≤ g(P ). Lemma 6.5 implies that EV←D[f ] ≥
1/2 · EV←D[g]. The following lemma of Kayal et al [KLSS14] tells us that g takes values very
close to its expected value with a high probability.

Lemma 6.8 ([KLSS14]). PrV←D[|g(NW |V )− EV ′←D[g]| ≥ 0.1 · EV ′←D[g]] ≤ 0.01.

The functions f and g now satisfy the hypothesis of Lemma 3.7. Therefore, we get the
following lemma.

Lemma 6.9. PrV←D[f(NW |V ) ≥ 0.01 · EV ′←D[g]] ≥ 0.1.

19



Therefore, the following lemma is true.

Lemma 6.10. For any choice of parameters m, r, d, ε, n,N, k such that

• n2d−2r+εr+1 ≤ 1/4 · (N−km )
(N−2k

m )

• n2d+2 ≤ 1/4 · (N−km )
(N−2k
m−k )

the following is true

PrV←D[ΦM,m(NW |V ) ≥ 0.005 · n2d

(
N − k
m

)
] ≥ 0.1

6.6 Wrapping up the proof

We now complete the proof of the lower bound for the case of NW polynomial which implies
Theorem 1.1.

Theorem 6.11. Let C be any homogeneous ΣΠΣΠ circuit computing NWn,D. Then, the size

of C is at least nΩ(
√
n).

Proof. Recall that, from our choice of parameters, we have s =
√
n, r = 1.1

√
n

5 , N = n3,

m = N
2 (1 − lnn

5
√
n

) = N
2 (1 − lnn

5s ), d such that n2d = 1/4 · n−2 (N−km )
(N−2k
m−k )

, k = n − r, and ε < 0.01.

Observe that m+ rs < N
2 . Let C be a circuit computing the polynomial NW .

If the size of the circuit is at least n
ε
2

√
n, then we are done. Else, the size of C is at most

n
ε
2

√
n. Lemma 6.1 implies that with probability at least 1 − o(1) the complexity of the circuit

is at most Size(C)
(d 2n

s e+r
r

)(
N

m+rs

)
.

We will first show that for the choice of paramters made above, the hypotheses of Lemma 6.5
hold.

Claim 6.12. For m, r, d, ε, n,N, k as chosen above,

• n2d−2r+εr+1 ≤ 1/4 · (N−km )
(N−2k

m )

• n2d+2 ≤ 1/4 · (N−km )
(N−2k
m−k )

Proof. By the choice of d, the second constraint is met.
We now need to verify that for the choice of parameters the first constraint is met, i.e.

n2d−2r+εr ≤ 1/4 · n−1

(
N−k
m

)(
N−2k
m

) .
In other words, we would like to show that

n2d−2r+εr · 4n ·
(
N−2k
m

)(
N−k
m

) ≤ 1.

20



Now,

n2d−2r+εr · 4n ·
(
N−2k
m

)(
N−k
m

)
=n−2r+εr · 1

n
·
(
N−2k
m

)(
N−2k
m−k

) substituting value of n2d

=n−2r+εr · 1

n
· (N −m− k)!

(N −m− 2k)!
× (m− k)!

m!

≈n−2r+εr · 1

n
·
(
N −m
m

)k
By Lemma 3.6

=n−2r+εr · 1

n
·

(
1 + lnn

5s

1− lnn
5s

)k
substituting choice of m

≤n−2r+εr · 1

n
· e2.01k lnn

5s for large enough n

=n−2r+εr · 1

n
· n2.01k/5s

Substituting r = 1.1
√
n

5 , s =
√
n, k = n−r and ε < 0.01, it can be verified that the expression

above is at most 1.

Thus by the claim above and Lemma 6.10, we conclude that with

PrV←D

[
ΦM,m(NW |V ) ≥ Ω

(
n2d

(
N − k
m

))]
≥ 0.1.

So, with probability at least 0.1− o(1), the complexity of C|V is low while at the same time
the complexity of the NW |V remains high. Comparing the bounds, we have

Size(C) ≥ Ω

(
n2d
(
N−k
m

)(d 2n
s e+r
r

)(
N

m+rs

))

Putting in n2d = 1/4 · n−2 (N−km )
(N−2k
m−k )

, we have

Size(C) ≥ Ω

(
n−2 ·

(
N−k
m

)(
N−k
m

)(d 2n
s e+r
r

)(
N

m+rs

)(
N−2k
m−k

))

We will first estimate the ratio of binomial coefficients one by one.

• (N−km )
( N
m+rs)

= (N−k)!
N ! × (m+rs)!

m! × (N−m−rs)!
(N−m−k)! ≈

(
m

N−m

)rs
×
(
N−m
N

)k
• (N−km )

(N−2k
m−k )

= (N−k)!
(N−2k)! ×

(m−k)!
m! ≈ Nk

mk

•
(d 2n

s e+r
r

)
is 2O(r) for our choice of r and s

Plugging these bounds back, we have

Size(C) ≥ n−2 ·
(
N −m
m

)k−rs
× 2−O(r)
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Now, we plug in the value of m, which gives us

Size(C) ≥

(
1 + lnn

5s

1− lnn
5s

)k−rs
× 2−O(r)

This gives us

Size(C) ≥
(

1 +
lnn

5s

)k−rs
× 2−O(r)

which implies

Size(C) ≥ n
k−rs

5s × 2−O(r)

Substituting the values of k, r, s, we get

Size(C) ≥ nΩ(
√
n)

7 Calculations for NWn,D

In this sections, we provide the proofs of Lemma 6.2, Lemma 6.3 and Lemma 6.4.

7.1 Expected value of T1(NWn,D|V )

This computation is quite straight forward.

EV←D[T1|V ] =
∑

α∈M[r]

β∈M(α)

E[1α,β ] · |Sm(α, β)|

=

(
N − k
m

)
·
∑

α∈M[r]

β∈M(α)

E[1α,β ]

Now observe that 1α,β = 1 when all the variables in the support of the monomial αβ stay alive.
This happens with probability exactly pn since α · β is a multilinear monomial of degree equal
to n. The number of pairs α, β such that α ∈M[r] and β ∈M(α) is exactly equal to n2D, since
|M[r]| = n2r and for each such α, the number of β ∈M(α) equals n2(D−r). Plugging this back,
we obtain

EV←D[T1|V ] =

(
N − k
m

)
· n2Dpn

=

(
N − k
m

)
· n2d

7.2 Expected value of T2(NWn,D|V )

By linearity of expectation,

EV←D[T2|V ] =
∑

α∈M[r]

β,γ∈M(α)
β 6=γ

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|]
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For any fixed α, β, we partition the set of all γ ∈ M(α) based upon the size of the intersection
of the supports of β and γ

EV←D[T2|V ] =
∑

0≤w≤D−r

∑
α∈M[r]

β∈M(α)
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|]

Observe that we only need to sum upto w = D − r since for any β 6= γ ∈M(α), the maximum
size of the intersection of Supp(β) and Supp(γ) can be D − r. This is due to the observation
that for β 6= γ ∈M(α), there exist distinct univariate polynomials fβ and fγ of degree at most
D − 1 in Fn2 [Z] such that α · γ =

∏
i∈[n] xi,fγ(i) and α · β =

∏
i∈[n] xi,fβ(i). Rearranging the

order of summation, we obtain

EV←D[T2|V ] =
∑

α∈M[r]

β∈M(α)

EV←D[1α,β ]
∑

0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1γ|β ·|Sm(α, γ)∩Sm(α, β)|]

where 1γ|β is the event 1γ′ where γ′ =
∏
X∈Supp(γ)\Supp(β)X. Since the support of α is disjoint

from the support of β and γ, so the dependence is only between γ and β. In the claim below,
we derive an upper bound on the expression

EV←D[1γ|β · |Sm(α, γ) ∩ Sm(α, β)|]

for fixed values of α ∈M[r], β ∈M(α) and 0 ≤ w ≤ D − r.

Claim 7.1. Let α, β be monomials such that α ∈ M[r] and β ∈ M(α) and w be an integer
such that 0 ≤ w ≤ D − r. Then∑

γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1γ|β · |Sm(α, γ)∩Sm(α, β)|] ≤
(
k

w

)
·n2(D−r−w) ·pk−w ·

(
N − 2k + w

m

)

Proof. From the definition of NW , for any α ∈ M[r] and β ∈ M(α), αβ is a monomial in
Supp(NW ). Moreover, there is a unique univariate polynomial fβ(Z) ∈ Fn2 [Z] of degree at
most D − 1 such that α · β =

∏
i∈[n] xi,fβ(i). The summation above is over all fγ ∈ Fn2 [Z] of

degree at most D − 1 satisfying

•
∏
i∈[r] xi,fγ(i) = α

• |{i ∈ [n] \ [r] : fγ(i) = fβ(i)}| = w

The first condition above can also be written as fβ(j) = fγ(j) for every j ∈ [r]. Thus, fβ
agrees with fγ over all the elements in set [r] and over w elements of the set [n] \ [r]. Since any
univariate polynomial of degree at most D − 1 can be uniquely determined by its evaluations
on any D points, there is a one-one map from the set of fγ satisfying the constraints above to
tuples (U1, U2) where

• U1 ⊆ [n] \ [r] is the set of w elements in [n] \ [r] where fβ and fγ agree

• U2 is a set of input, value pairs for some D − r − w points in [n] \ ([r] ∪ U1)

Therefore, the number of such fγ is at most
(
k
w

)
· n2(D−r−w). We will now get an upper bound

on the value of EV←D[1γ|β · |Sm(α, γ)∩ Sm(α, β)|] for each such γ. Observe that 1γ|β is 1 when
all the variables in the set Supp(γ) \ Supp(β) are alive. This happens with probability equal
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to p|Supp(γ)\Supp(β)| = pk−w. The quantity |Sm(α, γ) ∩ Sm(α, β)| is the number of multilinear
monomials of degree m which are disjoint from both β and γ ( where |Supp(γ)\Supp(β)| = w ),
and hence |Sm(α, γ)∩Sm(α, β)| =

(
N−2k+w

m

)
(Recall that we shift with all multilinear monomials

of degree m regardless of V ). So,

EV←D[1γ|β · |Sm(α, γ) ∩ Sm(α, β)|] = pk−w ·
(
N − 2k + w

m

)
Multiplying this by the bound on the number of terms in the summation completes the proof
of the claim.

