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Abstract

We introduce a novel technique which enables two players to maintain an estimate of the
internal information cost of their conversation in an online fashion without revealing much extra
information. We use this construction to obtain results about communication complexity and
information-theoretically secure computation.

As a first corollary, we prove a strong direct product theorem for communication complexity
in terms of information complexity: If I bits of information are required for solving a single
copy of f under µ with probability 2/3, then any protocol attempting to solve n independent
copies of f under µn using o(n · I) communication, will succeed with probability 2−Ω(n). This
is the best one can hope for, as Braverman and Rao [BR11] previously showed that O(n · I)
communication suffice to get success (2/3)n.

We then show how the information odometer can be used to achieve information-theoretic
secure communication between two untrusted parties: If the players’ goal is to compute a
function f(x, y), and f admits a protocol with information cost is I and communication cost
C, then our odometer can be used to produce a “robust” protocol which: (i) Assuming both
players are honest, computes f with high probability, and (ii) Even if one party is malicious,
then for any k ∈ N, the probability that the honest player reveals more than O(k · (I + logC))
bits of information to the other player is at most 2−Ω(k). In particular, the protocol reveals
O(I + logC) bits to the malicious participant.

Finally, we outline a potential approach which uses our odometer as a proxy for braking state
of the art interactive compression results: any progress on interactive compression in the regime
where I = O(logC) will lead to new general compression results in all regimes. In particular,
any improvement on the dependence on I in the 2O(I)-compression result of [Bra12] will lead to
improved compression and new direct sum and product theorems in communication complexity.

1 Introduction

Overview of the technical construction

In this paper we consider the following problem. Alice and Bob are given inputs x, y ∼ µ, and
are executing a communication protocol π. During the course of the execution of π they wish to
maintain an information odometer — an online estimate (say, within a factor of 2) of the amount
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of information they have revealed to each other about their inputs. In more technical terms, they
wish to maintain an estimate on the internal information cost of the protocol π so far. Moreover,
since applications of this primitive involve limiting the amount of information revealed, they wish to
implement it without revealing too much additional information about their inputs in the process.
Ideally, the information overhead of implementing it up to any point in time should scale with
the information cost of π so far. In this paper, we introduce a technique that enables such an
implementation.

Before discussing applications, let us discuss the challenges in implementing such an informa-
tion odometer. Firstly, we note that even if the original protocol π does not involve interaction,
estimating information revealed requires interaction. Consider the following simple scenario. Alice
is given a sequence of blocks X1, X2, . . . , Xk and a subset S ⊂ {1, . . . , k}. Bob is also given a
sequence of blocks Y1, . . . , Yk and a subset T ⊂ {1, . . . , k} for i ∈ T , Xi = Yi, and for i /∈ T , Xi

and Yi are statistically independent. In the protocol π, Alice performs the following action: For
each i ∈ [k] she sends the block Xi if i ∈ S, and sends a random block Ri otherwise. Thus π is a
one-round protocol. The amount of information revealed by π is proportional to |S \ T |, and the
amount of information revealed by the first t blocks is proportional to at := |(S \ T ) ∩ {1, . . . , t}|.
Note that maintaining an estimate on at requires the parties to compute S \T , which would require
Alice and Bob to interact.

The fact that interaction is required means that no “simple” unilateral solution (where Alice and
Bob keep some counters separately) is possible, and makes a generic information odometer more
difficult to construct. Luckily, while the protocol π can be quite complex, we can always break it
down into the individual bits that are being transmitted. Therefore, we can focus on estimating the
amount of information transmitted in a single bit sent, say, from Alice to Bob. The distribution of
Alice’s message M in this case is described by one number p = Pr[M = 1|history, X = x] ∈ (0, 1),
such that her message is given by the Bernoulli distribution Bp: 1 with probability p and 0 with
probability 1 − p. For technical convenience, we will only focus on the case when p ∈ (1/3, 2/3)
— this can be done essentially without loss of generality. Note that the value of the probability p
depends on Alice’s input x, as well as on the transcript so far. The actual sampling of M ∼ Bp is
done using Alice’s private random coins.

What does Bob learn about x from a message M ∼ Bp? Not surprisingly, the answer depends on
what Bob already knows. More specifically, it is given by the KullbackLeibler divergence between
the actual distribution of M , and Bob’s belief about this distribution. Note that since M ∈ {0, 1} is
a binary message, Bob’s belief is given by a Bernoulli variable Bq (where q = Pr[M = 1|history, Y =
y]). Since p ∈ (1/3, 2/3), we must also have q ∈ (1/3, 2/3). The amount of information learned

by Bob is given by D

(
Bp

Bq

)
. For p, q ∈ (1/3, 2/3) it is the case that D

(
Bp

Bq

)
= Θ((p − q)2).

In particular, Bob learns nothing if q = p (i.e. if he already knows p). Therefore, the odometer
problem reduces to the task of estimating I := (p− q)2, while revealing not much more than I bits
of information to the players in the process. More specifically, we show how to sample a Bernoulli
random variable B(p−q)2 , while revealing at most O(H((p − q)2)) = O((p − q)2 log 1/(p − q)2)
bits of information. While this quantity is more than (p − q)2 by a log 1/(p − q) factor, this will
be sufficient for most applications. Our test produces an (essentially) unbiased estimator on the
amount of information revealed in a given round. By running this estimator on a subsample of the
rounds, rather than on all the rounds of π, we can keep the overhead below the information cost of
π itself, while maintaining a good unbiased estimate of the amount of information revealed so far.
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We have therefore reduced the odometer problem to the following scenario. Alice and Bob
are given numbers p ∈ (1/3, 2/3) and q ∈ (1/3, 2/3), respectively. Their goal is to sample B(p−q)2 ,
while revealing at most O(H(B(p−q)2)) information to each other. The simplest strategy that clearly
doesn’t work is to have Alice send Bob p and have Bob sample B(p−q)2 (or vice versa). This does
not work since p may reveal many bits of information about x (and q may reveal many bits of
information about y). A slightly less näıve approach is based on the idea of correlated sampling of
[Hol07]. We can sample a number Z ∈U [0, 1] uniformly at random. Alice and Bob then exchange
information on whether p < Z and q < Z, respectively. If the answers do not match, they output
1, otherwise they output 0. It is not hard to see that this procedure produces a sample from the
distribution B|p−q|. By repeating it twice and outputing the conjunction of the two answers, we
can get a sample from B|p−q|2 . Unfortunately, it is not hard to see that this procedure may reveal
as much as Ω(H(B|p−q|)) = Ω(|p− q| log 1/|p− q|) to the parties, which is prohibitively high.

Our approach is based on the correlated sampling above. Instead of Z being chosen using public
randomness, Z is chosen by Alice from a distribution Zp which depends on the value of p. Alice
then sends Zp to Bob. The distribution Zp is designed to meet the following two conditions: (1)
a sample Z ∼ Zp reveals at most O((p − q)2) bits of information about p (and thus about x) to
someone who knows q; (2) the probability that Z falls between p and q is ∼ (p− q)2 (note that for
Z ∈U [0, 1] this probability was ∼ |p− q|). Satisfying these two conditions allow us to sample from
B(p−q)2 by seeing whether Z falls between p and q (using condition (2)). Condition (1) ensures that
the value of Z does not reveal too much information to Bob about x in the process.

As discussed above, we primarily apply this basic primitive as follows. At each step i of π we
execute the protocol above with some probability α, obtain a sample Si ∼ B(p−q)2 , and maintain
the sum Σi of the Si’s so far. This way, if Iπi is the amount of information revealed by π by round
i, we have that Σi is an unbiased estimator of α · Iπi . Therefore Σi implements an information
odometer for π. While Σi is stochastic, by choosing α < 1 that is not too small, we can also ensure
that Σi has sufficiently nice concentration properties for our applications we discuss below.

Applications

Conditional abort and applications to direct product theorems in communication com-
plexity. Our first application is to proving a direct product theorem for communication complex-
ity in terms of information complexity. Direct sum and product theorems have had a long history
in the area of communication complexity [Kla10, Sha03, LSS08, She11, JPY12, MWY13, PRW97,
BBCR10]. For a broader overview of the problem and its importance in computational complex-
ity we refer the reader to [JPY12, BRWY12] and references therein. Both direct sum and direct
product theorems assert a lower bound on the communication complexity of solving n copies of f
in terms of the cost of a single copy (or, potentially, in terms of another quantity related to f). A
direct sum theorem aims to give a lower bound (ideally one linear in n) on computing n copies of
f with error at most ε > 0 in terms of the cost of computing a single copy of f with error ε. A
direct product theorem further asserts that unless sufficient communication resources are provided,
the probability of successfully computing all n copies of f will be exponentially small, potentially
as low as (1− ε)Ω(n).

In the context of randomized communication, there is a tight connection between the direct
sum question about the communication complexity of a function f and its information complexity.
Specifically, it was shown in [BR11] that the communication cost of computing n copies of f with
error at most ε per copy scales as n times the information complexity IC(f, ε) of computing f with
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error at most ε — that is, the amount of information Alice and Bob must reveal to each other to
compute f with error at most ε. While understanding the gap between the information complexity
of f and its communication complexity remains open, at least in terms in terms of information
complexity, the question is settled. To get a lower bound on the amortized communication com-
plexity of fn one starts with a communication-Cn protocol for fn, which makes an error of at most
ε on each coordinate , and shows how to convert it into a protocol for a single copy of f with error
of at most ε and information cost of at most Cn/n.

The upper bound in [BR11] not only shows that the cost of computing n copies of f in parallel
with error ≤ ε on each copy is ∼ n · IC(f, ε), but since it does so by executing independent copies
in parallel, its probability of success on all copies simultaneously is ≈ (1− ε)n. Therefore, the best
direct product theorem we could hope for is in terms of the information complexity of an individual
copy of f : “a protocol which uses� n·IC(f, ε) communication to solve n copies of f cannot succeed
with probability more than (1− ε)Ω(n)”.

Several prior works (e.g [Jai11, JPY12, BRWY12]) aim to get a generic direct product theorem
for communication complexity. Other works prove a direct product theorem in terms of weaker
complexity measures of the underlying function, such as the discrepancy discµ(f) of the function
([LSS08]) or the (stronger) smooth rectangle bound [JK09]. More precisely, Jain and Yao [JY12]
show that any protocol attempting to compute fn under µn using � n · srectµ(f) communication,
will succeed with probability only 2−Ω(n), where srectµ(f) denotes the smooth rectangle bound of
f under µ. Our direct product theorem implies all previous results in this category, since it has
been shown that ICµ(f) ≥ srectµ(f) ≥ discµ(f) (see [KLL+12]). Moreover, the discussion in the
previous paragraph asserts that our direct product result (Theorem 2) is asymptotically tight (as
communication and information are asymptotically equal), while such guarantee is not known to
hold for the previous measures.

The most directly relevant effort on the direct product problem was carried out by [JPY12] (for
the bounded round case) and [BRWY12] (for general protocols), which aim to give a direct product
theorem in terms of the information/communication complexity of f . In terms of their logical flow,
these papers follow earlier ideas in parallel repetition theorems [Raz98, Hol07, Rao08] and proceed
as follows: starting with a low-communication protocol for fn, and assuming its success probability
is high — at least (1 − ε)o(n), one simultaneously applies the same method as in the direct sum
theorem, and conditions on the event that the n-copy protocol is successful. This latter conditioning
leads to the resulting object not being a communication protocol any longer. However, with some
additional work, one gets a protocol that computes f and is statistically close to a low-information
protocol. To get the full direct product theorem for information complexity one would need to get
a protocol that computes f and is a low-information protocol.

A protocol π that is statistically close to a low-information needs not be a low-information
protocol itself. Consider, for example, a protocol π where with probability δ Alice sends her
input X ∈ {0, 1}n to Bob, and with probability 1 − δ she sends a random string. Then π is
δ-close to a 0-information protocol, but has information complexity of ≈ δ · n, which could be
arbitrarily high. [BRWY12] showed that the previous protocol compression techniques that work
for compressing low-information protocols [BBCR10] also work on protocols that are statistically
close to a low-information protocol. Therefore, all direct sum results for communication complexity
from [BBCR10] can be upgraded to direct product results. This, however, is weaker than a full
direct product theorem in terms of information complexity.

To turn the [BRWY12] construction into a direct product theorem in terms of information
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complexity, one needs a generic way of turning a protocol that is statistically close to a low-
information one into a low information protocol. Prior to the present paper, no such way was
known. Note that the information odometer is precisely the primitive one can use for this purpose:
if π is statistically close to a protocol that only reveals I bits of information, we can use the odometer
and abort π after it reveals at most 100I bits of information. The fact that π is statistically
close to an information-I protocol guarantees that we do not abort too frequently, and that this
simulation succeeds. Note that we need the additional information complexity of the odometer to
be O(I), to make sure that indeed the information complexity of (truncated π+odometer) is O(I).
Putting this together with [BRWY12], we obtain an essentially optimal direct product theorem for
communication complexity in terms of information complexity (Theorem 2 below).

Interactive computation between two untrusting parties: from honest-but-curious to
malicious. Next, we consider an application to the setting where Alice and Bob do not trust
each other and wish to compute a function f(X,Y ) of their inputs while revealing as little in-
formation to each other as possible. This setting has been extensively studied in the theoretical
cryptography literature. In the the case of 3+ parties with private channels, [BOGW88] showed
that secure multiparty computation is possible, that is, it is possible to compute any function of
the player’s inputs while revealing nothing beyond the value of the function to the players. It is
known that no such protocol can exist for two parties, even in the case of honest-but-curious partic-
ipants. In this model, Chor and Kushilevitz [CK91] characterized the family of two-party Boolean
functions computable with perfect privacy. This characterization was extended by Kushilevitz
[Kus92] and Beaver [Bea89] to general-valued functions, asserting that most function are not pri-
vately computable. Subsequent papers studied the privacy loss of specific functions, and explored
communication tradeoffs required to achieve perfect or approximate privacy in the honest model
(Bar Yehuda et al [BYCKO93] [FJS10] [ACC+12]).

In the malicious model, where one of the parties is assumed to be adversarial, much less was
known. When the malicious party is assumed to be computationally bounded, and thus one can use
cryptographic primitives, [GMW87] ensure the “best possible” privacy can be preserved, assuming
the existence of so called ”trapdoor permutations” 1. Other works define a weaker notion of
privacy and obtain privacy-preserving schemes for specific functions under these notions ([Pin03,
MNPS]). None of these works has a pure statistical security guarantee against general, unrestricted
adversaries.

As information-theoretically secure two-party computation is impossible for most functions,
several approaches for quantifying privacy loss have been proposed over the years in the security
and privacy literature [Klauck02, Feigenbaum10, MPRTV10, KLX13]. In fact, one way to view the
information complexity IC(f, ε) is as the smallest (average) amount of information Alice and Bob
must reveal to each other to compute f with error ε (here the information revealed by the value of
f(X,Y ) is included in the information complexity). Thus, information complexity gives the precise
answer to the two-party private computation in the information-theoretic honest-but-curious model:
Alice and Bob will try to learn about Y and X respectively from the protocol, while adhering to
its prescribed execution.

Therefore, in the honest-but-curious case, a protocol π whose information cost is close to the
information complexity of f will achieve a near-optimal performance in terms of privacy, revealing

1The authors show that a malicious player cannot learn anything more that the value of f(X ′, Y ) for any X ′ of
her choice.
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only ≈ I := IC(f, ε) information to Alice and Bob. That is, assuming Alice and Bob adhere to the
execution of π. What happens when either Alice or Bob is malicious? Is there a way to compile π
into a protocol π′ that (1) if Alice and Bob are honest is close to π in terms of computing f ; (2)
even if Alice or Bob are dishonest, reveals at most O(I) information to the dishonest party (that
is, dishonest Alice cannot “phish” more than O(I) bits of information out of Bob)? If information
complexity was known to be equal to communication complexity, we could just compress π into
a protocol π′ with O(I) bits of communication. Even if Alice or Bob are dishonest, they cannot
cause the protocol π′ to run for more than O(I) rounds, and thus they cannot make it reveal more
than O(I) bits of information. Unfortunately, we do not know whether information complexity is
(even remotely) close to communication complexity, and therefore this approach does not work.

