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Abstract

We consider two known lower bounds on randomized communication com-

plexity: The smooth rectangle bound and the logarithm of the approximate non-

negative rank. Our main result is that they are the same up to a multiplicative

constant and a small additive term.

The logarithm of the nonnegative rank is known to be a nearly tight lower

bound on the deterministic communication complexity. Our result indicates that

proving the analogue for the randomized case, namely that the log approximate

nonnegative rank is a nearly tight bound on randomized communication com-

plexity, would imply the tightness of the information cost bound.

Another corollary of our result is the existence of a boolean function with a

quasipolynomial gap between its approximate rank and approximate nonnegative

rank.
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1 Introduction

In this work we are mainly interested in understanding two useful techniques that

were developed for proving lower bounds on randomized communication complexity:

The smooth rectangle bound [JK10] and the approximate nonnegative rank (see Sec-

tion 1.3 for both definitions). Our main result is that although these two techniques

are seemingly different, the lower bounds that may be derived from them are, more or

less, equivalent. As a consequence, we are able to apply previous results regarding the

smooth rectangle bound to get new results about the approximate nonnegative rank,

thus providing information about two of the open problems in [Lee12] (see Corollaries 6

and 7).

We next survey the relevant lower bounds methods for randomized communication

complexity. Here and below, f is a boolean function f : {0, 1}n × {0, 1}n → {0, 1}.
We denote by D(f) the deterministic communication complexity of f , and by Rε(f)

the randomized private coin1 communication complexity of f with error ε. These and

other basic definitions can be found in [KN97].

1.1 Randomized Communication Complexity Lower Bounds

1.1.1 Nonnegative Rank

A well-known linear algebraic lower bound on the deterministic communication com-

plexity of f is2 log rank(Mf ), where Mf is the 2n × 2n boolean matrix given by

Mf (x, y) = f(x, y) [MS82]. The long standing log-rank conjecture asserts that this

bound is tight, up to a polynomial overhead.

Conjecture 1 (log-rank conjecture, Lovász and Saks [LS88]). For every function

f : {0, 1}n × {0, 1}n → {0, 1}, it holds that3

D(f) ≤ polylog (rank(Mf )) .

Yannakakis [Yan91] introduced the notion of nonnegative rank to communication

complexity. We say that a real matrix M is nonnegative if all its entries are nonnega-

tive. The nonnegative rank of a nonnegative real matrix M , denoted rank+(M), is the

minimum natural number r such that M is the sum of r nonnegative rank-1 matrices.

1For simplicity, we only consider private coin protocols. However, all the results carry over to the
public coin model via Newman’s Theorem [New91].

2Here and below rank is over the real numbers.
3In this text, logarithms are base two.
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The nonnegative rank is clearly at least as large as rank, that is, rank+(M) ≥
rank(M). The nonnegative rank can be arbitrarily larger than the rank, if we allow

non-boolean matrices. Indeed, for every k ∈ N there exists a matrix M such that

rank(M) = 3 and rank+(M) ≥ k (see [BL09]). However, if we restrict our attention to

boolean matrices then no such separation between rank and rank+ is known. The best

known separation for boolean matrices is quasipolynomial4. This separation follows

from the best known separation between the logarithm of the rank and the commu-

nication complexity (see discussion following Corollary 7). Moreover, determining the

dependency between rank and rank+ for boolean matrices is equivalent to solving the

log-rank conjecture in communication complexity (see Theorem 2).

While we are still far from proving the log-rank conjecture (the best result in this di-

rection [Lov13] is that D(f) is at most roughly
√

rank(Mf )), a variant of the conjecture

obtained by replacing the rank by the nonnegative rank is known to hold.

Theorem 2 (log nonnegative rank theorem, Lovász [Lov90]). For every function

f : {0, 1}n × {0, 1}n → {0, 1}, it holds that5

D(f) ≤
(
log rank+(Mf ) + 1

)
(log rank(M1−f ) + 1) . (1)

In particular, D(f) ≤ O(log2 rank+(Mf )).

