
Shrinkage of de Morgan Formulae by Spectral Techniques

Avishay Tal∗

Abstract

We give a new and improved proof that the shrinkage exponent of de Morgan formulae is 2.
Namely, we show that for any Boolean function f : {0, 1}n → {0, 1}, setting each variable out of
x1, . . . , xn with probability 1− p to a randomly chosen constant, reduces the expected formula
size of the function by a factor of O(p2). This result is tight and improves the work of H̊astad
[H̊as98] by removing logarithmic factors.

As a consequence of our results, the function defined by Andreev [And87], A : {0, 1}n →
{0, 1}, which is in P, has formula size at least Ω(n3

log2 n log logn
). This lower bound is tight (for

the function A) up to the log log n factor, and is the best known lower bound for functions in P.
In addition, we strengthen the average-case hardness result of Komargodski et al. [KRT13]; we
show that the functions defined in [KRT13], hr : {0, 1}n → {0, 1}, which are also in P, cannot
be computed correctly on a fraction greater than 1/2+2−r of the inputs, by de Morgan formulae

of size at most n3

r2poly logn , for any parameter r ≤ n1/3.

The proof relies on a result from quantum query complexity by [LLS06, HLS07, Rei11]: for
any Boolean function f , Q2(f) ≤ O(

√
L(f)), where Q2(f) is the bounded-error quantum query

complexity of f , and L(f) is the minimal size de Morgan formula computing f .

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. avishay.tal@weizmann.ac.il. Supported by an Adams Fellowship of the Israel Academy of Sciences and
Humanities, by an ISF grant and by the I-CORE Program of the Planning and Budgeting Committee.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 48 (2014)

1 Introduction

The problem of P vs. NC1 is a major open-problem in computational complexity. It asks whether
any function computable by a polynomial time Turing machine can also be computed by a formula
of polynomial size. A de Morgan formula is a binary tree in which each leaf is labeled with a literal
from {x1, . . . , xn,¬x1, . . . ,¬xn} and each internal node is labeled with either a Boolean AND or
OR gate. Such a tree naturally describes a Boolean function on n variables by propagating values
from leaves to root, and returning the root’s value. The formula size is the number of leaves in the
tree; for a Boolean function f : {−1, 1}n → {−1, 1}1 we denote by L(f) the minimal size formula
which computes f . Showing that some language in P requires formulae of super-polynomial size
would imply that P * NC1. 2

Showing super-polynomial formula size lower bounds for problems in P would be a major break-
through in complexity theory, and such lower bounds are not even known for NEXP. However,
lower bounds of the form Ω(nc), for a fixed constant c, were achieved during the years for problems
in P. This line of research began with the work of Subbotovskaya [Sub61] who gave an Ω(n1.5) lower
bound for the parity function. Subbotovskaya introduced the technique of random restrictions in
her proof; a method which was applied successfully to solve other problems such as giving lower
bounds for AC0. Subbotovskaya showed that the minimal formula size of a given function is
shrunk, on expectation, by a factor of O(p1.5) under p-random restrictions. These are restrictions
to the function variables keeping each variable “alive” with probability p (independently of other
choices) and fixing it to a uniformly chosen random bit otherwise. We denote the distribution of
p-random restrictions by Rp; If ρ ∼ Rp, then f |ρ denotes the restriction of the function f by ρ.
Since the parity function does not become constant after fixing less than all of its input bits, this
implies that its size is at least Ω(n1.5). Khrapchenko [Khr71] used a different method to give a
tight Ω(n2) lower bound for the parity function. Andreev [And87] constructed a function in P and
showed that its formula size is at least Ω(n2.5−o(1)). In fact, he got a lower bound of Ω(n1+Γ−o(1))
where Γ is the shrinkage exponent of de Morgan formulae - the maximal constant such that any
de Morgan formula is shrunk by a factor of O(pΓ) under p-random restrictions. Impagliazzo and
Nisan [IN93] showed that Γ ≥ 1.55; Paterson and Zwick [PZ93] improved this bound to Γ ≥ 1.63;
and finally H̊astad [H̊as98] showed that Γ ≥ 2− o(1). More precisely, H̊astad proved the following
result.

