Shrinkage of De Morgan Formulae from Quantum Query Complexity

Avishay Tal

Abstract

We give a new and improved proof that the shrinkage exponent of De Morgan formulae is 2. Namely, we show that for any Boolean function $f : \{-1,1\}^n \rightarrow \{-1,1\}$, setting each variable out of x_1, \ldots, x_n with probability $1 - p$ to a randomly chosen constant, reduces the expected formula size of the function by a factor of $O(p^2)$. This result is tight and improves the work of Håstad [Hås98] by removing logarithmic factors.

As a consequence of our results, the function defined by Andreev [And87], $A : \{-1,1\}^n \rightarrow \{-1,1\}$, which is in P, has formula size at least $\Omega(\frac{n^3}{\log^2 n \log \log n})$. This lower bound is tight up to the $\log^3 n$ factor, and is the best known lower bound for functions in P. In addition, the functions defined in [KRT13], $h_r : \{-1,1\}^n \rightarrow \{-1,1\}$, which are also in P, cannot be computed correctly on a fraction greater than $1/2 + 2^{-r}$ of the inputs, by De Morgan formulae of size at most $\frac{n^3}{r^2 \text{poly} \log n}$, for any parameter $r \leq n^{1/3}$.

The proof relies on a result from quantum query complexity by [LLS06, HLS07, Rei11]: for any Boolean function f, $Q_2(f) \leq O(\sqrt{L(f)})$, where $Q_2(f)$ is the bounded-error quantum query complexity of f, and $L(f)$ is the minimal size De Morgan formula computing f.
1 Introduction

The problem of \(P \) vs. \(\text{NC}^1 \) is a major open-problem in computational complexity. It asks whether any function computable by a polynomial time Turing machine can also be computed by a formula of polynomial size. A De Morgan formula is a binary tree in which each leaf is labeled with a literal from \(\{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\} \) and each internal node is labeled with either a Boolean AND or OR gate. Such a tree naturally describes a Boolean function on \(n \) variables by propagating values from leaves to root, and returning the root’s value. The formula size is the number of leaves in the tree; for a Boolean function \(f : \{-1,1\}^n \to \{-1,1\} \) we denote by \(L(f) \) the minimal size formula which computes \(f \). Showing that some language in \(P \) requires formulae of super-polynomial size would imply that \(P \not\subseteq \text{NC}^1 \). \(^2\)

While showing super-polynomial formula size lower bounds for problems in \(P \) would be a major breakthrough in complexity theory (and such lower bounds are not even known for \(\text{NEXP} \)), polynomial lower bounds for \(P \) were achieved during the years. This line of research began with the work of Subbotovskaya [Sub61] who gave an \(\Omega(n^{1.5}) \) lower bound for the parity function. Subbotovskaya introduced the technique of random restrictions in her proof; a method which was applied successfully to solve other problems such as giving lower bounds for \(\text{AC}^0 \). Subbotovskaya showed that the minimal formula size of a given function is shrunk by a factor of \(O(p^{1.5}) \) under a random restriction keeping each variable alive with probability \(p \), and fixing it to a uniformly chosen random bit otherwise. We call such restrictions \(p \)-random restrictions, and denote the distribution of \(p \)-random restrictions by \(\mathcal{R}_p \); If \(\rho \sim \mathcal{R}_p \), then \(f|_{\rho} \) denotes the restriction of the function \(f \) by \(\rho \). Since the parity function does not become constant after fixing less than all of its input bits, this implies that its size is at least \(\Omega(n^{1.5}) \). Khrapchenko [Khr71] used a different method to give a tight \(\Omega(n^2) \) lower bound for the parity function. Andreev [And87] constructed a function in \(P \) and showed that its formula size is at least \(\Omega(n^{2.5-o(1)}) \). In fact, he got a lower bound of \(\Omega(n^{1-o(1)}) \) where \(\Gamma \) is the shrinkage exponent of De Morgan formulae - the maximal constant such that any De Morgan formula is shrunk be a factor of \(O(p^\Gamma) \) under \(p \)-random restrictions. Impagliazzo and Nisan [IN93] showed \(\Gamma \geq 1.55 \); Paterson and Zwick [PZ93] improved this bound to \(\Gamma \geq 1.63 \); and finally Håstad [Hås98] showed that \(\Gamma \geq 2 - o(1) \). More precisely, Håstad proved the following result.

Theorem 1.1 ([Hås98]). Let \(f \) be a Boolean function. For every \(p > 0 \),

\[
\mathbb{E}_{\rho \sim \mathcal{R}_p}[L(f|_{\rho})] \leq O\left(p^2 \left(1 + \log^{3/2} \min \left\{ \frac{1}{p}, L(f) \right\} \right) L(f) + p\sqrt{L(f)} \right).
\]

This result is essentially tight up to the logarithmic terms as exhibited by the parity function. The formula size of the parity function of \(n \) variables is \(\Theta(n^2) \) (see [Lee07]). Applying a \(p \)-random restriction on the parity function yields a smaller parity function (or its negation) on \(k \) variables where \(k \sim \text{Bin}(n, p) \). By Khrapchenko’s argument, the formula size of the restricted function is \(\geq k^2 \), thus the expected formula size is at least \(\mathbb{E}[k^2] = p^2n^2 + p(1-p)n = \Omega\left(p^2L(f) + p\sqrt{L(f)}\right) \).

Other efforts have been made to give a function in \(P \) that requires super-polynomial formula size: Karchmer, Raz and Wigderson [KRW95] suggested a function in \(P \) that might require super-polynomial formula size. Recently, Gavinsky et al. [GMWW13] suggested an information theoretical approach to further understand the formula size of this function.

\(^1\)We identify the truth values \(\text{true} \) and \(\text{false} \) with \(-1 \) and \(1 \) respectively.

\(^2\)Here we think of the non-uniform version of \(\text{NC}^1 \): the class of languages \(L \subseteq \{-1,1\}^* \) such that for each length \(n \) there exists a Boolean formula \(F_n \) of size \(\text{poly}(n) \) which decides whether strings of length \(n \) are in the language.
Another recent line of work ([San10],[IMZ12],[KR13],[KRT13],[CKK+13],[CKS13]) concentrated on giving average-case formula lower bounds for problems in P. These works also explored applications of shrinkage properties of formulae to: pseudo-random generators, compression algorithms and non-trivial #SAT algorithms for small formulae. The state of the art average-case lower bound for De Morgan formulae is the result of Komargodski, Raz and Tal [KRT13] who gave an explicit $h_r : \{-1,1\}^n \rightarrow \{-1,1\}$ such that any formula that computes this function on a fraction $\frac{1}{2} + 2^{-r}$ must be of size at least $n^{3-o(1)}$ where r is an arbitrary parameter smaller than $n^{1/3}$.