We study a randomized analogue of Equation (1). In the randomized setting,

the notion of nonnegative rank needs to be altered to an approximate one. The ε-

approximate nonnegative rank of a matrix M , denoted rank+
ε (M), is the minimum

nonnegative rank of a 2n × 2n nonegative matrix M ′ so that ‖M −M ′‖∞ ≤ ε, i.e.,

|M(x, y)−M ′(x, y)| ≤ ε for all x, y ∈ {0, 1}n. The ε-approximate rank of a matrix M ,

denoted rankε(M), is defined similarly.

Again, clearly rankε(M) ≤ rank+
ε (M). One can also prove, using the separation

discussed earlier between rank and rank+, that for every k ∈ N there exists a matrix M

and ε > 0 such that rankε(M) ≤ 3 and rank+
ε (M) ≥ k. However, not much is known

about the relation between rankε and rank+
ε for boolean matrices.

It was shown by [Kra96] that Rε(f) ≥ log rank+
ε (Mf ). We consider the following

conjecture asserting that this bound is nearly tight, as in the deterministic case:

Conjecture 3 (log approximate nonnegative rank conjecture, see also TH8

in [Lee12]). For every sufficiently small constant 0 < ε < 1 and every function f :

4There exists a sequence of boolean matrices {Mn}n=∞n=1 such that log rank+(Mi) =
Ω((log rank(Mi))

α) for some constant α > 1.
5We use 1− f to denote the boolean function (1− f)(x, y) = 1− f(x, y).
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{0, 1}n × {0, 1}n → {0, 1},

Rε(f) ≤ polylog
(
rank+

ε (Mf ) · rank+
ε (M1−f )

)
.

We will later relate this conjecture to an open problem regarding the compression

of communication protocols.

1.1.2 The Smooth Rectangle Bound

A different approach for proving lower bounds on randomized communication com-

plexity, which we refer to as the “rectangle based method”, is based on bounding from

below the weight of the largest (almost) monochromatic combinatorial rectangle.

The smooth rectangle bound, suggested by [JK10], is a rectangle based method

shown to be a stronger lower bound than many of the previous methods (for example,

the rectangle/corruption bound, the discrepancy bound, and the γ2 approach [LS07]).

Informally speaking, the smooth rectangle bound for a function f with error ε, denoted

srec1
ε(f), considers assignments of weights (nonnegative real values) to combinatorial

rectangles (sets of the form X × Y where X ,Y ⊆ {0, 1}n) satisfying:

1. For inputs (x, y) ∈ f−1(1), the total weight assigned to rectangles containing

(x, y) is between 1− ε and 1.

2. For inputs (x, y) ∈ f−1(0), the total weight assigned to rectangles containing

(x, y) is at most ε.

The value srec1
ε(f) is the logarithm of the minimum total weight assigned to all rect-

angles by any such assignment. A formal definition of the smooth rectangle bound can

be found in Section 1.3.

1.1.3 Information Cost

Another recent lower bound method is based on information cost. The information

cost of a function f with error ε, denoted ICε(f), measures the amount of information

the players must learn about each other’s input while executing any protocol that

computes f , with error at most ε [CSWY01, BYJKS04, Bra12]. For a formal definition

of ICε(f), see e.g. Definition 2.1 in [KLL+12]. The information cost is known to lower

bound the randomized public coin communication complexity of f [BR11]. The other

direction, namely whether every function with information cost I has a randomized

protocol with communication complexity I (a “compressed” protocol), is yet another
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open problem in communication complexity [Bra12]. We state here a somewhat weaker

conjecture than Open Problem 1 of [Bra12]:

Conjecture 4 (weak compression conjecture). For every sufficiently small 0 <

ε < 1 and every function f : {0, 1}n × {0, 1}n → {0, 1},

Rε(f) ≤ poly (ICε(f), log(n), 1/ε) .

It was recently shown by [KLL+12] that the information cost bound is at least as

powerful as almost all the rectangle methods. This was done by showing that the

relaxed partition bound is always (roughly) at most the information cost. It is easily

seen (by comparing the corresponding linear-programs) that for boolean functions, the

relaxed partition bound corresponds to a two-sided smooth rectangle bound, defined

as the maximum between the smooth rectangle bound of f and of 1− f . In fact, prior

to our work, the logarithm of the approximate nonnegative rank was one of the few

bounds not known to be weaker than the information cost.

1.2 Our Results

Our main result is the following theorem showing that the smooth rectangle bound is

almost equivalent to the logarithm of the approximate nonnegative rank.