We adapt our odometer construction to get a generic conversion for a low-information protocol
for the honest-but-curious model to a low-information protocol for the adversarial model. The basic
premise is simple: we would like to maintain an estimate on the amount of information revealed
so far, and abort if this number exceeds, say, 10I. This plan is complicated by the fact that the
dishonest party (say Bob) may try to attack this process in various ways. Firstly, he can try to fool
the odometer into thinking that he learns less information than he actually does. Secondly, and
perhaps more importantly, Bob can try to use the odometer itself to learn additional information
about X. In particular, if it is Bob’s turn to select the variable Z discussed above, Bob may cheat
and select Z adversarially to elicit information from Alice. We modify the odometer protocol so
that such cheating can only hasten the termination of the simulation (and hence eventually cause
Bob to learn less information). We note that in our simulation Alice does not try to enforce Bob’s
compliance; rather, we just guarantee that the odometer has a proper estimate on what Bob learned
so far, and thus it allows us to terminate once too much information has been revealed.

A better understanding of the hardness of interactive protocol compression. Finally,
the odometer construction sheds some new light on the problem of compressing interactive commu-
nication. The interactive compression problem [BBCR10, BR11, Bra12] asks whether any protocol
π whose information cost is I (i.e. which reveals an average of I bits of information to the players)
can be simulated by a protocol π′ that actually only uses ∼ I bits of communication. The question
of interactive compression is known to be equivalent to the direct sum problem for randomized
communication complexity [BR11], and better compression schemes correspond to stronger direct
sum theorems. Classical results in information theory show that a similar statement holds when π
is non-interactive (i.e. only consists of a single message).

The current state of-the-art interactive compression results are due to [BBCR10] and [Bra12].
The [BBCR10] result shows how to compress a protocol π which uses C bits of communication and
I bits of information into a protocol that uses Õ(

√
I · C) bits of communication. [Bra12] shows

how to compress such a π in to a protocol that uses 2O(I) communication. Note that these results
are generally incomparable, since C might be arbitrarily larger than I.

Our odometer construction allows one to break any protocol π into smaller pieces. For example,
we can pause the protocol after ∼ 1 bit has been revealed, and then continue, thus breaking π into
∼ I pieces, each revealing Θ(1) information. Unfortunately, in this case the additive logC overhead
of our odometer scheme matters — it implies that each piece will reveal O(logC) information while
using ≤ C communication. Still, if we were able to compress a protocol whose information cost is
O(logC) and whose communication cost is ≤ C into a protocol which uses g(C, logC) communica-
tion, then we could compress π into a protocol which uses O(I ·g(C, logC)) communication. Thus it
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suffices to consider the compression problem in the regime where I = O(logC). In particular, if we
could compress into g(C, logC) = Co(1), then we could compress any π into I ·Co(1) communication
— in turn implying a near-linear direct sum theorem. Note that both compression schemes from
[BBCR10] and [Bra12] yield an upper bound of g(C, logC) = CO(1) in this case. This is discussed
further in Section 9.

2 Our Results

We begin by showing how to construct a single-round information odometer. The following lemma
serves as the main building block in subsequent applications and constructions in this paper.

Theorem 1 (One round information odometer). Let (p, q) ∼ D be two numbers ∈ (1/3, 2/3), such
that ∀ q Ep|q[p] = q. Suppose that Alice is given p (not known to Bob), and Bob is given q (not
known to Alice). Then there is a a (2-round) protocol τ such that:

• At the end of execution, the players output “1” with probability exactly 2(p− q)2.

• The expected information cost of τ is small: If T = T (p, q) denotes the transcript of τ , then

Ep,q

[
D

(
(T |p)
(T |q)

)]
≤ 16Ep,q

[
D

(
p

q

)]
+ 2Ep,q

[
H(2(p− q)2)

]
.

We then use our odometer construction together with previous techniques from [BRWY12] to
prove a strong direct product theorem for communication in terms of information complexity: Let
suc(µ, f, C) denote the maximum success probability of a protocol with communication complexity
(at most) C in computing a function f(x, y) when the inputs are drawn from the distribution µ.
Similarly, let suci(µ, f, I) denote the maximum success probability of a protocol with information
complexity (at most) I in computing f under µ. Let fn(x1, . . . , xn, y1, . . . , yn) denote the function
that maps its inputs to the n bits (f(x1, y1), f(x2, y2), . . . , f(xn, yn)) and µn denote the product
distribution on n pairs of inputs, where each pair is sampled independently according to µ. We
prove the following result:

Theorem 2. Let f be a 2-party Boolean function. There are universal constants α, β > 0 such that
if γ = β(1− suci(µ, f, I))/2, T ≥ 2, and T log(T log(T/γ)) < αγ2n · I, it holds that suc(µn, fn, T ) ≤
exp

(
−γ2n

)
.

Towards the above result, we prove the following technical theorem, showing how our odometer
can be used to convert a protocol which is statistically close to having low (internal) information
cost, to a protocol which actually has low information cost.

Theorem 3 (Conditional abort theorem). Let θ be an alternating, smooth protocol with inputs x, y,
public randomness r, and messages m, and suppose q is another distribution on these variables such

that θ(xyrm)
ε
≈ q(xyrm). Denote Iq := Iq(X;M |Y R)+Iq(Y ;M |XR). Then, there exists a protocol

π that 15ε-simulates θ with ‖π‖ ≤ O(‖θ‖ log(‖θ‖)) and

IC(π) ≤ O
(
Iq + log(‖θ‖+ 1)

ε2

)
.
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We then turn to the setting of communication between two untrusted parties. We show how
our information odometer can be used to achieve information-theoretically secure communication
against an arbitrary adversary. More specifically, we prove:

Theorem 4 (Information-theoretically secure simulation, informally stated). Let θ be a two-party
communication protocol such that IC(θ) = I. Then for any δ > 0, there is a communication protocol
π̃ using “live” randomness, with the following properties:

• If both parties are honest, then π̃ 2δ-simulates θ.

• IC(π̃) ≤ O(I + log(‖θ‖)).

• There is a global constant λ > 0 such that for any protocol π̃′ where at least one party is
honest (follows π̃), the following holds: ∀ k ∈ N,

Pr[ Honest party reveals more than λk(I/δ + log(‖θ‖+ 1)) bits of information ] ≤ 2−Ω(k).

That is, an honest player never reveals to the other party much more than the essential amount
of information required to solve f . The protocol does not assume any prior knowledge about the
honesty of any player.

Finally, in Section 9, we discuss the implications of our odometer construction to the interactive
compression problem. We outline a potential strategy for improving state of the art compression
results, which in particular implies that any compression with sub-exponential dependence on I
would lead to nontrivial compression results. In general, we obtain the following claim:

Claim 5. Suppose there is a compression protocol that takes as an input a protocol π1 with com-
munication cost C1 and worst case 2 information cost I1, and compresses it into a protocol π′1 of
communication complexity g(C1, I1). Then any protocol π with communication cost C and infor-
mation cost I can be compressed into a protocol with communication cost Õ(I · g(C, logC)).

3 Preliminaries

3.1 Notation

Unless otherwise stated, logarithms in this text are computed in base two. Random variables are
denoted by capital letters and values they attain are denoted by lower-case letters. For example,
A may be a random variable and then a denotes a value A may attain and we may consider the
event A = a. Given a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i
similarly.

We use the notation p(a) to denote both the distribution on the variable a, and the number
Prp[A = a]. The meaning will usually be clear from context, but in cases where there may be
confusion we shall be more explicit about which meaning is being used. We write p(a|b) to denote
either the distribution of A conditioned on the event B = b, or the number Pr[A = a|B = b]. Again,
the meaning will usually be clear from context. Given a distribution p(a, b, c, d), we write p(a, b, c)
to denote the marginal distribution on the variables a, b, c (or the corresponding probability). We
often write p(ab) instead of p(a, b) for conciseness of notation. If W is an event, we write p(W )

2This notion is formally defined in Section 9
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to denote its probability according to p. We denote by Ep(a) [g(a)] the expected value of g(a) with
respect to a distributed according to p.

For two distributions p, q, we write |p(a) − q(a)| to denote the `1 distance between the distri-

butions p and q. We write p
ε
≈ q if |p− q| ≤ ε.

The divergence between two distributions p, q is defined to be

D

(
p(a)

q(a)

)
=
∑
a

p(a) log
p(a)

q(a)
.

By slight abuse of notation, when p and q are numbers ∈ [0, 1],we define the binary divergence as

D

(
p

q

)
:= p log

p

q
+ (1− p) log

1− p
1− q

.

Similarly, the binary entropy function of a number p ∈ [0, 1] is defined as

H(p) := p log
1

p
+ (1− p) log

1

1− p
.

For three random variables A,B,C with underlying probability distribution p(a, b, c), the mutual
information between A,B conditioned on C is defined as

I(A;B|C) = E
p(cb)

[
D

(
p(a|bc)
p(a|c)

)]
= E

p(ca)

[
D

(
p(b|ac)
p(b|c)

)]
=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c)

.

Proposition 6. Let A,B,C,D be random variables such that I(B;D|AC) = 0. Then I(A;B|C) ≥
I(A;B|CD).

Proof. We apply the chain rule twice:

I(A;B|CD) = I(AD;B|C)− I(D;B|C) = I(A;B|C) + I(D;B|AC)− I(D;B|C) =

= I(A;B|C)− I(D;B|C) ≤ I(A;B|C).

Proposition 7. Let A,B,C,D be four random variables in the same probability space. If I(A;D|C) =
0, then it holds that I(A;B|C) ≤ I(A;B|CD).

Proof. Again we apply the chain rule in two different orders. On one hand, we have

I(A;BD|C) = I(A;B|C) + I(A;D|CB) ≥ I(A;B|C)

since mutual information is nonnegative. On the other hand,

I(A;BD|C) = I(A;D|C) + I(A;B|CD) = I(A;B|CD)

since I(A;D|C) = 0 by the independence assumption on A and D. Combining both equations
completes the proof.
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3.2 Communication and Information Complexity

Given a protocol π that operates over inputs x, y ∼ µ, and uses public randomness3 r and messages
m, we write π(xymr) to denote the joint distribution of these variables. We write ‖π‖ to denote
the communication complexity of π, namely the maximum number of bits that may be exchanged
by the protocol.

A central notion in our work is the information complexity of a protocol (see [BBCR10, Bra12]
and references within for a more detailed overview). The (internal) information cost of π is defined
to be IC(π) = Iπ(X;M |Y R) + Iπ(Y ;M |XR).

Proposition 8 ([BR11]). ∀ π IC(π) ≤ ‖π‖.

Let q(x, y, a) be an arbitrary distribution. We say that a protocol π δ-simulates q, if there is a
function g and a function h such that

π(x, y, g(x, r,m), h(y, r,m))
δ
≈ q(x, y, a, a), (1)

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed according
to q. Thus if π δ-simulates q, the protocol allows the parties to sample a according to q(a|xy).

If λ is a protocol with inputs x, y, public randomness r′ and messages m′, we say that π δ-
simulates λ if π δ-simulates λ(x, y, (r′,m′)). We say that π computes f with success probability
1− δ, if π δ-simulates π(x, y, f(x, y)).

Remark 9. A central lemma from [BRWY12], which is used in the proof of Theorem 3 in this
paper, requires a stronger notion of simulation, namely, that outcome of the simulation is apparent
even to an external observer who does not know x or y. More precisely, we say that π strongly
δ-simulates q if in (1), the function g(x, r,m) does not depend on x. However, for information
purposes, we note that these two notions are equivalent, as as one party can always write the final
output of the protocol at the end of execution, thereby making the simulation strong. This message,
call it M , will reveal no extra internal information to the receiving party, as π is assumed to (weakly)
simulate q, and so I(M ;X|Y R) ≤ H(M |Y R) = 0. Therefore, in this paper we use the standard
notion of simulation to mean strong simulation.

4 Useful inequalities

Proofs for the following simple facts can be found in [CT91].

Fact 10 (Divergence is Non-negative). D

(
p(a)

q(a)

)
≥ 0.

Fact 11 (Chain Rule). If a = a1, . . . , as, then

D

(
p(a)

q(a)

)
=

s∑
i=1

E
p(a<i)

[
D

(
p(ai|a<i)
q(ai|a<i)

)]
.

3In our paper we define protocols where the public randomness is sampled from a continuous (i.e. non-discrete)
set. Nevertheless, we often treat the randomness as if it were supported on a discrete set, for example by taking
the sum over the set rather than the integral. This simplifies notation throughout our proofs, and does not affect
correctness in any way, since all of our public randomness can be approximated to arbitrary accuracy by sufficiently
dense finite sets..
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Fact 12 (Projection minimizes divergence). Let T,X, Y ∼ p(txy) be (correlated) random variables
in the same probability space. Then for any random variable Z = Z(y) ∼ q, it holds that

∀y Ex|y

[
D

(
T |xy
T |y

)]
≤ Ex|y

[
D

(
T |xy
Z

)]
.

Proof. Fix any y and denote T ′ := T |y, T ′|x := T |xy and p′(tx) := p(tx|y). Then

Ex|y

[
D

(
T |xy
T |y

)]
− Ex|y

[
D

(
T |xy
Z

)]
= E

[
D

(
T ′|x
T ′

)]
− E

[
D

(
T ′|x
Z

)]

=
∑
xt

p′(xt)

[
log

p′(tx)

p′(t)
− log

p′(tx)

q(t)

]
=
∑
xt

p′(xt) log
q(t)

p′(t)
= −D

(
p′(t)

q(t)

)
≤ 0

where the last transition is by Fact 10. Rearranging completes the proof.

Proposition 13 (Properties of binary entropy). For any x ∈ [0, 1], the binary entropy function
H(x) satisfies the following properties:

(i) H(x) ≤ 2
√
x(1− x).

(ii) For any y ∈ [0, 1], y ·H(x) ≤ H(yx).

(iii) For any y ≥ 1, y ·H(x) ≥ H(yx).

(iv) If |x− y| ≤ ε, |H(x)−H(y)| ≤ H(ε).

All the above facts essentially follow from concavity of entropy (H(x/2+y/2) ≥ H(x)/2+H(y)/2).
For detailed proofs see [CT91].

Proposition 14 (`22 approximates divergence). For any p, q ∈ [1/3, 2/3], it holds that

2(p− q)2 ≤ D

(
p

q

)
≤ 9

2
· (p− q)2.

Proof. The left hand side is Pinsker’s inequality. To prove the right hand side, we have:

D

(
p

q

)
= p log

p

q
+ (1− p) log

1− p
1− q

= p log
q − (q − p)

q
+ (1− p) log

1− q + (q − p)
1− q

= p log

(
1 +

p− q
q

)
+ (1− p) log

(
1 +

q − p
1− q

)
≤ p · p− q

q
+ (1− p) · q − p

1− q
(since log(1 + x) ≤ x)

= (p− q)
(
p

q
− 1− p

1− q

)
= (p− q)

(
p− pq − q + pq

q(1− q)

)
=

(p− q)2

q(1− q)
≤ 9

2
· (p− q)2

where the last inequality follows from the assumption that q ∈ [1/3, 2/3], which implies that
q(1− q) ≥ 2/9.
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Lemma 15 (Multiplicative Chernoff Bound). Let X =
∑n

i=1Xi be the sum of n independent
random variables, where E[Xi] = pi. Denote η :=

∑
i pi. Then

• For all 1 ≥ δ ≥ 0, Pr[X < (1− δ)η] ≤ e−
δ2η
2 .