We will now upper bound the sum∑
0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|]

Claim 7.2. Let α, β be monomials such that α ∈M[r] and β ∈M(α). Then∑
0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|] ≤ n2d−2r+εr+1 ·
(
N − 2k

m

)

Proof. Claim 7.1 implies that∑
0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|]

is at most ∑
0≤w≤D−r

(
k

w

)
· n2(D−r−w) · pk−w ·

(
N − 2k + w

m

)
Let us set g(w) =

(
k
w

)
· n2(D−r−w) · pk−w ·

(
N−2k+w

m

)
and g′(w) = g(w)/

(
N−2k
m

)
. By our choice

of parameters, w2 = O(n2), k2 = O(n2) and N = Ω(n2). So by Lemma 3.6(
N−2k+w

m

)(
N−2k
m

) ≈
(

N − 2k

N −m− 2k

)w
We also know from our choice of parameters that N−2k

N−m−2k = θ(1). So, g′(w) =
(
k
w

)
·n2(D−r−w) ·

pk−w · θ(1)w. For p = n−ε and k = θ(n), g′(w) ≤ kw · n2D−2r−2w · pk−w · θ(1)
w

. In particular,
g′(w) is upper bounded by a decreasing function of w and takes the maximum value n2D−2rpk

at w = 0. So∑
0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|] ≤ D · n2D−2r · pk ·
(
N − 2k

m

)

Now, substituting D = εn
2 + d, p = n−ε and k = n− r, we get∑

0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|] ≤ n2d−2r+εr+1 ·
(
N − 2k

m

)
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Putting this value back into the equality

EV←D[T2|V ] =
∑

α∈M[r]

β∈M(α)

EV←D[1α,β ]
∑

0≤w≤D−r

∑
γ∈M(α)
γ 6=β

|Supp(γ)∩Supp(β)|=w

EV←D[1γ|β ·|Sm(α, γ)∩Sm(α, β)|]

we obtain

EV←D[T2|V ] ≤
∑

α∈M[r]

β∈M(α)

EV←D[1α,β ] · n2d−2r+εr+1 ·
(
N − 2k

m

)

Now observe that 1α,β = 1 when all the variables in the support of the monomial αβ stay alive.
This happens with probability exactly pn since α · β is a multilinear monomial of degree equal
to n. The number of pairs α, β such that α ∈M[r] and β ∈M(α) is exactly equal to n2D, since
|M[r]| = n2r and for each such α, the number of β ∈M(α) equals n2(D−r). So,

EV←D[T2|V ] ≤ pn · n2D · n2d−2r+εr+1 ·
(
N − 2k

m

)
Plugging back the values of p and D, we get Lemma 6.3.

7.3 Expected values of T3(NWn,D|V )

We will again proceed as in the above case, but we have to be a little more careful.

EV←D[T3|V ] =
∑

α1,α2∈M[r]

β1∈M(α1)
β2∈M(α2)

(α1,β1)6=(α2,β2)

EV←D[1α1,α2,β1,β2 · |Am(α1, β1) ∩Am(α2, β2)|]

We will again split the sum based upon the number of agreements between α1, α2 and the
number of agreements between β1, β2. We can rewrite EV←D[T3|V ] as

EV←D[T3|V ] =
∑

0≤w1≤r,0≤w2≤k
w1+w2≤D

∑
α1,α2∈M[r]

β1∈M(α1)
β2∈M(α2)

|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α1,α2,β1,β2 · |Am(α1, β1) ∩Am(α2, β2)|]

Observe that we can drop the constraint (α1, β1) 6= (α2, β2) since the sum of number of
agreements between α1 and α2 and between β1 and β2 is at most D which is strictly smaller
than n. Rearranging the order of summation, we get

EV←D[T3|V ] =
∑

α1∈M[r]

β1∈M(α)

EV←D[1α1,β1 ]

×
∑

0≤w1≤r,0≤w2≤k
w1+w2≤D

∑
α2∈M[r]

β2∈M(α2)
|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|]

(5)
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where 1α2|α1
is the event 1α′ where α′ =

∏
X∈Supp(α2)\Supp(α1)X and similarly for 1β2|β1

. In
the claim below, we upper bound the expression∑

α2∈M[r]

β2∈M(α2)
|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|]

for any fixed α1 ∈M[r], β1 ∈M(α1), w1, w2.

Claim 7.3. Let α1, β1 be monomials such that α1 ∈ M[r] and β1 ∈ M(α1). Let 0 ≤ w1 ≤ r
and 0 ≤ w2 ≤ k be positive integers such that w1 + w2 ≤ D. Then

∑
α2∈M[r]

β2∈M(α2)
|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|]

≤
(
r

w1

)
·
(
k

w2

)
· n2(D−w1−w2) · pk+r−w1−w2 ·

(
N − 2k + w2

m− k + w2

)
Proof. Recall that every monomial in NW corresponds to a univariate polynomial f ∈ Fn2 [Z] of
degree at most D − 1. So, every pair α1 ∈M[r] and β1 ∈M(α1) satisfies α1β1 =

∏
i∈[n] xi,f1(i)

for f1 ∈ Fn2 [Z] of degree at most D − 1. For a fixed α1 ∈ M[r] and β1 ∈ M(α) and w1, w2,
the summation above runs over precisely the set of polynomials f2 ∈ Fn2 [Z] of degree at most
D − 1 that satisfy the following two properties:

• |{i ∈ [r] : f1(i) = f2(i)}| = w1

• |{i ∈ [n] \ [r] : f1(i) = f2(i)}| = w2

Since every polynomial of degree D−1 is uniquely determined by its evaluation at some D points,
the number polynomial f2 satisfying the above properties equals

(
r
w1

)
·
(
k
w2

)
·n2(D−w1−w2). This

follows from the observation there is an one-one map from the set of polynomials f2 satisfying
the above properties and the set of tuples (U1, U2, U3), where

• U1 ⊆ [r] is the set of w1 elements of [r] where f1 and f2 agree

• U2 ⊆ [n] \ [r] is the set of w2 elements of [n] \ [r] where f1 and f2 agree

• U3 specifies the evaluation of f2 on some D − w1 − w2 elements of [n] \ (U1 ∪ U2).

Thus, the number of summands in the sum equals
(
r
w1

)
·
(
k
w2

)
· n2(D−w1−w2).

Now observe that for every such fixed α1, α2, β1, β2, 1α2|α1
is 1 when all the variables in

Supp(α2)\Supp(α1) survive the random restriction procedure and it is zero otherwise. So, 1α2|α1

is 1 with probability p|Supp(α2)\Supp(α1)| = pr−w1 . Similarly, 1β2|β1
is 1 with probability pk−w2 .

Moreover, 1α2|α1
and 1β2|β1

are independent events. Also, observe that |Am(α1, β1)∩Am(α2, β2)|
is upper bounded by the number of multilinear monomials γ of degree m such that γ · β1 and
γ · β2 are both multilinear and γ · β1 = γ · β2. This is equal to

(
N−2k+w2

m−(k−w2)

)
. Hence,

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|] ≤ pr−w1 · pk−w2 ·
(
N − 2k + w2

m− (k − w2)

)
The bound in the lemma follows by multiplying the above bound with the upper bound on the
number of summands in the summation.
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Using the bound in Claim 7.3, we now upper bound the expression∑
0≤w1≤r,0≤w2≤k

w1+w2≤D

∑
α2∈M[r]

β2∈M(α2)
|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|]

Claim 7.4. Let α1, β1 be monomials such that α1 ∈M[r] and β1 ∈M(α1). Then∑
0≤w1≤r,0≤w2≤k

w1+w2≤D

∑
α2∈M[r]

β2∈M(α2)
|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|] ≤ n2d+2·
(
N − 2k

m− k

)

Proof. From Claim 7.3, it follows that∑
0≤w1≤r,0≤w2≤k

w1+w2≤D

∑
α2∈M[r]

β2∈M(α2)
|Supp(α1)∩Supp(α2)|=w1

|Supp(β1)∩Supp(β2)|=w2

EV←D[1α2|α1
· 1β2|β1

· |Am(α1, β1) ∩Am(α2, β2)|]

is at most ∑
0≤w1≤r,0≤w2≤k

w1+w2≤D

(
r

w1

)
·
(
k

w2

)
· n2(D−w1−w2) · pk+r−w1−w2 ·

(
N − 2k + w2

m− k + w2

)

By separating out the parts dependent upon w1 and w2, the expression above is equal to

pk+r · n2(D) ·
∑

0≤w1≤r

(
r

w1

)
· n−2w1p−w1 ·

∑
0≤w2≤D−w1

(
k

w2

)
· n−2w2 · p−w2 ·

(
N − 2k + w2

m− k + w2

)

Let g(w2) =
(
k
w2

)
·n−2w2 ·p−w2 ·

(
N−2k+w2

m−k+w2

)
. Let us consider the expression g′(w2) = g(w2)/

(
N−2k
m−k

)
.

By our choice of parameters, w2
1 = O(n2), k2 = O(n2) and N = Ω(n2). So by Lemma 3.6(

N−2k+w2

m−k+w2

)(
N−2k
m−k

) ≈
(
N − 2k

m− k

)w2

We also know from our choice of parameters that N−2k
m−k = θ(1). So, g′(w2) =

(
k
w2

)
·n−2w2 ·p−w2 ·

θ(1)
w2 . For p = n−ε and k = θ(n), g′(w2) ≤ kw2 · nεw2−2w2 · θ(1)

w2 . In particular, g′(w2) is
upper bounded by a decreasing function of w2 and takes the maximum value 1 at w = 0. Hence,∑

0≤w2≤D−w1

g(w2) ≤ D ·
(
N − 2k

m− k

)
By a similar reasoning, ∑

0≤w1≤r

(
r

w1

)
· n−2w1p−w1 ≤ r · 1

So ∑
0≤w1≤r,0≤w2≤k

w1+w2≤D

(
r

w1

)
·
(
k

w2

)
· n2(D−w1−w2) · pk+r−w1−w2 ·

(
N − 2k + w2

m− k + w2

)
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is upper bounded by

pk+r · n2D ·D ·
(
N − 2k

m− k

)
· r

For k = n− r, D = εn
2 + d and p = n−ε, this is at most

n2d+2 ·
(
N − 2k

m− k

)

Now, plugging this bound back into Equation 5, we get

EV←D[T3|V ] ≤
∑

α1∈M[r]

β1∈M(α)

EV←D[1α1,β1 ] · n2d+2 ·
(
N−2k
m−k

)
Now, 1α1,β1 = 1 when all the variables in the supports of α and β are alive. This happens
with probability exactly pn since αβ is a multilinear monomial of degree n. Also, there are n2r

possible α and for each of these, there are exactly n2(D−r) many β in M(α). So,

EV←D[T3|V ] ≤ pn · n2r · n2(D−r) · n2d+2 ·
(
N − 2k

m− k

)
Putting in D = εn

2 + d and p = n−ε, we get

EV←D[T3|V ] ≤ n4d+2 ·
(
N − 2k

m− k

)
So, we obtain Lemma 6.4.

