

Shrinkage of De Morgan Formulae from Quantum Query Complexity

Avishay Tal*

Abstract

We give a new and improved proof that the shrinkage exponent of De Morgan formulae is 2. Namely, we show that for any Boolean function $f : \{-1,1\}^n \to \{-1,1\}$, setting each variable out of x_1, \ldots, x_n with probability 1-p to a randomly chosen constant, reduces the expected formula size of the function by a factor of $O(p^2)$. This result is tight and improves the work of Håstad [Hås98] by removing logarithmic factors.

As a consequence of our results, the function defined by Andreev [And87], $A : \{-1,1\}^n \rightarrow \{-1,1\}$, which is in **P**, has formula size at least $\Omega(\frac{n^3}{\log^2 n \log^3 \log n})$. This lower bound is tight up to the $\log^3 \log n$ factor, and is the best known lower bound for functions in **P**. In addition, the functions defined in [KRT13], $h_r : \{-1,1\}^n \rightarrow \{-1,1\}$, which are also in **P**, cannot be computed correctly on a fraction greater than $1/2 + 2^{-r}$ of the inputs, by De Morgan formulae of size at most $\frac{n^3}{r^2 \operatorname{poly} \log n}$, for any parameter $r \leq n^{1/3}$.

The proof relies on a result from quantum query complexity by [LLS06, HLS07, Rei11]: for any Boolean function $f, Q_2(f) \leq O(\sqrt{L(f)})$, where $Q_2(f)$ is the bounded-error quantum query complexity of f, and L(f) is the minimal size De Morgan formula computing f.

^{*}Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, ISRAEL. avishay.tal@weizmann.ac.il. Supported by an Adams Fellowship of the Israel Academy of Sciences and Humanities, by an ISF grant and by the I-CORE Program of the Planning and Budgeting Committee.

1 Introduction

f

The problem of \mathbf{P} vs. \mathbf{NC}^1 is a major open-problem in computational complexity. It asks whether any function computable by a polynomial time Turing machine can also be computed by a formula of polynomial size. A *De Morgan formula* is a binary tree in which each leaf is labeled with a literal from $\{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\}$ and each internal node is labeled with either a Boolean AND or OR gate. Such a tree naturally describes a Boolean function on *n* variables by propagating values from leaves to root, and returning the root's value. The *formula size* is the number of leaves in the tree; for a Boolean function $f : \{-1, 1\}^n \to \{-1, 1\}^1$ we denote by L(f) the minimal size formula which computes f. Showing that some language in \mathbf{P} requires formulae of super-polynomial size would imply that $\mathbf{P} \not\subseteq \mathbf{NC}^1$.²

While showing super-polynomial formula size lower bounds for problems in \mathbf{P} would be a major breakthrough in complexity theory (and such lower bounds are not even known for **NEXP**). polynomial lower bounds for \mathbf{P} were achieved during the years. This line of research began with the work of Subbotovskaya [Sub61] who gave an $\Omega(n^{1.5})$ lower bound for the parity function. Subbotovskaya introduced the technique of random restrictions in her proof; a method which was applied successfully to solve other problems such as giving lower bounds for AC^0 . Subbotovskaya showed that the minimal formula size of a given function is shrunk by a factor of $O(p^{1.5})$ under a random restriction keeping each variable alive with probability p, and fixing it to a uniformly chosen random bit otherwise. We call such restrictions *p*-random restrictions, and denote the distribution of p-random restrictions by \mathcal{R}_p ; If $\rho \sim \mathcal{R}_p$, then $f|_{\rho}$ denotes the restriction of the function f by ρ . Since the parity function does not become constant after fixing less than all of its input bits, this implies that its size is at least $\Omega(n^{1.5})$. Khrapchenko [Khr71] used a different method to give a tight $\Omega(n^2)$ lower bound for the parity function. And rev [And 87] constructed a function in **P** and showed that its formula size is at least $\Omega(n^{2.5-o(1)})$. In fact, he got a lower bound of $\Omega(n^{\Gamma-o(1)})$ where Γ is the *shrinkage exponent* of De Morgan formulae - the maximal constant such that any De Morgan formula is shrunk be a factor of $O(p^{\Gamma})$ under p-random restrictions. Impagliazzo and Nisan [IN93] showed $\Gamma \ge 1.55$; Paterson and Zwick [PZ93] improved this bound to $\Gamma \ge 1.63$; and finally Håstad [Hås98] showed that $\Gamma > 2 - o(1)$. More precisely, Håstad proved the following result.

Theorem 1.1 ([Hås98]). Let f be a Boolean function. For every p > 0,

$$\mathop{\mathbf{E}}_{p\sim\mathcal{R}_p}\left[L(f|_{\rho})\right] \le O\left(p^2\left(1+\log^{3/2}\min\left\{\frac{1}{p},L(f)\right\}\right)L(f)+p\sqrt{L(f)}\right).$$

This result is essentially tight up to the logarithmic terms as exhibited by the parity function. The formula size of the parity function of n variables is $\Theta(n^2)$ (see [Lee07]). Applying a p-random restriction on the parity function yields a smaller parity function (or its negation) on k variables where $k \sim \operatorname{Bin}(n, p)$. By Khrapchenko's argument, the formula size of the restricted function is $\geq k^2$, thus the expected formula size is at least $\mathbf{E}[k^2] = p^2n^2 + p(1-p)n = \Omega\left(p^2L(f) + p\sqrt{L(f)}\right)$.

Other efforts have been made to give a function in **P** that requires super-polynomial formula size: Karchmer, Raz and Wigderson [KRW95] suggested a function in **P** that might require superpolynomial formula size. Recently, Gavinsky et al. [GMWW13] suggested an information theoretical approach to further understand the formula size of this function.

¹We identify the truth values **true** and **false** with -1 and 1 respectively.

²Here we think of the non-uniform version of **NC**¹: the class of languages $L \subseteq \{-1, 1\}^*$ such that for each length n there exists a Boolean formula F_n of size poly(n) which decides whether strings of length n are in the language.

Another recent line of work ([San10],[IMZ12],[KR13],[KRT13],[CKK⁺13],[CKS13]) concentrated on giving average-case formula lower bounds for problems in **P**. These works also explored applications of shrinkage properties of formulae to: pseudo-random generators, compression algorithms and non-trivial #SAT algorithms for small formulae. The state of the art average-case lower bound for De Morgan formulae is the result of Komargodski, Raz and Tal [KRT13] who gave an explicit $h_r: \{-1,1\}^n \to \{-1,1\}$ such that any formula that computes this function on a fraction $\frac{1}{2} + 2^{-r}$ must be of size at least $\frac{n^{3-o(1)}}{r^2}$ where r is an arbitrary parameter smaller than $n^{1/3}$.

1.1 Our Results

In this work, we give a new proof of Håstad's result. In fact, we obtain a tight result showing that the shrinkage exponent is exactly 2.