Theorem 5 (main). For every 0 < ε < 1
10

and a function f : {0, 1}n×{0, 1}n → {0, 1},

srec1
3ε(f) ≤ log rank+

ε (Mf ) ≤ 2srec1
ε/2(f) + log(12n/ε2).

Furthermore, an additive log(n/ε) term on the right hand side is needed.

Theorem 5 is proved in Section 2. Next, we give several corollaries of this theorem.

The log approximate nonnegative rank conjecture and compression. One

corollary is that proving the log approximate nonnegative rank conjecture (Conjec-

ture 3) would imply that the information cost bound is nearly tight (Conjecture 4).

Formally, we prove the following corollary.

Corollary 6. There exists a constant c > 0 such that for every sufficiently small

0 < ε < 1,

ICε(f) ≥ c · ε2
(
log rank+

4ε(Mf )− log(3n/8ε2)
)
− 1.

We give the proof of this corollary in Appendix B.
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Separating the approximate rank and nonnegative rank. It follows that the

approximate nonnegative rank of the negation of the disjointness function on n bit-

strings, denoted NDISJn, is quasipolynomial in its approximate rank, thus addressing

Problem TH9 in [Lee12]: For a small constant ε > 0, [Raz02] proved that rankε(NDISJn) ≤
2O(
√
n) (see also the discussion after Conjecture 42 in [LS09b]), while srec1

3ε(NDISJn) ≥
Ω(n). By Theorem 5, rank+

ε (NDISJn) ≥ 2Ω(n).

Corollary 7. If 0 < ε < 1 is a sufficiently small constant then for every n ∈ N,

log rank+
ε (MNDISJn) ≥ Ω

(
log2 rankε(MNDISJn)

)
.

We mention that in the non-approximate case, any gap greater than quasipolyno-

mial between the rank and nonnegative rank will disprove the log-rank conjecture as

D(f) ≥ log rank+(Mf ). The best known gap is only D(f) ≥ Ω ((log rank(Mf ))
α) for

α = log3(6) < 2 (Kushilevitz (unpublished), cf. [NW95]).

New upper bound on deterministic complexity. Theorem 2 implies D(f) ≤
O
(
log rank+(Mf ) · log rank(Mf )

)
. By combining Theorem 5 with results from [GL13]

and [JK10], we devise a similar bound using the (potentially smaller) approximate

nonnegative rank instead of the nonnegative rank. Thus, in order to prove the log-rank

conjecture it is enough to show that log rank(Mf ) ≤ polylog(rank+
ε (Mf )+rank+

ε (M1−f )).

Corollary 8. For every function f : {0, 1}n × {0, 1}n → {0, 1},

D(f) ≤ O(log(rank+
1/18(Mf ) + rank+

1/18(M1−f )) · log2 rank(f)).

We give a proof of this corollary in Appendix C.

1.2.1 Open Problems

Consider the following stronger version of the log approximate nonnegative rank con-

jecture (Conjecture 3), asserting that

Rε(f) ≤ polylog
(
rank+

ε (Mf )
)
.

This conjecture, if true, has two simple corollaries, that describe properties of boolean

matrices and are of independent interest. One concerns the behavior of the approximate

nonnegative rank when negating f , namely, that log rank+
ε (M1−f ) is at most polyno-

mial in log rank+
ε (Mf ). Observe that the approximate rank satisfies this property as

rank(M1−f ) ≤ rank(Mf ) + 1, and so does the nonnegative rank as D(1− f) = D(f) and
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log rank+(Mf ) ≤ D(f) ≤ O(log2 rank+(Mf )). A second corollary concerns error reduc-

tion, namely, that we have the bound log rank+
ε (Mf ) ≤ (log rank+

1/3(Mf ))
O(log(1/ε)). The

approximate rank was shown to satisfy this property (it actually satisfies the stronger

property rankε(Mf ) ≤ (rank1/3(Mf ))
O(log(1/ε)), see [Alo03, LS09a]). Both of the above

corollaries are still open, and one may wish to study either of them prior to the log

approximate nonnegative rank conjecture. In Appendix A we show that the method

used in [Alo03, LS09a] to prove error reduction for approximate rank cannot work for

the approximate nonnegative rank.