8 Lower bound for IMMñ,n

In this section, we prove the lower bound on the size of homogeneous ΣΠΣΠ circuit computing
an entry in the product of generic matrices. The proof is similar in spirit to the proof of lower
bound for the Nisan-Wigderson polynomials. In fact, the choice of parameters in this proof is
strongly motivated by the choice of parameters in the earlier proof.

We will first introduce some notation needed for the proof.

8.1 Notation

Let IMMñ,n be the the polynomial computed by the (1, 1) coordinate of the product of n
different ñ× ñ matrices, where the entries of the matrices are distinct variables. Thus there are
ñ2 × n variables in total.

Let ñ, n, r′, k′ be positive integers such that and (k′+ 2)r′ = n. Let IMMñ,n
∗(ñ, n, r′, k′) be

an n-tuple of ñ× ñ matrices of the following form: The n tuples will be composed of r′ blocks,
each block having k′ + 2 matrices. In each block, the first matrix will be a special matrix, the
next k′ will be regular matrices, and the last one will be the all 1s matrix that we call J . In
the ith block, we call the special matrix Y (i), the regular matrices are X(i,1), X(i,2), . . . , X(i,k′),
and the last all 1s matrix is J (i). In the n-tuple, we arrange the matrices of the first block first,
in the order described above, then the matrices of the second block, and so on. Thus the ith
block, which we call B(i) is a (k′ + 2)-tuple of the form(

Y (i), X(i,1), X(i,2), . . . , X(i,k′), J (i)
)
,
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and the n-tuple IMMñ,n
∗(ñ, k̃, r′, k′) is a concatenation of the different blocks B(i), for i ∈ [r′].

Thus IMMñ,n
∗(ñ, n, r′, k′) is of the following form:(

Y (1), X(1,1), X(1,2), . . . , X(1,k′), J (1), . . . . . . . . . , Y (r′), X(r′,1), X(r′,2), . . . , X(r′,k′), J (r′)
)
.

We will select the parameters (ñ, n, r′, k′) right in the beginning and the use these fixed
parameters for the rest of the paper. Thus for ease of notation we will often suppress the
parameters and let IMMñ,n

∗ = IMMñ,n
∗(ñ, n, r′, k′).

For any matrix M , we let mi,j be the variable in the (i, j)th entry of M . We will use capital
letters to denote the name of the matrix and the small letter to denote the variables in the
matrix. For instance, the (i, j)th entry of the matrix X(u,v) is x

(u,v)
i,j .

Let IMMñ,n
× be the matrix which is the product of all n matrices in IMMñ,n

∗(ñ, n, r′, k′)
in the order given above.

For i, j ∈ [ñ], let Pij be the polynomial computed at the (i, j) entry of IMMñ,n
×.

For our proof, we will initially fix a value of ñ and n and work with it. So for the rest of the
paper, we will supress the subscript ñ, n from our notations.

Let IMM be supp(P11).
Let IMMX be the set of monomials obtained from IMM after setting all the variables in

the special matrices to 1. (When we talk about the set of monomials obtained, we disregard the
information in the coefficients of the monomials obtained, and just treat them all to be monic.)

Let IMM
(i)

X be the set of monomials obtained from IMM after setting all the variables in
all the matrices except the regular matrices of the ith block to 1. (Again, we disregard the
coefficients of the monomials and treat them as monic monomials.)

Notice that
IMMX =

∏
i∈[r′]

IMM
(i)

X ,

where every element of the product set is identified with the monomial formed by the product
of the monomials from the individual sets.

Let IMMY be the set of monomials (all monomials are treated as monic in the set) obtained
from IMM after setting all the variables in the regular matrices to 1. Notice that |IMMY | =
(ñ2)r

′
, since we get a monomial for every r′-tuple of variables where the ith element is a variable

in Y (i).
For α ∈ IMMY , let IMM(α) be the set of monomials β in IMMX such α ·β is an element

of IMM .
For α ∈ IMMY , let IMM(α)(i) be the set of monomials in IMM(α) obtained after all the

variables that are not in the ith block have been set to 1.

8.2 Choice of parameters

We will pick the following choice of parameters:

1. n. (This denotes the total number of matrices in IMMñ,n
∗)

2. r =
√
n. (This will be the order of partial derivatives in the complexity measure)

3. ñ = n5. (This is the dimension of the matrices)

4. s =
√
n

64 . (This indicates the target support of a product gate in the circuit after random
restrictions)

5. Λ = 32. (This is a parameter used in the proof)

6. r′ = Λr. (This is the number of blocks)

7. k = n− 2r′. (This is the number of regular matrices.)

29



8. k′ = k/r′. (This is the number of regular matrices per block)

9. N = (n− r′) · ñ2. (This is the total number of variables in IMMñ,n)

10. Γ is a parameter (it will be a number very close to 2) which is chosen so that the following

equalities hold. Set m = N
2

(
1− lnn

Γ
√
n

)
. Then choose Γ so that

nr ·
(

N

N −m

)k
=

(
N

m

)k
.

Thus

nr =

(
N −m
m

)k
.

Using the choices of r =
√
n, k = n− 2r′ and m = N

2

(
1− lnn

Γ
√
n

)
, we get that

n =


(

1 + lnn
Γ
√
n

)
(

1− lnn
Γ
√
n

)

√
n−(2/Λ)

= n
2+o(1)

Γ .

So, Γ = 2 + o(1).

11. m = N
2

(
1− lnn

Γ
√
n

)
. (This is the degree of the multilinear shifts)

12. D = N/(N−m). Thus Dk =
(

N
(N−m)

)k
. (This is an indicator of the number of monomials

in the support of the resulting polynomial after applying a restriction from our distribution
and taking partial derivative with respect to a suitable monomial. Note that D is a number
slightly smaller than 2 for our choice of m)

13. η is a parameter chosen so that

nη·r
′
· 2k−(2 logn+1)r′ = Dk

Thus (
nη−2

2

)r′
· 2k = Dk = 2k ·

(
1

1 + lnn
Γ
√
n

)k
.

Thus

nη−2

2
=

(
1

1 + lnn
Γ
√
n

)k′
=

(
1

1 + lnn
Γ
√
n

)(1+o(1))
√
n/Λ

= n−
1+o(1)

ΓΛ .

Thus η = 2− 1+o(1)
ΓΛ .

8.3 Random restrictions

The total number of variables N in IMMñ,n is N = ñ2×(n−r′). There are (ñ2×r′) y-variables
and (ñ2× k′r′) x-variables. Let this total set of variables be V. We will randomly set certain of
these variables to zero, to get a distribution over restrictions of IMMñ,n. We will now define a
distribution D over subsets V ⊂ V. The random restriction procedure will sample V ← D and
then keep only those variables “alive” that come from V and set the rest to zero.

For each matrix in IMMñ,n
∗ we specify a random procedure for deciding which variables to

set to zero, and then we will apply this procedure independently for each matrix.
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Random restriction for special matrices

• For each special matrix Y (i), choose ñ3/4 entries uniformly at random from the first row
and keep those nonzero. Set all other variables to zero.

Random restriction for regular matrices Let 2 > η > 1 be the parameter that was
set in item 13 above.

• For each regular matrix of the form X(i,1) (i.e. the first regular matrix in any block), in
each row, pick nη distinct variables (uniformly at random), and keep them nonzero. Set
the remaining variables to zero. Do this independently for each row.

• For each regular matrix of the form X(i,j), where j > k′−2 log n (i.e. the last 2 log n regular
matrices in any block), in each row, pick 1 distinct variable (uniformly at random), and
keep it nonzero. Set the remaining variables to zero. Do this independently for each row.

• For each regular matrix of the form X(i,j), where 2 ≤ j ≤ k′ − 2 log n, in each row, pick
2 distinct variable (uniformly at random), and keep them nonzero. Set the remaining
variables to zero. Do this independently for each row.

In this manner, independently for each matrix in IMMñ,n
∗ we only keep a random subset

of variables alive, and thus we get a distribution D over subsets V ⊂ V where V is the total set
of alive variables. Notice that every V ← D is such that

|V | = r′ · (ñ3/4 + ñ · nη + (k′ − 2 log n− 1) · ñ · 2 + 2 log n · ñ).

Notation for restricted matrices For each random subset of variables V ← D obtained
in this way, let IMM |∗V be the the n-tuple of matrices IMMñ,n

∗ where only the variables in V
are kept alive and the rest have been set to zero. Let IMM |V be the (1, 1) entry of the product
of the matrices in IMM |∗V . Let (X(i,j))|V be the jth regular matrix of the ith block in IMM |∗V .
Let (Y (i))|V be the ith special matrix in IMM |∗V .

Let IMM |V ,(IMM |V )X , (IMM |V )
(i)
X , (IMM |V )Y , IMM |V (α) and IMM |V (α)(i) be ob-

tained from IMM ,IMMX , IMM
(i)

X , IMMY , IMM(α) and IMM(α)(i) respectively by keeping
only those variables ‘alive’ that are present in V , and setting the remaining to zero.

Viewing IMM |∗V as a graph Note than one can view any ñ× ñ matrix as the incidence
matrix of a bipartite graph with ñ left vertices and ñ right vertices. For each entry in the (i, j)
location that is nonzero, we add an edge from the ith left vertex to the jth right vertex with
the variable written in the (i, j)th entry now written on the edge. (In the case of the J matrices
(of all 1s), we just label the edges with 1.

Thus one can view any IMM |∗V as an n-tuple of bipartite graphs, where for any two adjacent
matrices M,M ′ in the n-tuple, we identify the right vertices of M with the left vertices of M ′.
Thus we get a layered bipartite graph, with n layers, and each monomial in IMM |V corresponds
to a path from the leftmost layer to the rightmost layer. We define the ith layer in IMM |∗V to
be precisely the bipartite graph corresponding the ith matrix in IMM |∗V . The degree of a layer
is defined to be the left-degree of the corresponding bipartite graph. Notice that at least for all
the regular matrices, the corresponding bipartite graphs (after restricting to V ) are regular with
respect to the left-degrees. For the regular matrix X(i,j)|V , we let Deg(X(i,j)|V ) denote the left
degree of the corresponding bipartite graph, and by the random restriction process, note that
this is a number only depending on the value of j. For ease of notation, we may some times
refer to this quantity as Deg(j). For every left vertex of this graph (of degree Deg(j)), we give
each of the outgoing edge a distinct label from 1 to Deg(j). This choice of labels is assigned
independently and uniformly at random for each left vertex. Thus for instance, for every left
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vertex, if we follow the edge labelled 1 that leaves it, we get a uniformly random element of [ñ]
as the right vertex.

Any element of (IMM |V )
(i)
X is a monomial of degree k′, and it corresponds to a path of length

k′ in the k′-layered bipartite graph corresponding to the regular matrices of the ith block. Each
such monomial can thus be fully specified by first specifying the start vertex, i.e. an element
of [ñ], and the labels of the edges along the path, i.e. a k′-tuple where the jth entry is free to
vary in [Deg(X(i,j)|V )]. This correspondence will be very useful in the arguments that will be
coming up.