1.1 Our Results

In this work, we give a new proof of Håstad’s result. In fact, we obtain a tight result showing that the shrinkage exponent is exactly 2.

Theorem 1.2. Let f be a Boolean function. For every $p > 0$,

$$\mathbb{E}_{\rho \sim R_p} [L(f|\rho)] = O \left(p^2 L(f) + p \sqrt{L(f)} \right).$$

Note that both terms in Theorem 1.2 are essential as demonstrated by the parity function above. This improves the worst-case lower bound Håstad gave to Andreev’s function to $\Omega \left(\frac{n^3}{\log^2 n (\log \log n)^3} \right)$ immediately (following the proof of Theorem 8.1 in [Hås98]). In addition, replacing Theorem 1.1 with Theorem 1.2 improves the analysis of the average-case lower bound in [KRT13].

Corollary 1.3. Let n be large enough, then for any parameter $r \leq n^{1/3}$ there is an explicit (computable in polynomial time) Boolean function $h_r : \{-1,1\}^n \rightarrow \{-1,1\}$ such that any formula of size $\frac{n^3}{r^2 \cdot \text{poly log}(n)}$ computes h_r correctly on a fraction of at most $1/2 + 2^{-r}$ of the inputs.

1.2 Proof Outline

The proof comes from a surprising area: quantum query complexity. The connection between De Morgan formulae and quantum query complexity was first noted in the work of Laplante, Lee and Szegedy [LLS06]. They showed that the quantum adversary bound is at most the square root of the formula size of a function. Hoyer, Lee and Špalek [HLS07] replaced the quantum adversary bound by the negative weight adversary bound, achieving a stronger relation. The long line of works [FGG08], [Rei09], [ACR+10], [RS12], [Rei11] showed that the negative weight adversary bound is equal up to a constant to the bounded-error quantum query complexity of a function, $Q_2(f)$. Combining all these results yields $Q_2(f) = O(\sqrt{L(f)})$. By the connection of quantum query complexity to the approximate degree\(^3\), $\widetilde{\deg}(f) = O(Q_2(f))$, established by Beals et al. [BBC+01], we get a classical result: $\widetilde{\deg}(f) = O(\sqrt{L(f)})$ for any Boolean function f. To our best knowledge, no classical proof that $\deg(f) = O(\sqrt{L(f)})$ is known – it might be interesting to find such.

Small formulae have exponentially small Fourier tails. We obtain a somewhat simpler proof of our main theorem, compared to Håstad’s original proof, by taking the result $\widetilde{\deg}(f) = O(\sqrt{L(f)})$ as a given. First, we note that by using amplification there exists a polynomial of

\(^3\)The approximate degree of a function $f : \{-1,1\}^n \rightarrow \{-1,1\}$ is the minimal degree of a polynomial $p(x)$ such that $|p(x) - f(x)| \leq 1/3$ for all $x \in \{-1,1\}^n$.

degree $\tilde{d} = O(\sqrt{L(f)} \log(1/\epsilon))$ which ϵ-approximates f pointwise. Using standard arguments this implies that the Fourier mass above degree \tilde{d}, i.e. $\sum_{|S| > \tilde{d}} \hat{f}(S)^2$, is at most ϵ. In other words, the Fourier mass above $O(\sqrt{L(f)} \cdot t)$ is at most 2^{-t}, and we call this property exponentially small tails of the Fourier spectrum of f above level $O(\sqrt{L(f)})$. \(^4\)

Exponentially small Fourier tails imply a “switching lemma” type property. Our next step is novel. We show that exponentially small Fourier tails imply a strong behavior under random restrictions. If for all t, f has at most 2^{-t} of the mass above level $m \cdot t$, then under a p-random restriction we have

$$\forall d : \Pr_{\rho \sim R_p} [\deg(f|\rho) = d] \leq (4pm)^d . \quad (1)$$

In particular, if we take p to be $\leq \frac{1}{cm}$ for a large enough constant c we get that the degree of the restricted function is d with probability $\exp(-10d)$. \(^5\)

We call such a property a “switching lemma” type property since the switching lemma states something similar for DNF formulae: If f can be computed by a DNF formula where each term is the logical AND of w literals, then

$$\forall d : \Pr_{\rho \sim R_p} [DT(f|\rho) \geq d] \leq (5pw)^d .$$

Our conclusion is somewhat analogous for functions with exponentially small tails, replacing the decision tree complexity with the degree as a polynomial. We think that the relation between exponentially small Fourier tails and the “switching lemma” type property is of independent interest.

Proving the case $p = O(1/\sqrt{L(f)})$. Combining the fact that functions with small formula size have exponentially small tails above level $\sqrt{L(f)}$, we get that for $p = O(1/\sqrt{L(f)})$, applying a p-random restriction yields a function with degree d with probability at most $\exp(-10d)$. In particular, with high probability the function becomes a constant. As the formula size of a degree d polynomial is at most 32^d we get that for some large enough constant c, applying a p-random restriction with $p = \frac{1}{c \sqrt{L(f)}}$, yields a function with expected formula size at most 1. This completes our proof for the case $p = \Theta(1/\sqrt{L(f)})$, and in fact the case $p = O(1/\sqrt{L(f)})$ as well.

Proving the general case. In order to establish the case where $p = \Omega(1/\sqrt{L(f)})$, we use an idea from Impagliazzo, Meka and Zuckerman’s work ([IMZ12]). They showed how to decompose a large formula into $O(L(f)/\ell)$ many small formulae, each of size $O(\ell)$. Furthermore, applying any restriction, the formula size of the restricted function is at most the sum of formula sizes of the restricted sub-functions represented by the sub-formulae. Taking ℓ to be $1/p^2$ and using linearity of expectation we get the required result for general p.

1.3 Related Work

The recent work of Impagliazzo and Kabanets [IK13] shows that shrinkage properties imply Fourier concentration. In some sense, our result shows the opposite, although we need exponential small Fourier tails to begin with.

\(^4\)Of course, this is meaningless when $L(f) \geq n^2$, since there is no mass above degree n.