Theorem 1.1 ([H̊as98]). Let f be a Boolean function. For every p > 0,

E
ρ∼Rp

[L(f |ρ)] ≤ O
(
p2

(
1 + log3/2 min

{
1

p
, L(f)

})
L(f) + p

√
L(f)

)
.

This result is essentially tight up to the logarithmic terms as exhibited by the parity function.
The formula size of the parity function of n variables is Θ(n2) (see [Yab54, Khr71]). Applying a p-
random restriction on the parity function yields a smaller parity function (or its negation) on k vari-
ables where k ∼ Bin(n, p). By Khrapchenko’s argument, the formula size of the restricted function

is ≥ k2, thus the expected formula size is at least E[k2] = p2n2+p(1−p)n = Ω
(
p2L(f) + p

√
L(f)

)
.

Other efforts have been made to give a function in P that requires super-polynomial formula
size: Karchmer, Raz and Wigderson [KRW95] suggested a function in P that might require super-
polynomial formula size. Recently, Gavinsky et al. [GMWW14] suggested an information theoret-
ical approach to further understand the formula size of this function.

1We identify the truth values true and false with −1 and 1 respectively.
2Here we think of the non-uniform version of NC1: the class of languages L ⊆ {−1, 1}∗ such that for each length

n there exists a Boolean formula Fn of size poly(n) which decides whether strings of length n are in the language.

1

Another recent line of work ([San10, IMZ12, KR13, KRT13, CKK+14, CKS14]) concentrated on
giving average-case formula lower bounds for problems in P. These works also explored applications
of shrinkage properties of formulae to: pseudo-random generators, compression algorithms and
non-trivial #SAT algorithms for small formulae. The state of the art average-case lower bound
for de Morgan formulae is the result of Komargodski, Raz and Tal [KRT13] who gave an explicit
hr : {−1, 1}n → {−1, 1} such that any formula that computes this function on a fraction 1

2 + 2−r

must be of size at least n3−o(1)

r2 where r is an arbitrary parameter smaller than n1/3.

1.1 Our Results

In this work, we give a new proof of H̊astad’s result. In fact, we obtain a tight result showing that
the shrinkage exponent is exactly 2.

Theorem 1.2. Let f be a Boolean function. For every p > 0,

E
ρ∼Rp

[L(f |ρ)] = O
(
p2L(f) + p

√
L(f)

)
.

Note that both terms in Theorem 1.2 (i.e., p2L(f) and p
√
L(f)) are needed as demonstrated

by the parity function above. This improves the worst-case lower bound H̊astad gave to Andreev’s
function from Ω(n3

(logn)7/2(log logn)3) to Ω(n3

(logn)2(log logn)3) immediately, following the proof of The-

orem 8.1 in [H̊as98]. A more careful choice of distribution over restrictions gives a slightly better

bound on Andreev’s function, Ω
(

n3

(logn)2 log logn

)
(see Section 7). This is tight up to the log logn fac-

tor. In addition, replacing Theorem 1.1 with Theorem 1.2 improves the analysis of the average-case
lower bound in [KRT13].

Corollary 1.3. Let n be large enough, then for any parameter r ≤ n1/3 there is an explicit (com-
putable in polynomial time) Boolean function hr : {−1, 1}6n → {−1, 1} such that any formula of

size n3

r2·poly logn
computes hr correctly on a fraction of at most 1/2 + 2−r of the inputs.

1.2 Proof Outline

The proof comes from a surprising area: quantum query complexity. The connection between
de Morgan formulae and quantum query complexity was first noted in the work of Laplante, Lee
and Szegedy [LLS06]. They showed that the quantum adversary bound is at most the square root
of the formula size of a function. Høyer, Lee and Špalek [HLS07] replaced the quantum adversary
bound by the negative weight adversary bound, achieving a stronger relation. The long line of works
[FGG08, Rei09, ACR+10, RS12, Rei11] showed that the negative weight adversary bound is equal
up to a constant to the bounded-error quantum query complexity of a function, Q2(f). Combining
all these results yields Q2(f) = O(

√
L(f)). By the connection of quantum query complexity to the

approximate degree 3 , d̃eg(f) = O(Q2(f)), established by Beals et al. [BBC+01], we get a classical

result: d̃eg(f) = O(
√
L(f)) for any Boolean function f . To our best knowledge, no classical proof

that d̃eg(f) = O(
√
L(f)) is known – it might be interesting to find such a proof.