1.3 Definitions

We conclude the introduction by giving the needed formal definitions.

Definition 1 (nonnegative rank). Let M ∈ Rn×m be a matrix. M is nonnegative

if M(x, y) ≥ 0 for every x, y. M has rank one if it is of the form M = u ⊗ v, where

u ∈ Rn, v ∈ Rm and ⊗ denotes tensor product (that is, M(x, y) = u(x)v(y) for every

x, y).

The nonnegative rank of a nonnegative matrix M is

rank+(M) = min

{
r ∈ N : M =

r∑
i=1

Mi, ∀ i Mi is nonnegative and of rank one

}
.

The ε-approximate nonnegative rank of M is

rank+
ε (M) = min

{
rank+(M ′) : M ′ is nonnegative, ‖M −M ′‖∞ ≤ ε

}
.

Definition 2 (smooth rectangle bound). For 0 ≤ ε < 1
2

and a function f : {0, 1}n×
{0, 1}n → {0, 1}, the (one) smooth rectangle bound srec1

ε(f) is the logarithm of the

value of the following linear program. Below, R ranges over combinatorial rectangles

(sets of the form X × Y where X ,Y ⊆ {0, 1}n) and R(x, y) is the indicator for the

event (x, y) ∈ R.

min
∑
R

wR : ∀(x, y) ∈ f−1(1) : 1− ε ≤
∑
R

wRR(x, y) ≤ 1,

∀(x, y) ∈ f−1(0) :
∑
R

wRR(x, y) ≤ ε,

∀R : wR ≥ 0.
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2 Proving the Equivalence, Theorem 5

The “srec1 ≤ log rank+” direction. We start by upper bounding the smooth rectan-

gle bound by the logarithms of the approximate nonnegative rank. Let r = rank+
ε (Mf ).

Let M ′′ ∈ (R+)
2n×2n

be the promised nonnegative matrix satisfying ‖Mf −M ′′‖∞ ≤ ε

and rank+(M ′′) = r. Observe that the entries of M ′′ are bounded by 1 + ε. It will

be convenient for us to consider the matrix M ′ = 1
1+ε

M ′′ whose entries are bounded

by 1. Observe that still ‖Mf −M ′‖∞ ≤ 1 − 1−ε
1+ε
≤ 2ε and rank+(M ′) = r. Let

M1, . . . ,Mr ∈ (R+)
2n×2n

be nonnegative rank-1 matrices so that M ′ =
∑r

t=1 Mt.

Fix t ∈ [r] for now. Write Mt = v ⊗ u for two nonnegative vectors v, u ∈ (R+)
2n

.

We may assume without loss of generality that

‖v‖∞, ‖u‖∞ ≤ 1, (2)

as u, v can always be converted to such vectors for the following reason: Let a = v(i) be

the maximum entry in v, and let b = u(j) be the maximum entry in u. Assume without

loss of generality that b ≥ a. It holds that 1 ≥Mt(i, j) = u(i)v(j) = ab. If b ≤ 1 we are

done. Otherwise, b > 1, and we replace v by bv and u by 1
b
u. Observe that now both

vectors have entries in the interval [0, 1] (as a ≤ 1/b), and that (bv)⊗
(

1
b
u
)

= v⊗u = Mt.

Let K = d2r
ε
e. For an integer 1 ≤ k ≤ K, define the vector vk in the following way:

For i ∈ [2n], set vk(i) = 1/K if v(i) ≥ k/K, and vk(i) = 0 if v(i) < k/K. Define uk

similarly. Let

v′ =
∑
k∈[K]

vk and u′ =
∑
k∈K

uk.

It holds that ‖v − v′‖∞, ‖u − u′‖∞ ≤ 1/K, as e.g. v′ rounds v to the nearest integer

multiple of 1/K from below. Let

M ′
t = v′ ⊗ u′ =

∑
k∈[K]

vk

⊗(∑
k′∈K

uk′

)
=

∑
k,k′∈[K]

vk ⊗ uk′ .

Using Equation (2),

‖Mt −M ′
t‖∞ ≤ max

i,j∈[2n]
{v(i)u(j)− v′(i)u′(j)}

≤ max
i,j∈[2n]

{
v(i)u(j)− (v(i)− 1

K
)(u(j)− 1

K
)
}

≤ 1
K

max
i,j∈[2n]

{v(i) + u(j)} ≤ 2
K
.