\(^5\)This is essentially the opposite of a key step in the proof of Linial, Mansour and Nisan [LMN93] which showed that \mathbf{AC}^0 circuits have Fourier spectrum concentrated on the poly log(n) first levels.
2 Preliminaries

2.1 Formulae

A De Morgan formula F on n variables x_1, \ldots, x_n is a binary tree whose leaves are labeled with variables or their negations, and whose internal nodes are labeled with either \lor or \land gates. The size of a De Morgan formula F, denoted by $L(F)$, is the number of leaves in the tree. The formula size of a function $f : \{-1,1\}^n \to \{-1,1\}$ is the size of the minimal formula which computes the function, and is denoted by $L(f)$. A de Morgan formula is called read-once if every variable appears at most once in the tree.

2.2 Restrictions

Definition 2.1 (Restriction). Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function. A restriction ρ is a vector of length n of elements from $\{0,1,*\}$. We denote by $f|_{\rho}$ the function f restricted according to ρ in the following sense: if $\rho_i = *$ then the i-th input bit of f is unassigned and otherwise the i-th input bit of f is assigned to be ρ_i.

Definition 2.2 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.1 that is sampled in the following way. For every $i \in [n]$, independently with probability p set $\rho_i = *$ and with probability $1 - p^2$ set ρ_i to be 0 and 1, respectively. We denote this distribution of restrictions by R_p.

2.3 Fourier Analysis of Boolean Functions

For any Boolean function $f : \{-1,1\}^n \to \{-1,1\}$ there is a unique Fourier representation:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i.$$

The coefficients $\hat{f}(S)$ are given by $\hat{f}(S) = \mathbb{E}_x[f(x) \cdot \prod_{i \in S} x_i]$. Parseval’s equality states that $\sum_S \hat{f}(S)^2 = \mathbb{E}_x[f(x)^2] = 1$. Note that the Fourier representation is the unique multilinear polynomial which agrees with f on $\{-1,1\}^n$. The polynomial degree is denoted by $\deg(f)$ and is equal to $\max\{|S| : \hat{f}(S) \neq 0\}$. We denote by

$$W^k[f] \triangleq \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^2$$

the Fourier weight at level k of f. Similarly, we denote by $W^k[f] \triangleq \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2$. The following fact relates the Fourier coefficients of f and of $f|_{\rho}$ where ρ is a p-random restriction.

Fact 2.3 (Proposition 4.17,[O’D12]).

$$\mathbb{E}_{\rho \sim R_p} [\hat{f}_\rho(S)^2] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \mathbb{P}_{\rho \sim R_p} \{i \in U : \rho(i) = *\} = |S|$$

Summing over all coefficients of size d, we get the following corollary.
Corollary 2.4.

\[
\mathbb{E}_{p \sim R_p} \left[\sum_{S : |S| = d} \hat{f}_p(S)^2 \right] = \sum_{k=d}^{n} W^{=k} \Pr[\text{Bin}(k, p) = d]
\]

One can represent a Boolean function also as \(\tilde{f} : \{0, 1\}^n \to \{0, 1\} \). Identifying \(\{0, 1\} \) with \(\{1, -1\} \) by \(b \mapsto 1 - 2b \) we get the following relation between the \(\{0, 1\} \) and the \(\{-1, 1\} \) representation of the same function.

\[
\tilde{f}(y) = \frac{1 - f(1 - 2y_1, \ldots, 1 - 2y_n)}{2} = \frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} (1 - 2y_i)
\]

Let \(p(y) = \sum_{T \subseteq [n]} a_T \cdot \prod_{i \in T} y_i \) be the unique multi-linear polynomial which agrees with \(\tilde{f}(y) \) on \(\{0, 1\}^n \). Using Equation (2) gives \(a_\emptyset = 1/2 - 1/2 \cdot \sum_S \hat{f}(S) \) and

\[
\forall T \neq \emptyset : a_T = (-2)^{|T| - 1} \cdot \sum_{S \supseteq T} \hat{f}(S).
\]

It is clear from Equation (3) that \(\deg(p) = \deg(f) \), hence the definition of degree does not depend whether we are talking about the \(\{-1, 1\} \) or the \(\{0, 1\} \) representation of the function. Note that since \(\tilde{f} \) is Boolean, the coefficients \(a_T \) are integers, since we can write

\[
\tilde{f}(y) = \sum_{z \in \{0, 1\}^n} \tilde{f}(z) \cdot \prod_{i : z_i = 0} (1 - y_i) \cdot \prod_{i : z_i = 1} y_i
\]

which opens up to a multi-linear polynomial over \(y \) with integer coefficients.

An immediate consequence of the above discussion is the following fact, which states that the Fourier coefficients of a degree \(d \) polynomial are \(2^{1-d} \) granular.

Fact 2.5 (Granularity). Let \(f : \{-1, 1\}^n \to \{-1, 1\} \) with \(\deg(f) = d \), then \(\hat{f}(S) = k_S \cdot 2^{1-d} \) where \(k_S \in \mathbb{Z} \) for any \(S \subseteq [n] \).

Proof. We prove by contradiction. Let \(T \) be a maximal set with respect to inclusion for which \(\hat{f}(T) \) is not an integer multiple of \(2^{1-d} \). Equation (3) gives \(a_T = (-2)^{|T| - 1} \sum_{S \supseteq T} \hat{f}(S) \). Multiplying both sides by \((-2)^{d - |T|} \) we get

\[
(-2)^{d - |T|} \cdot a_T = (-2)^{d-1} \sum_{S \supseteq T} \hat{f}(S).
\]

By the assumption on maximality of \(T \), all coefficients on the RHS except \(\hat{f}(T) \) are integer multiples of \(2^{1-d} \), hence the RHS is not an integer. On the other hand, the LHS is an integer since \(a_T \) is an integer.

Definition 2.6. We define the sparsity of \(f : \{-1, 1\}^n \to \{-1, 1\} \) as

\[
\text{sparsity}(f) \overset{\Delta}{=} |\{S : \hat{f}(S) \neq 0\}|.
\]

Corollary 2.7. Let \(f : \{-1, 1\}^n \to \{-1, 1\} \) with \(\deg(f) = d \), then \(\text{sparsity}(f) \leq 2^{2d-2} \).