• For all δ ≥ 0, Pr[X > (1 + δ)η] ≤ e−
δ2η
2+δ .

The first proposition is the standard Chernoff bound (e.g, [AS92]). The second proposition follows
from the same proof as in [AS92], by observing that ln(1 + δ) > 2δ/(2 + δ) for all δ > 0, and so
δ − (1 + δ) ln(1 + δ) ≤ −δ2/(2 + δ).
We will need need the following variant of the Chernoff bound:

Corollary 16. Let X =
∑n

i=1Xi be the sum of n independent random variables, where E[Xi] = pi.
Denote η :=

∑
i pi. Then for every β ≥ η and all δ ≥ 2, it holds that

Pr[X > (1 + δ)β] ≤ e−
δβ
2 .

Proof.

Pr[X > (1 + δ)β] = Pr[X > (1 + δ)(β/η)η] (Define δ′ := (1 + δ)(β/η)− 1)

= Pr[X > (1 + δ′)η] ≤ e−
δ′2η
2+δ′ (By Lemma 15)

≤ e−
δ′η
2 ( Since β ≥ η and δ ≥ 2⇒ 2δ′ > 2 + δ′)

= e−
(1+δ)β−η

2 = e−
(β−η)+δβ

2 ≤ e−
δβ
2 (Since β ≥ η )

Theorem 17 (Azuma’s inequality). Let {Xk}∞k=0 be a sub-martingale such that |Xi −Xi−1| ≤ ci
almost surely. Then for any N ∈ N and any k ∈ R+,

Pr[XN −X0 ≤ −k] ≤ exp

(
− k2

2
∑N

i=0 c
2
i

)
.

Organization The paper is organized as follows. We first show how to construct the (single-
round) information odometer (in Section 5 below). Subsequent sections are applications of this
construction. In Section 6 we prove Theorem 3. Next, in Section 7, we apply this result to prove
the strong direct product theorem (Theorem 2). In Section 8 we prove the secure simulation result
(Theorem 31). Finally, in Section 9 we outline the connection between the odometer and the
one-shot interactive-compression problem (Claim 5).

5 A single round information odometer

In this section we prove Theorem 1, the main building block of the information odometer.
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The protocol τ

1. Given her number p, Alice samples a number Zp ∈ [0, 1], according to the following prob-
ability density function:

µp(z) =


4(p− z) if 0 ≤ z < p
4(z − p) if p ≤ z ≤ p+ 1/2

2− 4(z − p− 1/2) if p+ 1/2 < z ≤ 1

If p > 1/2, Alice samples from µ1−p(1− z).

2. Alice sends Zp to Bob.

3. Alice sends Bob a bit Ip indicating whether “Zp > p”.

4. Bob responds by sending a bit Iq indicating whether “Zp > q”.

5. The players output “1” iff Ip 6= Iq.

Figure 1: A protocol for estimating internal information cost. The probability that the protocol
outputs “1” is 2(p− q)2.

Proof of Theorem 1. The players run the protocol τ from Figure 1.

Analysis: Throughout the entire analysis, we assume that p ≤ 1/2, as it is straightforward to
verify that µp(z) = µ1−p(1− z). First, let us analyze the probability with which the players output
“1”. Note that the assumption that p, q ∈ [1/3, 2/3] implies that either q ∈ [0, p] or q ∈ [p, p+ 1/2].
If q ∈ [p, p+ 1/2], then by construction we have

Pr[players output “1”] = Pr[Ip 6= Iq] = Pr
µp

[Z ∈ [p, q]] =

∫ q

p
µ(z)dz =

∫ q

p
4(z − p)dz =

=
[
2z2 − 4pz)

]q
p

= 2q2 − 4pq − 2p2 + 4p2 = 2(p− q)2. (2)

Similarly, if q ∈ [0, p], then

Pr[players output “1”] =

∫ p

q
µ(z)dz =

∫ q

p
4(p− z)dz = 2(p− q)2,

as claimed in the first proposition of the Theorem.

We turn to analyze the information cost of τ . We analyze step 2 of the protocol and steps 3,4
separately. Step 2: The heart of the proof is showing that the information Zp conveys to Bob
(with input q) about Alice’s input p, is in fact comparable to the divergence between p and q:

13



µ′p

µp

p′ p

Figure 2: The distribution µp for p = 0.5, p′ =
0.3. The divergence between µp and µp′ is pro-
portional to (p− p′)2. The structure of the den-
sity function µp ensures that the log-ratio be-
tween the distributions mostly cancels out, up
to second order terms.

µp

p q

Figure 3: The distribution µp for p = 0.5. For
any q, the probability that p < Zp < q is equal
to the area of the triangle enclosing p, q, µp(q).

Lemma 18. I(Zp; p|q) ≤ 16 · Ep,q

[
D

(
p

q

)]
.

The key step is the following technical lemma which asserts that the divergence between the
distribution of Zp and a “shift” of it Zp′ is proportional to (p− p′)2 (see Figure 2):

Lemma 19. For any p, p′ ∈ (1/3, 2/3), it holds that D

(
Zp

Zp′

)
≤ 8(p− p′)2.

The lemma is proved by a direct calculation of the divergence, so we defer it to the appendix. We
now show how Lemma 19 implies Lemma 18:

Proof of Lemma 18.

I(Zp; p|q) = Ep,q

[
D

(
Zp

Ep|q[Zp]

)]
≤ Ep,q

[
D

(
Zp

Zq

)]
≤ 8 · Ep,q[(p− q)2] (by Lemma 19)

≤ 16 · Ep,q

[
D

(
p

q

)]
,

where the second transition is by Fact 12 (taken with T = Z,X = p, Y = q, Z(q) = Zq), and the
last transition is by Pinsker’s inequality (Fact 14).

We continue to bound the information of the remaining steps of the protocol τ . Steps 3 and
4: Let W denote the indicator random variable of the event “Zp ∈ [p, q]”. Note that at this point,
both players already know Zp, and conditioned on Ip and Zp, W determines Iq (and vice versa for
Ip). Thus, the data processing inequality implies that the information cost of the above steps is
upper bounded by

Epq[H(Ip|IqZp) +H(Iq|IpZp)] ≤ Epq[H(W |IqZp) +H(W |IpZp)] ≤ 2Epq[H(W )] = 2Epq[H(2(p− q)2)],
(3)

14



where the last transition is by (2). By Lemma 18 and (3), we conclude that

IC(τ) ≤ I(Zp; p|q) + Epq [H(Ip|IqZp) +H(Iq|IpZp)] ≤ 16Ep,q

[
D

(
p

q

)]
+ 2Ep,q

[
H(2(p− q)2)

]
,

which concludes the second proposition and thus the whole proof of Theorem 1.

Corollary 20. Consider the same setup of Theorem 1, and suppose the players execute the protocol
τ , except that Alice sends only the first `− 2 bits of (the binary representation of) Zp. Denote this
protocol τ` (and its transcript by T ). Then

• At the end of execution, the players output “1” with probability 2(p− q)2 ±O(2−`).

• IC(τ`) = Ep,q

[
D

(
(T |p)
(T |q)

)]
≤ 16Ep,q

[
D

(
p

q

)]
+ 2Ep,q

[
H(2(p− q)2)

]
.

• ‖τ`‖ = `.

Proof Sketch. First proposition: Denote `′ := `− 2. Since Z`
′
p −Zp ≤ 2−`

′
, Pr(Ip 6= Ip`′) ≤ Pr(Z`

′
p <

p ∧ Zp > p) ≤ Pr(Zp ∈ [p, p + 2−`
′
]) =

∫ p+2−`
′

p µp(z)dz =
∫ p+2−`

′

p 4(z − p)dz = 4p2−`
′
+ 4p2−2`′ −

4p2−`
′

= 4p2−2`′ < 2−(`+1). the same goes for Pr(Iq 6= Iq`′ , and the statement directly follows. The

second proposition follows immediately from the data processing inequality, since Z`
′

(the first `′

bits of Zp) is a deterministic function of Zp, and so Ip∼D|q(Z
`′ ; p) ≤ Ip∼D|q(Z; p) = D

(
Zp

Zq

)
, and

the rest of the analysis follows from Theorem 1.

6 Proof of the conditional abort theorem

In this section we prove Theorem 3 − we show how the information odometer from Section 5 can
be used to modify any protocol statistically close to having low information, to a protocol that
actually has low information. We will first need to set up some definitions. The following definition
will be central to our analysis.

Definition 21. For fixed inputs x, y and public randomness r, and a fixed (partial) path m =
m1m2 . . .mj in θ, define

Dθx(m≤j) =

j∑
t=1

[
D

(
θ(mt|m<txyr)

θ(mt|m<tyr)

)]
, Dθy(m≤j) =

j∑
t=1

[
D

(
θ(mt|m<txyr)

θ(mt|m<txr)

)]
.

The divergence cost of a path m≤j under x, y, r is

Dθxyr(m≤j) := Dθx(m≤j) + Dθy(m≤j)

When we refer to the divergence cost as a random variable we use the notation DθXY R(M≤j).
A straightforward application of the chain rule for mutual information shows that

E
[
Dθxyr(m)

]
= Iθ(M ;X|Y R) + Iθ(M ;Y |XR) = IC(θ). (4)

For completeness, we provide a formal proof of this fact in the appendix.
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6.1 Smooth simulation

To prove Theorem 3, we will also need to assume our protocols are such that each bit mt sent is
not too biased, in every possible transcript4. This is formalized by the following definition:

Definition 22 (Smooth protocols [BBCR10]). A protocol π is δ-smooth if ∀ x, y, r, t,m<t :

(i) π(Mt = 1|xrm<t) ∈ {1/2− δ, 1/2 + δ} and (ii) π(Mt = 1|yrm<t) ∈ {1/2− δ, 1/2 + δ}.

We say that a protocol is smooth if it is 1
3 -smooth.

The following lemma asserts that any protocol can be simulated by a smooth protocol, with a
small overhead in the communication. The proof is adapted from [BBCR10], with slight modifica-
tions. For completeness, we present a short proof below.

Lemma 23 (Smooth Simulation). There exists a constant s > 0 such that for every protocol π and
distribution µ on inputs x, y and all 0 < ε < 1 there exists a smooth protocol τ that ε−simulates π,
‖τ‖ ≤ s‖π‖ log(‖π‖/ε), and IC(τ) ≤ IC(π).

Proof. Set δ = 1/3. Every time Alice wants to send a bit M = M(X) in π, she instead sends
k = s log(‖π‖/ε)/δ2 bits W1, . . . ,Wk which are each independently and privately chosen to be the
correct value with probability 1/2 + δ. For odd messages sent by Alice, this ensures that condition
(i) in definition 22 is satisfied for every x, r,m<t in τ . But since τ(Mt = 1|yrm<t) = Ex|y[τ(Mt =
1|xrm<t)] and τ(Mt = 1|xrm<t) ∈ {1/2 − δ, 1/2 + δ} for every x, the same guarantee applies to
τ(Mt = 1|yrm<t). An analogues argument holds for even rounds when Bob is the sender of the
message. After this, the receiving player takes the majority of the Wj ’s to reconstruct the intended
transmission. The players then proceed assuming that the majority of the bits was the real sampled
transmission. By the Chernoff bound, we can set s to be large enough so that the probability that
any transmission is received incorrectly is at most ε . By the union bound applied to each of the
‖π‖ transmissions, we have that except with probability ε, all transmissions are correctly received.
Thus the distribution of the above transcript ε- simulates the correct distribution.

Note that I(W1, . . . ,Wk;X|M) = 0 since M determines the distribution of the Wj ’s (an ana-
logues argument holds for messages sent by Bob). Therefore, the data processing inequality ensures
that IC(τ) ≤ IC(π).

Finally, to simplify our analysis we will require that at each round a player sends only one bit:

Definition 24 (Alternating protocols). A protocol is alternating if each party sends exactly one
bit of communication at each round.

Proposition 25. Any smooth protocol π can be (exactly) simulated by an alternating smooth pro-
tocol τ such that |τ | ≤ 2‖π‖, and IC(τ) = IC(π).

Proof sketch. If in some round t in π, a party wishes to send more than one consecutive bit, we
“split” her message in τ by having the other party send a uniformly random bit in between the
original messages. Clearly, communication grows by a factor of at most 2, and the information cost
remains the same as in π, as a uniform bit conveys no information at all. A uniform bit is clearly
smooth, so smoothness is preserved.

4The reason we want this property is that the divergence between two such distributions can be well approximated
by their `2 distance, which is a more convenient measure to work with. See Proposition 14.
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6.2 Proof of Theorem 3

The high-level idea is for the players to run the protocol θ, while keeping an estimate of the internal
information cost leaked so far, in an online fashion, using the information odometer protocol τ`
from Section 5. If their estimate indicates that the information “leaked” is too high, they abort
the protocol. Since θ is ε-close to a low-information distribution q, we can show that most paths
in θ cannot reveal � Iq/ε

2 information, and thus setting the abort threshold appropriately ensures
that π aborts with small probability. The crucial point is that the additional information incurred
by running the odometer for any partial path of θ is comparable to the information which θ itself
revealed so far, and thus if we only run the odometer with probability ∝ 1/Iq, we can keep the
information overhead of π below Iq. The simulating protocol π is described in Figure 4.

Protocol π for simulating θ with conditional abort

`←− 2 log(‖θ‖+ 1).

ρ←− 2Iq+4/(e ln 2)+3 log(‖θ‖+1)
ε2

+ 2 log(1/ε)
ε .

α←− ln(1/ε)
ρ .

Count ←− 0.

For each round t ∈ [‖θ‖], Do:

1. The speaker in round t privately samples his message mt as prescribed in θ
(mt ∼ θ(mt|m<txr) for odd t, and mt ∼ θ(mt|m<tyr) for even t).

2. With probability α (using independent public randomness at each round), the players run
the protocol τ` from Corollary 20, setting pt := θ(Mt = 1|m<txr), qt := θ(Mt = 1|m<tyr)
for odd t, and pt := θ(Mt = 1|m<tyr), qt := θ(Mt = 1|m<txr) for even t (Note that the
smoothness of π ensures pt, qt ∈ (1/3, 2/3) so the premises are satisfied).

3. If τ` outputs “1”, both players seta Count ←− Count +1.

4. If Count > d4αρe , the players abort the protocolb.

5. Otherwise, the current speaker sends mt as prescribed by θ.

aSince both players know the value of Count at each point, this line is well defined.
bfor convenience, we achieve the aborts by having the players send 0’s for the rest of the protocol, until ‖θ‖

bits have been communicated.

Figure 4: A low-information simulation of θ.

We turn to formalize the intuition above. For fixed x, y, r and a (partial) path m≤j in θ,
let Count(x, y, r,m≤j) denote the value of the random variable Count which the players maintain
throughout the protocol π. The following claim asserts that Count(x, y, r,m≤j) provides the players
a very sharp estimate on the divergence cost of the sampled path m≤j :

Claim 26. For any x, y, r,m≤j, it holds that:
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• α(Dθxyr(m≤j)− 5‖θ‖/2`)/5 ≤ E[Count(x, y, r,m≤j)] ≤ α(Dθxyr(m≤j) + (‖θ‖/2`)),

• ∀δ ≥ 2 :

PrRτ [Count(x, y, r,m≤j) > (1 + δ)α(Dθxyr(m≤j) + (‖θ‖/2`))] ≤ e−
δαDθxyr(m≤j)

2 ,

• ∀1 > δ > 0 :

PrRτ [Count(x, y, r,m≤j) <
(1−δ)α

5 (Dθxyr(m≤j)− (5‖θ‖/2`))] ≤ e−
αδ2

10
(Dθxyr(m≤j)−(5‖θ‖/2`)),

where Rτ denotes the randomness of π used in step 2 of the protocol.