8.4 Choosing a set of monomials

From our definition of the complexity measure Φ, it depends upon two parameters. The degree
of multilinear shift m has already been set by our choice of parameters. For every V ← D,
we will first choose an appropriate set of monomials of degree r′ denoted by T (IMM |V ). The
final set of monomials with respect to which we will take derivatives will be a large subset of
T (IMM |V ). As we will see, the complexity of the circuit just depends on the parameter r′ and
is totally independent of the precise set of monomials with respect to which partial derivatives
are taken. Hence, choosing the set of monomials dependent upon V does not lead to a problem.

For any V ← D, let T (IMM |V ) be a subset of (IMM |V )Y chosen such that the following
properties hold:

• |T (IMM |V )| = nr

• For any two distinct monomials α, β ∈ T (IMM |V ),

|Supp(α) \ Supp(β)| = |Supp(β) \ Supp(α)| ≥ r′ − r

The following lemma shows that such a set exists with a probability 1 over V ← D.

Lemma 8.1. For any V ⊆ V such that V lies in the support of the distribution D, there exists
T (IMM |V ) ⊆ (IMM |V )Y such that the following two properties hold.

• |T (IMM |V )| = nr

• For any two distinct monomials α, α′ ∈ T (IMM |V ),

|Supp(α) \ Supp(α′)| = |Supp(α′) \ Supp(α)| ≥ r′ − r

Proof. From the definition of the random restriction procedure, it follows that for each of Y
matrices, ñ3/4 variables in the first row are kept alive. We will identify the set of these variables
with elements in the field Fq with q = ñ3/45 for each of the Y matrices. Then, the cartesian
product of the subset of alive (i.e. nonzero) variables in each of the Y matrices can be identified
with Fr′q . For r < r′, we consider the set of all codewords of the Reed-Solomon codes corre-
sponding to polynomials of degree at most r − 1, and evaluated at r′ distinct field elements.
This gives is a subset of Fr′q of size qr = ñ3r/4 = n15r/4 such that the distance between any two
elements (which are r′-tuples) is at least r′ − r. We take, T (IMM |V ) to be any subset of these
codewords of size exactly nr.

Eventually in our proof, we will only look at derivatives of IMM |V with respect to a good
subset G of monomials in T (IMM |V ). We will argue that with a high probability this set will
have some good properties, which will help us lower bound the complexity of IMM |V .

5If ñ3/4 is not a prime power then we can just take q to be something slightly larger and the analysis still works.
For simplicity we assume for now that it is a prime power.
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8.5 Proof overview

The proof of the lower bound for IMMñ,n is a little more subtle than the proof of lower bounds
for NWn,D.

• If the circuit was large to start with, we have nothing to prove. Else, we will argue that
under the random restrictions given by the distribution D, with high probability none of
product gates in the bottom layer C has high support (all the high support gates set to
zero).

• Assuming that the circuit has bounded support, we will obtain a good upper bound on its
complexity. This is similar to the corresponding step in NWn,D.

• We will then show that with a good probability, the complexity of a random restriction of
IMMñ,n remains high. This is the most technical part of the proof. We elaborate more
on this step next.

• We will argue that the probability that both of the above items happen together is high.
Then, comparing the complexity of the circuit and the polynomial IMM |V completes the
proof.

Lower bound on the complexity of a random restriction of IMMñ,n: In spirit, this
proof is like that for NWn,D. Analogous to the definitions of the expressions T1, T2, T3 for
NWn,D, for every restriction V ← D, and with respect to a set of monomials T (IMM |V ) as
given by the Lemma 8.1, we define

• T1(IMM |V ) =
∑

α∈T (IMM |V )
β∈Supp(∂α(IMMñ,n))

1α,β · |Sm(α, β)|

• T2(IMM |V ) =
∑

α∈T (IMM |V )
β,γ∈Supp(∂α(IMMñ,n))

β 6=γ

1α,β,γ · |Sm(α, γ) ∩ Sm(α, β)|

• T3(IMM |V ) =
∑

α1,α2∈T (IMM |V )
β1∈Supp(∂α1 (IMMñ,n))

β2∈Supp(∂α2 (IMMñ,n))

(α1,β1) 6=(α2,β2)

1α1,α2,β1,β2 · |Am(α1, β1) ∩Am(α2, β2)|

We will use T1|V for T1(IMM |V ), T2|V for T2(IMM |V ) and T3|V for T3(IMM |V ). Observe
that the definitions above are equivalent to the following definitions.

• T1|V =

[∑
α∈T (IMM |V )

β∈IMM |V (α)

|Sm(α, β)|

]
=

[∑
α∈T (IMM |V )

β∈IMM |V (α)

(
N−k
m

)]
,

where the last equality holds because S(α, β) is the set of all multilinear monomials of
degree m which are disjoint from β.

•

T2|V =
∑

α∈T (IMM |V )

 ∑
β,γ∈IMM |V (α)

|Sm(α, γ) ∩ Sm(α, β)|


=

∑
α∈T (IMM |V )

 ∑
β,γ∈IMM |V (α)

(
N − k −∆(β, γ)

m

)
Where the last equality holds because |Sm(α, γ) ∩ Sm(α, β)| counts the number of multi-
linear monomials of degree m which are disjoint from both β and γ.
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•

T3|V =
∑

α1,α2∈T (IMM |V )

β1∈IMM |V (α1)

β2∈IMM |V (α2)
(α1,β1) 6=(α2,β2)

|Am(α1, β1) ∩Am(α2, β2)|

≤
∑

α1,α2∈T (IMM |V )

β1∈IMM |V (α1)

β2∈IMM |V (α2)
(α1,β1) 6=(α2,β2)

(
N − k −∆(β, γ)

m−∆(β, γ)

)

Where the last inequality holds since |Am(α1, β1) ∩ Am(α2, β2)| is upper bounded by the
number of multilinear monomials γ of degree m such that γ · β1 and γ · β2 are both
multilinear, and γ · β1 = γ · β2.

For every pair of monomials α, α′ ∈ T (IMM |V ), we define

• T1|V (α) =
∑
β∈IMM |V (α)

|Sm(α, β)|

• T2|V (α) =
∑
β,γ∈IMM |V (α)

(
N−k−∆(β,γ)

m

)
• If α = α′, then T3|V (α, α′) =

∑
β,γ∈IMM |V (α)

β 6=γ

(
N−k−∆(β,γ)
m−∆(β,γ)

)
• If α 6= α′, T3|V (α, α′) =

∑
β∈IMM |V (α)

γ∈IMM |V (α′)

(
N−k−∆(β,γ)
m−∆(β,γ)

)
We will now describe the strategy to prove to a lower bound on the complexity of IMM |V .

We compute the expected values of expression T1|V , T2|V and T3|V for V sampled according
to D. Then, we argue that with a high probability, T2|V and T3|V have values not much larger
than their expectations and T1|V has value close to its expectation. For such good restrictions,
we show the existence of a set GV ⊆ T (IMM |V ) with the following properties.

1. For each α in GV , T1|V (α) is large.

2. For each α in GV , T2|V (α) is not too large compared to T1(α).

3.
∑
α1,α2∈GV T3|V (α1, α2) is not too large when compared to

∑
α∈GV ,β∈Supp(∂α(IMM |V )) |Am(α, β)|.

Then, we show that these conditions suffice to show that ΦGV ,m(IMM |V ) is large. This
argument has the following major steps.

• For each α ∈ GV , since T1|V (α) is large, it follows that
∑
β∈IMM |V (α) |Sm(α, β)| is large.

• For each α ∈ GV , since T2|V (α) is not much larger than T1|V (α), Lemma 3.8 and Lemma 5.3
imply that for each α ∈ GV ,

∑
β∈IMM |V (α) |Am(α, β)| is large.

• We also know that
∑
α1,α2∈GV T3|V (α1, α2) =

∑
α1,α2∈GV

β1∈IMM |V (α1)

β2∈IMM |V (α2)
(α1,β1) 6=(α2,β2)

|Am(α1, β1) ∩ Am(α2, β2)|

is not much larger than
∑
α∈GV ,β∈IMM |V (α) |Am(α, β)|.

• Lemma 3.8 will then imply that

∣∣∣∣∣⋃ α∈GV
β∈IMM |V (α)

Am(α, β)

∣∣∣∣∣ is large. Hence, by Lemma 5.1,

ΦGV ,m(IMM |V ) is large.
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8.6 Effect of random restrictions on the circuit

We will now analyze the effect of the random restrictions on a homogeneous ΣΠΣΠ circuit
computing the polynomial IMMñ,n and show that with a high probability, no large support
product gate survives.

Lemma 8.2. Let C be a homogeneous ΣΠΣΠ circuit of size at most n
√
n

128 computing the
polynomial IMMñ,n . Then, with a probability at least 1−o(1) over V ← D, C|V is a ΣΠΣΠ{s}

circuit, for s =
√
n

64 .

Proof. We will analyze the probability that a fixed product gate at the bottom layer of C (that

computes a monomial) of support size s (we will later set s =
√
n

64 ) survives6 the random restric-
tion procedure. Observe that the events that two variables in different matrices in IMMñ,n

∗

survive are independent, but the probability that two variables within the same matrix survive
are correlated. We will first upper bound the probability that a monomial has support t within
any layer (i.e. t distinct variables that all come from the same layer) survives the random
restriction procedure, based on the type of the layer. We will think of t to be O(

√
n).

• Special matrices: In a special layer, a random subset of ñ3/4 variables in the first
row is kept alive. The probability that a monomial of support t within this layer survives

is, therefore equal to
( ñ−t
ñ3/4−t)
( ñ

ñ3/4)
. Since t is O(

√
n) and ñ = n5, so ñ and ñ3/4 are both

Ω(t2). Hence,
( ñ−t
ñ3/4−t)
( ñ

ñ3/4)
≈ ñ−t

ñ−3t/4 , by Lemma 3.6. So, the probability of survival is at most

1
ñt/4 <

1
nt .

• Regular matrices of the form X(i,1): Here, in each row exactly nη random variables
are kept alive. For η ≥ 1, the probability that a fixed monomial with support at least

t′ = O(
√
n) within any row survives is at most

( ñ−t
′

nη−t′)
( ñnη)

≈ ñ−t
′

n−η·t′
. Also, the events across

different rows are independent. So, the probability that a monomial with support at least

t in the variables in this matrix survives is at most ñ−t

n−η·t ≤ n
(η−5)·t < n−t.

• Regular matrices Xi,j for j > k′ − 2 log n: In these matrices, exactly one variable
in each row is kept alive uniformly at random. So, the probability that a monomial of
support at least t within one of these matrices survives the random restriction procedure
is at most ñ−t.