Proof. By Parseval, \(1 = \sum_S \hat{f}(S)^2 \geq \text{sparsity}(f) \cdot (2^{1-d})^2 \).
Claim 2.8. Let \(\tilde{f} : \{0,1\}^n \rightarrow \{0,1\} \) be a Boolean function with \(\deg(\tilde{f}) = d \) then \(\tilde{f} \) can be written as

\[
\tilde{f}(x) = \sum_{i=1}^{\text{sparsity}(f)} g_i(x)
\]

where each \(g_i : \{0,1\}^n \rightarrow \mathbb{Z} \) is a \(d \)-junta, i.e. depends only on at most \(d \) coordinates.

Proof. Write \(\tilde{f}(x) = \sum_{T \subseteq [n]} a_T \prod_{j \in T} x_j \). By Equation (3) any \(T \subseteq [n] \) such that \(a_T \neq 0 \) is contained in some subset \(S \subseteq [n] \) for which \(\tilde{f}(S) \neq 0 \). Order the sets \(\{S : \tilde{f}(S) \neq 0\} \) according to some arbitrary order: \(\{S_1, \ldots, S_{\text{sparsity}(f)}\} \) and let

\[
g_i(x) = \sum_{T \subseteq S_i, \forall j \in i : T \nsubseteq S_j} a_T \cdot \prod_{j \in T} x_j.
\]

Then, by definition \(\tilde{f}(x) = \sum_{i=1}^{\text{sparsity}(f)} g_i(x) \). By the integrality of \(a_T \), each \(g_i \) takes integer values. Moreover, each \(g_i \) depends only on the variables in the set \(S_i \), i.e. on at most \(d \) coordinates. \(\square \)

2.4 Approximate Degree

Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \). Given an \(\epsilon \) we define the \(\epsilon \)-approximate degree, denoted by \(\deg_\epsilon(f) \), as the minimal degree of a multi-linear polynomial \(p \) such that for all \(x \in \{-1,1\}^n \), \(|f(x) - p(x)| \leq \epsilon \). We denote \(\deg_{1/3}(f) \) by \(\deg(f) \).

When defining approximate degree the choice of 1/3 may seem arbitrary. The next fact (essentially proved in [BNRdW07], Lemma 1) shows how approximate degree for different errors relate. We prove this fact in Appendix B for completeness.

Fact 2.9. Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) be a Boolean function and let \(0 < \epsilon < 1 \) then:

\[
\deg_\epsilon(f) \leq \deg(f) \cdot [8 \cdot \ln(2/\epsilon)].
\]

Relating the approximate degree with the Fourier transform one gets the following fact.

Fact 2.10. Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) be a Boolean function, \(0 < \epsilon < 1 \) and \(d = \deg_\epsilon(f) \), then \(\mathbf{W}^d(f) \leq \epsilon^2 \).

Proof. Let \(p \) be a polynomial of degree \(d \) which \(\epsilon \) approximates \(f \). Obviously \(\mathbf{E}_x[(f(x) - p(x))^2] \leq \epsilon^2 \).

Let \(q \) be the best \(\ell_2 \) approximation of \(f \) by a degree \(d \) polynomial, namely the polynomial of degree \(d \) which minimizes \(\|f - q\|_2^2 \equiv \mathbf{E}_x[(f(x) - q(x))^2] \). Obviously, \(\|f - q\|_2^2 \leq \|f - p\|_2^2 \leq \epsilon^2 \) by the choice of \(p \) and \(q \). Using Parseval’s equality \(\|f - q\|_2^2 = \sum_S \left(\hat{f}(S) - \hat{q}(S) \right)^2 \), and it is easy to see that the minimizer of this expression among degree \(d \) polynomials is the Fourier expansion of \(f \) truncated above degree \(d \):

\[
q(x) = \sum_{S \subseteq [n] : |S| \leq d} \hat{f}(S) \cdot \chi_S(x).
\]

Overall, we get that \(\epsilon^2 \geq \|f - q\|_2^2 = \sum_{S : |S| > d} \hat{f}(S)^2 \).

Our proof relies heavily on the following result from quantum query complexity.

Theorem 2.11 ([BBC+01, HLS07, Rei11]). There exists a universal constant \(C_1 \geq 1 \) such that for any \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) we have \(\deg(f) \leq C_1 \cdot \sqrt{L(f)} \).
Theorem 3.2. Let \(t > 0 \) (\cite{LMN93}, restated slightly) a proof of this theorem in Appendix A.

Linial, Mansour and Nisan proved that Property 2 implies Property 1. For completeness we include a proof of this theorem in Appendix A.

Claim 2.12. There exists a constant \(C > 0 \) such that for any \(f : \{-1,1\}^n \to \{-1,1\} \) and \(k \in \mathbb{N} \),

\[
W^{\geq k}[f] \leq e \cdot \exp \left(\frac{-k}{C \sqrt{L(f)}} \right).
\]

Proof. Let \(t = \frac{k}{C \sqrt{L(f)}} \) where \(C \) is some constant we shall set later. We prove that \(W^{\geq k}[f] \leq e \cdot e^{-t} \).

Assume without loss of generality that \(t \geq 1 \) or else the claim is trivial since \(W^{\geq k}[f] \leq 1 \leq e \cdot e^{-t} \).

Put \(\epsilon = e^{-t/2} \), and combine Theorem 2.11 and Fact 2.9 to get

\[
\overline{\deg}_t(f) \leq \sqrt{L(f)} \cdot C_1 \cdot |8 \ln(2/\epsilon)| = \sqrt{L(f)} \cdot C_1 \cdot [4t + 8 \ln(2)] \leq \sqrt{L(f)} \cdot C_1 \cdot 11t.
\]

Using Fact 2.10 we get \(W^{> \sqrt{L(f)} \cdot C_1 \cdot 11t}[f] \leq e^{-t} \). Hence \(W^{\geq \sqrt{L(f)} \cdot C_1 \cdot 12t}[f] \leq e^{-t} \). Setting \(C := C_1 \cdot 12 \) completes the proof.

\[\square\]

2.5 The Generalized Binomial Theorem

Theorem 2.13 (The generalized binomial theorem). Let \(|x| < 1 \), and \(s \in \mathbb{N} \) then

\[
\frac{1}{(1 - x)^s} = \sum_{k=0}^{\infty} \binom{s + k - 1}{s - 1} \cdot x^k.
\]

Rearranging this equality one get the following corollary:

Corollary 2.14. Let \(|x| < 1 \), and \(m \in \mathbb{N} \cup \{0\} \) then \(\sum_{n=m}^{\infty} x^n \cdot \binom{n}{m} = \frac{x^m}{(1 - x)^{m+1}} \).