Proof. For t ∈ [j], let 1tτ` be the indicator variable denoting the output of protocol τ` at step

2 of round t of π. Note that E[Count(x, y, r,m≤j)] =
∑j

t=1 αE[1tτ` ]. Furthermore, by the first

proposition of Corollary 20, E[1tτ` ] ∈ 2(pt − qt)2 ±O(2−`). therefore we have

ERτ [Count(x, y, r,m≤j)] =

j∑
t=1

αE[1tτ` ] ≤ α

(
j∑
t=1

(2(pt − qt)2 +O(2−`))

)

≤ α

(
j∑
t=1

D

(
pt

qt

)
+O(j/2`)

)
(by Proposition 14)

= α

(∑
t odd

D

(
θ(Mt = 1|m<txyr)

θ(Mt = 1|m<tyr)

)
+
∑
t even

D

(
θ(Mt = 1|m<txyr)

θ(Mt = 1|m<txr)

)
+O(j/2`)

)
(5)

= α

(∑
t odd

D

(
θ(mt|m<txyr)

θ(mt|m<tyr)

)
+
∑
t even

D

(
θ(mt|m<txyr)

θ(mt|m<txr)

)
+O(j/2`)

)
(6)

= α

(
j∑
t=1

[
D

(
θ(mt|m<txyr)

θ(mt|m<txr)

)
+ D

(
θ(mt|m<txyr)

θ(mt|m<tyr)

)]
+O(j/2`)

)
= α(Dθxyr(m≤j) +O(j/2`)), (7)

where in (5) we used the fact that for odd t, θ(Mt = 1|m<txr) = θ(Mt = 1|m<txyr) by definition

of a protocol (analogously for even t), and in (6) we used the fact that D

(
p

q

)
= D

(
1− p
1− q

)
.

Applying the same argument with the “≥” direction of Proposition 14, we get

ERτ [Count(x, y, r,m)] ≥ α(Dθxyr(m≤j)− (5j/2`))/5. (8)

Thus, given x, y, r,m≤j , Count(x, y, r,m≤j) is the sum of j (≤ ‖θ‖) independent random variables
with expectation η, such that

α(Dθxyr(m≤j)− (5‖θ‖/2`))/5 ≤ η ≤ α(Dθxyr(m≤j) + (‖θ‖/2`)), (9)

as claimed in the first proposition of the lemma.
Since η ≤ α(Dθxyr(m≤j) + (‖θ‖/2`)), Corollary 16 implies that for all δ > 2

Pr
Rτ

[Count(x, y, r,m≤j) > (1 + δ)α(Dθxyr(m≤j) +O(j/2`))] ≤ e−
δαDθxyr(m≤j)

2
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which concludes the second proposition of the lemma. For the other direction, the standard Chernoff
bound (Lemma 15) implies that for 0 < δ < 1

Pr
Rτ

[Count(x, y, r,m≤j) <
(1− δ)α

5
(Dθxyr(m≤j)− 5j/2`)] ≤ Pr

Rτ
[Count(x, y, r,m≤j) < (1− δ)η] ≤

≤ e−
δ2η
2 ≤ e−

αδ2

10
(Dθxyr(m≤j)−(5‖θ‖/2`)) , concluding the third proposition of the lemma.

Claim 26 above will allow the players to control the information cost of π and to abort the
execution only when the information of a path vastly exceeds the typical divergence cost (as they
posses a sharp estimate on the information revealed at any step of the protocol). Most of the
remaining proof of Theorem 3 is devoted to showing that the information cost of π is comparable to
the threshold ρ at which the protocol aborts. This analysis is facilitated by viewing the information
that π reveals as a stochastic process, with the “aborting” index C serving as a stopping rule for
that process. We then invoke the optional stopping theorem ([Doo75]) to bound the expected
information cost at the final step of the protocol. We defer the rest of this (technical) proof to the
appendix (Section A).

7 Direct product in terms of information complexity

In this section we prove Theorem 2. Let π be a (deterministic) protocol for computing fn over
inputs x = x1, . . . , xn and y = y1, . . . , yn drawn from µn, and let suci(µ, f, I) be the largest success
probability of a protocol whose information cost is at most I, in computing a single copy of f under
µ. To prove Theorem 2, we follow the approach of [BRWY12]. Let W be the event that π correctly
computes fn. For i ∈ [n], let Wi denote the event that the protocol π correctly computes the
i’th copy f(xi, yi). Let π(W ) denote the probability of W , and π(Wi|W ) denote the conditional
probability of the event Wi given W (clearly, π(Wi|W ) = 1). We shall prove that if π(W ) is not
very small and ‖π‖ � I · n, then (1/n)

∑n
i=1 π(Wi|W ) < 1, which is a contradiction. In fact, the

proof holds for an arbitrary event W , as long as it occurs with large enough probability:

Lemma 27 (Main Lemma). Let f be a 2-party Boolean function. There are universal constants
α, β > 0 so that the following holds. For every γ > 0, and event W such that π(W ) ≥ 2−γ

2n, if
‖π‖ ≥ 2, and ‖π‖ log(‖π‖ log(‖π‖/γ)) < αnγ2 · I, then 1

n

∑
i∈[n] π(Wi|W ) ≤ suci(µ, f, I) + γ/β.

Let us first see how Lemma 27 easily implies Theorem 2.

Proof of Theorem 2. As outlined above, let W denote the event that π computes f correctly in all
n coordinates. So, (1/n)

∑
i∈[n] π(Wi|W ) = 1. Set γ = β(1− suci(µ, f, I))/2 so that suci(µ, f, I) +

γ/β < 1. Then by Lemma 27, either ‖π‖ < 2, ‖π‖ log(‖π‖ log(‖π‖/γ)) ≥ αnγ2I, or π(W ) <
2−γ

2n.

It therefore remains to prove Lemma 27. The overall idea is to use the n-fold protocol π to
produce a single-copy protocol with information cost < I that computes f correctly with probability
at least (1/n)

∑n
i=1 π(Wi|W )−O(γ). This would imply that (1/n)

∑
i∈[n] π(Wi|W ) ≤ suci(µ, f, I)+

O(γ), as desired. To this end, we wish to show that there exists a good simulating protocol for
a random coordinate of π|W , whose average information cost is low (roughly ‖π‖/n) and still
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computes f on this coordinate with good probability. The existence of such protocol was proven
in [BRWY12], except their protocol is not guaranteed to actually have low information cost, but
to merely be statistically close to a low-information protocol:

Lemma 28 (Claims 26 and 27 from [BRWY12], restated). There is a protocol σ taking inputs
x, y ∼ µ so that the following holds:

• σ publicly chooses a uniform i ∈ [n] independent of x, y, and Ri which is part of the input to
π (intuitively, Ri determines the “missing” inputs x−i, y−i of π).

• Ex,y,m,i,ri |σ(xyrim) − π(xiyirim|W )| ≤ 2γ (that is, σ is close to the distribution (π|W )i for
average i).

• Ei
[
Iπ|W (Xi;M |YiRii) + Iπ|W (Yi;M |XiRii)

]
≤ 4‖π‖/n.

Note that the last proposition only guarantees that the information cost of the transcript under
the distribution (π|W ) is low (on an average coordinate), while we need this property to hold for
the simulating protocol σ. Unfortunately, (π|W ) is no longer a protocol5 ! Nevertheless, since
the second and third propositions of Lemma 28 ensure that σ is 2γ-close to a low-information
distribution q = π(xiyirim|W ), Theorem 3 can be applied so as to modify it to actually have low
information (roughly ‖π‖/n). For appropriately chosen parameters, this information cost will be
< I, leading to our anticipated contradiction. A formal proof follows.

Proof of Lemma 27. Let β = 1/48. Let α be a sufficiently small constant to be determined shortly,
and suppose that π is so that

‖π‖ log(‖π‖ log(‖π‖/γ)) < αnγ2I. (10)

As usual, let m denote the messages of π. Let σ be the protocol given by Lemma 28. By Lemma
23 and Proposition 25, σ can be made into an alternating, smooth protocol σ′, such that σ′(xyrm′)
γ-simulates σ(xyrm) and ‖σ′‖ ≤ 2s‖σ‖ log(‖σ‖/γ) = 2s‖π‖ log(‖π‖/γ), for a sufficiently large
constant s. Therefore, if we denote the distribution q := π(ixiyirim|W ), the second proposition of
Lemma 28 and the triangle inequality imply that σ′ 3γ-simulates q. In particular, there there is
a function gout(xyrm

′) → {0, 1} mapping transcripts m′ of σ′ to output bits of transcripts m (of

π), such that σ′(gout(xyrm
′))

3γ
≈ q(mout). Since suc(µ, f, q) = Prq[mout = f ] = 1

n

∑
i π(Wi|W ), This

fact ensures that

suc(µ, f, σ′) ≥
∑
i∈[n]

π(Wi|W )− 3γ. (11)

We may now apply Theorem 3 (setting ε = 3γ, Iq = 4‖π‖/n) to conclude that there exists a
protocol τ that 45γ-simulates σ′, and a large enough constant κ such that

IC(τ) ≤ κ · Iq + log(‖σ′‖+ 1)

ε2
= κ · 4‖π‖/n+ log(2s‖π‖ log(‖π‖/γ) + 1)

9γ2

≤ κ · 4s‖π‖ log(‖π‖ log(‖π‖/γ))

9γ2n
<

4κs · αnγ2I

9γ2n
≤ I (12)

5And this is the main challenge overcame in [BRWY12], namely, that this non-markov distribution can be ap-
proximated by an actual protocol σ.
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by (10) and setting α = 9
4κs . Finally, since τ 45γ-simulates σ′, (12) implies that

suci(µ, f, I) ≥ suc(µ, f, τ) ≥ suc(µ, f, σ′)− 45γ

≥ 1

n

∑
i∈[n]

π(Wi|W )− 48γ (By (11))

=
1

n

∑
i∈[n]

π(Wi|W )− γ/β (by choice of β = 1/48).

Remark 29. We note that the proof of Theorem 2 never used the fact that f was Boolean. Indeed,
the theorem holds for arbitrary functions X ×Y → Z, by modifying the output function qout in the
proof above so that gout(xyrm

′)→ |Z|.

8 Information-theoretically secure communication

In this section we prove Theorem 31, which shows how the information odometer can be used to
“transform” any communication protocol into an information-theoretically secure one, even against
malicious players, at the price of a mild overhead in the information (and communication) cost.
We now make this precise. The following definition is crucial to our proof.

Definition 30 (Live communication protocols). A live communication protocol is a protocol π
using independent public randomness Rv at pre-specified nodes v of the protocol tree of π. The
realization of Rv on the public tape is revealed only upon reaching that node.

We are now ready to state Theorem 31 at its full version.

Theorem 31. Let θ be a two-party communication protocol such that IC(θ) = I. Then for any
δ > 0, there is a live communication protocol π̃ with the following properties:

• If both parties are honest, then π̃ 2δ-simulates θ.

• IC(π̃) ≤ Ĩ = O(I/δ + log(‖θ‖)).

• There is a global constant λ > 0 such that for any protocol π̃′ where at least one party is
honest (follows π̃), the following holds:

∀ k ∈ N Pr[Dπ̃
′
X (Π̃′) > λk(I/δ + log(‖θ‖+ 1))] ≤ 2−Ω(k) if Alice is honest.

∀ k ∈ N Pr[Dπ̃
′
Y (Π̃′) > λk(I/δ + log(‖θ‖+ 1))] ≤ 2−Ω(k) if Bob is honest.

The protocol π̃ does not assume any prior knowledge about the honesty of any player.

Before we present the proof, a few remarks are in order:

1. The second proposition concerns only the information revealed by the honest player. Indeed,
it is impossible (and nonsensical) to guarantee anything about the information revealed by a
dishonest player, as there is nothing preventing him from sending bits from his input as long
as the protocol is running.
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2. Our secure protocol makes a crucial use of live public randomness. This resource seems
inevitable for security purposes, as if the public random string is realized in the beginning of
the protocol, the protocol is essentially a distribution on deterministic protocols, and from
this point on, the malicious party may choose paths of the protocol allowing it to “cheat” the
honest party. This will become clearer throughout the proof.

Proof. Without loss of generality, we may assume that θ is alternating and smooth since Lemma
23 asserts that smoothing does not increase the information cost of the protocol. We emphasize
that we will only assume smoothness for honest players messages (while a dishonest player is free
to send arbitrary messages).

Recall the (single-round) odometer protocol τ from Figure 1. The parties will use a similar
protocol τ̃ as a proxy for estimating the internal information revealed up to each step of the
simulation. τ̃ is a variation of the protocol τ with the minor (yet crucial) twist that in each round,
the order of speakers is chosen at random using live randomness. The protocol τ̃ is defined in
Figure 5. Let τ̃` be the `-bit simulation of τ̃ , analogues to τ` from Corollary 20.

The protocol τ̃

1. Given p, Alice samples a number Z ∈ [0, 1], according to the following probability density
function:

µp(z) =


4(p− z) if 0 ≤ z < p
4(z − p) if p ≤ z ≤ p+ 1/2

2− 4(z − p− 1/2) if p+ 1/2 < z ≤ 1

2. Alice sends Zp to Bob.

3. The players use live public randomness to flip an unbiased coin G.

4. If G = 0,

(a) Alice sends Bob a bit Ip indicating whether “Zp > p”.

(b) Bob sends a bit Iq indicating whether “Zp > q”.

If G = 1,

(a) Bob sends a bit Iq indicating whether “Zp > q”.

(b) Alice sends Bob a bit Ip indicating whether “Zp > p”.

5. The players output “1” iff Ip 6= Iq.

Figure 5: A protocol for estimating the internal information cost of a single round of communication.

To simulate θ, the parties run is the simulation protocol π from Section 6.2, except that in Step
2, whenever τ` needs to be invoked, the parties instead invoke τ̃`. The overall protocol π̃ is defined
in Figure 6.

Notice that τ` and τ̃` have the exact same outcome for honest players (since the order of speakers
does not change the transcript), so in this case π̃ is equivalent to the protocol π from Figure 4 (with
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The protocol π̃

The parties run the protocol π from Figure 4, with the following two changes:

• ρ←− I/δ, α←− ln(1/δ)/ρ.

• At each round t the parties replace Step 2 of π with Step 2′: With probability α, invoke the
protocol τ̃` (setting pt, qt as before). At each round the parties use live public randomness.

Figure 6: A secure simulation of θ.

the appropriate parameters α, ρ). Therefore, The first proposition of the theorem follows from the
proof of Claim 42, noting that now θ(Dθxyr(m) > ρ) = θ(Dθxyr(m) > I/δ) ≤ δ by Markov’s inequality
and non-negativity of divergence-cost, and e−αρ = δ.

Note that the second proposition of the theorem would follow from the third proposition, recall-
ing (4) and the fact E[Y ] =

∑∞
i=1 Pr[Y > i], and therefore the rest of our analysis (and the main

effort of the proof) is devoted to the third proposition, where one party is assumed to be dishonest.
Suppose without loss of generality that Alice is honest and Bob is not (note that this assumption
is only for the sake of analysis). Formally, this means that the players are executing a protocol π̃′

of the following form (over inputs x, y ∼ µ and using (live) public randomness r):

π̃′(mt|xym<tr<t) = π̃(mt|xm<tr<t) if Alice is the sender of mt

π̃′(mt|xym<tr<t) = gt(mt|ym<tr<t) if Bob is the sender of mt,

where gt : Y ×M<t ×R<t −→ {0, 1} is an arbitrary boolean function which Bob may use.
The key step of our analysis of π̃′ is showing that the protocol τ̃ cannot be manipulated by

a dishonest player, in the sense that the probability of τ̃ outputting 1 in a certain round remains
comparable to the information learnt by the dishonest player (Bob) in this round. This ensures
that the random variable Count still provides Alice an indication of the information she revealed
so far to Bob. We now turn to formalize the above.