Thus, we approximated Mt (with error 2/K) by a sum of at most K2 rectangles, each
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of weight 1/K2.

By summing over all t ∈ [r],∥∥∥∥∥M ′ −
r∑
t=1

M ′
t

∥∥∥∥∥
∞

≤ 2r

K
≤ ε.

Thus, ∥∥∥∥∥Mf −
r∑
t=1

M ′
t

∥∥∥∥∥
∞

≤ 3ε.

We approximated Mf (with error 3ε) by a sum of at most K2r rectangles, each of

weight 1/K2. Furthermore, for every (x, y),

r∑
t=1

M ′
t(x, y) ≤

r∑
t=1

Mt(x, y) = M ′(x, y) ≤ 1.

Thus, the total weight of rectangles containing (x, y) is at most 1. This means that

srec1
3ε(f) ≤ log(K2r · 1/K2) = log (r) .

The “log rank+ ≤ srec1” direction. Next we show that the logarithm of the ap-

proximate nonnegative rank is not much larger than the smooth rectangle bound.

Let W be such that srec1
ε(f) = logW , and let (wR) be weights for rectangles satis-

fying the conditions of the linear program defining the smooth rectangle bound, for

which
∑

R wR = W . Similarly to [LLR12], we consider the probability distribution on

rectangles µ, defined by µ(R) = wR/W for all R. For every (x, y), let

ex,y = E
R∼µ

[R(x, y)] =
∑
R

wR
W
R(x, y),

where we recall that R(x, y) is the indicator for (x, y) ∈ R. We get

|f(x, y)−Wex,y| = |f(x, y)−
∑
R

wRR(x, y)| ≤ ε. (3)

In other words, when R is selected according to µ, the value W · R(x, y) is a good

estimation for f(x, y).

Let R1, . . . , Rk be independent samples from µ for k = d2W 2n/ε2e. For every (x, y),

Hoeffding’s bound implies that

Pr

[∣∣∣∣∣1k
k∑
t=1

Rt(x, y)− ex,y

∣∣∣∣∣ ≥ ε/W

]
≤ 2e−2ε2k/W 2

,
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where the probability is taken over the (independent) choices of R1, . . . , Rk. By the

union bound, since 2e−2ε2k/W 2
22n < 1, there is a choice of R1, . . . , Rk so that for all

(x, y), ∣∣∣∣∣1k
k∑
t=1

Rt(x, y)− ex,y

∣∣∣∣∣ < ε/W. (4)

Define

M ′ =
W

k

k∑
t=1

Rt.

The nonnegative rank of M ′ is at most k. By Equations (3) and (4), for all (x, y),

|f(x, y)−M ′(x, y)| ≤ |f(x, y)−Wex,y|+W

∣∣∣∣∣ex,y − 1

k

k∑
t=1

Rt(x, y)

∣∣∣∣∣ ≤ 2ε.

Therefore, ‖M −M ′‖∞ ≤ 2ε. This means that

log rank+
2ε(Mf ) ≤ log k ≤ 2 logW + log(3n/ε2).

The additive log(n/ε) term is needed. The additive log(n/ε) term on the right

hand side of Theorem 5 must be there as the following example shows. Let f be the

equality function, that is, Mf is the 2n × 2n identity matrix. In [Alo03, Alo09], it was

shown that rankε(Mf ) ≥ Ω
(

n
ε2 log(1/ε)

)
. Obviously the same lower bound holds for the

ε-approximate nonnegative rank of Mf .

We claim that srec1
ε(f) is at most log(1/ε). Let pR be the distribution on rectan-

gles of the form R = A × A defined by: Each x is in A with probability ε indepen-

dently of other x’s. Let wR = pR/ε. For every (x, y), if f(x, y) = 1 (i.e., x = y),

then E [R(x, y)] = Pr[x ∈ A] = ε and so
∑

R wRR(x, y) = 1. If f(x, y) = 0, then

E [R(x, y)] = Pr[x ∈ A] Pr[y ∈ A] = ε2 and so
∑

R wRR(x, y) = ε. So wR is a solution

to the above linear program, and the corresponding value is
∑

R wR = 1/ε.
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A No Monotone Error Reduction

Part of the argument in [Alo03] concerns error reduction for approximate rank. It is

shown that for a boolean function f , if rank1/3(Mf ) ≤ r then rankε(Mf ) ≤ rO(log(1/ε)).