Proof. By the generalized binomial theorem \(\frac{x^m}{(1 - x)^{m+1}} = \sum_{k=0}^{\infty} \binom{m+k}{m} \cdot x^{m+k} \). The RHS can be rewritten as \(\sum_{n=m}^{\infty} \binom{n}{m} \cdot x^n \), which completes the proof.

\[\square\]

3 Exponentially Small Tails and The Switching Lemma

In this section we prove the main technical part of our proof by showing a close relation between two properties of Boolean functions:

1. Having exponentially small Fourier tails above level \(t \): \(\forall k : W^{\geq k}[f] \leq e^{-k/t} \).

2. A “switching lemma” type property with parameter \(t' \): \(\forall p, d : \Pr_{p \sim \mathcal{R}_p}[\deg(f|_p) \geq d] \leq (t'p)^d \).

Linial, Mansour and Nisan proved that Property 2 implies Property 1. For completeness we include a proof of this theorem in Appendix A.

Theorem 3.1 (\cite{LMN93}, restated slightly). Let \(f : \{-1,1\}^n \to \{-1,1\} \) and assume the existence of \(t > 0 \) such that for all \(d \in \mathbb{N}, p \in (0,1) \), \(\Pr_{p \sim \mathcal{R}_p}[\deg(f|_p) \geq d] \leq (tp)^d \). Then for any \(k \), \(W^{\geq k}[f] \leq 2e \cdot e^{-k/t} \).

Next, we prove a converse to Theorem 3.1.

Theorem 3.2. Let \(f : \{-1,1\}^n \to \{-1,1\} \) be a Boolean function, let \(t, C > 0 \) such that for all \(k \), \(W^{\geq k}[f] \leq C \cdot e^{-k/t} \). Let \(p \) be a \(p \)-random restriction, then for all \(d \), \(\Pr[\deg(f|_p) = d] \leq \frac{C}{4}(4pt)^d \).
Proof Sketch If a function f has exponentially small Fourier tails above level t then on expectation the restricted function $f|_{\rho}$ will have exponentially small Fourier tails above level pt, since the Fourier spectrum of f roughly squeezes by a factor of p under a p-random restriction (see Corollary 2.4). However, the Fourier mass above level d of a Boolean function of degree d cannot be smaller than 4^{-d} by the granularity property. We get that if $pt \ll 1$, then with high probability the restricted function is not a degree d polynomial.

Proof. Our proof strategy is as follows: we bound the value of $E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right]$ from below and above showing

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right] \geq \Pr[\deg(f|_{\rho}) = d] \cdot 4^{1-d} \quad (4)$$

and

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right] \leq C (pt)^d. \quad (5)$$

Combining the two estimates will complete the proof.

We begin by proving Equation (4). Conditioning on the event that $\deg(f|_{\rho}) = d$, Fact 2.5 implies that any nonzero Fourier coefficient of $f|_{\rho}$ is of magnitude $\geq 2^{1-d}$. Hence, $\sum_{S:|S|=d} \hat{f}(S)^2 \geq 4^{1-d}$, and we get

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right] \geq \Pr[\deg(f|_{\rho}) = d] \cdot E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right] \geq \Pr[\deg(f|_{\rho}) = d] \cdot 4^{1-d}.$$

Next, we turn to prove Equation (5).

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right] = \sum_{k \geq d} W^k[f] \cdot \binom{k}{d} \cdot p^d \cdot (1-p)^{k-d} \quad \text{(Corollary 2.4)}$$

$$= \sum_{k \geq d} \left(W^{\geq k}[f] - W^{\geq k+1}[f] \right) \cdot \binom{k}{d} \cdot p^d \cdot (1-p)^{k-d}$$

$$= \left(\frac{p}{1-p} \right)^d \sum_{k \geq d} \left(W^{\geq k}[f] - W^{\geq k+1}[f] \right) \cdot \binom{k}{d} \cdot (1-p)^k$$

We can rearrange the RHS of the above equation, gathering terms according to $W^{\geq k}[f]$. We denote $(d^{-1}) = 0$, and get:

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{\rho}(S)^2 \right] = \left(\frac{p}{1-p} \right)^d \sum_{k \geq d} W^{\geq k}[f] \cdot \left(\binom{k}{d} \cdot (1-p)^k - \binom{k-1}{d} \cdot (1-p)^{k-1} \right)$$

$$\leq \left(\frac{p}{1-p} \right)^d \sum_{k \geq d} W^{\geq k}[f] \cdot \left(\binom{k}{d} \cdot (1-p)^k - \binom{k-1}{d} \cdot (1-p)^{k} \right)$$

$$= \left(\frac{p}{1-p} \right)^d \sum_{k \geq d} W^{\geq k}[f] \cdot \binom{k-1}{d-1} \cdot (1-p)^k.$$
Let $a := e^{-1/t}$. The assumption on the Fourier tails of f, $W^k[f] \leq C \cdot a^k$, gives

$$
E_{\rho} \left[\sum_{|S| = d} \hat{f}_{\rho}(S)^2 \right] \leq \left(\frac{p}{1-p} \right)^d \sum_{k \geq d} C(a(1-p))^k \cdot \binom{k-1}{d-1} \\
= \left(\frac{p}{1-p} \right)^d \cdot C(a(1-p)) \cdot \sum_{k \geq d} (a(1-p))^{k-1} \cdot \binom{k-1}{d-1} \\
= \left(\frac{p}{1-p} \right)^d \cdot C(a(1-p)) \cdot \sum_{k' \geq d-1} (a(1-p))^{k'} \cdot \binom{k'}{d-1}
$$

Next we use Corollary 2.14 with $x := a(1-p)$ and $m := d-1$ to get

$$
E_{\rho} \left[\sum_{|S| = d} \hat{f}_{\rho}(S)^2 \right] \leq \left(\frac{p}{1-p} \right)^d \cdot C(a(1-p)) \cdot \frac{(a(1-p))^{d-1}}{(1-a(1-p))^d} = C \left(\frac{ap}{1-a(1-p)} \right)^d \leq C \left(\frac{ap}{1-a} \right)^d
$$

Substituting a with $e^{-1/t}$ gives

$$
E_{\rho} \left[\sum_{|S| = d} \hat{f}_{\rho}(S)^2 \right] \leq C \left(\frac{p}{1-1/a} \right)^d = C \left(\frac{p}{e^{1/t}-1} \right)^d \leq C (pt)^d,
$$

where the last inequality follows since $e^x - 1 \geq x$ for any $x \geq 0$. \hfill \Box

4 Degree vs. Formula Size

We use the following fact about the formula size of the parity function

Fact 4.1 ([Lee07]). $L(\text{PARITY}_m) \leq 9/8 \cdot m^2$. Furthermore, if $m = 2^k$ for some integer k, then $L(\text{PARITY}_m) = m^2$.