Let 1tτ̃` be the indicator variable denoting the output of protocol τ̃` in round t (providing that
it was invoked). Let Gt denote the (live) random coin used in Step 4 of τ̃ . Define γt1 := Pr(1tτ̃` |
Gt = 1), and γt0 := Pr(1tτ̃` | Gt = 0). Note that

Pr(1tτ̃`) = γt0/2 + γt1/2. (13)

Recall that the players are using live public randomness at each round of π̃ – let us denote the
randomness up to round t by r<t. Let h<t := yπ̃<tr<t denote the entire knowledge Bob has before
round t of π̃′ was executed, and as usual let m denote the messages of θ sent in π̃′. For a round t
where Alice speaks, define

qt := π̃(Mt = 1 | h<t) , pt := π̃(Mt = 1 | xh<t) , and µ(pt) := π̃(pt | h<t). (14)

when Bob speaks define the analogues quantities with x replaced by y. Then

qt =

∫
x
π̃(Mt = 1 | xh<t) · π̃(x | h<t) dx =

∫
pt

ptµ(pt) dpt (15)

by changing the variable of integration. The following Lemma is the heart of the proof.
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Lemma 32. Suppose τ̃` is invoked at round t of π̃, and denote by T the transcript of τ̃`. Then

• If the receiver of mt is the dishonest player, then γt1 ≥ (pt − qt)2 − 2−`. Furthermore, the
information learnt by the (dishonest) receiver is

Exyπ̃<tr<t

[
D

(
(Tt|xyr<tπ̃<t)
(Tt|yr<tπ̃<t)

)]
≤ 16Ept,qt

[
D

(
pt

qt

)]
+ 2Ept,qt

[
H(2(pt − qt)2)

]
.

• If the sender of mt is the dishonest player, then

Exyπ̃<tr<t

[
D

(
(Tt|xyr<tπ̃<t)
(Tt|yr<tπ̃<t)

)]
≤ H(γt0).

Proof. Let us begin with the (easier) case where the dishonest player (Bob) is the sender in τ̃`.
For simplicity of notation, denote throughout the proof p = pt, q = qt. Suppose that Bob sends
messages Z ′, B in τ̃ (an honest Bob will send Zp, I

p). Recall that γt0 = Pr(1tτ̃` |“Gt = 0”). Note that
when Gt = 0, the random variable 1tτ̃` determines Iq (more precisely, the sender can determine Iq

given 1tτ̃` and Z ′, B which he knows). Therefore, the information that τ̃` conveys to Bob in this
case can be upper bounded by

Exyπ̃<tr<t

[
D

(
(Tt|xyr<tπ̃<t)
(Tt|yr<tπ̃<t)

)]
= I(Tt;X|Y R<tΠ̃<t“Gt = 0”)

= I(Iq;X|Y R<tΠ̃<t“Gt = 0”Z ′B) ≤ H(Iq|“Gt = 0”Z ′B)

≤ H(1tτ̃` |Gt = 0) = H(γt0)

by definition of γt0 and since conditioning reduces entropy. We turn to the case Gt = 1. We claim
that in fact

I(Tt;X|Y R<tΠ̃<t“Gt = 0”) = I(Tt;X|Y R<tΠ̃<t“Gt = 1”).

This is true since, by construction of τ̃ , Alice’s message Iq only depends on Z ′ which is sent before
Gt is determined, hence the distributions τ̃`(I

q | “Gt = 0”) and τ̃`(I
q | “Gt = 1”) are equal.

Therefore, we conclude that the internal information cost of the message Iq is at most H(γt0), as
desired. Note that, as promised, the above argument did not use any smoothness assumption on
the messages of the malicious player. This proof shows that if the dishonest sender tries to “cheat”
by lowering the success rate of τ̃` (thus preventing Count from increasing), then he will also learn
very little by this attempt. This is because he needs to “commit” for Z ′ before he knows the order
of the steps.

We turn to analyze the case where (dishonest) Bob is the receiver in τ̃`. Throughout the proof
we analyze the original (non-truncated) protocol τ̃ , and then sketch how to obtain the desirable
guarantees for τ̃`. First, note that in this case the messages Zp, I

p of Alice are not affected by the
receiver’s message (regardless of whether G = 0 or 1). Therefore, the amount of information learnt
by the dishonest receiver follows from the exact same analysis as in the honest case, which by the
second proposition of Theorem 1 is at most

16Ept,qt

[
D

(
pt

qt

)]
+ 2Ept,qt

[
H(2(pt − qt)2)

]
. (16)
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Note that the the application of Theorem 1 only requires the sender’s message (which in this case
is the honest player) to be smooth (this is enough since pt ∈ {1/3, 2/3} implies the same for qt,
as qt = E[pt]. For a more detailed explanation, see the proof of Lemma 23). We now argue about
the “success” probability of τ̃ when the receiver is dishonest. Note that the receiver only sends
a single bit in τ̃ (the honest receiver will send Iq). If Gt = 0 he goes second, so he can always
report b = Ip and make the test fail so γt0 = 0 in this case. However, if Gt = 1, then his message
b is only a function of h<t and z. We can therefore model the receiver’s message as a function
B : Zp ×H<t −→ {0, 1}. For any such strategy B, let

γt1(B) := Pr(1tτ̃ = 1 | Gt = 1, receiver sends B(Zp, H<t)).

Clearly, γt1 ≥ infB{γt1(B)}.
Let B∗ be the “honest player” strategy B∗ = 1q<z. We shall prove the following claim:

Claim 33. For any receiver strategy B, γt1(B) ≥ 1
2 · γ

t
1(B∗).

Before we prove the this claim, let us see how it finishes the proof of the Lemma. Note that if
the receiver uses B∗, the outcome of the protocol τ̃ is the same as that of τ . Therefore, it follows
from the second proposition of Theorem 1 that γt1(B∗) = 2(p− q)2. Finally, Claim 33 implies that

γt1 ≥
1

2
· γt1(B∗) =

1

2
· 2(p− q)2 = (p− q)2. (17)

To obtain the promised guarantee on τ̃`, note that if the receiver has a strategy B′ in τ̃` such
that γt1(B′) < (p− q)2− 2−`, then the success probability of B′ under τ̃ is < (p− q)2, contradicting
(17). This is because Pr(Zp < p < Z ′) ≤ 2−`, and otherwise the output of τ̃ and τ̃` are the same
(See the proof of Corollary 20). Therefore, it must hold that γt1 ≥ (p − q)2 − 2−`, as claimed.
Moreover, the data processing inequality ensures that the information bound in (16) continues to
hold if we replace τ̃ by τ̃`, as Z` is determined by Zp.

It thus remains to prove Claim 33:

Proof of Claim 33. Fix z, h<t. Recall the definition of µp(z) from Figure 5, and let µz(p) := π̃(p |
zh<t) be the “inverse” distribution of µp(z) (the distribution of p given z). If the receiver reports
B(z, h<t) = 0 (“q < z”), then his answer will be inconsistent with the (honest) sender’s bit Ip

exactly when p > z, which happens with probability

s0 :=

∫
p
µz(p) · 1p>z dp =

1

K(z)

∫
p
µp(z) · µ(p) · 1p>z dp, (18)

where we used the (continuous version of) Bayes rule and K(z) =
∫
p µp(z)µ(p) dp. Similarly, if

the receiver reports B(z, h<t) = 1 (“q > z”), then his answer will be inconsistent with Ip with
probability

s1 :=

∫
p
µz(p) · 1p<z dp =

1

K(z)

∫
p
µp(z) · µ(p) · 1p<z dp (19)

Thus,

γt1(B(z, h<t)) = min{s0, s1}. (20)

Define

s̃0 :=
4

K(z)

∫
p
|z − p| · µ(p) · 1p>z dp , s̃1 :=

4

K(z)

∫
p
|z − p| · µ(p) · 1p<z dp.
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Proposition 34. s0 ≤ s̃0 ≤ 2s0 and s1 ≤ s̃1 ≤ 2s1.

Proof. We prove the statement for s0 (an analogues argument applies for s1). Note that s̃0
s0

= 4|z−p|
µp(z) ,

so it suffices to prove that 2|z − p| ≤ µp(z) < 4|z − p|. Indeed, suppose w.l.o.g that p ≤ 1/2. By
definition, µp(z) = 4|z − p| in the region z ≤ p + 1/2 (see Figure 5), so it only remains to handle
the region z > p+ 1/2. In this case,

µp(z)− 4|z − p| = 2− 4(z − p− 1/2)− 4(z − p) = 8(p+ 1/2− z) < 0,

since z > p in this region and therefore |z − p| = z − p. Thus µp(z) ≤ 4|z − p|. On the other hand,
since p ≥ 1/3 by the smoothness assumption, we have

µp(z)− 2|z − p| = 2− 4(z − p− 1/2)− 2(z − p) = 4 + 6p− 6z ≥ 4 + 6 · 1

3
− 6 = 0.

Rearranging sides concludes the proof.

Combining (20) with Proposition 34, we get that

γt1(B(z, h<t)) ≥
1

2
min{s̃0, s̃1}.

To finish the proof, it remains to show that the strategy choosing min{s̃0, s1} is equivalent to
B∗ = 1q<z. Indeed,

s̃1 − s̃0 =
4

K(z)

(∫
p
|z − p| · µ(p) · 1p<z dp−

∫
p
|z − p| · µ(p) · 1p>z dp

)
=

=
4

K(z)

∫
p
(z − p) · sgn(z − p) · µ(p) dp =

4

K(z)

∫
p
(z − p) · µ(p) dp

=
4

K(z)

[
z −

(∫
p
pµ(p) dp

)]
=

4

K(z)
· (z − q), (21)

where the last transition follows from (15). Finally, note that the expression in (21) is positive iff
q̃ > z, and thus γt1(B∗(z, h<t)) = min{s̃0, s1}. Since the argument holds for any z, h<t, we conclude
that for any strategy B it holds that γt1(B) ≥ 1

2γ
t
1(B∗), which finishes the proof of Claim 33.

With Lemma 32 in hand, we are now ready to argue about the amount of information revealed
by the honest player in π̃′. As before, let us denote the transcript of π̃′ by Π̃′ = M<CT≤C , where
M is the transcripts of θ and T is the concatenation of transcripts of τ̃ in all rounds where it was
executed. Define

Dπ̃
′
X (T≤j) := α ·

j∑
t=1

[
D

(
Tt|XY R<tΠ̃′<t
Tt|Y R<tΠ̃′<t

)]
(22)

Note that, unlike the analysis of Theorem 3, conditioning the above information on the entire
history Π̃′<t = M<tT<t (and not just the messages M<t of θ) is now mandatory, since, as discussed
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above, in π̃′ the dishonest player may choose his messages based on previous outcomes of τ̃`, and
thus the information he learns is measured respectively. In analogy with (22), for the divergence
cost of messages of θ sent in π̃′, we slightly abuse the notation to redefine

Dπ̃
′
X (M≤j) :=

j∑
t=1

D

(
Mt|XY R<tΠ̃′<t
Mt|Y R<tΠ̃′<t

)
.

Note that by the the chain rule we have

Dπ̃
′
X (Π̃′≤j) = Dπ̃

′
X (M≤j) + Dπ̃

′
X (T≤j). (23)

We shall therefore bound the value E[Dπ̃′X (M≤j)] + E[Dπ̃′X (T≤j)] in terms of the value of Count, in
the same manner as the proof of Theorem 3. To this end, define for any j ∈ [‖θ‖]

Lj :=

j∑
t=0

1tτ` −
α

18
· Dπ̃′X (M≤j) + j · α · 2−` −

Dπ̃′X (T≤j)− 74αj ·H(2−`)− j/(‖θ‖+ 1)

8 · 296 · log(2 · 296(‖θ‖+ 1))
. (24)

The next claim asserts that L := {Lj}‖θ‖+1
j=0 is a sub-martingale:

Claim 35. E[Lj | Lj−1] ≥ Lj−1.

Proof. This claim is an analogue of Claim 46 from Section 6.2. Set:

• K = ‖θ‖+ 1.

• Xt = 1tτ̃` .

• Yt = D

(
Tt|XY R<tΠ̃′<t
Tt|Y R<tΠ̃′<t

)
− 74α ·H(2−`).

• Zt = D

(
Mt|XY R<tΠ̃′<t
Mt|Y R<tΠ̃′<t

)
− 18 · 2−`.

• λ = α/18.

• β = 296.

Using the chain rule for divergence and the fact that τ̃` is executed with probability α at each
round, (24) can be rewritten as

Lj :=

j∑
t=1

Xt − λ ·
j∑
t=1

Zt −
∑j

t=1 Yt −
j
K

8β · log(2βK)
. (25)

We are thus in the setup of Lemma 44. To apply the Lemma, we must show that:

1. E[Yt|Lt−1] ≤ β ·HE[Xj |Lt−1].

2. λ · E[Zt|Lt−1] ≤ 1
2 · E[Xj |Lt−1].
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First proposition : Recall that τ̃` is executed w.p α at each round, and otherwise Yt | Lt−1 = 0.
If the dishonest player is the receiver in round t, the first proposition of Lemma 32 therefore implies
that

E[Yt | Lt−1] = α · E

[
D

(
Tt|xyr<tπ̃′<t
Tt|yr<tπ̃′<t

)]
− 74α ·H(2−`)

≤ α

(
16E

[
D

(
pt

qt

)]
+ 2E[H(2(pt − qt)2)]

)
− 74α ·H(2−`)

≤ 74α · (H(2(pt − qt)2)−H(2−`)) (by the same calculation as in (41))

≤ 74α ·H(2γt1) ≤ 148α ·H(γt1), (26)

where the second before last transition follows from Proposition 13/(iv) taken with x = (pt−qt)2,y =
γt1 and ε = 2−` , and the first proposition of Lemma 32 which implies |γt1 − (pt − qt)2| ≤ 2−`. The
last transition follows from Proposition 13/(iii).
Otherwise, if the dishonest player is the sender in round t, the second proposition of Lemma 32
implies that

E[Yt | Lt−1] = α · E

[
D

(
Tt|xyr<tπ̃′<t
Tt|yr<tπ̃′<t

)]
≤ αH(γt0). (27)

Recall by (13) that E[1tτ̃` ] = γt0/2 + γt1/2. Since entropy is nonnegative and concave, we have

max{H(γt0) , H(γt1)} ≤ H(γt0) +H(γt1) = 2(H(γt0)/2 +H(γt1)/2)

≤ 2H(γt0/2 + γt1/2) = 2H(E[1tτ̃` ]). (28)

Thus, combining (26),(27) and (28), we conclude that in both cases

E[Yt | Lt−1] ≤ 296 · α ·H(E[1tτ̃` ]) ≤ 296H(α · E[1tτ̃` ]) = 296 ·H(E[Xt|Lt−1]) = β ·H(E[Xt|Lt−1])

where in the second transition we used Proposition 13/(ii) with y = α.
Second proposition : Note that when the dishonest player is the sender of mt, E[Zt | Lt−1] =
I(Mt;X|Y R<tΠ̃′<t) = 0 (by definition of a protocol), so in this case the statement trivially follows
as Xt ≥ 0. Otherwise, when the dishonest player is the receiver of mt, the first proposition of

Lemma 32 guarantees that E[1tτ` ] ≥
γt1
2 ≥

1
2 · ((pt − qt)

2 ± 2−`). We therefore have

λ · E[Zt | Lt−1] =
α

18

(
E

[
D

(
Mt|xyr<tπ̃′<t
Mt|yr<tπ̃′<t

)]
− 18 · 2−`

)

=
α

18

(
D

(
pt

qt

)
− 18 · 2−`

)
(By definition of pt, qt in (14))

≤ α

18

(
9

2
· (pt − qt)2 − 18 · 2−`

)
(By Proposition 14 and smoothness of the honest player’s messages)

=
α ·
(

1
2(pt − qt)2 − 2−`

)
2

≤
α · γ

t
1
2

2
≤
α · E[1tτ` ]

2
=

1

2
· E[Xt | Lt−1]. (29)

We may now apply Lemma 44 to conclude that L is a sub-martingale, which completes the proof.
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To prove the third proposition of Theorem 31, we shall show that the value of the sub-martingale
L at the stopping time C is sharply concentrated. This is the content of the next claim:

Claim 36. For all k ≥ 1, it holds that Pr[LC < −k] ≤ 2−Ω(k).