Theorem 1.2. Let f be a Boolean function. For every p > 0,

$$\mathop{\mathbf{E}}_{\rho \sim \mathcal{R}_p} [L(f|_{\rho})] = O\left(p^2 L(f) + p\sqrt{L(f)}\right) \,.$$

Note that both terms in Theorem 1.2 are essential as demonstrated by the parity function above. This improves the worst-case lower bound Håstad gave to Andreev's function to $\Omega\left(\frac{n^3}{\log^2 n(\log\log n)^3}\right)$ immediately (following the proof of Theorem 8.1 in [Hås98]). In addition, replacing Theorem 1.1 with Theorem 1.2 improves the analysis of the average-case lower bound in [KRT13].

Corollary 1.3. Let n be large enough, then for any parameter $r \leq n^{1/3}$ there is an explicit (computable in polynomial time) Boolean function $h_r : \{-1,1\}^{6n} \to \{-1,1\}$ such that any formula of size $\frac{n^3}{r^2 \cdot \text{poly} \log(n)}$ computes h_r correctly on a fraction of at most $1/2 + 2^{-r}$ of the inputs.

1.2 **Proof Outline**

The proof comes from a surprising area: quantum query complexity. The connection between De Morgan formulae and quantum query complexity was first noted in the work of Laplante, Lee and Szegedy [LLS06]. They showed that the quantum adversary bound is at most the square root of the formula size of a function. Høyer, Lee and Špalek [HLS07] replaced the quantum adversary bound by the negative weight adversary bound, achieving a stronger relation. The long line of works [FGG08], [Rei09], [ACR⁺10], [RS12], [Rei11] showed that the negative weight adversary bound is equal up to a constant to the bounded-error quantum query complexity of a function, $Q_2(f)$. Combining all these results yields $Q_2(f) = O(\sqrt{L(f)})$. By the connection of quantum query complexity to the approximate degree³, $deg(f) = O(Q_2(f))$, established by Beals et al. [BBC⁺01], we get a classical result: $deg(f) = O(\sqrt{L(f)})$ for any Boolean function f. To our best knowledge, no classical proof that $deg(f) = O(\sqrt{L(f)})$ is known – it might be interesting to find such.

Small formulae have exponentially small Fourier tails. We obtain a somewhat simpler proof of our main theorem, compared to Håstad's original proof, by taking the result $\widetilde{\text{deg}}(f) = O(\sqrt{L(f)})$ as a given. First, we note that by using amplification there exists a polynomial of

³The approximate degree of a function $f: \{-1,1\}^n \to \{-1,1\}$ is the minimal degree of a polynomial p(x) such that $|p(x) - f(x)| \le 1/3$ for all $x \in \{-1,1\}^n$.

degree $\tilde{d} = O(\sqrt{L(f)} \log(1/\epsilon))$ which ϵ -approximates f pointwise. Using standard arguments this implies that the Fourier mass above degree \tilde{d} , i.e. $\sum_{S:|S|>\tilde{d}} \hat{f}(S)^2$, is at most ϵ . In other words, the Fourier mass above $O(\sqrt{L(f)} \cdot t)$ is at most 2^{-t} , and we call this property exponentially small tails of the Fourier spectrum of f above level $O(\sqrt{L(f)})$.⁴

Exponentially small Fourier tails imply a "switching lemma" type property. Our next step is novel. We show that exponentially small Fourier tails imply a strong behavior under random restrictions. If for all t, f has at most 2^{-t} of the mass above level $m \cdot t$, then under a p-random restriction we have

$$\forall d: \Pr_{\rho \sim \mathcal{R}_p} [\deg(f|_{\rho}) = d] \le (4pm)^d .$$
(1)

In particular, if we take p to be $\leq \frac{1}{cm}$ for a large enough constant c we get that the degree of the restricted function is d with probability $\exp(-10d)$.⁵

We call such a property a "switching lemma" type property since the switching lemma states something similar for DNF formulae: If f can be computed by a DNF formula where each term is the logical AND of w literals, then

$$\forall d: \Pr_{\rho \sim \mathcal{R}_p} [\mathrm{DT}(f|_{\rho}) \ge d] \le (5pw)^d.$$

Our conclusion is somewhat analogous for functions with exponentially small tails, replacing the decision tree complexity with the degree as a polynomial. We think that the relation between exponentially small Fourier tails and the "switching lemma" type property is of independent interest.

Proving the case $p = O(1/\sqrt{L(f)})$. Combining the fact that functions with small formula size have exponentially small tails above level $\sqrt{L(f)}$, we get that for $p = O(1/\sqrt{L(f)})$, applying a *p*-random restriction yields a function with degree *d* with probability at most $\exp(-10d)$. In particular, with high probability the function becomes a constant. As the formula size of a degree *d* polynomial is at most 32^d we get that for some large enough constant *c*, applying a *p*-random restriction with $p = \frac{1}{c\sqrt{L(f)}}$, yields a function with expected formula size at most 1. This completes our proof for the case $p = \Theta(1/\sqrt{L(f)})$, and in fact the case $p = O(1/\sqrt{L(f)})$ as well.

Proving the general case. In order to establish the case where $p = \Omega(1/\sqrt{L(f)})$, we use an idea from Impagliazzo, Meka and Zuckerman's work ([IMZ12]). They showed how to decompose a large formula into $O(L(f)/\ell)$ many small formulae, each of size $O(\ell)$. Furthermore, applying any restriction, the formula size of the restricted function is at most the sum of formula sizes of the restricted sub-functions represented by the sub-formulae. Taking ℓ to be $1/p^2$ and using linearity of expectation we get the required result for general p.

1.3 Related Work

The recent work of Impagliazzo and Kabanets [IK13] shows that shrinkage properties imply Fourier concentration. In some sense, our result shows the opposite, although we need exponential small Fourier tails to begin with.

⁴Of course, this is meaningless when $L(f) \ge n^2$, since there is no mass above degree n.

⁵This is essentially the opposite of a key step in the proof of Linial, Mansour and Nisan [LMN93] which showed that $\mathbf{AC}^{\mathbf{0}}$ circuits have Fourier spectrum concentrated on the poly $\log(n)$ first levels.

2 Preliminaries

2.1 Formulae

A De Morgan formula F on n variables x_1, \ldots, x_n is a binary tree whose leaves are labeled with variables or their negations, and whose internal nodes are labeled with either \lor or \land gates. The size of a De Morgan formula F, denoted by L(F), is the number of leaves in the tree. The formula size of a function $f : \{-1, 1\}^n \to \{-1, 1\}$ is the size of the minimal formula which computes the function, and is denoted by L(f). A de Morgan formula is called *read-once* if every variable appears at most once in the tree.

2.2 Restrictions

Definition 2.1 (Restriction). Let $f : \{-1, 1\}^n \to \{-1, 1\}$ be a Boolean function. A restriction ρ is a vector of length n of elements from $\{0, 1, *\}$. We denote by $f|_{\rho}$ the function f restricted according to ρ in the following sense: if $\rho_i = *$ then the *i*-th input bit of f is unassigned and otherwise the *i*-th input bit of f is assigned to be ρ_i .