• Regular matrices Xi,j for 2 ≤ j ≤ k′ − 2 log n: In these matrices, from each row,
two distinct variables chosen uniformly at random are kept alive by the random restriction
procedure. So, the probability that a fixed variable within a fixed row survives is at most
2 · ñ−1. Therefore, the probability that a monomial of support at least t in such a matrix
survives is at most 2t · ñ−t. For ñ = n5, this is at most n−t.

From the above bounds, it follows that for t = O(
√
n), the probability that a monomial that has

support at least t within any single layer survives is at most 1
nt . Also, the events are independent

across different layers. So the probability that any monomial with support at least t across all
layers survives is at most 1

nt . Therefore, by the union bound, the probability that at least one

gate with support larger than s survives is at most Size(C)
ns . For C such that Size(C) ≤ n

√
n

128

and s =
√
n

64 , the probability that any product gate with support at least s survives the random

restriction procedure is at most n−
√
n

128 . So, the lemma follows.

6We say that a product gate survives the random restriction if none of the variables feeding in to it are set to zero.
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8.7 Effect of random restrictions on IMMñ,n

In this subsection, we will show that with a high probability over the random restrictions, the
complexity of IMMñ,n remains high, assuming that the bounds given by the following lemmas.

Lemma 8.3. For all α ∈ T (IMM |V ), for all V ← D

T1|V (α) = Dk ·
(
N − k
m

)
.

Lemma 8.4.

EV←D[T2|V ] ≤ nr ·Dk ·
(
N − k
m

)
· no(r)

Lemma 8.5.

EV←D[T3|V ] ≤ nr ·Dk ·O(n(4/Λ)r) ·
(
N − k
m

)
We will also need the following lemma, which implies Lemma 8.4 via linearity of expectations.
Recall that for α ∈ T (IMM |V ), we define T2|V (α) =

∑
β,γ∈IMM |V (α)

(
N−k−∆(β,γ)

m

)
. When

α 6∈ T (IMM |V ), we define T2|V (α) = 0.

Lemma 8.6. ∀α ∈ (IMM |V )Y ,

EV←D[T2|V (α)] ≤ Dk ·
(
N − k
m

)
· no(r)

We will prove these lemmas in Section 9
We will now show using Markov’s inequality that T2|V and T3|V take values close to their

expected values with a high probability.

Lemma 8.7.

PrV←D [T2|V < 20 · EV ′←D[T2|V ′ ] ∧ T3|V < 20 · EV ′←D[T3|V ′ ]] ≥ 0.9

Proof. The proof follows from the Markov’s inequality and the union bound.

Lemma 8.7 implies the following lemma, which we will use to prove a lower bound on the
complexity of a random restriction of the IMMñ,n.

Lemma 8.8. With probability at least 0.9 over V ← D, there exists a set GV ⊆ T (IMM |V )
such that the following are true:

|GV | ≥
4

5
· |T (IMM |V )|

∀α ∈ GV , T2|V (α) ≤ 100 · EV ′←D[T2|V ′ ]/(nr)

Proof. Let V ⊆ V be such that the bounds in Lemma 8.7 hold. Let GV be the set of α ∈
T (IMM |V ) such that T2|V (α) ≤ 100 · EV ′←D[T2|V ′ ]/(nr). We will now argue that |GV | ≥ 4

5 ·
|T (IMM |V )|. Let us assume this is not true, then

∑
α∈T (IMM |V ) T2|V (α) ≥

∑
α∈T (IMM |V )\GV T2|V (α) >

1
5 · 100 · EV ′←D[T2|V ′ ]/(nr) · |T (IMM |V )| = 20 · EV ′←D[T2|V ′ ] which contradicts the fact that∑
α∈T (IMM |V ) T2|V (α) = T2|V < 20 · EV ′←D[T2|V ′ ].

Lemma 8.9. With probability at least 0.9 over V ← D, there exists a set of monomials GV ,
each of degree equal to r′ such that

ΦGV ,m(IMM |V ) ≥ nr

O(n(4/Λ)r) · no(r)
·Dk ·

(
N − k
m

)
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Proof. Lemma 8.8 guarantees that with a probability at least 0.9 over V ← D, there exists a
subset GV ⊆ T (IMM |V ), satisfying

|GV | ≥
4

5
· |T (IMM |V )|

∀α ∈ GV , T2|V (α) ≤ 100 · EV ′←D[T2|V ′ ]/(nr).

Moreover, T2|V < 20 · EV ′←D[T2|V ′ ] and T3|V < 20 · EV ′←D[T3|V ′ ]. From the definition of
sets Sm(α, β), and the above mentioned bounds, it follows that for all α ∈ GV

T1|V (α) =
∑

β∈IMM |V (α)

|Sm(α, β)| = Dk ·
(
N − k
m

)

and

T2|V (α) =
∑

β1,β2∈IMM |V (α)
β1 6=β2

|Sm(α, β1) ∩ Sm(α, β2)| ≤ 100 · no(r) ·Dk ·
(
N − k
m

)

Hence, by Lemma 3.8, we get that for all α ∈ GV ,∣∣∣∣∣∣
⋃

β∈IMM |V (α)

Sm(α, β)

∣∣∣∣∣∣ ≥ 1

O(no(r))
·Dk ·

(
N − k
m

)

By Lemma 5.3, it follows that for all α ∈ GV

∑
β∈IMM |V (α)

|Am(α, β)| ≥

∣∣∣∣∣∣
⋃

β∈IMM |V (α)

Sm(α, β)

∣∣∣∣∣∣ ≥ 1

O(no(r))
·Dk ·

(
N − k
m

)

Consequently,∑
α∈GV

∑
β∈IMM |V (α)

|Am(α, β)| ≥ 1

O(no(r))
·Dk ·

(
N − k
m

)
· |GV | ≥

nr

O(no(r))
·Dk ·

(
N − k
m

)

Also,∑
α1,α2∈GV

T3|V (α1, α2) ≤
∑

α1,α2∈T (IMM |V )

T3|V (α1, α2) = T3|V < 20EV ′←D[T3|V ′ ] ≤ O(n(4/Λ)r)·nrDk·
(
N − k
m

)
,

and hence∑
α1,α2∈GV

β1∈IMM |V (α1)

β2∈IMM |V (α2)
(α1,β1)6=(α2,β2)

|Am(α1, β1)∩Am(α2, β2)| =
∑

α1,α2∈GV

T3|V (α1, α2) ≤ O(n(4/Λ)r) ·nrDk ·
(
N − k
m

)

So, we have∑
α1,α2∈GV

β1∈IMM |V (α1)

β2∈IMM |V (α2)
(α1,β1) 6=(α2,β2)

|Am(α1, β1) ∩Am(α2, β2)| ≤ O(n(4/Λ)r) · no(r) ·
∑
α∈GV

∑
β∈IMM |V (α)

|Am(α, β)|
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Therefore, by Lemma 3.8, we have∣∣∣∣∣∣∣∣
⋃
α∈GV

β∈IMM |V (α)

Am(α, β)

∣∣∣∣∣∣∣∣ ≥
1

O(n(4/Λ)r) · no(r)
·

∑
α∈GV

β∈IMM |V (α)

|Am(α, β)| ≥ nr

O(n(4/Λ)r) · no(r)
·Dk·

(
N − k
m

)

Now by Lemma 5.1,

ΦGV ,m(IMM |V ) ≥ nr

O(n(4/Λ)r) · no(r)
·Dk ·

(
N − k
m

)

8.8 Wrapping up the proof

We will now complete the proof of the main theorem.

Theorem 8.10. Any homogeneous ΣΠΣΠ circuit computing the polynomial IMMñ,n has size

at least 2Ω(
√
n logn).

Proof. Let C be a homogeneous ΣΠΣΠ circuit computing the polynomial IMMñ,n. If Size(C) ≥
n
√
n

128 , then we have nothing to prove and we are done, else Lemma 8.2 implies that with a
probability 1 − o(1), the circuit C|V does not have any product gate in the bottom layer of

support larger than s =
√
n

64 . Also, Size(C|V ) ≤ Size(C). Therefore, for any set GV of monomials
of degree r′ and any positive integer m,

ΦGV ,m(C|V ) ≤ Size(C|V ) ·
(
d 2n
s e+ r′

r′

)
·
(

N

m+ r′s

)
(6)

From Lemma 8.9, we also know that with a probability at least 0.9, for random restriction
V ← D, there exists a set GV of monomials of degree r′ such that

ΦGV ,m(IMM |V ) ≥ nr

O(n(4/Λ)r) · no(r)
·Dk ·

(
N − k
m

)
(7)

Therefore, with a probability at least 0.9−o(1), both these bounds hold. Since the circuit C|V
computes the polynomial IMM |V . Hence, ΦGV ,m(C|V ) ≥ ΦGV ,m(IMM |V ) for all V . Plugging
back the values from above, and the observation that Size(C|V ) ≤ Size(C), we get

Size(C) ≥
nr

O(n(4/Λ)r)·no(r) ·D
k ·
(
N−k
m

)
(d 2n

s e+r′
r′

)
·
(

N
m+r′s

) (8)

(9)

From our choice of parameters

• r′ = Λr

• nr ·Dk =
(
N
m

)k
• k = n− 2r′

• m = N
2

(
1− lnn

Γ
√
n

)
• s =

√
n

64
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• Λ = 32

For these choice of parameters, observe that

•
(d 2n

s e+r
′

r′

)
= 2O(

√
n)

• (N−km )
( N
m+r′s)

= N−k!
N ! ·

(m+r′s)!
m! · (N−m−r′s)!

(N−m−k)! ≈
mr
′s

Nk
· (N−m)k

(N−m)r′s

Plugging the value of the parameters and the bounds above back into equation 8, we get

Size(C) ≥
nr

O(n(4/Λ)r)·no(r) ·D
k ·
(
N−k
m

)
(d 2n

s e+r′
r′

)
·
(

N
m+r′s

)
≥ 1

O(n(4/Λ)r) · no(r)
·
(
N

m

)k
· 2−O(

√
n) · m

r′s

Nk
· (N −m)k

(N −m)r′s

=
2−O(

√
n)

O(n(4/Λ)r) · no(r)
·
(
N −m
m

)k−r′s

=
2−O(

√
n)

O(n(4/Λ)r) · no(r)
·

(
1 + lnn

Γ
√
n

1− lnn
Γ
√
n

)k−r′s
by substituting m =

N

2

(
1− lnn

Γ
√
n

)

≥ 2−O(
√
n)

O(n(4/Λ)r) · no(r)
·
(

1 +
lnn

Γ
√
n

)k−r′s
≥ 2−O(

√
n)

O(n(4/Λ)r) · no(r)
· e(n−2r′−r′s) lnn

Γ
√
n since k = n− 2r′

≥ 2−O(
√
n)

O(n(4/Λ)r) · no(r)
· n
√
n

Γ −
r′(2+s)

Γ
√
n

≥ 2−O(
√
n)

O(n(4/Λ)r) · no(r)
· n
√
n

Γ −
Λr(2+s)

Γ
√
n

≥ 2−O(
√
n)

O(n(4/Λ)
√
n) · no(r)

· n
√
n−Λs

Γ by substituting r =
√
n

Now, by substituting Λ = 32, Γ = 2 + o(1) and s =
√
n

64 , we obtain

Size(C) ≥ 2−O(
√
n) · nΩ(

√
n).