To see how Claim 36 finishes the proof, note that LC ≥ −k implies

C∑
t=0

1tτ̃` −
α

18
· Dπ̃′X (M≤C) + C · α · 2−` −

Dπ̃′X (T≤C)− 74αC ·H(2−`)− C/(‖θ‖+ 1)

8 · 296 · log(2 · 296(‖θ‖+ 1))
> −k. (30)

Applying the same calculation as in (36) and recalling that the value of Count is at most d4αρe at
the aborting index C ≤ (‖θ‖+ 1), we can rearrange (30) to obtain

α

18
· Dπ̃′X (M≤C) +

Dπ̃′X (T≤C)

8 · 296 · log(2 · 296(‖θ‖+ 1))
≤ d4αρe+ α+ 1 + k ≤ 5αρ+ k.

Since both terms in the LHS are non-negative, each of them must be at most 5αρ + k. Recalling
that α = ln(1/δ)/ρ, we get:

• α
18 · D

π̃′
X (M≤C) ≤ 5αρ+ k =⇒ Dπ̃′X (M≤C) ≤ 5αρ · 18

α + 18·k
α = 18ρ(k + 5).

• Dπ̃′X (T≤C) ≤ (8 · 296 · log(2 · 296(‖θ‖+ 1))) · 5αρ+ k ≤ O(k + ln(1/δ)) log(‖θ‖+ 1).

Thus, whenever LC ≥ −k, it holds that Dπ̃′X (M≤C) + Dπ̃′X (T≤C) ≤ O(k(I/δ + log(‖θ‖+ 1))), (since
ρ = I/δ). Finally, by Claim 36 and (23) we conclude that for a sufficiently large constant λ > 0,

Pr[Dπ̃
′
X (Π̃′) > λk(I/δ + log(‖θ‖+ 1))] ≤ 2−Ω(k),

completing the entire proof of Theorem 31. It therefore remains to prove Claim 36.

Proof of Claim 36. For simplicity of notation, let us rewrite the sub-martingale L as in (25):

Lj =

j∑
t=1

Xt −

(
λ ·

j∑
t=1

Zt +

∑j
t=1 Yt −

j
K

8β · log(2βK)

)
.

We would like to apply Azuma’s inequality (Theorem 17) to L. Unfortunately, it is easy to see that
|Lj − Lj−1| may be as large as ≈ 1 (e.g, if Xj = 1 and Zj ≈ 0, i.e, 1tτ̃` = 0 but pj ≈ qj). With this
bound Azuma’s inequality will give a very weak concentration bound. To circumvent this problem,
let us define the sub-process L′ = {Lj1 , Lj2 , Lj3 , . . .} such that

ji+1 = min(C , {j : j > ji |Lj − Lji | > 1}). (31)

Claim 37. L′ is also a sub-martingale.

Proof. For every j, the index ji+1 is a stopping rule with respect to the sub-martingale {Lj+1, Lj+2, . . .}.
Hence by the optional stopping theorem we have E[Lji+1 | Lji ] ≥ Lji .

Now, observe that (31) implies that for every i,

ci := |Lji+1 − Lji | ≤ 2 almost surely. (32)

Define a stopping rule for L′ as follows: C ′ = min{ji = C , Lji < −k}.
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Claim 38. C ′ ≤ d4αρe+ k.

Proof. If C ′ is such that ji = C, then
∑C′

t=1Xt ≤ d4αρe (this is the definition of the index C).

Otherwise, −
(
λ ·
∑C′

t=1 Zt +
∑C′
t=1 Yt−

j
K

8β·log(2βK)

)
< −k (since the contribution of Xt is nonnegative). But

both expressions
∑j

t=1Xt and −
(
λ ·
∑j

t=1 Zt +
∑j
t=1 Yt−

j
K

8β·log(2βK)

)
are monotone in t (see the definitions

in Claim 35 and recall that divergence is non-negative). Therefore, |Lji+1 − Lji | > 1 implies that

in each step of L′, either
∑ji+1

t=1 Xt increased by ≥ 1, or −
(
λ ·
∑ji+1

t=1 Zt +
∑ji+1
t=1 Yt− j

K
8β·log(2βK)

)
decreased

by ≥ 1. The claim follows.

We now apply Azuma’s inequality (Theorem 17) to the sub-martingale L′, setting Xi = Lji ,
N = C ′ and ci = |Lji+1 − Lji | ≤ 2. The theorem implies that for any k ∈ R+,

Pr[LC ≤ −k] ≤ Pr[LC′ ≤ −k] ≤ exp

(
− k2

2
∑C′

i=0 c
2
i

)
≤ exp

(
− k2

2 · (d4αρe+ k) · 4

)
≤ exp

(
− k2

8 ln(1/δ) · k

)
≤ exp (−Ω(k))

where the first transition follows from the fact that LC′ < LC , and the third transition follows from
Claim 38, and the definition of α = ln(1/δ)/ρ. This concludes the proof of of the claim and the
entire proof of Theorem 31.

9 Towards better interactive compression?

In this section we discuss the implications of our construction for the interactive compression ques-
tion. While we do not prove new compression results, our construction helps clarify the main
challenges involved in improving the current state-of-the-art in compressing interactive communi-
cation.

As mentioned in the introduction, the problem of compressing interactive communication can
be summarized as follows: “Given a protocol π whose information cost IC(π, µ) is I and whose
communication cost is C, is there an equivalent — compressed — protocol π′ that only uses O(I)
communication?”. Note that if π is non-interactive then the answer to this question is positive
[Huf52]. A more modest goal would be to compress π into a protocol π′ that uses some function
f(I, C) of communication, such as f(I, C) = poly(I) · polylog(C). The compression question is
closely related to the direct sum problem for randomized communication complexity. In fact, these
questions are essentially equivalent to each other [BR11] — the better we can compress, the stronger
direct sum holds for communication complexity

The two best general compression results to date are incomparable to each other. The first
one, due to [BBCR10], gives f(I, C) = Õ(C1/2 · I1/2). The second one, due to [Bra12], gives
f(I, C) = 2O(I). Note that the second bound becomes non-trivial once I � logC. More precisely,
the compression scheme of [Bra12] starts with an information-I protocol, and produces a 2O(I/ε)-
communication protocol while failing with probability ε. Failing with probability ε is inevitable,
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since I is an average-case quantity, and thus with a small probability ε the information cost of
π will be very high (potentially as high as I/ε) making it impossible to compress in less than
2O(I/ε)-communication with existing techniques. However, one can easily extend the compression
result of [Bra12] to show that if we are given a π whose information cost is uniformly bounded by
I (i.e. with high probability over paths taken by the protocol, the divergence cost is bounded by
I), then one can compress π into 2O(I) communication while only introducing a negligible amount
of additional error:

Claim 39 (Adapted from [Bra12]). Let ρ, ε > 0 be error parameters, and let π an ε-error protocol
for f , such that Prµ[Dπxyr(m) > I] ≤ ρ. Then for any distribution µ, CCµρ+ε(f) ≤ 2O(I).

Claim 39 gives rise to the following strategy for compressing a protocol π: (1) partition π into
pieces π1, π2, . . ., such that each piece reveals only I1 bits of information (thus the total number of
pieces is ∼ I/I1); (2) compress each piece using 2O(I1) communication. Such a plan, if successful,
would yield a total communication cost of O(2O(I1) · I/I1). If one can make I1 as small as O(1),
this would give a method for interactive compression.

Indeed, this strategy has been successfully carried out in [BBCR10] for compressing to ex-
ternal information cost of π. The external information cost ICext(π) of π measures the amount
of information π(X,Y ) reveals about X,Y to an external observer. It is always the case that
ICext(π) ≥ IC(π) = I, and thus compressing a protocol to ICext(π) := Iext is easier than com-
pressing it to I. Since step (2) of the strategy is guaranteed by Claim 39, the main challenge is
executing step (1). “Partitioning” means terminating π after ∼ I1 information has been revealed.
This produces the first piece π1. Then terminating after another ∼ I1 information is revealed
produces π2 etc. In the case of external information Alice can privately estimate the amount of
information learnt by an external observed from her messages (since she has the ability to take the
external observer’s point of view). A similar statement holds about Bob. This allows Alice and
Bob to partition the protocol into pieces of low (O(1)) external information cost, thus enabling
compression of π to O(Iext · polylog(C)) communication.

Is a similar partitioning possible for internal information instead of external? This question
is essentially equivalent to the odometer problem studied in this paper. In particular, we can
use our odometer construction to pause the protocol π after O(1) bits of information have been
communication. Unfortunately, in the process we reveal an additive overhead of O(logC) bits of
information, and thus the resulting information complexity of each part π1, π2, . . . is O(logC) rather
than O(1). Thus after applying step (2) of the compression plan we get a total communication cost
of I · 2O(logC), which is not better than the original cost C. However, note that any improvement
on the (exponential) dependence on I in the result of [Bra12] would imply a nontrivial compression
result. This statement can be generalized as follows: Each chunk πi has information complexity
I1 = O(logC), and communication complexity C1 ≤ C. Therefore, if we could compress πi into
a protocol π′i of communication complexity g(I1, C1), the odometer will imply that any π can be
compressed to O(I · g(I1, C1) communication. We thus obtain the following claim6:

Claim 40. Suppose there is a compression protocol that takes as an input a protocol π1 with
communication cost C1 and worst case information cost I1, and compresses it into a protocol π′1 of
communication complexity g(C1, I1). Then a protocol π with communication cost C and information
cost I can be compressed into a protocol with communication cost Õ(I · g(C, logC)).

6Since, at this point, this is a qualitative statement, we leave errors out of the statement to avoid complicating
the notation.
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Claim 40 implies that it is sufficient to compress protocols whose information cost is logarithmic in
their communication cost. In particular, if one could compress a protocol with communication cost
C and information cost logC to a protocol with communication cost g(C, logC) = Co(1), it would
imply that any protocol with communication cost C and information cost I can be compressed
to communication I · Co(1). Note that both the scheme from [BBCR10] and [Bra12] yield only an
upper bound of g(C, logC) = CO(1) in this case.
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A Remaining Proof of Theorem 3

We proceed to show that π aborts with with small probability (≤ 15ε), and that is has low in-
formation cost (O(ρ + log ‖θ‖)). We begin with the following lemma, which asserts the intuition
that, since θ is ε-close a low-information distribution q, most paths in θ cannot reveal too much
information. We defer its proof to Section D:

Lemma 41. θ
(
Dθxyr(m) > ρ

)
< 14ε.

For fixed x, y, r,m, define C to be the index at which the protocol aborted (if exists). That is,
C is the smallest index j ∈ [‖θ‖] s.t

Count(x, y, r,m≤j) > 4αρ.

If no such j exists in m, define C := ‖θ‖+ 1. Note that C is a random variable even after having
fixed x, y, r,m.

We first argue that π is a good simulation of θ:

Claim 42. π 15ε-simulates θ.

Proof. It suffices to show that the probability that π aborts is 15ε.

Pr[π aborts] ≤ Pr[Count(x, y, r,m) > 4αρ]

≤ θ(Dθxyr(m) > ρ) + Pr[Count(x, y, r,m) > 4αρ | Dθxyr(m) ≤ ρ]
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The first term is ≤ 14ε by Lemma 41. The second term can be bounded as follows. Let ε′ := ‖θ‖/2`
(ε′ = 1/‖θ‖ < 1 by choice of ` in π). Then whenever Dθxyr(m) ≤ ρ,

4αρ ≥ 3α(ρ+ ε′) ≥ 3α(Dθxyr(m) + ε′) ≥ E[Count(x, y, r,m)],

where the last inequality is by Claim 26. Since conditioned on m, Count(x, y, r,m) is the sum of
independent random variables, applying Corollary 16 with β := α(ρ+ ε′), δ := 2, we get

Pr
[
Count(x, y, r,m) > 4αρ | Dθxyr(m) ≤ ρ

]
≤ Pr

[
Count(x, y, r,m) > 3α(ρ+ ε′)

]
= e−

2α(ρ+ε′)
2 ≤ e−αρ = ε

by choice of α := ln(1/ε)/ρ. In conclusion, |π − θ| ≤ 14ε+ ε = 15ε , as desired.

We now turn to argue about the information cost of π. To this end, let us denote by M<C the
transcript corresponding to all messages of θ sent in π, and by T≤C the transcript corresponding
to the “odometer” messages sent in step 2 of π (i.e, the concatenated transcripts of τ` in all rounds
where it was executed). In this notation, we have that for all j ∈ [‖π‖],

Π≤j = M≤jT≤j .

In particular, Π = M<CT≤C . Define the divergence cost of each transcript as follows:

DθXY R(M≤j) :=

j∑
t=1

[
D

(
Mt|XY RM<t

Mt|Y RM< t

)
+ D

(
Mt|XY RM<t

Mt|XRM<t

)]
,

DθXY RM (T≤j) :=

j∑
t=1

[
D

(
Tt|XY RΠ<t

Tt|Y RΠ<t

)
+ D

(
Tt|XY RΠ<t

Tt|XRΠ<t

)]
. (33)

The proof of the following claim is deferred to Section E.

Claim 43. IC(π) ≤ E[DθXY R(M<C)] + E[DθXY RM (T≤C)] + 4 log(‖θ‖+ 1).

To complete the proof, it remains to bound E[DθXY R(M<C)] and E[DθXY RM (T≤C)]. We shall
show that the first term is O(ρ), and the second one is O(log ‖θ‖).

The intuition for the proof is as follows. Lemma 26 shows that the variable Count(x, y, r,m≤j)
(normalized by α) is an unbiased estimator for the divergence cost Dθxyr(m≤j) of the path m≤j .

Therefore by the end of the protocol, E[DθXY R(M<C)] is essentially upper bounded by the (nor-
malized) value of Count, which by construction is O(ρ). As for E[DθXY RM (T≤C)], the second
proposition of Corollary 20 ensures that the information cost of τ` at round t is is comparable to
that leaked by mt in round t of θ (the latter is Θ((pt − qt)2), and the former is O(H((pt − qt)2))).
Since τ` is only executed w.p α ≈ 1/ρ at each round, this fact (roughly) implies E[DθXY RM (T≤C)] ≤
α · E[DθXY R(M<C)] · log(‖θ‖) = O(αρ · log(‖θ‖)) = O(log(‖θ‖)).

It turns out that the right way to formalize this intuition is using (very basic) martingale theory,
by viewing the information cost of π as a stochastic process, with the “aborting” index C serving as
a stopping rule for that process. The primary reason for doing so is the optional stopping theorem
[Doo75], which allows one to relate the expected value of a (sub)martingale at stopping time to its
initial value. We begin with the following general lemma, which is used several times in this paper:
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Lemma 44. Let {Xt}Kt=0, {Yt}Kt=0, {Zt}Kt=0 be three stochastic processes in the same probability
space, Xt, Yt, Zt ≥ 0. For every j ∈ [K], let

Lj :=

j∑
t=1

Xt − λ ·
j∑
t=1

Zt −
∑j

t=1 Yt −
j
K

8β · log(2βK)
.