3Let f : {−1, 1}n → {−1, 1}, we say that a polynomial p(x) ε-approximates f pointwise if |p(x)− f(x)| < ε for all

x ∈ {−1, 1}n. The approximate degree of a function f , denoted by d̃eg(f), is the minimal degree of a polynomial p
which 1/3-approximates f pointwise.

2

Small formulae have exponentially small Fourier tails. We obtain a somewhat simpler
proof of our main theorem, compared to H̊astad’s original proof, by taking the result d̃eg(f) =
O(
√
L(f)) as a given. First, we note that by using amplification there exists a polynomial of

degree d̃ = O(
√
L(f) log(1/ε)) which ε-approximates f pointwise. Using standard arguments this

implies that the Fourier mass above degree d̃, i.e.
∑

S:|S|>d̃ f̂(S)2, is at most ε. In other words, the

Fourier mass above O(
√
L(f) · t) is at most 2−t, and we call this property exponentially small tails

of the Fourier spectrum of f above level O(
√
L(f)).4

Exponentially small Fourier tails imply a “switching lemma” type property. Our next
step is novel. We show that exponentially small Fourier tails imply a strong behavior under random
restrictions. If for all t, f has at most 2−t of the mass above level m · t, then under a p-random
restriction we have

∀d : Pr
ρ∼Rp

[deg(f |ρ) ≥ d] ≤ (8pm)d .5 (1)

In particular, if we take p to be ≤ 1
cm for a large enough constant c we get that the degree of the

restricted function is d with probability exp(−10d). 6

We call such a property a “switching lemma” type property since the switching lemma ([H̊as86])
states something similar for DNF formulae: If f can be computed by a DNF formula where each
term is the logical AND of w literals, then

∀d : Pr
ρ∼Rp

[DT(f |ρ) ≥ d] ≤ (5pw)d .

Our conclusion is somewhat analogous for functions with exponentially small tails, replacing the
decision tree complexity with the degree as a polynomial. We think that the relation between ex-
ponentially small Fourier tails and the “switching lemma” type property is of independent interest.

Proving the case p = O(1/
√
L(f)). Using the fact that functions with small formula size have

exponentially small tails above level
√
L(f), we get that for p = O(1/

√
L(f)), applying a p-random

restriction yields a function with degree d with probability at most exp(−10d). In particular, with
high probability the function becomes a constant. As the formula size of a degree d polynomial is
at most 32d we get that for some large enough constant c, applying a p-random restriction with
p = 1

c
√
L(f)

, yields a function with expected formula size at most 1. This completes our proof for

the case p = Θ(1/
√
L(f)), and in fact the case p = O(1/

√
L(f)) as well.

Proving the general case. In order to establish the case where p = Ω(1/
√
L(f)), we use an

idea from Impagliazzo, Meka and Zuckerman’s work ([IMZ12]). They showed how to decompose a
large formula into O(L(f)/`) many small formulae, each of size O(`). Furthermore, applying any
restriction, the formula size of the restricted function is at most the sum of formula sizes of the
restricted sub-functions represented by the sub-formulae. Taking ` to be 1/p2 and using linearity
of expectation we get the required result for general p.

4Of course, this is meaningless when L(f) ≥ n2, since there is no Fourier mass above level n.
5 For technical reasons, it is more convinent for us to argue about the probablity of having degree exactly d. We

actually show Prρ∼Rp [deg(f |ρ) = d] ≤ (4pm)d and this implies the statement above by simple arithmetics.
6This is essentially the opposite of a key step in the proof of Linial, Mansour and Nisan [LMN93] which showed

that AC0 circuits have Fourier spectrum concentrated on the poly log(n) first levels.

3

1.3 Related Work

The recent work of Impagliazzo and Kabanets [IK14] shows that shrinkage properties imply Fourier
concentration. In some sense, our result shows the opposite, although we need exponential small
Fourier tails to begin with.

2 Preliminaries

2.1 Formulae

A de Morgan formula F on n variables x1, . . . , xn is a binary tree whose leaves are labeled with
variables or their negations, and whose internal nodes are labeled with either ∨ or ∧ gates. The
size of a de Morgan formula F , denoted by L(F), is the number of leaves in the tree. The formula
size of a function f : {−1, 1}n → {−1, 1} is the size of the minimal formula which computes the
function, and is denoted by L(f). A de Morgan formula is called read-once if every variable appears
at most once in the tree.