9 Calculations for IMMñ,n

In this section, we provide the calculations which establish the bounds in Lemma 8.3, Lemma 8.4,
Lemma 8.5. In the next section, we will first prove technical results that will be the building
blocks of the lemmas.

9.1 Preliminary lemmas

Proposition 9.1. For all β ∈ IMMX ,

EV←D

 ∑
γ∈(IMM |V )X

D−∆(β,γ)

 ≤ no(r).
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The proof follows from Lemma 9.2 that we state and prove below. We give the formal proof
at the end of the subsection.

For any monomial β ∈ IMMX , we define β(i) ∈ IMM
(i)

X to be the resulting monomial after
setting all the nonzero variables that are not in the ith block to 1.

Lemma 9.2. For all β(i) ∈ IMM
(i)

X ,

EV←D

 ∑
γ(i)∈(IMM |V )

(i)
X

D−∆(β(i),γ(i))

 ≤ O(1).

Proof. The proof follows immediately from Lemmas 9.3 and 9.4 below by taking a sum of the
two bounds.

For all β(i) ∈ IMM
(i)

X , we define the following two sets.

• A(i)
V (β(i)) is the set of all γ(i) ∈ (IMM |V )

(i)
X such that there is some j ∈ [k′− 1] such that

γ(i,j) 6= β(i,j) and γ(i,j+1) = β(i,j+1)

• B(i)
V (β(i)) is the set of all γ(i) ∈ (IMM |V )

(i)
X such that if for j, j′ ∈ [k′] γ(i,j) = β(i,j) and

γ(i,j′) 6= β(i,j′), then j′ > j.

Observe that A(i)
V (β(i)) ∪ B(i)

V (β(i)) = (IMM |V )
(i)
X .

Thus we have partitioned the set of γ(i) ∈ (IMM |V )
(i)
X into two sets A(i)

V (β(i)) and B(i)
V (β(i)),

and we estimate the expression in Lemma 9.2 separately as γ(i) varies in these sets. This
calculation is carried out in Lemmas 9.3 and 9.4 below.

Lemma 9.3. For all β(i) ∈ IMM
(i)

X ,

EV←D

 ∑
γ(i)∈B(i)

V (β(i))

D−∆(β(i),γ(i))

 ≤ O(1).

Proof. We partition B(i)
V (β(i)) into k′ + 1 sets, based on the number of locations j for which

γ(i,j) = β(i,j). For 0 ≤ j ≤ [k′], let B(i,j)
V (β(i)) be the set of all γ(i) ∈ (IMM |V )

(i)
X such that γ(i)

and β(i) agree on exactly the first j variables.

We now bound the size of B(i,j)
V (β(i)). Notice that once we fix β(i), the first j variables of any

γ(i) in B(i,j)
V (β(i)) are determined. For each of the remaining variables γ(i,j′) such that j′ > j,

the total number different choices they can take is at most Deg(X(i,j′)).
Thus

|B(i,j)
V (β(i))| ≤

k′∏
j′=j+1

Deg(X(i,j′)).

Now, observe that
∏k′

j′=1 Deg(X(i,j′)) = Dk′ . This follows from the exact choice of degrees
and value of D as set in the choice of parameters in Section 8.2. Thus we get that

∑
γ(i)∈B(i,j)

V (β(i))

D−∆(β(i),γ(i)) ≤
k′∏

j′=j+1

Deg(X(i,j′)) ·D−(k′−j)

= Dj

j∏
j′=1

Deg(X(i,j′))−1
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Now for j = 0, the expression above equals 1. For j > k′ − 2 log n, since Deg(X(i,j)) = 1,
thus ∑

γ(i)∈B(i,j)
V (β(i))

D−∆(β(i),γ(i)) ≤ D−(k′−j).

For j ≤ k′ − 2 log n, using the fact that D < 2, Deg(X(i,1)) = nη and Deg(X(i,j′)) = 2 for
2 ≤ j′ ≤ k′ − 2 log n, we get that

∑
γ(i)∈B(i,j)

V (β(i))

D−∆(β(i),γ(i)) ≤ Dj

j∏
j′=1

Deg(X(i,j′))−1

=
D

Deg(X(i,1))
·

j∏
j′=2

D

Deg(X(i,j′))

≤ 2

nη

Putting together these values for all values of j, and using the fact that k′ < n/2, we get that

∑
γ(i)∈B(i)

V (β(i))

D−∆(β(i),γ(i)) =

k′∑
j=0

∑
γ(i)∈B(i,j)

V (β(i))

D−∆(β(i),γ(i))

≤ 1 + (k′ − 2 log n) · 2

nη
+

k′∑
j=k′−2 logn+1

D−(k′−j)

≤ 2 +

2 logn∑
j=0

D−j

≤ 2 +
1

1−D−1

≤ 5

Lemma 9.4. For all β(i) ∈ IMM
(i)

X ,

EV←D

 ∑
γ(i)∈A(i)

V (β(i))

D−∆(β(i),γ(i))

 ≤ O(1/n).

Proof. For γ(i) ∈ A(i)
V (β(i)), we call a coordinate j such that 2 ≤ j ≤ k′ a switch if either

γ(i,j−1) 6= β(i,j−1) and γ(i,j) = β(i,j) or if γ(i,j−1) = β(i,j−1) and γ(i,j) 6= β(i,j). In the first case
we call it an agree switch and in the latter case we call it a disagree switch. It is clear from this

definition that the sequence of switches for any γ(i) in A(i)
V (β(i)) must alternate between agree

switch and disagree switch. We also know that each member of A(i)
V (β(i)) has at least one agree

switch (by definition).

We partition the setA(i)
V (β(i)) according the the number of switch coordinates of its members.

Let A(i)
V,t(β

(i)) be the set of all γ(i) ∈ A(i)
V (β(i)) containing exactly t switches.

Thus, to specify an element of A(i)
V,t(β

(i)) one needs to specify the locations St ⊆ [k′] (|S| = t)
of its switch coordinates, and whether the first switch is an agree switch or a disagree switch,
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which can be specified by a bit b ∈ {0, 1}. Once this information is known, this fully determines
the set of coordinates j for which γ(i,j) 6= β(i,j). Let DisSt,b be this set of coordinates - we call
these the disagreeing coordinates. For each one of these coordinates j in DisSt,b, one needs to
specify the value of γ(i,j).

Given the values of all coordinates before the jth coordinate, the value of γ(i,j) can be one
of only Deg(X(i,j)) many choices, as it is determined by the label of the outgoing edge in the
graph of X(i,j). Thus, once DisSt,b is determined , if DisSt,b = {t1, t2, . . . , ts} ⊆ [k′] is the set
of disagreeing coordinates, let L(DisSt,b) = {(at1 , at2 , . . . , ats) : atj ∈ [Deg(X(i,tj))]} be set of

labels of edges the disagreeing coordinates could correspond to. Thus every γ(i) corresponding
to the set DisSt,b of disagreeing coordinates would also correspond to some element of L(DisSt,b).

Thus the maximum number of possible choices for γ(i) ∈ A(i)
V,t(β

(i)) is at most the number

of ways of choosing the set DisSt,b, which is
(
k′

t

)
· 2, multiplied by

∏
j∈T Deg(X(i,j)).

However, not every element of L(DisSt,b) would correspond to a choice of γ(i) ∈ A(i)
V,t(β

(i)).
The reason being that when a disagreeing coordinate appears right before an agree switch, the
only way there can be an “agree” after a “disagree” is that the endpoint of a disagreeing edge
coincides with the start point of an agree edge in the corresponding layered graph. However,
for every edge label of the disagreeing edge, the end point was chosen to be a uniformly random
element of ñ in the distribution D. Thus this event happens only with probability exactly 1/ñ
for V ← D, and this is independent for each agree switch. Thus for every fixing of DisSt,b
coordinates corresponding to the disagreeing coordinates, and every sequence st ∈ L(DisSt,b),

the probability that the sequence corresponds to a γ(i) ∈ A(i)
V,t(β

(i)) is at most the probability
that for each agree switch, the endpoint of a disagreeing edge coincides with the start point of
an agree edge. For each agree switch this happens independently with probability 1/ñ. Recall
that the number of agree switches is at least max{1, (t− 1)/2}.

LetA(i)
V,t,T (β(i)) be the set of all γ(i) ∈ A(i)

V,t(β
(i)) containing exactly t switches and such that

T is the set of disagreeing coordinates.

EV←D
[
|A(i)

V,t,T (β(i))|
]
≤
∏
j∈T

Deg(X(i,j)) · 1

ñmax{1,(t−1)/2} .

Before the final computation, we need the following simple lemma:

Lemma 9.5. ∀i ∈ [r′], ∀T ⊆ [k′],
(∏

j∈T Deg(X(i,j))
)
·D−|T | ≤ n2.

Proof. Observe that since 1 < D < 2, thus for all j such that 1 ≤ j ≤ k′ − 2 log n, we have
that Deg(X(i,j)) > D, and for all j such that k′ − 2 log n < j ≤ k′, Deg(X(i,j)) < D. Thus the

expression
(∏

j∈T Deg(X(i,j))
)
·D−|T | is maximized for T = [k′−2 log n], and for this choice of T ,∏

j∈T Deg(X(i,j)) = Dk′ and D|T | = Dk
′

D2 logn . Thus
∏
j∈T Deg(X(i,j)) ·D−|T | ≤ D2 logn ≤ n2.

Thus

EV←D[
∑

γ(i)∈A(i)
V,t,T (β(i))

D−∆(β(i),γ(i))] ≤
∏
j∈T

Deg(X(i,j)) · 1

ñmax{1,(t−1)/2} ·D
−∆(β(i),γ(i))

=
1

ñmax{1,(t−1)/2} ·

∏
j∈T

Deg(X(i,j))

 ·D−|T |
≤ 1

ñmax{1,(t−1)/2} · n
2. (by Lemma 9.5)
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Now, given t, there are at most 2 ·
(
k′

t

)
ways of choosing the set T . Thus A(i)

V,t(β
(i)) can be

written as a union of at most 2 ·
(
k′

t

)
different sets of the form A(i)

V,t,T (β). Thus

EV←D

 ∑
γ(i)∈A(i)

V,t(β
(i))

D−∆(β(i),γ(i))

 ≤ 1

ñmax{1,(t−1)/2} · n
2 · 2 ·

(
k′

t

)
.