If for every t ∈ [K] it holds that

(i) E[Yt|Lt−1] ≤ β ·H(E[Xj |Lt−1])

(ii) λ · E[Zt|Lt−1] ≤ 1
2 · E[Xj |Lt−1]

then L := {Lj}Kj=0 is a submatringale ( i.e, E[Lj | Lj−1] ≥ Lj−1 ∀ j).

The proof is short but technical, so we defer it to Section F. We are now ready to prove our
claim:

Claim 45. There is a global constant λ > 0 such that

E[DθXY R(M<C)] + E[DθXY RM (T≤C)] ≤ 30ρ+ λ log(1/ε) log(‖θ‖+ 1).

Proof. Recall that in each round t the protocol τ` is executed with probability α, and that Tt denotes
the transcript of τ` in round t (Tt = ∅ if τ` was not executed in this round). Then T≤C = T1T2 . . . TC .
Furthermore, note that for any round t, Tt is independent from T<t given X,Y,R,M (since τ` is
executed with independent randomness in each round, and we may assume, for analysis purpose,
that M ∼ θ was sampled in the beginning of π since the order doesn’t affect the distribution of
Tt). This means that π(Tt|xyrπ<t) = π(Tt|xyrm<t). Now, for any j ∈ [‖θ‖], define

Lj :=

j∑
t=0

1tτ` −
α

6
· DθXY R(M≤j) + j · α · 2−` −

DθXY RM (T≤j)− 74αj ·H(2−`)− j/(‖θ‖+ 1)

8 · 74 · log(2 · 74(‖θ‖+ 1))
. (34)

Note that L := {Lj}(‖θ‖+1)
j=0 is a stochastic process. Our main effort will be to show that L is in

fact a sub-martingale:

Claim 46 (L is a sub-martingale). E[Lj | Lj−1] ≥ Lj−1.

Let us first see why this finishes the proof of Claim 45. The index C at which the protocol π
aborts is a well defined stopping rule for L (C = min{j > 0 :

∑j
t=1 1tτ` = d4αρe}), hence the

optional stopping theorem [Doo75] together with Claim 46 implies that E[LC ] ≥ E[L0] = 0, i.e,

d4αρe ≥ E

[
C∑
t=1

1tτ`

]
≥

≥ α

6
· E[DθXY R(M<C)]− (‖θ‖+ 1) · α · 2−` +

E[DθXY RM (T≤C)]− 74(‖θ‖+ 1) ·H(2−`)− 1

8 · 74 log(2 · 74(‖θ‖+ 1))
(35)

since by definition the value of Count is at most d4αρe at the aborting index C, and j ≤ (‖θ‖+ 1).
Note that

74αC ·H(2−`)] ≤ 74(‖θ‖+ 1) ·H(2−`) ≤ 74(‖θ‖+ 1) · 2
√

2−` ≤ 74(‖θ‖+ 1) · 2/(‖θ‖+ 1) = 148
(36)
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by Proposition 13/(i) and choice of ` = 2 log(‖θ‖ + 1). Thus by (35) and the fact that 2−` <
1/(‖θ‖+ 1), we have

d4αρe ≥ α

6
· E[DθXY R(M<C)]− α+

E[DθXY RM (T≤C)]− 149

8 · 74 log(2 · 74(‖θ‖+ 1))

≥ α

6
· E[DθXY R(M<C)]− α+

E[DθXY RM (T≤C)]

8 · 74 log(2 · 74(‖θ‖+ 1))
− 1 (37)

so rearranging implies

α

6
· E[DθXY R(M<C)] +

E[DθXY RM (T≤C)]

8 · 74 log(2 · 74(‖θ‖+ 1))
≤ d4αρe+ α+ 1 ≤ 5αρ.

Since both terms in the LHS are non-negative, (37) implies in particular that each of them is at
most 5αρ, therefore:

• α
6 · E[DθXY R(M<C)] ≤ 5αρ =⇒ E[DθXY R(M<C)] ≤ 5αρ · 6

α = 30ρ.

• E[DθXY RM (T≤C)] ≤ (8 · 74 log(2 · 74(‖θ‖+ 1))) · 5αρ ≤ λαρ · log((‖θ‖+ 1)),

for a sufficiently large constant λ > 0. Finally, recalling that α = ln(1/ε)/ρ, we conclude that

E[DθXY R(M<C)] + E[DθXY RM (T≤C)] ≤ 30ρ+ λ log(1/ε) log(‖θ‖+ 1) (38)

which finishes the proof of the claim.

It therefore remains to prove that L is indeed a sub-martingale. This argument is the heart of
the proof, as it is the only place where we use the “low information” guarantee of our odometer
(second proposition of Corollary 20).

Proof of Claim 46. Suppose j is odd (an analogues argument follows for even j). Set:

• K = ‖θ‖+ 1.

• Xt = 1tτ` .

• Yt = D

(
Tt|XY RΠ<t

Tt|Y RΠ<t

)
− 74α ·H(2−`).

• Zt = D

(
Mt|XY RM<t

Mt|Y RM<t

)
− 6 · 2−`.

• λ = α/6.

• β = 74.

By the definitions in (33) and since τ` is executed with probability α at each round, in this notation
(34) can be rewritten as

Lj =

j∑
t=1

Xt − λ ·
j∑
t=1

Zt −
∑j

t=1 Yt −
j
K

8β · log(2βK)
. (39)

We are thus in the setup of Lemma 44. To apply the Lemma, we must show that:
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1. E[Yt|Lt−1] ≤ β ·H(E[Xj |Lt−1]).

2. λ · E[Zt|Lt−1] ≤ 1
2 · E[Xj |Lt−1].

First proposition :

E[Yt | Lt−1] = α · E

[
D

(
Tt|xyrπ<t
Tt|yrπ<t

)]
− 74α ·H(2−`)

= α · E

[
D

(
Tt|xyrm<t

Tt|yrπ<t

)]
− 74α ·H(2−`)

(Since Tt is independent of T<t given XY RM<t, and therefore π(Tt|xyrπ<t) = π(Tt|xyrm<t))

= α · E

[
D

(
Tt|pt

Tt|yrπ<t

)]
− 74α ·H(2−`) (Since π(Tt|xyrm<t) = π(Tt|pt) by definition of pt)

≤ α · E

[
D

(
Tt|pt
Tt|qt

)]
− 74α ·H(2−`) (By Fact 12, setting T = Tt, X = pt, Y = yrπ<t, Z(yrπ<t) = Tt|qt)

≤ α ·

(
16E

[
D

(
pt

qt

)]
+ 2E[H(2(pt − qt)2)]

)
− 74α ·H(2−`) (second proposition of Corollary 20)

≤ α ·
(

16 · 9

2
· E[(pt − qt)2] + 2E[H(2(pt − qt)2)]

)
− 74α ·H(2−`) (by Proposition 14)

≤ α ·
(
72 · E[2(pt − qt)2] + 2H(E[2(pt − qt)2])

)
− 74α ·H(2−`) (by concavity of H(x))

≤ 74α ·H(E[2(pt − qt)2])− 74α ·H(2−`)

= 74α · (H(E[2(pt − qt)2])−H(2−`))

≤ 74α ·H(E[1tτ` ]) (40)

≤ 74 ·H(α · E[1tτ` ]) (by Proposition 13/(ii) taken with y = α)

= 74 ·H(E[Xt|Lt−1]) (41)

where transition (40) follows from Proposition 13/(iv) taken with x = 2(pt − qt)2,y = E[1tτ` ] and

ε = 2−` , and Corollary 20) which implies |E[1tτ` ] − 2(pt − qt)2| ≤ 2−`. In the last inequality we
used the fact that 1tτ` is independent from Lt−1 given m<t.

Second proposition : Recall that by the first proposition of Corollary 20, E[1tτ` ] ∈ 2(pt−qt)2±2−`.
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We have

λ · E[Zt | Lt−1] =
α

6

(
D

(
Mt|xyrm<t

Mt|yrm<t

)
− 6 · 2−`

)
=
α

6

(
D

(
Mt|pt

Mt|yrm<t

)
− 6 · 2−`

)

≤ α

6

(
D

(
Mt|pt
Mt|qt

)
− 6 · 2−`

)
(By Fact 12, setting T = Mt, X = pt, Y = yrπ<t, Z(yrπ<t) = Mt|qt)

α

6

(
D

(
pt

qt

)
− 6 · 2−`

)
(By definition of pt, qt)

≤ α

6

(
9

2
· (pt − qt)2 − 6 · 2−`

)
(By Proposition 14 and smoothness of θ)

=
α ·
(

3
2(pt − qt)2 − 2−`

)
2

≤
α · E[1tτ` ]

2
=

1

2
· E[Xt | Lt−1] (42)

where we used again the fact that 1tτ` is independent from the history given m<t.
We may now apply Lemma 44 to conclude that L is a sub-martingale, which completes the proof.

In conclusion, Claims 43 and 45 together imply that the information cost of π is at most

IC(π) ≤ 120ρ+ λ log(1/ε) log(‖θ‖) + 4 log(‖θ‖+ 1) ≤ O
(
Iq + log(‖θ‖+ 1)

ε2

)
since ρ =

2Iq+4/(e ln 2)+3 log(‖θ‖+1)
ε2

+ 2 log(1/ε)
ε . This concludes the whole proof of Theorem 3.

B Proof of Lemma 19

Recall that our goal is to show that for any p, p′ ∈ (1/3, 2/3), D

(
Zp

Zp′

)
≤ 8(p− p′)2.

Proof. Assume w.l.o.g that p < p′ < 1/2 (recall that for p > 1/2, µ1−p(1 − z) = µp(z), so the
following argument applies to all ranges of p, p′ ). Recall that Supp(Z) = [0, 1]. We divide [0, 1]
into regions, and bound the contribution of each separate region to the divergence:

Region 1: z ∈ [0, p]. Note that in this region, µp′(z) − µp(z) = 4(p′ − z) − 4(p − z) = 4(p′ − p).
Therefore,

C(1) :=

∫ p

0
µp(z) log

(
µp(z)

µp′(z)

)
dz =

∫ p

0
µp(z) log

(
µp(z)

µp(z) + 4(p′ − p)

)
dz =

= −
∫ p

0
µp(z) log

(
1 +

4(p′ − p)
µp(z)

)
dz ≤ −

∫ p

0
µp(z)

(
4(p′ − p)
µp(z)

)
dz = −4(p′ − p)p,

where the inequality follows from the fact that log(1+x) ≤ x+x2/2, and we may drop the squared
term since its contribution is negative.
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Region 2: z ∈ (p, p′]. By definition of µp, in this region: µp(z) = 4(z − p), µp′(z) = 4(p′ − z).
Therefore,

C(2) :=

∫ p′

p
µp(z) log

(
µp(z)

µp′(z)

)
dz =

∫ p′

p
4(z − p) log

(
z − p
p′ − z

)
dz ≤ 4

∫ p′

p
(z − p) log

(
p′ − p
p′ − z

)
dz

where the inequality follows from the fact that µp(z) = z−p < p′−p in this region. For convenience,
define α := p′ − p, and set y = z − p. Then the above becomes

= 4

∫ α

0
y log

(
α

α− y

)
dy ≤ 4α

∫ α

0
log

(
α

α− y

)
= 4α · [(y − α) log(α/(α− y) + y))]α0 =

= 4α · [“0 log(0)” + α+ α log(α/α)] = 4α2 = 4(p′ − p)2.

where we used the fact that limx→0 x log(x) = 0.

Region 3: z ∈ (p′, p+1/2]. Note that in this region, µp′(z)−µp(z) = 4(z−p′)−4(z−p) = −4(p′−p).
Similarly to the calculation in Region 1, the contribution in this region is

C(3) =

∫ p+1/2

p′
µp(z) log

(
µp(z)

µp(z)− 4(p′ − p)

)
dz = −

∫ p+1/2

p′
µp(z) log

(
1− 4(p′ − p)

µp(z)

)
dz ≤

≤
∫ p+1/2

p′
µp(z)

(
4(p′ − p)
µp(z)

)
dz = 4(p′ − p)(p+ 1/2− p′),

where the inequality follows again from the fact that log(1 + x) ≤ x+ x2/2, and we may drop the
squared term since its contribution is negative.

Region 4: z ∈ (p+ 1/2, p′ + 1/2]. In this region, µp(z) = 4(1 + p− z) ≤ 2 (for z = p+ 1/2), and
µp′(z) = 4(z − p′) ≥ 4(p+ 1/2− p′) = 2− 4(p′ − p) (for z = p+ 1/2). Therefore

C(4) ≤
∫ p′+1/2

p+1/2
4(1 + p− z) log

(
2

2− 4(p′ − p)

)
dz = −4 log[1− 2(p′ − p)]

∫ p′+1/2

p+1/2
4(1 + p− z)dz =

= −4 log[1− 2(p′ − p)] · [(1 + p)z − z2/2]
p′+1/2
p+1/2 =

= −4 log[1− 2(p′ − p)] · [(p′ − p)(1 + p)− 1

2
· (p′ − p)(p′ + p+ 1/2)] =

= −4 log[1− 2(p′ − p)] · [(p′ − p)(1 + p− p′/2− p/2− 1/2] ≤

≤ −4 log[1− 2(p′ − p)] · p
′ − p
2
≤ 4 · 2(p′ − p) · p

′ − p
2

= 4(p′ − p)2.

where in the first inequality in the last line we used the fact that p − p′/2 − p/2 < 0 since p < p′

by assumption.

Region 5: z ∈ (p′ + 1/2, 1]. Note that in this region, µp′(z) − µp(z) = 2 − 4(z − p′ − 1/2) − [2 −
4(z − p− 1/2)] = 4(p′ − p). Then by the same calculation as in Region 1, the contribution in this
region is

C(5) = −
∫ 1

p′+1/2
µp(z) log

(
1 +

4(p′ − p)
µp(z)

)
dz ≤ −

∫ 1

p′+1/2
µp(z)

(
4(p′ − p)
µp(z)

)
dz = −4(p′ − p)(1/2− p′).
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Concluding:

D

(
Zp

Zp′

)
=

5∑
i=1

C(i) = [C(1) + C(3) + C(5)] + [C(2) + C(4)] ≤

≤ [4(p′ − p)(−p+ p+ 1/2− p′ − 1/2 + p′)] + 2 · 4(p′ − p)2 = 0 + 8(p′ − p)2 = 8(p′ − p)2.

C Proof of Proposition (4)

Proof. By linearity of expectation and definition of the divergence cost, we have

Exyrm∼θ
[
Dθxyr(m)

]
=

‖θ‖∑
t=1

Exyrm∼θ

[
D

(
θ(mt|m<txyr)

θ(mt|m<txr)

)
+ D

(
θ(mt|m<txyr)

θ(mt|m<tyr)

)]
=

=

‖θ‖∑
t=1

Exyrm<t∼θ

[
D

(
θ(mt|m<txyr)

θ(mt|m<txr)

)
+ D

(
θ(mt|m<txyr)

θ(mt|m<tyr)

)]
=

=

‖θ‖∑
t=1

Iθ(Mt;Y |XRM<t) + Iθ(Mt;X|Y RM<t) =

= Iθ(M ;Y |XR) + Iθ(M ;X|Y R) = IC(θ),

where in the second equality we used the fact that the t’th term is independent of m>t, the third
equality follows from the definition of (conditional) mutual information, and the fourth equality
follows from the chain rule (Fact 11).