For the nonnegative case, we may ask an even easier question: Is it true that

rank+
ε (Mf ) ≤

(
rank+

1/3(Mf ) + rank+
1/3(M1−f )

)O(log(1/ε))

? (5)

The argument in [Alo03] is based on the following observation: There is a univariate

polynomial p of constant degree d, so that for every b ∈ {0, 1} and for every x so that

|x− b| < 1/3 we have |p(x)− b| < |x− b|/2. In other words, the polynomial p contracts

around zero and around one. The error reduction follows by observing that if we point-

wise apply p to the matrix approximating Mf , we get a better approximation of Mf

while the rank is increased by at most a power of d.

We show that this method cannot work in the nonnegative case, in the sense that

we cannot replace the polynomial p by a nonnegative polynomial. Specifically, Proposi-

tion 9 states that a bivariate polynomial p with certain properties does not exist. Before

stating the proposition we demonstrate how one could have used such a polynomial p

(should it exist) to perform nonnegative error reduction.

Assume for simplicity that f is so that both rank+
1/4(Mf ) and rank+

1/4(M1−f ) are 1.

Let M ′
0 and M ′

1 be nonnegative matrices of rank 1 that are (1/4)-close to Mf and M1−f ,

respectively. Assume that we are given a bivariate polynomial p : [0, 1] × [0, 1] → R+

with nonnegative coefficients and finite degree so that for every (x, y) ∈ [3/4, 1]×[0, 1/4]

we have |1 − p(x, y)| ≤ (1 − x)/2, and for every (x, y) ∈ (0, 1/4] × [3/4, 1] we have

p(x, y) < x/2. It is not hard to verify that M ′, defined as

M ′(x, y) = p(M ′
0(x, y),M ′

1(x, y)),

gives a nonnegative (1/8)-approximation for Mf of constant nonnegative rank.

Proposition 9. There is no bivariate polynomial p : [0, 1]× [0, 1]→ R+ with nonnega-

tive coefficients so that the followings hold: for every (x, y) ∈ [3/4, 1]× [0, 1/4] we have

|p(x, y)− 1| ≤ 1− x, and for every (x, y) ∈ (0, 1/4]× [3/4, 1] we have p(x, y) < x.

In other words, a nonnegative polynomial that contracts around x = 1 must be ex-

panding around x = 0. Notice that we do not restrict the degree of p in the proposition

above. We mention that on the line y = 1−x, there is a such a polynomial p of degree

four with positive coefficients (e.g. the Bernstein approximation of the step function).

13



Proof of Proposition 9. Assume towards a contradiction that such a polynomial p ex-

ists. Write

p(x, y) = yg(x, y) + h(x),

where g and h are polynomials with nonnegative coefficients. By assumption,

∀ 3/4 ≤ x ≤ 1 : |p(x, 0)− 1| = |h(x)− 1| ≤ 1− x. (6)

In addition, for 0 < x ≤ 1/4 it holds that p(x, 1) = g(x, 1) + h(x) < x, so

∀ 0 < x ≤ 1/4 : h(x) < x. (7)

We claim that no such h exists. Indeed, by the above h(1) = 1 and h(1/4) < 1/4.

Since h has positive coefficients, it is convex on the ray of positive real numbers, which

implies

h(3/4) = h(1/3 · 1/4 + 2/3 · 1) ≤ 1/3 · h(1/4) + 2/3 · h(1) < 1/3 · 1/4 + 2/3 = 3/4.

This is a contradiction to that |h(3/4)− 1| ≤ 1− 3/4.

B Proof of Corollary 6

Let prt be the relaxed partition bound, as in Definition 3.2 in [KLL+12]. Let f :

X ×Y → {0, 1} be any boolean function. By Theorem 1.1 in [KLL+12] it follows that

there exists a constant c′ > 0 such that for every 0 < ε < 1
2

and for any distribution µ,

ICµ(f, ε) ≥ c′ε2(log prtµ2ε(f)− 1)− 1
2
.