Claim 4.2. Let $\tilde{f} : \{0,1\}^n \to \{0,1\}$ such that $\deg(\tilde{f}) = d$, then $L(\tilde{f}) \leq 1/8 \cdot 32^d$.

Proof. According to Claim 2.8, \tilde{f} can be written as $\sum_{i=1}^{4d-1} g_i(x)$, where the functions $g_i(x)$ take integer values, and each of them depends on at most d variables. Since $\tilde{f}(\bar{x}) \in \{0,1\}$ we may perform all operations modulo 2 and get $\tilde{f}(x) = \bigoplus_{i=1}^{4d-1} h_i(x)$, where $h_i(x) = g_i(x) \mod 2$. Taking a formula for the parity of $m = 4^{d-1}$ variables, y_1, \ldots, y_m, and replacing each instance of a variable y_i with a formula computing $h_i(x)$ gives a formula for \tilde{f}. The size of the formula computing each h_i is at most 2^{d+1} since any function on d variables can be computed by a formula of such size. Thus, the size of the combined formula is $\leq L(\text{PARITY}_m) \cdot 2^{d+1} = 16^{d-1} \cdot 2^{d+1} = 1/8 \cdot 32^d$. \hfill \Box

5 The Case $p = O(1/\sqrt{L(f)})$

Claim 5.1. There exists a constant $C > 0$ such that for any function $f : \{-1,1\}^n \to \{-1,1\}$ and any $p \leq \frac{1}{C \sqrt{L(f)}}$ the following hold. Let ρ be a p-random restriction, then $E_{\rho}[L(f|\rho)] = O(p \cdot \sqrt{L(f)})$.

In particular, in this regime of parameters, $E_{\rho}[L(f|\rho)] = O(1)$.

9
Proof of Claim 5.1. From Claim 2.12, there exists a constant $C > 0$ such that

$$
\forall k : W^{\geq k}[f] \leq e \cdot e^{-k/(C\sqrt{L(f)})}.
$$

This implies, using Theorem 3.2, that $\Pr_{\rho \sim \mathcal{R}_p}[\deg(f|\rho) = d] \leq \frac{1}{4} \cdot \left(4pC\sqrt{L(f)}\right)^d \leq \left(4pC\sqrt{L(f)}\right)^d$.

Using Claim 4.2, if $\deg(f|\rho) = d$ then $L(f|\rho) \leq 32^d$. For $p \leq 1 \over 644C\sqrt{L(f)}$ we get

$$
\mathbb{E}_{\rho \sim \mathcal{R}_p}[L(f|\rho)] = \sum_{d=0}^{\infty} \Pr_{\rho}[\deg(f|\rho) = d] \cdot \mathbb{E}_\rho[L(f|\rho)|\deg(f|\rho) = d]
$$

$$
= \sum_{d=1}^{\infty} \Pr_\rho[\deg(f|\rho) = d] \cdot \mathbb{E}_\rho[L(f|\rho)|\deg(f|\rho) = d] \, (\deg(f|\rho) = 0 \implies L(f|\rho) = 0)
$$

$$
\leq \sum_{d=1}^{\infty} \left(4pC\sqrt{L(f)}\right)^d \cdot 32^d
$$

$$
\leq O(p\sqrt{L(f)}) \cdot \sum_{d=1}^{\infty} \left(4pC\sqrt{L(f)}\right)^{d-1} \cdot 32^{d-1}
$$

$$
\leq O(p\sqrt{L(f)}) \cdot \sum_{d=1}^{\infty} (1/64)^{d-1} \cdot 32^{d-1}
$$

$$
= O(p\sqrt{L(f)}). \qedhere
$$

6 The General Case

In Section 5 we have proved Theorem 1.2 for the case $p = O(1/\sqrt{L(f)})$. In this section we give a reduction from the case where p is larger, i.e. $p = \Omega(1/\sqrt{L(f)})$, to the case where p is small, i.e. $p = \Theta(1/\sqrt{L(f)})$. We use the tree decomposition of Impagliazzo, Meka and Zuckerman [IMZ12] to establish this reduction.\footnote{Another approach to prove the general case is to follow H˚astad original proof, changing the estimates when $p = O(1/\sqrt{L(F)})$ with what we showed in Section 5. The reduction we suggest simplifies this approach significantly.}

The next lemma states that every binary tree can be decomposed into smaller subtrees with some small overhead. Its proof can be found in [IMZ12].

Lemma 6.1 ([IMZ12]). Let $\ell \in \mathbb{N}$. Any binary tree with $s \geq \ell$ leaves can be decomposed into at most $6s/\ell$ subtrees, each with at most ℓ leaves, such that each subtree has at most two other subtree children. Here subtree T_1 is a child of subtree T_2 if there exists nodes $t_1 \in T_1$, $t_2 \in T_2$, such that t_1 is a child of t_2.

Claim 6.2. Let F be a formula over the set of variables $X = \{x_1, \ldots, x_n\}$, and $\ell \in \mathbb{N}$ be some parameter. Then, there exist $m \leq O(L(F)/\ell)$ formulae over X, denoted by G_1, \ldots, G_m, each of size at most ℓ, and there exists a read-once formula F' of size m such that $F'(G_1(x), \ldots, G_m(x)) = F(x)$ for all $x \in \{-1,1\}^n$.

Proof. Consider the decomposition promised by Lemma 6.1 with parameter ℓ. Let $T_1, \ldots, T_{m'}$ be the subtrees in this decomposition where $m' \leq 6n/\ell$. We will show by induction on m', that one
can construct a read-once formula F' of size $m \leq 6m'$ alongside m sub-formulae G_1, \ldots, G_m of size ℓ such that $F \equiv F'(G_1, \ldots, G_m)$. For $m' = 1$ the statement holds trivially.