Summing over the various choices of t, we get that

EV←D

 ∑
γ(i)∈A(i)

V (β(i))

D−∆(β(i),γ(i))

 ≤ k′∑
t=1

1

ñmax{1,(t−1)/2} · n
2 · 2 ·

(
k′

t

)
.

Since ñ = n5 and k′ = O(
√
n), it is easily verified that

E[
∑

γ(i)∈A(i)
V (β(i))

D−∆(β(i),γ(i))] ≤ O(1/n).

We now give a proof of Proposition 9.1.

Proof of Proposition 9.1. For all β ∈ IMMX , observe that∑
γ∈(IMM |V )X

D−∆(β,γ) =
∏
i∈[r′]

∑
γ(i)∈(IMM |V )

(i)
X

D−∆(β(i),γ(i)).

Moreover, since the choice of V ← D chooses variables in distinct matrices independently,
thus

EV←D

 ∑
γ∈(IMM |V )X

D−∆(β,γ)

 =
∏
i∈[r′]

EV←D

 ∑
γ(i)∈(IMM |V )

(i)
X

D−∆(β(i),γ(i))

 ≤ (O(1))
r′ ≤ no(r),

Where the second to last inequality follows from Lemma 9.2, and the last inequality follows
form the fact that r′ = O(r).

9.2 Expected value of T1(IMM |V )

We now prove Lemma 8.3.

Proof of Lemma 8.3. For all α ∈ T (IMM |V ),

T1|V (α) =
∑

β∈IMM |V (α)

|Sm(α, β)|

=
∑

β∈IMM |V (α)

(
N − k
m

)

= Dk ·
(
N − k
m

)

43



9.3 Expected value of T2(IMM |V )

Let V ← D. Recall that

T2|V =
∑

α∈T (IMM |V )

 ∑
β,γ∈IMM |V (α)

β 6=γ

(
N − k −∆(β, γ)

m

) .

For α ∈ (IMM |V )Y and β ∈ IMM |V (α), let

T2|V (α, β) =
∑

γ∈IMM |V (α)
γ 6=β

(
N − k −∆(β, γ)

m

)
.

For α 6∈ (IMM |V )Y or β 6∈ IMM |V (α), let T2|V (α, β) = 0. For every fixed α ∈ (IMM |V )Y
and β ∈ IMM |V (α), T2|V (α, β) counts for every γ ∈ IMM |V (α) such that γ 6= β, the number
of multilinear shifts of degree m that are disjoint from both β and γ. It then takes the sum of
this quantity over all γ ∈ IMM |V (α). We now prove Lemma 8.4 and Lemma 8.6. In order to
do so, we first bound EV←D[T2|V (α, β)], and then sum over α and β as appropriate to obtain
Lemma 8.4 and Lemma 8.6.

Lemma 9.6. For α ∈ IMMY and β ∈ IMM(α),

EV←D[T2|V (α, β)] ≤
(
N − k
m

)
· no(r).

Proof.

T2|V (α, β) =
∑

γ∈IMM |V (α)
γ 6=β

(
N − k −∆(β, γ)

m

)

=
∑

γ∈IMM |V (α)
γ 6=β

(
N − k −∆(β, γ)

m

)
·
(
N−k
m

)(
N−k
m

)
=

(
N − k
m

)
·

∑
γ∈IMM |V (α)

γ 6=β

(
N−k−∆(β,γ)

m

)(
N−k
m

)
≈
(
N − k
m

)
·

∑
γ∈IMM |V (α)

γ 6=β

(
N −m
N

)∆(β,γ)

by Lemma 3.6

≤
(
N − k
m

)
·

∑
γ∈IMM |V (α)

γ 6=β

D−∆(β,γ)

Thus,

EV←D [T2|V (α, β)] ≤
(
N − k
m

)
· EV←D

 ∑
γ∈IMM |V (α)

γ 6=β

D−∆(β,γ)

 ≤ (N − km

)
· no(r),

where the second inequality follows from Proposition 9.1.
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Proof of Lemma 8.6. ∀α ∈ (IMM |V )Y ,

EV←D[T2|V (α)] ≤
∑

β∈IMM |V (α)

EV←D[T2|V (α, β)]

= Dk ·
(
N − k
m

)
· no(r).

Proof of Lemma 8.4.

EV←D[T2|V ] =
∑

α∈T (IMM |V )

EV←D[T2|V (α)]

≤
∑

α∈T (IMM |V )

Dk ·
(
N − k
m

)
· no(r)

= nr ·Dk ·
(
N − k
m

)
· no(r)

9.4 Expected value of T3(IMM |V )

We now prove Lemma 8.5.

Proof of Lemma 8.5. Let V ← D. Let

T=
3 |V =

∑
α∈T (IMM |V )

 ∑
β,γ∈IMM |V (α)

β 6=γ

(
N − k −∆(β, γ)

m−∆(β, γ)

)
Let

T 6=3 |V =
∑

α,α′∈T (IMM |V )
α6=α′

 ∑
β∈IMM |V (α)

γ∈IMM |V (α′)

(
N − k −∆(β, γ)

m−∆(β, γ)

)
Observe that

T3|V = T=
3 |V + T 6=3 |V

For α ∈ IMMY , let

T=
3 |V (α) =

∑
β,γ∈IMM |V (α)

β 6=γ

(
N − k −∆(β, γ)

m−∆(β, γ)

)
(10)

For α, α′ ∈ IMMY such that α 6= α′, let

T 6=3 |V (α, α′) =
∑

β∈IMM |V (α)

γ∈IMM |V (α′)

(
N − k −∆(β, γ)

m−∆(β, γ)

)
(11)

45



For every α and α′, T 6=3 |V (α, α′) counts for every β extending α and γ extending α′, the number
of pairs of multilinear shifts mβ and mγ , each of degree m, such that mβ is disjoint from β, mγ

is disjoint from γ, and β ·mβ = γ ·mγ . Consider(
N − k −∆(β, γ)

m−∆(β, γ)

)
=

(
N − k −∆(β, γ)

m−∆(β, γ)

)
·
(
N−k
m

)(
N−k
m

)
=

(
N − k
m

)
·

(
N−k−∆(β,γ)
m−∆(β,γ)

)(
N−k
m

)
Now by an application of Lemma 3.6, we obtain(

N − k −∆(β, γ)

m−∆(β, γ)

)
≈
(
N − k
m

)
·
(m
N

)∆(β,γ)

(12)

Since by our choice of parameters D < N/m, plugging back Equation 12 into Equation 10, we
obtain

T=
3 |V (α) ≈

(
N − k
m

)
·

∑
β,γ∈IMM |V (α)

β 6=γ

(m
N

)∆(β,γ)

≤
(
N − k
m

)
·

∑
β∈IMM |V (α)

 ∑
γ∈IMM |V (α),γ 6=β

(m
N

)∆(β,γ)


≤
(
N − k
m

)
·

∑
β∈IMM |V (α)

 ∑
γ∈IMM |V (α),γ 6=β

(D)
−∆(β,γ)


≤
(
N − k
m

)
·Dk ·

∑
γ∈IMM |V (α)

(D)
−∆(β,γ)

Now, applying Proposition 9.1, we obtain

EV←D [T=
3 |V (α)] ≤

(
N − k
m

)
·Dk · no(r).

and hence

EV←D [T=
3 |V ] ≤ nr ·

(
N − k
m

)
·Dk · no(r). (13)

Thus, remains to bound EV←D
[
T 6=3 |V

]
. For α, α′ ∈ IMMY such that α 6= α′, consider

T 6=3 |V (α, α′) =
∑

β∈IMM |V (α)

γ∈IMM |V (α′)

(
N − k −∆(β, γ)

m−∆(β, γ)

)
.

For β ∈ IMM |V (α), Let

T 6=3 |V (α, α′, β) =
∑

γ∈IMM |V (α′)

(
N − k −∆(β, γ)

m−∆(β, γ)

)
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Now by an application of Equation 12, it follows that

T 6=3 |V (α, α′, β) ≈
(
N − k
m

)
·

∑
γ∈IMM |V (α′)

(m
N

)∆(β,γ)

Let ε′ = 2/Λ be a constant. We now partition the sum over γ into two parts, depending on
whether ∆(β, γ) ≥ (1− ε′)k or whether ∆(β, γ) < (1− ε′)k. For α, α′ ∈ T (IMM |V ) such that
α 6= α′, and for β ∈ IMM |V (α), let

T 6=3large∆
|V (α, α′β) =

(
N − k
m

)
·

 ∑
γ∈IMM |V (α′)
∆(γ,β)≥(1−ε′)k

(m
N

)∆(β,γ)


and

T 6=3small∆
|V (α, α′β) =

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

(m
N

)∆(β,γ)

Thus

T 6=3large∆
|V (α, α′β) ≤

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)≥(1−ε′)k

(m
N

)∆(β,γ)

=

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)≥(1−ε′)k

(
N −m
N

)∆(β,γ)

·
(

m

N −m

)∆(β,γ)

≤
(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)≥(1−ε′)k

(
N −m
N

)∆(β,γ)

·
(

m

N −m

)(1−ε′)k

(since
m

N −m
< 1)

Now, by our choice of parameters,
(

m
N−m

)k
= n−r and D = N

N−m , we get

T 6=3large∆
|V (α, α′β) ≤

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)≥(1−ε′)k

D−∆(β,γ) · n−(1−ε′)r

From here, by applying Proposition 9.1, we obtain

EV←D
[
T 6=3large∆

|V (α, α′β)
]
≤
(
N − k
m

)
· no(r) · n−(1−ε′)r ≤

(
N − k
m

)
·O(n(2ε′−1)r), (14)

We will now bound

T 6=3small∆
|V (α, α′β) =

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

(m
N

)∆(β,γ)
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Recall that for α, α′ ∈ T such that α 6= α′, ∆(α, α′) ≥ r′− r. For α, α′ ∈ T (IMM |V ) such that
α 6= α′ and for β ∈ IMM |V (α),

T 6=3small∆
|V (α, α′β) ≤

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

(m
N

)∆(β,γ)

=

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

(
N −m
N

)∆(β,γ)

·
(

m

N −m

)∆(β,γ)

≤
(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

(
N −m
N

)∆(β,γ)

(since
m

N −m
< 1)

=

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

D−∆(β,γ)

Now, any γ ∈ IMMX can be expressed as
∏
i∈[r′] γ

(i), and D−∆(β,γ) =
∏
i∈[r′]D

−∆(β(i),γ(i)).