D Proof of Lemma 41

We will need the following lemma from [BRWY12], which shows that if a variable A is statistically
close to having low information, then some prefix A≤K of A usually has low information: to
A≤K , one can obtain a new variable that is statistically close to the old one, yet actually has low
information.

Lemma 47 (Truncation Lemma [BRWY12]). Let p(a, b, c)
ε
≈ q(a, b, c) where a = a1, . . . , as. For

every a, b, c, define k to be the minimum number j in [s] such that

log
p(a≤j |bc)
p(a≤j |c)

> β.

If no such index exists, set k = s+ 1. Then,

p(k < s+ 1) <
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.
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Proof of Lemma 41. Let

β :=
Iq + 1/(e ln 2) + log(‖θ‖+ 1)

ε
+ log(1/ε) + 2.

For any x, y, r,m, let k denote the smallest index j such that either∑
t≤j,t odd

log
θ(mt|xrm<t)

θ(mt|yrm<t)
> β or

∑
t≤j,t even

log
θ(mt|yrm<t)

θ(mt|xrm<t)
> β. (43)

If no such index, define k = ‖θ‖+ 1. Note that the random variable7 K is a function of X,Y,R,M .

We prove the following three Claims in order:

Claim 48. Eθ[Dθxyr(m<k)] ≤ 2(β + log(‖θ‖+ 1)).

Claim 49. The probability of “truncation” is small: θ(k ≤ ‖θ‖) < 13ε.

Claim 50. For any ρ > 0, θ(Dθxyr(m) > ρ) ≤ θ(Dθxyr(m<k) > ρ) + (k ≤ ‖θ‖).

To prove the lemma using the above claims, set ρ := [2β + 2 log(‖θ‖ + 1)]/ε. Since diver-
gence is non-negative (Lemma 10), Dθxyr(m<k) ≥ 0. Thus it follows from Markov’s inequality that

θ(Dθxyr(m<k) > ρ) ≤ Eθ[Dθxyr(m<k)]/ρ. By Claims 48,49 and 50, we conclude that

θ

(
Dθxyr(m) >

2Iq + 4/(e ln 2) + 3 log(‖θ‖+ 1)

ε2
+

2 log(1/ε)

ε

)
≤ θ

(
Dθxyr(m) >

2β + 2 log(‖θ‖+ 1)

ε

)
= θ(Dθxyr(m) > ρ) ≤ θ(Dθxyr(m<k) > ρ) + (k ≤ ‖θ‖) ≤ 2(β + log(‖θ‖+ 1))

2(β + log(‖θ‖+ 1))/ε
+ 13ε = 14ε.

We turn to prove Claims 48,49 and 50.

Proof of Claim 48. By definition, Eθ[Dθxyr(m<k)] = Iθ(X;M<K |Y R) + Iθ(Y ;M<K |XR).

Iθ(X;M<K |Y R) ≤ Iθ(X;KM<K |Y R) =
∑

x,y,r,k,m<k

θ(xyrkm<k) log
θ(km<k|xyr)
θ(km<k|yr)

=
∑

x,y,r,k,m<k

θ(xyrkm<k)

(
log

θ(M<k = m<k|xyr)
θ(M<k = m<k|yr)

+ log
θ(K = k|M<k = m<k, xyr)

θ(K = k|M<k = m<k, yr)

)
. (44)

7Since it can be ambiguous whether the expression p(mk) refers to p(MK = mk) or p(Mk = mk), we shall be more
explicit with the notation in the rest of this section. However, observe that p(mk, k) has only one interpretation, so
in such cases we use the more concise notation.
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The second term can be bounded as follows:∑
x,y,r,k,m<k

θ(xyrkm<k) log
θ(K = k|M<k = m<k, xyr)

θ(K = k|M<k = m<k, yr)

≤
∑

y,r,k,m<k

θ(yrkm<k) log
1

θ(K = k|M<k = m<k, yr)

≤ log
∑

y,r,k,m<k

θ(yrkm<k)

θ(K = k|M<k = m<k, yr)
by concavity of log

= log
∑

y,r,k,m<k

θ(M<k = m<k, yr) = log(‖θ‖+ 1). (45)

As for the first term,

log

(
θ(M<k = m<k|xyr)
θ(M<k = m<k|yr)

)
=

∑
j<k,j odd

log
θ(mj |xrm<j)

θ(mj |yrm<j)
+

∑
j<k,j even

log
θ(mj |yrm<j)

θ(mj |yrm<j)
,

where here we used the fact that since θ is a protocol, each (odd) message mj sent by Alice satisfies
θ(mj |xyrm<j) = θ(mj |xrm<j), and that a similar statement holds for Bob’s messages. Thus by
the definition of K, ∑

x,y,r,k,m<k

θ(xyrkm<k) log
θ(M<k = m<k|xyr)
θ(M<k = m<k|r)

≤ β. (46)

Combining (44), (45) and (46), with an analogues argument for Iθ(Y ;M<K |XR), we conclude that

Eθ[Dθxyr(m<k)] = Iθ(X;M<K |Y R) + Iθ(Y ;M<K |XR) ≤ 2(β + log(‖θ‖+ 1)).

Next, we prove Claim 49, showing that the probability that the index k “truncates” the protocol
is small:

Proof of Claim 49. For any x, y, r,m, let k′ denote the smallest index such that∑
j≤k′,j odd

log
θ(mj |xrm<j)

θ(mj |yrm<j)
> β − log(1/ε) or

∑
j≤k′,j even

log
θ(mj |yrm<j)

θ(mj |xrm<j)
> β − log(1/ε).

If no such index, define k′ = ‖θ‖+ 1. By Lemma 47, applied once with a := m, b := x, c := yr, and

once with a := m, b := y, c := xr (using the fact that θ(xyrm)
ε
≈ q(xyrm)), we have

θ(k′ ≤ ‖θ‖) < 2

(
Iq + 1/(e ln 2) + log(‖θ‖+ 1)

β − 2− log(1/ε)
+ 9ε/2

)
≤ 11ε, (47)

by choice of β. We shall show that θ(k < k′) < 2ε, which will complete the proof. Define

S1 =

(x, y, r,m) : k(x, y, r,m) ≤ ‖θ‖ and
∑

d≤k,d odd

log
θ(md|xrm<d)

θ(md|yrm<d)
≤ − log(1/ε)

 ,

S2 =

(x, y, r,m) : k(x, y, r,m) ≤ ‖θ‖ and
∑

d≤k,d even

log
θ(md|yrm<d)

θ(md|xrm<d)
≤ − log(1/ε)

 .
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Observe that k < k′ implies that (x, y, r,m) ∈ S1∪S2. We shall prove that θ(S1) ≤ ε and θ(S2) ≤ ε.
Consider the distribution

θ′(xyrm) = θ(xyr) ·
∏
d odd

θ(md|yrm<d) ·
∏
d even

θ(md|yrm<d).

Fix any (x, y, r,m) ∈ S1, and let k = k(x, y, r,m) be defined as above. We have:

log
θ(km≤k|xyr)
θ′(km≤k|xyr)

=
∑

d≤k,d odd

log
θ(md|xrm<d)

θ(md|yrm<d)
+

∑
d≤k,d even

log
θ(md|yrm<d)

θ(md|yrm<d)
+ log

θ(K = k|M≤k = m≤k, xyr)

θ′(K = k|M≤k = m≤k, xyr)

=
∑

d≤k,d odd

log
θ(md|xrm<d)

θ(md|yrm<d)
≤ − log(1/ε).

Thus θ(xyrkm≤k) ≤ ε · θ′(xyrkm≤k). So (here we set k = k(x, y, r,m) in the sum):

θ(S1) =
∑

(x,y,r,m)∈S1

θ(xyrm)

=
∑

(x,y,r,m)∈S1

θ(xyrkm≤k) · θ(m|xyrkm≤k)

≤ ε
∑

(x,y,r,m)∈S1

θ′(xyrkm≤k) · θ(m|xyrkm≤k) ≤ ε.

A similar argument proves θ(S2) ≤ ε. Thus, by (47), we have that θ(k ≤ ‖θ‖) ≤ θ(k′ ≤ ‖θ‖)+θ(k <
k′) < 11ε+ 2ε = 13ε as required.

Proof of Claim 50.

θ(Dθxyr(m) > ρ) =

= θ(Dθxyr(m) > ρ|k = ‖θ‖+ 1)θ(k = ‖θ‖+ 1) + θ(Dθxyr(m) > ρ|k ≤ ‖θ‖)θ(k ≤ ‖θ‖) ≤
≤ θ(Dθxyr(m<k) > ρ) + θ(k ≤ ‖θ‖)

where the last transition is by Claim 49 and since Dθxyr(m) = Dθxyr(m<k) whenever k = ‖θ‖+1.

E Proof of Claim 43

Proof. Recall that Π = M<CT≤C . By the chain rule,

I(Π;X|Y R) =
∑
j<C

I(MjTj ;X|Y RM<jT<j) =
∑
j<C

I(Mj ;X|Y RM<jT<j) + I(Tj ;Y |XRM≤jT<j)

≤
∑
j<C

I(Mj ;X|Y RM<j) + I(Tj ;Y |XRM≤jT<j) = I(M<C ;X|Y R) + I(T≤C ;X|Y RM<C)

≤ I(M<C ;X|Y R) + I(T≤C ;X|Y RM),
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where the inequality in the second line follows from Proposition 6 taken with A = X,B = Mj , C =
Y RM<j , D = T<j and since I(Mj ;T<j |XY RM<j) = 0, and the last inequality follows from Propo-
sition 7, as I(M≥C ;T≤C |M<CXY R) = 0. Repeating the same argument for I(Π;Y |XR), we have

IC(π) ≤ I(M<C ;X|Y R) + I(M<C ;Y |XR) + I(T≤C ;X|Y RM) + I(T≤C ;Y |XRM). (48)

We first show that I(M<C ;X|Y R) + I(M<C ;Y |XR) ≤ E[DθXY R(M<C)] + 2 log(‖θ‖+ 1). Note that
since M<C determines C, we have

I(M<C ;X|Y R) + I(M<C ;Y |XR) = I(CM<C ;X|Y R) + I(CM<C ;Y |XR) =

=
∑

x,y,r,c,m<c

π(xyrcm<c)

[
log

π(cm<c|xyr)
π(cm<c|yr)

+ log
π(cm<c|xyr)
π(cm<c|xr)

]

=
∑

x,y,r,c,m<c

π(xyrcm<c)

[
log

π(M<c = m<c|xyr)
π(M<c = m<c|yr)

+ log
π(M<c = m<c|xyr)
π(M<c = m<c|xr)

+

+ log
π(C = c|M<c = m<c, xyr)

π(C = c|M<c = m<c, yr)
+ log

π(C = c|M<c = m<c, xyr)

π(C = c|M<c = m<c, xr)

]
. (49)

Each of the the last two terms contributes at most log(‖θ‖ + 1) (See the calculation in (45)). We
shall show that the contribution of the first two terms is exactly E[DθXY R(M<C)], that is

Exyrcm
[
log

π(M<c = m<c|xyr)
π(M<c = m<c|yr)

+ log
π(M<c = m<c|xyr)
π(M<c = m<c|xr)

]
= Exyrcm[DθXY R(M<C)]. (50)

To this end, we define for any j ∈ [‖θ‖], the random variable

Lj := DθXY R(M≤j)−
[
log

θ(M≤j |XY R)

θ(M≤j |Y R)
+ log

θ(M≤j |XY R)

θ(M≤j |XR)

]
.

Note that L := {Lj}‖θ‖+1
j=0 is a stochastic process. In fact:

Claim 51. L is a martingale: E[Lj |Lj−1] = Lj−1.

Proof. We show that E[Lj | Lj−1] − Lj−1 = 0. Indeed, suppose w.l.o.g that j is odd, and fix the

choice of random variables up to Lj−1 (i.e, fix x, y, r,m<j). Since log
θ(m≤j |xyr)
θ(m≤j |yr) =

∑j
t=1 log θ(mt|m<txyr)

θ(mt|m<tyr) ,

and for odd j θ(mt|m<txyr) = θ(mt|m<txr), we have

E[Lj | Lj−1] = Emj

[
D

(
θ(mj |m<jxyr)

θ(mj |m<jyr)

)]
− Emj

[
log

θ(mj |m<jxyr)

θ(mj |m<jyr)

]
+ Lj−1.

Therefore,

E[Lj | Lj−1]− Lj−1 = Emj

[
D

(
θ(mj |m<jxyr)

θ(mj |m<jyr)

)]
− Emj

[
log

θ(mj |m<jxyr)

θ(mj |m<jyr)

]

= Emj

[
D

(
θ(mj |m<jxyr)

θ(mj |m<jyr)

)]
− D

(
θ(mj |m<jxyr)

θ(mj |m<jyr)

)
= 0,

where the second equality is by definition of KL-divergence, and in the last transition we may drop
the expectation over mj since it is already accounted for in the divergence term.
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Now, since the index C is a stopping rule for the martingale L, the optional stopping theorem
[Doo75] implies that E[LC ] = L0 = 0, in other words

0 = E[LC ] = Exyrcm
[
log

π(M<c = m<c|xyr)
π(M<c = m<c|yr)

+ log
π(M<c = m<c|xyr)
π(M<c = m<c|xr)

]
− Exyrcm[DθXY R(M<C)]

(51)

which proves (50), and together with (49), we conclude that

I(M<C ;X|Y R) + I(M<C ;Y |XR) ≤ E[DθXY R(M<C)] + 2 log(‖θ‖+ 1)

as desired. Since C is also a stopping rule with respect to

L′j := DθXY RM (T≤j)−
[
log

θ(T≤j |XY RM<C)

θ(T≤j |Y RM)
+ log

θ(T≤j |XY RM)

θ(T≤j |XRM)

]
,

repeating an analogues proof shows that I(T≤C ;X|Y RM)+I(T≤C ;Y |XRM) ≤ E[DθXY RM (T≤C)]+
2 log(‖θ‖+ 1), completing the proof of the entire Lemma.

F Proof of Lemma 44

Proof. We show E[Lj | Lj−1]−Lj−1 ≥ 0. To this end, Fix a choice of random variables up to Lj−1

(i.e, fix x<j , y<j). Since the first j − 1 terms cancel out,

E[Lj | Lj−1]− Lj−1 = E[Xj |Lj−1]− λ · E[Zt|Lt−1]−
E[Yj |Lj−1]− 1

K

8β · log(2βK)
. (52)

If E[Yj |Lj−1] < 1
K , we are done, since the contribution of the third term is non-negative, and by

the second premise of the lemma, E[Xj |Lj−1] − λ · E[Zt|Lt−1] ≥ E[Xj |Lj−1]/2 ≥ 0, since Xt ≥ 0
for all t. Otherwise, 1

K ≤ E[Yj |Lj−1]. Denoting ∆j := E[Xj |Lj−1], assumption (i) of the lemma
implies that E[Yj |Lj−1] ≤ β ·H∆j , so we have

1/K ≤ E[Yj |Lj−1] ≤ β ·H∆j ≤ 2β
√

∆j (by Proposition 13/(i))

=⇒ log(1/∆j) ≤ 2 log(2βK). (53)

Therefore, (52) is at least

≥ ∆j −
∆j

2
− λ · E[Zt|Lt−1]−

β ·H∆j − 1
K

8β · log(2βK)
(as E[Yj |Lj−1] ≤ β ·H∆j , λ · E[Zt|Lt−1] ≤ ∆j/2)

≥ ∆j

2
− 2β∆j log(1/∆j)

8β · log(2βK)
≥ ∆j

2
− 4β∆j log(2βK)

8β · log(2βK)
(By (53))

=
∆j

2
− ∆j

2
= 0.

This concludes that E[Lj | Lj−1]− Lj−1 ≥ 0 and thus finishes the proof.

46

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