Since ICε(f) = maxµ {ICµ(f, ε)} and prt2ε(f) = maxµ {prtµ2ε(f)},

ICε(f) ≥ c′ε2(log prt2ε(f)− 1)− 1
2
. (8)

By Lemma 3.3 in [KLL+12], it follows that6

log prt2ε(f) ≥ srec1
2ε(f). (9)

By Theorem 5, for every ε such that 4ε < 1
10

,

srec1
2ε(f) ≥ 1

2

(
log rank+

4ε(Mf )− log(3n/4ε2)
)
. (10)

6Note the difference between our definition for srec and the definition given in [KLL+12]; our srec
is the logarithm of their srec.
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By combining Inequalities (8), (9) and (10), we get

ICε(f) ≥ c′ε2

2

(
log rank+

4ε(Mf )− log(3n/8ε2)
)
− 1

2
.

C Proof of Corollary 8

Let f : X × Y → {0, 1} be any boolean function. By Theorem 3.1 in [GL13]:

D(f) ≤ O(CCzero(f) · (log rank(f))2), (11)

where the definition of CCzero is:

Definition 3 (Zero communication cost, [GL13]). The zero communication cost of f ,

denoted CCzero(f), is the minimal c such that the following holds. There exists a dis-

tribution p on labeled rectangles (R, z) such that for every (x, y) ∈ X × Y,

1. Pr(R,z)∼p[(x, y) ∈ R] ≥ 2−c.

2. Pr(R,z)∼p[f(x, y) = z|(x, y) ∈ R] ≥ 2/3.

By Inequality (11) it suffices to show that

CCzero(f) ≤ log(rank+
1/18(Mf ) + rank+

1/18(M1−f )) + 1.

Let ε = 1
6
. Let W1 = 2srec1ε (f) and let W0 = 2srec1ε (1−f). Let w0,R and w1,R be the

corresponding weights so that W0 =
∑

R w0,R and W1 =
∑

R w1,R.

Define a distribution p on labeled rectangles as follows. For every rectangle R and

z ∈ {0, 1}:
p(R, z) =

wz,R
W0 +W1

.

Observe that p is indeed a distribution on labelled rectangles. By the definition of the

smooth rectangle bound, for every (x, y) ∈ X × Y :

1. Pr(R,z)∼p[(x, y) ∈ R, f(x, y) = z] ≥ 1−ε
W0+W1

2. Pr(R,z)∼p[(x, y) ∈ R, f(x, y) = z] ≤ 1
W0+W1

3. Pr(R,z)∼p[(x, y) ∈ R, f(x, y) 6= z] ≤ ε
W0+W1

For example, for the first item:

Pr
(R,z)∼p

[(x, y) ∈ R, f(x, y) = z] =

∑
R:(x,y)∈R wf(x,y),R

W0 +W1

≥ 1− ε
W0 +W1

.
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The other two items are proved in a similar way.

We claim that p certifies that

CCzero(f) ≤ log(W0 +W1) + 1. (12)

Indeed, consider the first item in the definition of CCzero. Let (x, y) ∈ X × Y ,

Pr
(R,z)∼p

[(x, y) ∈ R] ≥ 1− ε
W0 +W1

≥ 1

2(W0 +W1)
= 2− log(W0+W1)−1.

For the second item in the definition: For every (x, y) ∈ X × Y ,

Pr
(R,z)∼p

[f(x, y) = z|(x, y) ∈ R]

=
Pr(R,z)∼p[(x, y) ∈ R, f(x, y) = z]

Pr(R,z)∼p[(x, y) ∈ R]

=
Pr(R,z)∼p[(x, y) ∈ R, f(x, y) = z]

Pr(R,z)∼p[(x, y) ∈ R, f(x, y) = z] + Pr(R,z)∼p[(x, y) ∈ R, f(x, y) 6= z]

≥
1−ε

W0+W1

1
W0+W1

+ ε
W0+W1

(the above three items)

≥ 1− ε
1 + ε

≥ 2/3.

Therefore,

CCzero(f) ≤ log(W0 +W1) + 1

= log(2srec1
1/6

(f) + 2srec1
1/6

(1−f)) + 1

≤ log(rank+
1/18(Mf ) + rank+

1/18(M1−f )) + 1. (Theorem 5)
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