Definition 2.2 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.1 that is sampled in the following way. For every $i \in [n]$, independently with probability p set $\rho_i = *$ and with probability $\frac{1-p}{2}$ set ρ_i to be 0 and 1, respectively. We denote this distribution of restrictions by \mathcal{R}_p .

2.3 Fourier Analysis of Boolean Functions

For any Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ there is a unique Fourier representation:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i .$$

The coefficients $\hat{f}(S)$ are given by $\hat{f}(S) = \mathbf{E}_x[f(x) \cdot \prod_{i \in S} x_i]$. Parseval's equality states that $\sum_S \hat{f}(S)^2 = \mathbf{E}_x[f(x)^2] = 1$. Note that the Fourier representation is the unique multilinear polynomial which agrees with f on $\{-1,1\}^n$. The polynomial degree is denoted by $\deg(f)$ and is equal to $\max\{|S|: \hat{f}(S) \neq 0\}$. We denote by

$$\mathbf{W}^{=k}[f] \triangleq \sum_{S \subseteq [n], |S|=k} \hat{f}(S)^2$$

the Fourier weight at level k of f. Similarly, we denote by $\mathbf{W}^{\geq k}[f] \triangleq \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2$. The following fact relates the Fourier coefficients of f and of $f|_{\rho}$ where ρ is a p-random restriction.

Fact 2.3 (Proposition 4.17,[O'D12]).

$$\mathop{\mathbf{E}}_{\rho\sim\mathcal{R}_p}\left[\widehat{f|_{\rho}}(S)^2\right] = \sum_{U\subseteq[n]} \widehat{f}(U)^2 \cdot \mathop{\mathbf{Pr}}_{\rho\sim\mathcal{R}_p}[\{i\in U: \rho(i)=*\}=S]$$

Summing over all coefficients of size d, we get the following corollary.

Corollary 2.4.

$$\mathop{\mathbf{E}}_{\rho \sim \mathcal{R}_p} \left[\sum_{S:|S|=d} \widehat{f|_{\rho}}(S)^2 \right] = \sum_{k=d}^n \mathbf{W}^{=k}[f] \cdot \Pr[\operatorname{Bin}(k,p) = d]$$

One can represent a Boolean function also as $\tilde{f}: \{0,1\}^n \to \{0,1\}$. Identifying $\{0,1\}$ with $\{1,-1\}$ by $b \mapsto 1-2b$ we get the following relation between the $\{0,1\}$ and the $\{-1,1\}$ representation of the same function.

$$\tilde{f}(y) = \frac{1 - f(1 - 2y_1, \dots, 1 - 2y_n)}{2} = \frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} (1 - 2y_i)$$
(2)

Let $p(y) = \sum_{T \subseteq [n]} a_T \cdot \prod_{i \in T} y_i$ be the unique multi-linear polynomial which agrees with $\tilde{f}(y)$ on $\{0,1\}^n$. Using Equation (2) gives $a_{\emptyset} = 1/2 - 1/2 \cdot \sum_S \hat{f}(S)$ and

$$\forall T \neq \emptyset : a_T = (-2)^{|T|-1} \cdot \sum_{S \supseteq T} \hat{f}(S) .$$
(3)

It is clear from Equation (3) that $\deg(p) = \deg(f)$, hence the definition of degree does not depend whether we are talking about the $\{-1, 1\}$ or the $\{0, 1\}$ representation of the function. Note that since \tilde{f} is Boolean, the coefficients a_T are integers, since we can write

$$\tilde{f}(y) = \sum_{z \in \{0,1\}^n} \tilde{f}(z) \cdot \prod_{i:z_i=0} (1-y_i) \cdot \prod_{i:z_i=1} y_i$$

which opens up to a multi-linear polynomial over y with integer coefficients.

An immediate consequence of the above discussion is the following fact, which states that the Fourier coefficients of a degree d polynomial are 2^{1-d} granular.

Fact 2.5 (Granularity). Let $f : \{-1, 1\}^n \to \{-1, 1\}$ with $\deg(f) = d$, then $\hat{f}(S) = k_S \cdot 2^{1-d}$ where $k_S \in \mathbb{Z}$ for any $S \subseteq [n]$.

Proof. We prove by contradiction. Let T be a maximal set with respect to inclusion for which $\hat{f}(T)$ is not an integer multiple of 2^{1-d} . Equation (3) gives $a_T = (-2)^{|T|-1} \sum_{S \supseteq T} \hat{f}(S)$. Multiplying both sides by $(-2)^{d-|T|}$ we get

$$(-2)^{d-|T|} \cdot a_T = (-2)^{d-1} \sum_{S \supseteq T} \hat{f}(S) .$$

By the assumption on maximality of T, all coefficients on the RHS except $\hat{f}(T)$ are integer multiples of 2^{1-d} , hence the RHS is not an integer. On the other hand, the LHS is an integer since a_T is an integer.

Definition 2.6. We define the sparsity of $f : \{-1,1\}^n \to \{-1,1\}$ as $\operatorname{sparsity}(f) \triangleq |\{S : \hat{f}(S) \neq 0\}|$. **Corollary 2.7.** Let $f : \{-1,1\}^n \to \{-1,1\}$ with $\operatorname{deg}(f) = d$, then $\operatorname{sparsity}(f) \leq 2^{2d-2}$.

Proof. By Parseval, $1 = \sum_{S} \hat{f}(S)^2 \ge \text{sparsity}(f) \cdot (2^{1-d})^2$.

Claim 2.8. Let $\tilde{f}: \{0,1\}^n \to \{0,1\}$ be a Boolean function with $\deg(\tilde{f}) = d$ then \tilde{f} can be written as

$$\tilde{f}(x) = \sum_{i=1}^{\text{sparsity}(f)} g_i(x)$$

where each $g_i : \{0,1\}^n \to \mathbb{Z}$ is a d-junta, i.e. depends only on at most d coordinates.

Proof. Write $\tilde{f}(x) = \sum_{T \subseteq [n]} a_T \prod_{i \in T} x_i$. By Equation (3) any $T \subseteq [n]$ such that $a_T \neq 0$ is contained in some subset $S \subseteq [n]$ for which $\hat{f}(S) \neq 0$. Order the sets $\{S : \hat{f}(S) \neq 0\}$ according to some arbitrary order: $\{S_1, \ldots, S_{\text{sparsity}(f)}\}$ and let

$$g_i(x) = \sum_{T \subseteq S_i, \forall j < i: T \not\subseteq S_j} a_T \cdot \prod_{i \in T} x_i \; .$$

Then, by definition $\tilde{f}(x) = \sum_{i=1}^{\text{sparsity}(f)} g_i(x)$. By the integrality of a_T , each g_i takes integer values. Moreover, each g_i depends only on the variables in the set S_i , i.e. on at most d coordinates. \Box

2.4 Approximate Degree

Let $f: \{-1, 1\}^n \to \{-1, 1\}$. Given an ϵ we define the ϵ -approximate degree, denoted by $\widetilde{\deg}_{\epsilon}(f)$, as the minimal degree of a multi-linear polynomial p such that for all $x \in \{-1, 1\}^n$, $|f(x) - p(x)| \leq \epsilon$. We denote $\widetilde{\deg}_{1/3}(f)$ by $\widetilde{\deg}(f)$.