We will partition the set [r′] according to the number of “agreements” of γ(i) and β(i).
Let A(β, γ) ⊆ [r′] be the set of all i such that ∆(β(i), γ(i)) < k′ (i.e. there is some j ∈ [k′]

such that β(i,j) = γ(i,j)). Since ∆(γ, β) < (1− ε′)k = (1− ε′)k′r′, thus |A(β, γ)| ≥ ε′r′. Also, let
B(α, α′) ⊆ [r′] be the set of all i ∈ [r′] such that α(i) = α′(i). Then by Lemma 8.1, for α 6= α′,
|B(α, α′)| ≤ r.

Claim 9.7. Let α, α′ ∈ T (IMM |V ) be such that α 6= α′, and let β ∈ IMM |V (α) and γ ∈
IMM |V (α′) be such that ∆(β, γ) < (1− ε′)k. Then for any i ∈ A(β, γ) \B(α, α′), it holds that
∆(β(i), γ(i)) < k′, and moreover β(i,1) 6= γ(i,1). Moreover |A(β, γ) \B(α, α′)| ≥ ε′r′ − r.

Proof. The only tricky part is to show that β(i,1) 6= γ(i,1), and we give a proof of this below.
If α(i) 6= α′(i), then this means that the variable in α corresponding to Y (i)|V , is distinct from

the variable in α′ corresponding to Y (i)|V . Any variable in Y (i)|V is of the form y
(i)
1,s for some

s ∈ [ñ]. Suppose that α(i) = y
(i)
1,s and α′(i) = y

(i)
1,s′ , for s 6= s′. Then for β ∈ IMM |V (α), β(i,1) is

a variable from X(i,1) and must be of the form x
(i,1)
s,t for some t ∈ [ñ] and for γ ∈ IMM |V (α),

γ(i,1) must be of the form x
(i,1)
s′,t′ f or some t′ ∈ [ñ]. Since s 6= s′, thus β(i,1) 6= γ(i,1).

Now for every subset C ⊆ [r′] such that |C| = ε′r′ − r, Let MC(β, α′) be the set of all
γ ∈ IMM |V (α′) such that for all i ∈ C, ∆(β(i), γ(i)) < k′ and β(i,1) 6= γ(i,1). Thus for every
α, α′ ∈ T (IMM |V ) such that α 6= α′, and for every β ∈ IMM |V (α), every γ ∈ IMM |V (α′)
such that ∆(β, γ) < (1− ε′)k gets counted in at least one such set MC(β, α′) for some choice of
C.

Let MC(β, α′)(i) be the set of all γ(i) ∈ IMM |V (α′)(i) such that if i ∈ C, then ∆(β(i), γ(i)) <
k′ and β(i,1) 6= γ(i,1). If i 6∈ C then there is no restriction. Thus it is easy to see that
MC(β, α′) ⊆

∏
i∈[r′]MC(β, α′)(i).
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Now, fixing α, α′ ∈ T (IMM |V ) such that α 6= α′, and β ∈ IMM |V (α), we get that

T 6=3small∆
|V (α, α′β) ≤

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

D−∆(β,γ)

=

(
N − k
m

)
·

∑
γ∈IMM |V (α′)
∆(γ,β)<(1−ε′)k

∏
i∈[r′]

D−∆(β(i),γ(i))

≤
(
N − k
m

)
·

∑
C⊂[r′],
|C|=ε′r′−r

 ∑
γ∈MC(β,α′)

∏
i∈C

D−∆(β(i),γ(i)) ·
∏

i∈[r′]\C

D−∆(β(i),γ(i))



≤
(
N − k
m

)
·

∑
C⊂[r′],
|C|=ε′r′−r

∏
i∈C

 ∑
γ(i)∈MC(α′)(i)

D−∆(β(i),γ(i))

 · ∏
i∈[r′]\C

 ∑
γ(i)∈MC(α′)(i)

D−∆(β(i),γ(i))



Now, observe that i ∈ C, MC(α′)(i) ⊆ A(i)
V (β(i)). Thus, by Lemma 9.4 and Lemma 9.2, we get

that

EV←D
[
T 6=3small∆

|V (α, α′β)
]
≤
(
N − k
m

)
· EV←D

 ∑
γ∈IMM |V (α′),
∆(γ,β)<(1−ε′)k

D−∆(β,γ)


≤
(
N − k
m

)
·

∑
C⊂[r′],
|C|=ε′r′−r

∏
i∈C

EV←D

 ∑
γ(i)∈MC(α′)(i)

D−∆(β(i),γ(i))

 ∏
i∈[r′]\C

EV←D

 ∑
γ(i)∈MC(α′)(i)

D−∆(β(i),γ(i))



≤
(
N − k
m

)
·
(

r′

ε′r′ − r

)
·
(
O

(
1

n

))ε′r′−r
2O(r′)

=

(
N − k
m

)
·
(
O

(
1

n

))ε′r′−r
· no(r)

Thus since ε′r′ − r > r,

E[T 6=3small∆
(α, α′β)] ≤

(
N − k
m

)
·
(

1

n

)ε′r′−r
· no(r) ≤

(
N − k
m

)
· n−r+o(r).

Putting this together with earlier computation showing that

E[T 6=3large∆
(α, α′β)] ≤

(
N − k
m

)
·O(n(2ε′−1)r),

we conclude that

E[T 6=3 (α, α′β)] ≤
(
N − k
m

)
·O(n(2ε′−1)r).

Summing over β ∈ IMM |V (α), we get that

EV←D
[
T 6=3 |V (α, α′)

]
≤
(
N − k
m

)
·Dk · n(2ε′−1)r.
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Summing over α, α′ ∈ T (IMM |V ) such that α 6= α′, we get that

EV←D
[
T 6=3 |V

]
≤ n2r ·

(
N − k
m

)
·Dk · n(2ε′−1)r = nr ·

(
N − k
m

)
·Dk · n(2ε′)r.

Putting this together with the bound in Equation 13, we conclude that

EV←D[T3|V ] ≤ nr ·
(
N − k
m

)
·Dk · n 4

Λ r.

10 Open problems

Our results (and those by [KLSS14]) give nΩ(
√
n) lower bounds for polynomials computed

by homogeneous ΣΠΣΠ circuits. This suggests a very natural strategy of trying to prove lower
bounds for any class of circuits C. If one can show that some polynomial P ∈ C can be computed
by a no(

√
n) sized homogeneous ΣΠΣΠ circuit, then our results would immediately imply a lower

bound for C.
Recall that the depth reduction of Tavenas [Tav13] shows that ever polynomial inVP can

be expressed as a homogeneous ΣΠΣΠ circuit of size nO(
√
n). Unfortunately since our lower

bounds hold for a polynomial in VP, thus the bound on the size of the depth 4 circuit obtained
in the depth reduction cannot be improved. Although they cannot be improved for general
circuits in VP, they might be possible to improve for other rich and interesting classes of circuits
such as formulas or even homogeneous formulas. (The results of [KS] had shown that a more
efficient depth reduction for homogeneous formulas is not possible when one wants to reduce to
homogeneous ΣΠΣΠ[

√
n] circuits, but for general homogeneous ΣΠΣΠ circuits this might still

be possible.)
Another more general question that seems even more important now is to truly understand

the potential of the shifted partial derivative method (and its variants as used in this work and
earlier works) for proving lower bounds for general arithmetic circtuits. These techniques do
seem to be giving significantly stronger lower bounds than we were able to show some years ago.
Do they have the potential of separating VP from VNP? Or is there some inherent underlying
reason that suggests we might need different techniques?
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A Proof of Lemma 3.7

Proof. We will prove the lemma via contradiction. We will in fact, show that

PrX←R[f(X) ≥ 0.01 · (EX←R[g(X)])] ≥ 0.1

Since, for all x, f(x) ≤ g(x), this would imply that

PrX←R[f(X) ≥ 0.01 · (EX←R[f(X)])] ≥ 0.1

So, for the sake of contradiction, let us assume that

PrX←R[f(X) ≥ 0.01 · (EX←R[g(X)])] < 0.1

For the rest of the proof, all the probabilities are over X ← R. Define

• R1 = {x : f(x) < 0.01 · E[g]}
• R2 = R \R1

• W = {x ∈ R : 0.9 · E[g] ≤ g(x) ≤ 1.1 · E[g]}
We know that Pr[X ∈ W ] ≥ 0.99. If possible, let the assertion of the lemma be false. This
implies that Pr[X ∈ R1] ≥ 0.9 and Pr[X ∈ R2] ≤ 0.1. Let Z ⊆ W ∩ R1 be a subset of R such
that Pr[X ∈ Z] = 0.89. Now

E[g] =
∑
x∈R

Pr[X = x]g(x) =
∑
x∈Z

Pr[X = x]g(x) +
∑

x∈R\Z

Pr[X = x]g(x)

Substituting the values now, we get

E[g] ≥ Pr[X ∈ Z] · 0.9 · E[g] +
∑

x∈R\Z

Pr[X = x]g(x)

Simplifying further, we get∑
x∈R\Z

Pr[X = x]g(x) ≤ E[g] · (1− 0.9 · Pr[X ∈ Z]) ≤ 0.2 · E[g]

We will now compute an upper bound on the expected value of f and arrive at a contradiction.

E[f ] =
∑
x∈R

Pr[X = x]f(x) =
∑
x∈Z

Pr[X = x]f(x) +
∑

x∈R\Z

Pr[X = x]f(x)

Observe that

•
∑
x∈Z Pr[X = x]f(x) ≤ 0.01 · E[g] · Pr[X ∈ Z] ≤ 0.01× 0.89× E[g] = 0.0089 · E[g]

•
∑
x∈R\Z Pr[X = x]f(x) ≤

∑
x∈R\Z Pr[X = x]g(x) ≤ 0.2 · E[g]

So, we obtain
E[f ] ≤ 0.3 · E[g] < 0.5 · E[g]

which is a contradiction.
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B Proof of Lemma 3.8

Proof. Let λ′ > λ be any constant. For each i ∈ [l], we construct the set W̃i by picking every
element of Wi independently with probability 1

λ′ . By linearity of expectations, E(|W̃i|) = 1
λ′ |Wi|.

Similarly, for any i 6= j, E(|W̃i ∩ W̃j |) = 1
λ′2
|Wi ∩Wj |. By the principle of inclusion-exclusion,

|∪i∈[l]W̃i| ≥
∑
i∈[l] |W̃i|−

∑
i,j∈[l],i6=j |W̃i∩W̃j |. By the linearity of expectations, E(|∪i∈[l]W̃i|) ≥∑

i∈[l] E(|W̃i|)−
∑
i,j∈[l],i6=j E(|W̃i∩W̃j |), which is at least (1/λ′−λ/λ′2)

∑
i∈[l] |Wi|. Hence, there

is some choice of random bits, such that the size of ∪i∈[l]W̃i is at least (1/λ′−λ/λ′2)
∑
i∈[l] |Wi|.

Now, taking λ′ = 2λ completes the proof.
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