Assume that the root of the formula F is a node in the subtree T_1, and that the subtree T_1 has two subtree children: T_2 and T_3 (the case where T_1 has one subtree child can be handled similarly, and is in fact slightly simpler). We now add two special leaves to the tree T_1. Let $t_2 \in T_2, t_1 \in T_1$ (respectively $t_3 \in T_3, t_1' \in T_1$) be the nodes such that t_2 (t_3, resp.) is a child of t_1 (t_1', resp.) in the tree represented by F, and add a leaf labeled by the "special" variable z_2 (z_3, resp.) as a child of t_1 (t_1', resp.). Call the new subtree T. Note that since T is a De Morgan formula, the value of T is monotone in z_2 and z_3. Let T' be the minimal subtree of T which contains both leaves marked by z_2 and z_3. By minimality $T' = T_2 \circ \circ T_3'$, for $\circ \circ \in \{\land, \lor\}$, where T_2' contains z_2 and not z_3, and T_3' contains z_3 and not z_2.

We will construct a formula equivalent to T' by finding equivalent formulae for T_2' and T_3'. We claim that $T_2' = (T_2'|z_2=\text{false}) \lor (T_2'|z_2=\text{true} \land z_2)$. This follows since T_2' is monotone in z_2: if $T_2'|z_2=\text{false} = \text{true}$ then $T_2' = \text{true}$, otherwise $T_2' = \text{true}$ only if both $T_2'|z_2=\text{true}$ and z_2 are true. Same goes for T_3', and we get

$$T' \equiv \left((T_2'|z_2=\text{false}) \lor (T_2'|z_2=\text{true} \land z_2)\right) \circ \circ \left((T_3'|z_3=\text{false}) \lor (T_3'|z_3=\text{true} \land z_3)\right).$$

Replacing T' with a leaf labeled with z, where z is a new "special" variable, and doing the same trick we get: $T \equiv T'|z=\text{false} \lor (T'|z=\text{true} \land z)$. Combining both formulae, we get the following equivalence:

$$T \equiv T'|z=\text{false} \lor (T'|z=\text{true} \land z) \circ \circ \left((T_2'|z_2=\text{false}) \lor (T_2'|z_2=\text{true} \land z_2)\right) \circ \circ \left((T_3'|z_3=\text{false}) \lor (T_3'|z_3=\text{true} \land z_3)\right).$$

Note that the RHS of the above can be written as $F''(G_1(x), \ldots, G_6(x), z_2, z_3)$ where F'' is read-once and $G_1(x), \ldots, G_6(x)$ are formulae of size ℓ, defined on the variables in X.

Let m_2, m_3 be the number of subtrees which are descendants of T_2, T_3 in the tree-decomposition given by Lemma 6.1. By induction, the subformula of F rooted at t_2 is equivalent to $F_2'(G_1^2(x), \ldots, G_6^{2m_2}(x))$ where F_2' is read-once and $G_i^2(x)$ are formulae of size at most ℓ. Similarly for T_3. We thus get that

$$F(x) = F''(G_1(x), \ldots, G_6(x), F_2'(G_1^2(x), \ldots, G_6^{2m_2}(x)), F_3'(G_1^3(x), \ldots, G_6^{3m_3}(x))).$$

Rearranging the RHS, we get a read-once formula of size $m \leq 6 + 6m_2 + 6m_3 = 6m'$ alongside m sub-formulae, each of size ℓ, such that their composition is equivalent to F'.

We now turn to complete the proof of our main theorem.

Theorem (Theorem 1.2, restated). Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function, and let $p > 0$, then $E_{\rho \sim \mathcal{P}_p}[L(f|\rho)] = O\left(p^2 L(f) + p \sqrt{L(f)}\right)$.

Proof. The case $p \leq \frac{1}{C\sqrt{\ell}}$ is implied by Claim 5.1. Therefore, it is enough to show the statement holds when $p > \frac{1}{C\sqrt{\ell}}$. Let F be the smallest De Morgan formula computing f. Applying Claim 6.2 with $\ell := \frac{1}{p^2 C^2}$, we get a read-once De Morgan formula F' of size $m = O(L(F)/\ell)$ along with formulae G_1, \ldots, G_m, each of size at most ℓ, such that $f(x) = F'(G_1(x), \ldots, G_m(x))$ for all $x \in \{-1,1\}^n$. Denote the functions which G_1, \ldots, G_m compute as g_1, \ldots, g_m respectively. Applying a restriction ρ we get $f|\rho \equiv F'(g_1|\rho, \ldots, g_m|\rho)$, hence $L(f|\rho) \leq \sum_{i=1}^m L(g_i|\rho)$. By linearity of expectation,

$$E_{\rho}[L(f|\rho)] \leq E_{\rho}\left[\sum_{i=1}^m L(g_i|\rho)\right] \leq m \cdot O(p \cdot \sqrt{\ell}) = m \cdot O(1) = O(p^2 \cdot L(f)).$$
7 Open Ends

An interesting open question raised by H˚astad in [H˚as98] is

What is the shrinkage exponent of monotone De Morgan formulae?

In particular, this has strong connections with understanding the monotone formula size of Majority. The analysis in Section 6 implies that it is enough to find the critical probability \(p_c \) for which \(\mathbb{E}_{\rho \sim \mathcal{R}_p}[L(f|_\rho)] = 1 \), and then use the tree decomposition to argue for \(p \geq p_c \) (note that the decomposition done in Section 6 respects monotonicity). Hence, in order to show \(\Gamma \) shrinkage, i.e. that formulae of size \(s \) shrink to expected size \(O(p^\Gamma s + 1) \) after applying a \(p \)-random restriction, it is necessary and sufficient to show that for \(p = \frac{1}{L(f)^{1/\Gamma}} \), the expected size of the minimal monotone formula computing \(f|_\rho \) is \(O(1) \).

Acknowledgement

I wish to thank my advisor Ran Raz for his guidance and encouragement. I thank Zeev Dvir and Ilan Komargodski for helpful discussions.

References

A A Theorem of Linial, Mansour and Nisan

Theorem (Theorem 3.1, restated). Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) and assume there exists \(t \in \mathbb{R} \) such that for all \(d, p \), \(\Pr_{\rho \sim \mathcal{R}_p}[\deg(f_\rho) \geq d] \leq (tp)^d \). Then for any \(k, W^{\geq k}[f] \leq 2e \cdot e^{-k/(te)} \).