When defining approximate degree the choice of 1/3 may seem arbitrary. The next fact (essentially proved in [BNRdW07], Lemma 1) shows how approximate degree for different errors relate. We prove this fact in Appendix B for completeness.

Fact 2.9. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function and let $0 < \epsilon < 1$ then: $\widetilde{\deg}_{\epsilon}(f) \leq \widetilde{\deg}(f) \cdot \lceil 8 \cdot \ln(2/\epsilon) \rceil$.

Relating the approximate degree with the Fourier transform one gets the following fact.

Fact 2.10. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function, $0 < \epsilon < 1$ and $d = \widetilde{\deg}_{\epsilon}(f)$, then $\mathbf{W}^{>d}[f] \leq \epsilon^2$.

Proof. Let p be a polynomial of degree d which ϵ approximates f. Obviously $\mathbf{E}_x[(f(x)-p(x))^2] \leq \epsilon^2$. Let q be the best ℓ_2 approximation of f by a degree d polynomial, namely the polynomial of degree d which minimizes $||f-q||_2^2 \triangleq \mathbf{E}_x[(f(x)-q(x))^2]$. Obviously, $||f-q||_2^2 \leq ||f-p||_2^2 \leq \epsilon^2$ by the choice of p and q. Using Parseval's equality $||f-q||_2^2 = \sum_S \left(\hat{f}(S) - \hat{q}(S)\right)^2$, and it is easy to see that the minimizer of this expression among degree d polynomials is the Fourier expansion of f truncated above degree d:

$$q(x) = \sum_{S \subseteq [n]: |S| \le d} \hat{f}(S) \cdot \chi_S(x) .$$

Overall, we get that $\epsilon^2 \ge ||f - q||_2^2 = \sum_{S:|S|>d} \hat{f}(S)^2$.

Our proof relies heavily on the following result from quantum query complexity.

Theorem 2.11 ([BBC⁺01, HLS07, Rei11]). There exists a universal constant $C_1 \ge 1$ such that for any $f : \{-1, 1\}^n \to \{-1, 1\}$ we have $\widetilde{\text{deg}}(f) \le C_1 \cdot \sqrt{L(f)}$.

The next claim states that functions have exponentially small fourier tails above level $\sqrt{L(f)}$. Claim 2.12. There exists a constant C > 0 such that for any $f : \{-1, 1\}^n \to \{-1, 1\}$ and $k \in \mathbb{N}$,

$$\mathbf{W}^{\geq k}[f] \leq e \cdot \exp\left(\frac{-k}{C\sqrt{L(f)}}\right)$$

Proof. Let $t = \frac{k}{C \cdot \sqrt{L(f)}}$ where C is some constant we shall set later. We prove that $\mathbf{W}^{\geq k}[f] \leq e \cdot e^{-t}$. Assume without loss of generality that $t \geq 1$ or else the claim is trivial since $\mathbf{W}^{\geq k}[f] \leq 1 \leq e \cdot e^{-t}$. Put $\epsilon = e^{-t/2}$, and combine Theorem 2.11 and Fact 2.9 to get

$$\widetilde{\deg}_{\epsilon}(f) \leq \sqrt{L(f)} \cdot C_1 \cdot \lceil 8\ln(2/\epsilon) \rceil = \sqrt{L(f)} \cdot C_1 \cdot \lceil 4t + 8\ln(2) \rceil \leq \sqrt{L(f)} \cdot C_1 \cdot 11t.$$

Using Fact 2.10 we get $\mathbf{W}^{>\sqrt{L(f)} \cdot C_1 \cdot 11t}[f] \leq e^{-t}$. Hence $\mathbf{W}^{\geq \sqrt{L(f)} \cdot C_1 \cdot 12t}[f] \leq e^{-t}$. Setting $C := C_1 \cdot 12$ completes the proof.

2.5 The Generalized Binomial Theorem

Theorem 2.13 (The generalized binomial theorem). Let |x| < 1, and $s \in \mathbb{N}$ then

$$\frac{1}{(1-x)^s} = \sum_{k=0}^{\infty} \binom{s+k-1}{s-1} \cdot x^k$$

Rearranging this equality one get the following corollary:

Corollary 2.14. Let |x| < 1, and $m \in \mathbb{N} \cup \{0\}$ then $\sum_{n=m}^{\infty} x^n \cdot {n \choose m} = \frac{x^m}{(1-x)^{m+1}}$.

Proof. By the generalized binomial theorem $\frac{x^m}{(1-x)^{m+1}} = \sum_{k=0}^{\infty} {m+k \choose k} \cdot x^{m+k}$. The RHS can be rewritten as $\sum_{n=m}^{\infty} {n \choose m} \cdot x^n$, which completes the proof.

3 Exponentially Small Tails and The Switching Lemma

In this section we prove the main technical part of our proof by showing a close relation between two properties of Boolean functions:

- 1. Having exponentially small Fourier tails above level $t: \forall k: \mathbf{W}^{\geq k}[f] \leq e^{-k/t}$.
- 2. A "switching lemma" type property with parameter t': $\forall p, d : \mathbf{Pr}_{\rho \sim \mathcal{R}_p}[\deg(f|_{\rho}) \geq d] \leq (t'p)^d$.

Linial, Mansour and Nisan proved that Property 2 implies Property 1. For completeness we include a proof of this theorem in Appendix A.

Theorem 3.1 ([LMN93], restated slightly). Let $f : \{-1,1\}^n \to \{-1,1\}$ and assume there exists t > 0 such that for all $d \in \mathbb{N}, p \in (0,1), \operatorname{\mathbf{Pr}}_{\rho \sim \mathcal{R}_p}[\operatorname{deg}(f|_{\rho}) \geq d] \leq (tp)^d$. Then for any $k, \mathbf{W}^{\geq k}[f] \leq 2e \cdot e^{-k/te}$.

Next, we prove a converse to Theorem 3.1.

Theorem 3.2. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function, let t, C > 0 such that for all k, $\mathbf{W}^{\geq k}[f] \leq C \cdot e^{-k/t}$. Let ρ be a p-random restriction, then for all d, $\mathbf{Pr}[\deg(f|_{\rho}) = d] \leq \frac{C}{4}(4pt)^d$.

Proof Sketch If a function f has exponentially small Fourier tails above level t then on expectation the restricted function $f|_{\rho}$ will have exponentially small Fourier tails above level pt, since the Fourier spectrum of f roughly squeezes by a factor of p under a p-random restriction (see Corollary 2.4). However, the Fourier mass above level d of a Boolean function of degree d cannot be smaller than 4^{-d} by the granularity property. We get that if $pt \ll 1$, then with high probability the restricted function is not a degree d polynomial.

Proof. Our proof strategy is as follows: we bound the value of $\mathbf{E}_{\rho}\left[\sum_{S:|S|=d} \widehat{f|_{\rho}}(S)^2\right]$ from below and above showing

$$\mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2}\right] \ge \mathbf{Pr}[\deg(f|_{\rho})=d] \cdot 4^{1-d}$$
(4)

and

$$\mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2}\right] \leq C\left(pt\right)^{d} .$$
(5)

Combining the two estimates will complete the proof.

We begin by proving Equation (4). Conditioning on the event that $\deg(f|_{\rho}) = d$, Fact 2.5 implies that any nonzero Fourier coefficient of $f|_{\rho}$ is of magnitude $\geq 2^{1-d}$. Hence, $\sum_{S:|S|=d} \widehat{f|_{\rho}}(S)^2 \geq 4^{1-d}$, and we get

$$\mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2}\right] \geq \mathbf{Pr}[\deg(f|_{\rho}) = d] \cdot \mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2} \mid \deg(f|_{\rho}) = d\right] \geq \mathbf{Pr}[\deg(f|_{\rho}) = d] \cdot 4^{1-d}.$$

Next, we turn to prove Equation (5).

$$\mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2}\right] = \sum_{k\geq d} \mathbf{W}^{=k}[f] \cdot \binom{k}{d} \cdot p^{d} \cdot (1-p)^{k-d} \qquad (\text{Corollary 2.4})$$
$$= \sum_{k\geq d} \left(\mathbf{W}^{\geq k}[f] - \mathbf{W}^{\geq k+1}[f]\right) \cdot \binom{k}{d} \cdot p^{d} \cdot (1-p)^{k-d}$$
$$= \left(\frac{p}{1-p}\right)^{d} \sum_{k\geq d} \left(\mathbf{W}^{\geq k}[f] - \mathbf{W}^{\geq k+1}[f]\right) \cdot \binom{k}{d} \cdot (1-p)^{k}$$

We can rearrange the RHS of the above equation, gathering terms according to $\mathbf{W}^{\geq k}[f]$. We denote $\binom{d-1}{d} = 0$, and get:

$$\begin{split} \mathbf{E}_{\rho} \left[\sum_{S:|S|=d} \widehat{f|_{\rho}}(S)^2 \right] &= \left(\frac{p}{1-p}\right)^d \sum_{k \ge d} \mathbf{W}^{\ge k}[f] \cdot \left(\binom{k}{d} \cdot (1-p)^k - \binom{k-1}{d} \cdot (1-p)^{k-1}\right) \\ &\leq \left(\frac{p}{1-p}\right)^d \sum_{k \ge d} \mathbf{W}^{\ge k}[f] \cdot \left(\binom{k}{d} \cdot (1-p)^k - \binom{k-1}{d} \cdot (1-p)^k\right) \\ &= \left(\frac{p}{1-p}\right)^d \sum_{k \ge d} \mathbf{W}^{\ge k}[f] \cdot \binom{k-1}{d-1} \cdot (1-p)^k \,. \end{split}$$

Let $a := e^{-1/t}$. The assumption on the Fourier tails of f, $\mathbf{W}^{\geq k}[f] \leq C \cdot a^k$, gives

$$\begin{split} \mathbf{E}_{\rho} \left[\sum_{S:|S|=d} \widehat{f|_{\rho}}(S)^2 \right] &\leq \left(\frac{p}{1-p}\right)^d \sum_{k \geq d} C(a(1-p))^k \cdot \binom{k-1}{d-1} \\ &= \left(\frac{p}{1-p}\right)^d \cdot C(a(1-p)) \cdot \sum_{k \geq d} (a(1-p))^{k-1} \cdot \binom{k-1}{d-1} \\ &= \left(\frac{p}{1-p}\right)^d \cdot C(a(1-p)) \cdot \sum_{k' \geq d-1} (a(1-p))^{k'} \cdot \binom{k'}{d-1} \end{split}$$

Next we use Corollary 2.14 with x := a(1-p) and m := d-1 to get

$$\mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2}\right] \leq \left(\frac{p}{1-p}\right)^{d} \cdot C(a(1-p)) \cdot \frac{(a(1-p))^{d-1}}{(1-a(1-p))^{d}} = C\left(\frac{ap}{1-a(1-p)}\right)^{d} \leq C\left(\frac{ap}{1-a}\right)^{d}$$

Substituting a with $e^{-1/t}$ gives

$$\mathbf{E}_{\rho}\left[\sum_{S:|S|=d}\widehat{f|_{\rho}}(S)^{2}\right] \leq C\left(p\frac{1}{1/a-1}\right)^{d} = C\left(p\frac{1}{e^{1/t}-1}\right)^{d} \leq C\left(pt\right)^{d},$$

where the last inequality follows since $e^x - 1 \ge x$ for any $x \ge 0$.

4 Degree vs. Formula Size

We use the following fact about the formula size of the parity function

Fact 4.1 ([Lee07]). $L(PARITY_m) \leq 9/8 \cdot m^2$. Furthermore, if $m = 2^k$ for some integer k, then $L(PARITY_m) = m^2$.

 $\textbf{Claim 4.2. Let } \tilde{f}: \{0,1\}^n \to \{0,1\} \textit{ such that } \deg(\tilde{f}) = d, \textit{ then } L(\tilde{f}) \leq 1/8 \cdot 32^d.$

Proof. According to Claim 2.8, \tilde{f} can be written as $\sum_{i=1}^{4^{d-1}} g_i(x)$, where the functions $g_i(x)$ take integer values, and each of them depends on at most d variables. Since $\tilde{f}(x) \in \{0,1\}$ we may perform all operations modulo 2 and get $\tilde{f}(x) = \bigoplus_{i=1}^{4^{d-1}} h_i(x)$, where $h_i(x) = g_i(x) \mod 2$. Taking a formula for the parity of $m = 4^{d-1}$ variables, y_1, \ldots, y_m , and replacing each instance of a variable y_i with a formula computing $h_i(x)$ gives a formula for \tilde{f} . The size of the formula computing each h_i is at most 2^{d+1} since any function on d variables can be computed by a formula of such size. Thus, the size of the combined formula is $\leq L(\text{PARITY}_m) \cdot 2^{d+1} = 16^{d-1} \cdot 2^{d+1} = 1/8 \cdot 32^d$. \Box