Proof. For any \(d \in \mathbb{N} \) and \(p \in (0,1] \) we have

\[
E_{\rho \sim \mathcal{R}_p} \left[\sum_{S : |S| \geq d} \hat{f}_\rho(S)^2 \right] = \sum_{k \geq d} W^{=k}[f] \cdot \Pr[\text{Bin}(k, p) \geq d] \\
\geq \sum_{k \geq d/p} W^{=k}[f] \cdot \Pr[\text{Bin}(k, p) \geq d] \\
\geq \sum_{k \geq d/p} W^{=k}[f] \cdot 1/2 \quad (\text{median(\text{Bin}(k, p))} \geq \lfloor kp \rfloor \geq d, [KB80]) \\
= \frac{1}{2} \cdot W^{\geq d/p}[f]
\]

Overall we got

\[
W^{\geq d/p}[f] \leq 2 \cdot E_{\rho \sim \mathcal{R}_p} \left[\sum_{S : |S| \geq d} \hat{f}_\rho(S)^2 \right] \leq 2 \Pr_{\rho \sim \mathcal{R}_p}[\deg(f_\rho) \geq d] \leq 2(tp)^d. \quad (6)
\]

Given \(k \) and \(t \) we choose \(p := 1/(te) \) and \(d := \lfloor kp \rfloor \). Substituting \(d \) and \(p \) in Equation (6) we get \(W^{\geq k}[f] \leq 2 \cdot e^{-k/(te)} \leq 2e \cdot e^{-k/(te)} \).

B Amplification of Approximate Degree

Definition B.1. For \(q \in [-1,1] \) we say that \(x \) is a \(q \)-biased bit, denoted by \(x \sim N_q \), if \(\Pr[x = 1] = \frac{1+q}{2} \) and \(\Pr[x = -1] = \frac{1-q}{2} \). In other words, \(x \) is a random variable taking values from \(\{-1,1\} \) with \(E[x] = q \).
The next lemma connects the value of a polynomial representing a Boolean function on non-Boolean inputs with a product-measure distribution.

Lemma B.2. Let \(f : \{−1, 1\}^n \to \mathbb{R} \) and let \(p \in \mathbb{R}[x_1, \ldots, x_n] \) be the unique multi-linear polynomial agreeing with \(f \) on \(\{−1, 1\}^n \). Let \(q_1, \ldots, q_n \in [−1, 1] \) then

\[
\mathbb{E}_{x_i \sim N_{q_i}} [f(x_1, \ldots, x_n)] = p(q_1, \ldots, q_n)
\]

where the \(x_i \)'s are drawn independently.

Proof. We write \(p(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i \). We first show the lemma for a single monomial:

\[
\mathbb{E}_{x_i \sim N_{q_i}} \left[\prod_{i \in S} x_i \right] = \prod_{i \in S} \mathbb{E}_{x_i \sim N_{q_i}} [x_i] = \prod_{i \in S} q_i .
\]

By linearity of expectation we have:

\[
\mathbb{E}_{x_i \sim N_{q_i}} [p(x_1, \ldots, x_n)] = \mathbb{E}_{x_i \sim N_{q_i}} \left[\sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i \right] = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} q_i = p(q_1, \ldots, q_n) .
\]

We now turn to prove Fact 2.9, restated next.

Fact B.3. Let \(f : \{−1, 1\}^n \to \{−1, 1\} \) be Boolean function and let \(0 < \epsilon < 1 \) then: \(\tilde{\deg}_e(f) \leq \deg(f) \cdot \lceil 8 \cdot \ln(2/\epsilon) \rceil \).

Proof. Let \(m \) be some parameter we will set later. Take \(\text{MAJ}_m : \{−1, 1\}^m \to \{−1, 1\} \) to be the majority of \(m \) inputs, and denote by \(p_{\text{MAJ}} \in \mathbb{R}[x_1, \ldots, x_m] \) the multi-linear polynomial agreeing with \(\text{MAJ}_m \) on \(\{−1, 1\}^m \). Let \(q \in (0, 1) \) (the case \(q \in [−1, 0) \) is similar), then by Lemma B.2 we have

\[
p_{\text{MAJ}}(q, q, \ldots, q) = \mathbb{E}_{x_i \sim N_q} \left[\text{MAJ}_m(x_1, \ldots, x_m) \right] = \Pr_{x_i \sim N_q} \left[\sum_i x_i \geq 0 \right] - \Pr_{x_i \sim N_q} \left[\sum_i x_i < 0 \right] .
\]

Let \(X = \sum_i x_i \), then by Chernoff-Hoeffding bound we have

\[
\Pr[X \geq 0] = \Pr[X - \mathbb{E}[X] \geq -q \cdot m] \geq 1 - e^{-(qm)^2/2m} = 1 - e^{-mq^2/2} ,
\]

which implies

\[
p_{\text{MAJ}}(q, q, \ldots, q) \geq 1 - 2e^{-mq^2/2} . \tag{7}
\]

By definition there exists a polynomial \(p \) of degree \(\deg(f) \) such that \(p(x) \in [−4/3, −2/3] \) if \(f(x) = −1 \) and \(p(x) \in [2/3, 4/3] \) if \(f(x) = 1 \). Take \(p'(x) = p(x)/4^{m/3} \), then \(p'(x) \in [1/2, 1] \) if \(f(x) = 1 \) and \(p'(x) \in [−1, −1/2] \) if \(f(x) = −1 \). Consider the polynomial

\[
g(x) = p_{\text{MAJ}}(p'(x), p'(x), \ldots, p'(x)) ,
\]

then \(\deg(g) \leq \deg(p_{\text{MAJ}}) \cdot \deg(p') = m \cdot \tilde{\deg}(f) \). On the other hand, for \(x \) such that \(f(x) = 1 \) (the case where \(f(x) = −1 \) is analogous) we have \(g(x) = p_{\text{MAJ}}(q, q, \ldots, q) \) for some \(q \in [1/2, 1] \). Since \(p_{\text{MAJ}} \) is monotone and using Equation (7), we have

\[
1 \geq g(x) = p_{\text{MAJ}}(q, q, \ldots, q) \geq p_{\text{MAJ}}(1/2, \ldots, 1/2) \geq 1 - 2e^{-m/8} .
\]

Picking \(m = \lceil 8 \cdot \ln(2/\epsilon) \rceil \) completes the proof.