5 The Case $p = O(1/\sqrt{L(f)})$

Claim 5.1. There exists a constant C > 0 such that for any function $f : \{-1, 1\}^n \to \{-1, 1\}$ and any $p \leq \frac{1}{C\sqrt{L(f)}}$ the following hold. Let ρ be a p-random restriction, then $\mathbf{E}_{\rho}[L(f|_{\rho})] = O(p \cdot \sqrt{L(f)})$. In particular, in this regime of parameters, $\mathbf{E}_{\rho}[L(f|_{\rho})] = O(1)$. *Proof of Claim* 5.1. From Claim 2.12, there exists a constant C > 0 such that

$$\forall k : \mathbf{W}^{\geq k}[f] \leq e \cdot e^{-k/(C\sqrt{L(f)})}$$

This implies, using Theorem 3.2, that $\mathbf{Pr}_{\rho\sim\mathcal{R}_p}[\deg(f|_{\rho})=d] \leq \frac{e}{4} \cdot \left(4pC\sqrt{L(f)}\right)^d \leq \left(4pC\sqrt{L(f)}\right)^d$. Using Claim 4.2, if $\deg(f|_{\rho})=d$ then $L(f|_{\rho})\leq 32^d$. For $p\leq \frac{1}{64\cdot4C\sqrt{L(f)}}$ we get

$$\begin{split} \mathbf{E}_{\rho \sim \mathcal{R}_{p}}[L(f|_{\rho})] &= \sum_{d=0}^{n} \mathbf{P}_{\rho}^{\mathbf{r}}[\deg(f|_{\rho}) = d] \cdot \mathbf{E}_{\rho}[L(f|_{\rho})|\deg(f|_{\rho}) = d] \\ &= \sum_{d=1}^{n} \mathbf{P}_{\rho}^{\mathbf{r}}[\deg(f|_{\rho}) = d] \cdot \mathbf{E}_{\rho}[L(f|_{\rho})|\deg(f|_{\rho}) = d] \quad (\deg(f|_{\rho}) = 0 \text{ implies } L(f|_{\rho}) = 0) \\ &\leq \sum_{d=1}^{\infty} \left(4pC\sqrt{L(f)}\right)^{d} \cdot 32^{d} \\ &\leq O(p\sqrt{L(f)}) \cdot \sum_{d=1}^{\infty} \left(4pC\sqrt{L(f)}\right)^{d-1} \cdot 32^{d-1} \\ &\leq O(p\sqrt{L(f)}) \cdot \sum_{d=1}^{\infty} (1/64)^{d-1} \cdot 32^{d-1} \\ &= O(p\sqrt{L(f)}) . \end{split}$$

6 The General Case

In Section 5 we have proved Theorem 1.2 for the case $p = O(1/\sqrt{L(f)})$. In this section we give a reduction from the case where p is larger, i.e. $p = \Omega(1/\sqrt{L(f)})$, to the case where p is small, i.e. $p = \Theta(1/\sqrt{L(f)})$. We use the tree decompsition of Impagliazzo, Meka and Zuckerman [IMZ12] to establish this reduction.⁶

The next lemma states that every binary tree can be decomposed into smaller subtrees with some small overhead. Its proof can be found in [IMZ12].

Lemma 6.1 ([IMZ12]). Let $\ell \in \mathbb{N}$. Any binary tree with $s \geq \ell$ leaves can be decomposed into at most $6s/\ell$ subtrees, each with at most ℓ leaves, such that each subtree has at most two other subtree children. Here subtree T_1 is a child of subtree T_2 if there exists nodes $t_1 \in T_1$, $t_2 \in T_2$, such that t_1 is a child of t_2 .

Claim 6.2. Let F be a formula over the set of variables $X = \{x_1, \ldots, x_n\}$, and $\ell \in \mathbb{N}$ be some parameter. Then, there exist $m \leq O(L(F)/\ell)$ formulae over X, denoted by G_1, \ldots, G_m , each of size at most ℓ , and there exists a read-once formula F' of size m such that $F'(G_1(x), \ldots, G_m(x)) = F(x)$ for all $x \in \{-1, 1\}^n$.

Proof. Consider the decomposition promised by Lemma 6.1 with parameter ℓ . Let $T_1, \ldots, T_{m'}$ be the subtrees in this decomposition where $m' \leq 6n/\ell$. We will show by induction on m', that one

⁶Another approach to prove the general case is to follow Håstad original proof, changing the estimates when $p = O(1/\sqrt{L(F)})$ with what we showed in Section 5. The reduction we suggest simplifies this approach significantly.

can construct a read-once formula F' of size $m \leq 6m'$ alongside m sub-formulae G_1, \ldots, G_m of size ℓ such that $F \equiv F'(G_1, \ldots, G_m)$. For m' = 1 the statement holds trivially.

Assume that the root of the formula F is a node in the subtree T_1 , and that the subtree T_1 has two subtree children: T_2 and T_3 (the case where T_1 has one subtree child can be handled similarly, and is in fact slightly simpler). We now add two special leaves to the tree T_1 . Let $t_2 \in T_2, t_1 \in T_1$ (respectively $t_3 \in T_3, t'_1 \in T_1$) be the nodes such that t_2 (t_3 , resp.) is a child of t_1 (t'_1 , resp.) in the tree represented by F, and add a leaf labeled by the "special" variable z_2 (z_3 , resp.) as a child of t_1 (t'_1 , resp.). Call the new subtree T. Note that since T is a De Morgan formula, the value of T is monotone in z_2 and z_3 . Let T' be the minimal subtree of T which contains both leaves marked by z_2 and z_3 . By minimality $T' = T'_2$ op T'_3 , for $\mathbf{op} \in \{\land, \lor\}$, where T'_2 contains z_2 and not z_3 , and T'_3 contains z_3 and not z_2 .

We will construct a formula equivalent to T' by finding equivalent formulae for T'_2 and T'_3 . We claim that $T'_2 = (T'_2|_{z_2=false}) \vee (T'_2|_{z_2=true} \wedge z_2)$. This follows since T'_2 is monotone in z_2 : if $T'_2|_{z_2=false} = true$ then $T'_2 = true$, otherwise $T'_2 = true$ only if both $T'_2|_{z_2=true}$ and z_2 are true. Same goes for T'_3 , and we get

$$T' \equiv \left((T'_2|_{z_2 = \mathbf{false}}) \lor (T'_2|_{z_2 = \mathbf{true}} \land z_2) \right) \mathbf{op} \left((T'_3|_{z_3 = \mathbf{false}}) \lor (T'_3|_{z_3 = \mathbf{true}} \land z_3) \right)$$

Replacing T' with a leaf labeled with z, where z is a new "special" variable, and doing the same trick we get: $T \equiv T|_{z=\text{false}} \lor (T|_{z=\text{true}} \land z)$. Combining both formulae, we get the following equivalence: $T \equiv T|_{z=\text{false}} \lor (T|_{z=\text{true}} \land ((T'_2|_{z_2=\text{false}}) \lor (T'_2|_{z_2=\text{true}} \land z_2))$ op $((T'_3|_{z_3=\text{false}}) \lor (T'_3|_{z_3=\text{true}} \land z_3)))$. Note that the RHS of the equation above can be written as $F''(G_1(x), \ldots, G_6(x), z_2, z_3)$ where F''is read-once and $G_1(x), \ldots, G_6(x)$ are formulae of size ℓ , defined on the variables in X.

Let m_2, m_3 be the number of subtrees which are descendants of T_2, T_3 in the tree-decomposition given by Lemma 6.1. By induction, the subformula of F rooted at t_2 is equivalent to $F'_2(G^2_1(x), \ldots, G^2_{6m_2}(x))$ where F'_2 is read-once and $G^2_i(x)$ are formulae of size $\leq \ell$. Similarly for t_3 . We thus get that

$$F(x) = F'' \left(G_1(x), \dots, G_6(x), F'_2(G_1^2(x), \dots, G_{6m_2}^2(x)), F'_3(G_1^3(x), \dots, G_{6m_3}^3(x)) \right) .$$

Rearranging the RHS, we get a read-once formula of size $m \le 6 + 6m_2 + 6m_3 = 6m'$ alongside m sub-formulae, each of size ℓ , such that their composition is equivalent to F.

We now turn to complete the proof of our main theorem.

Theorem (Theorem 1.2, restated). Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function, and let p > 0, then $\mathbf{E}_{\rho \sim \mathcal{R}_p}[L(f|_{\rho})] = O\left(p^2 L(f) + p\sqrt{L(f)}\right)$.

Proof. The case $p \leq \frac{1}{C\sqrt{L}}$ is implied by Claim 5.1. Therefore, it is enough to show the statement holds when $p > \frac{1}{C\sqrt{L}}$. Let F be the smallest De Morgan formula computing f. Applying Claim 6.2 with $\ell := \frac{1}{p^2 \cdot C^2}$, we get a read-once De Morgan formula F' of size $m = O(L(F)/\ell)$ along with formulae G_1, \ldots, G_m , each of size at most ℓ , such that $f(x) = F'(G_1(x), \ldots, G_m(x))$ for all $x \in$ $\{-1, 1\}^n$. Denote the functions which G_1, \ldots, G_m compute as g_1, \ldots, g_m respectively. Applying a restriction ρ we get $f|_{\rho} \equiv F'(g_1|_{\rho}, \ldots, g_m|_{\rho})$, hence $L(f|_{\rho}) \leq \sum_{i=1}^m L(g_i|_{\rho})$. By linearity of expectation,

$$\mathbf{E}_{\rho}[L(f|_{\rho})] \leq \mathbf{E}_{\rho}\left[\sum_{i=1}^{m} L(g_i|_{\rho})\right] \leq m \cdot O(p \cdot \sqrt{\ell}) = m \cdot O(1) = O(p^2 \cdot L(f)) . \qquad \Box$$

7 Open Ends

An interesting open question raised by Håstad in [Hås98] is

What is the shrinkage exponent of monotone De Morgan formulae?

In particular, this has strong connections with understanding the monotone formula size of Majority. The analysis in Section 6 implies that it is enough to find the critical probability p_c for which $\mathbf{E}_{\rho\sim\mathcal{R}_{pc}}[L(f|_{\rho})] = 1$, and then use the tree decomposition to argue for $p \geq p_c$ (note that the decomposition done in Section 6 respects monotonicity). Hence, in order to show Γ shrinkage, i.e. that formulae of size s shrink to expected size $O(p^{\Gamma}s+1)$ after applying a p-random restriction, it is necessary and sufficient to show that for $p = \frac{1}{L(f)^{1/\Gamma}}$, the expected size of the minimal monotone formula computing $f|_{\rho}$ is O(1).

Acknowledgement

I wish to thank my advisor Ran Raz for his guidance and encouragement. I thank Zeev Dvir and Ilan Komargodski for helpful discussions.

References

[ACR ⁺ 10]	A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek, and S. Zhang. Any and-or formula of size n can be evaluated in time $n^{1/2+o(1)}$ on a quantum computer. <i>SIAM J. Comput.</i> , 39(6):2513–2530, 2010.	
[And87]	A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for the complexity of π -schemes. <i>Moscow Univ. Math. Bull.</i> , 42:63–66, 1987. In Russian.	
[BBC ⁺ 01]	R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. <i>J. ACM</i> , 48(4):778–797, 2001.	
[BNRdW07]	H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust polynomials and quantum algorithms. <i>Theory Comput. Syst.</i> , 40(4):379–395, 2007.	
[CKK ⁺ 13]	R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining circuit lower bound proofs for meta-algorithms. <i>Electronic Colloquium on Computational Complexity (ECCC)</i> , 20:57, 2013. To appear in CCC 2014.	
[CKS13]	R. Chen, V. Kabanets, and N. Saurabh. An improved deterministic #SAT algorithm for small De Morgan formulas. <i>Electronic Colloquium on Computational Complexity</i> (ECCC), 20:150, 2013.	
[FGG08]	E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the hamiltonian nand tree. Theory of Computing, $4(1)$:169–190, 2008.	

[GMWW13] D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson. Toward better formula lower bounds: An information complexity approach to the krw composition conjecture. Electronic Colloquium on Computational Complexity (ECCC), 20:190, 2013. To appear in STOC 2014. [Hås98] J. Håstad. The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput., 27(1):48-64, 1998.[HLS07] P. Høyer, T. Lee, and R. Spalek. Negative weights make adversaries stronger. In David S. Johnson and Uriel Feige, editors, STOC, pages 526–535. ACM, 2007. [IK13] R. Impagliazzo and V. Kabanets. Fourier concentration from shrinkage. *Electronic* Colloquium on Computational Complexity (ECCC), 20:163, 2013. To appear in CCC 2014.[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In FOCS, pages 111–119. IEEE Computer Society, 2012. [IN93] R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size. Random Struct. Algorithms, 4(2):121–134, 1993. [KB80] R. Kaas and J. M. Buhrman. Mean, median and mode in binomial distributions. Statistica Neerlandica, 34(1):13–18, 1980. [Khr71] V. M. Khrapchenko. A method of determining lower bounds for the complexity of π schemes. Matematischi Zametki, 10:83–92, 1971. In Russian. [KR13] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, STOC, pages 171–180. ACM, 2013. [KRT13] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for De Morgan formula size. In FOCS, pages 588–597. IEEE Computer Society, 2013. [KRW95] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Computational Complexity, 5(3/4):191– 204, 1995. [Lee07]T. Lee. A new rank technique for formula size lower bounds. In STACS, pages 145-156, 2007. [LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical formula size lower bounds. Computational Complexity, 15(2):163–196, 2006. [LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability. J. ACM, 40(3):607–620, 1993. [O'D12] R. O'Donnell. Analysis of Boolean Functions. http://www. analysisofbooleanfunctions.org/, 2012. [PZ93] M. Paterson and U. Zwick. Shrinkage of De Morgan formulae under restriction. Random Struct. Algorithms, 4(2):135–150, 1993.

[Rei09]	B. Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In <i>FOCS</i> , pages 544–551. IEEE Computer Society, 2009.	
[Rei11]	B. Reichardt. Reflections for quantum query algorithms. In Dana Randall, editor, SODA, pages 560–569. SIAM, 2011.	
[RS12]	B. Reichardt and R. Spalek. Span-program-based quantum algorithm for evaluating formulas. <i>Theory of Computing</i> , 8(1):291–319, 2012.	
[San10]	R. Santhanam. Fighting perebor: New and improved algorithms for formula and QB satisfiability. In <i>FOCS</i> , pages 183–192. IEEE Computer Society, 2010.	
[Sub61]	B. A. Subbotovskaya. Realizations of linear function by formulas using $+, \cdot, -$. Doklady Akademii Nauk SSSR, 136:3:553–555, 1961. In Russian.	

A A Theorem of Linial, Mansour and Nisan

Theorem (Theorem 3.1, restated). Let $f : \{-1, 1\}^n \to \{-1, 1\}$ and assume there exists $t \in \mathbb{R}$ such that for all $d, p, \operatorname{\mathbf{Pr}}_{\rho \sim \mathcal{R}_p}[\operatorname{deg}(f|_{\rho}) \geq d] \leq (tp)^d$. Then for any $k, \operatorname{\mathbf{W}}^{\geq k}[f] \leq 2e \cdot e^{-k/(te)}$.

Proof. For any $d \in \mathbb{N}$ and $p \in (0, 1]$ we have

$$\begin{split} \mathbf{E}_{\rho \sim \mathcal{R}_{p}} \left[\sum_{S:|S| \ge d} \widehat{f|_{\rho}}(S)^{2} \right] &= \sum_{k \ge d} \mathbf{W}^{=k}[f] \cdot \mathbf{Pr}[\operatorname{Bin}(k,p) \ge d] \\ &\ge \sum_{k \ge d/p} \mathbf{W}^{=k}[f] \cdot \mathbf{Pr}[\operatorname{Bin}(k,p) \ge d] \\ &\ge \sum_{k \ge d/p} \mathbf{W}^{=k}[f] \cdot 1/2 \qquad (median(\operatorname{Bin}(k,p)) \ge \lfloor kp \rfloor \ge d, [\operatorname{KB80}]) \\ &= 1/2 \cdot \mathbf{W}^{\ge d/p}[f] \end{split}$$

Overall we got

$$\mathbf{W}^{\geq d/p}[f] \leq 2 \cdot \mathop{\mathbf{E}}_{\rho \sim \mathcal{R}_p} \left[\sum_{S:|S| \geq d} \widehat{f|_{\rho}}(S)^2 \right] \leq 2 \mathop{\mathbf{Pr}}_{\rho \sim \mathcal{R}_p} [\deg(f|_{\rho}) \geq d] \leq 2(tp)^d.$$
(6)

Given k and t we choose p := 1/(te) and $d := \lfloor kp \rfloor$. Substituting d and p in Equation (6) we get $\mathbf{W}^{\geq k}[f] \leq 2 \cdot e^{-\lfloor k/(te) \rfloor} \leq 2e \cdot e^{-k/(te)}$.

B Amplification of Approximate Degree

Definition B.1. For $q \in [-1, 1]$ we say that x is a q-biased bit, denoted by $x \sim N_q$, if $\Pr[x = 1] = \frac{1+q}{2}$ and $\Pr[x = -1] = \frac{1-q}{2}$. In other words, x is a random variable taking values from $\{-1, 1\}$ with $\mathbf{E}[x] = q$.

The next lemma connects the value of a polynomial representing a Boolean function on non-Boolean inputs with a product-measure distribution.

Lemma B.2. Let $f : \{-1,1\}^n \to \mathbb{R}$ and let $p \in \mathbb{R}[x_1,\ldots,x_n]$ be the unique multi-linear polynomial agreeing with f on $\{-1,1\}^n$. Let $q_1,\ldots,q_n \in [-1,1]$ then

$$\mathop{\mathbf{E}}_{x_i \sim N_{q_i}} \left[f(x_1, \dots, x_n) \right] = p(q_1, \dots, q_n)$$

where the x_is are drawn independently.

Proof. We write $p(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i$. We first show the lemma for a single monomial:

$$\mathbf{E}_{x_i \sim N_{q_i}} \left[\prod_{i \in S} x_i \right] \stackrel{=}{\underset{x_i \text{ are ind.}}{=}} \prod_{i \in S} \mathbf{E}_{x_i \sim N_{q_i}} \left[x_i \right] = \prod_{i \in S} q_i \ .$$

By linearity of expectation we have:

$$\mathop{\mathbf{E}}_{x_i \sim N_{q_i}} \left[p(x_1, \dots, x_n) \right] = \mathop{\mathbf{E}}_{x_i \sim N_{q_i}} \left[\sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i \right] = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} q_i = p(q_1, \dots, q_n) . \quad \Box$$

We now turn to prove Fact 2.9, restated next.

Fact B.3. Let $f : \{-1,1\}^n \to \{-1,1\}$ be Boolean function and let $0 < \epsilon < 1$ then: $\widetilde{\deg}_{\epsilon}(f) \leq \widetilde{\deg}(f) \cdot \lceil 8 \cdot \ln(2/\epsilon) \rceil$.

Proof. Let *m* be some parameter we will set later. Take $MAJ_m : \{-1,1\}^m \to \{-1,1\}$ to be the majority of *m* inputs, and denote by $p_{MAJ} \in \mathbb{R}[x_1, \ldots, x_m]$ the multi-linear polynomial agreeing with MAJ_m on $\{-1,1\}^m$. Let $q \in (0,1]$ (the case $q \in [-1,0)$ is similar), then by Lemma B.2 we have

$$p_{\mathrm{MAJ}}(q,q,\ldots,q) = \mathbf{E}_{x_i \sim N_q} \left[\mathrm{MAJ}_m(x_1,\ldots,x_m) \right] = \mathbf{Pr}_{x_i \sim N_q} \left[\sum_i x_i \ge 0 \right] - \mathbf{Pr}_{x_i \sim N_q} \left[\sum_i x_i < 0 \right]$$

Let $X = \sum_{i} x_{i}$, then by Chernoff-Hoeffding bound we have

$$\mathbf{Pr}[X \ge 0] = \mathbf{Pr}[X - \mathbf{E}[X] \ge -q \cdot m] \ge 1 - e^{-(qm)^2/2m} = 1 - e^{-mq^2/2},$$

which implies

$$p_{\text{MAJ}}(q, q, \dots, q) \ge 1 - 2e^{-mq^2/2}$$
 (7)

By definition there exists a polynomial p of degree deg(f) such that $p(x) \in [-4/3, -2/3]$ if f(x) = -1 and $p(x) \in [2/3, 4/3]$ if f(x) = 1. Take $p'(x) = \frac{p(x)}{4/3}$, then $p'(x) \in [1/2, 1]$ if f(x) = 1 and $p'(x) \in [-1, -1/2]$ if f(x) = -1. Consider the polynomial

$$g(x) = p_{\text{MAJ}}(p'(x), p'(x), \dots, p'(x)),$$

then $\deg(g) \leq \deg(p_{\text{MAJ}}) \cdot \deg(p') = m \cdot \deg(f)$. On the other hand, for x such that f(x) = 1 (the case where f(x) = -1 is analogous) we have $g(x) = p_{\text{MAJ}}(q, q, \dots, q)$ for some $q \in [1/2, 1]$. Since p_{MAJ} is monotone and using Equation (7), we have

$$1 \ge g(x) = p_{\text{MAJ}}(q, \dots, q) \ge p_{\text{MAJ}}(1/2, \dots, 1/2) \ge 1 - 2e^{-m/8}$$

Picking $m = \lceil 8 \cdot \ln(2/\epsilon) \rceil$ completes the proof.

ECCC	ISSN 1433-8092
ttp://accc.hnj.wah.da	