2.2 Restrictions

Definition 2.1 (Restriction). Let f : {−1, 1}n → {−1, 1} be a Boolean function. A restriction
ρ is a vector of length n of elements from {−1, 1, ∗}. We denote by f |ρ the function f restricted
according to ρ in the following sense: if ρi = ∗ then the i-th input bit of f is unassigned and
otherwise the i-th input bit of f is assigned to be ρi.

Definition 2.2 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.1
that is sampled in the following way. For every i ∈ [n], independently with probability p set ρi =
∗ and with probability 1−p

2 set ρi to be −1 and 1, respectively. We denote this distribution of
restrictions by Rp.

2.3 Fourier Analysis of Boolean Functions

For any Boolean function f : {−1, 1}n → {−1, 1} there is a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi .

The coefficients f̂(S) are given by f̂(S) = Ex[f(x) ·
∏
i∈S xi]. Parseval’s equality states that∑

S f̂(S)2 = Ex[f(x)2] = 1. Note that the Fourier representation is the unique multilinear polyno-
mial which agrees with f on {−1, 1}n. The polynomial degree is denoted by deg(f) and is equal to
max{|S| : f̂(S) 6= 0}. We denote by

W=k[f] ,
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote by W≥k[f] ,
∑

S⊆[n],|S|≥k f̂(S)2. The
following fact relates the Fourier coefficients of f and of f |ρ where ρ is a p-random restriction. In
fact, the result holds for any distribution over restrictions which is random-valued, as defined next.

Definition 2.3. A distribution D over restrictions is random-valued if for ρ ∼ D, given J = {i ∈
[n] : ρ(i) = ∗}, the values of ρ on J̄ are uniform independent bits.

4

By definition, Rp is random-valued.

Fact 2.4 (Proposition 4.17,[O’D14]). Let D be a random-valued distribution of restrictions. Then,

E
ρ∼D

[
f̂ |ρ(S)2

]
=
∑
U⊆[n]

f̂(U)2 · Pr
ρ∼D

[{i ∈ U : ρ(i) = ∗} = S]

For the case of D = Rp, summing over all coefficients of size d, we get the following corollary.

Corollary 2.5.

E
ρ∼Rp

 ∑
S:|S|=d

f̂ |ρ(S)2

 =

n∑
k=d

W=k[f] ·Pr[Bin(k, p) = d]

One can represent a Boolean function also as f̃ : {0, 1}n → {0, 1}. Identifying {0, 1} with {1,−1}
by b 7→ 1 − 2b we get the following relation between the {0, 1} and the {−1, 1} representation of
the same function.

f̃(y) =
1− f(1− 2y1, . . . , 1− 2yn)

2
=

1

2
− 1

2

∑
S⊆[n]

f̂(S) ·
∏
i∈S

(1− 2yi) (2)

Let p(y) =
∑

T⊆[n] aT ·
∏
i∈T yi be the unique multilinear polynomial over the reals, which agrees

with f̃(y) on {0, 1}n. Using Equation (2) gives a∅ = 1/2− 1/2 ·
∑

S f̂(S) and

∀T 6= ∅ : aT = (−2)|T |−1 ·
∑
S⊇T

f̂(S) . (3)

It is clear from Equation (3) that deg(p) = deg(f), hence the definition of degree does not depend
whether we are considering the {−1, 1} or the {0, 1} representation of the function. Note that since
f̃ is Boolean, the coefficients aT are integers, as we can write

f̃(y) =
∑

z∈{0,1}n
f̃(z) ·

∏
i:zi=0

(1− yi) ·
∏
i:zi=1

yi

which opens up to a multilinear polynomial over y with integer coefficients.
An immediate consequence of the above discussion is the following fact, which states that the

Fourier coefficients of a degree d polynomial are 2−d “granular”, i.e. integer multiples of 2−d.

Fact 2.6 (Granularity). Let f : {−1, 1}n → {−1, 1} with deg(f) = d, then f̂(S) = kS · 2−d where
kS ∈ Z for any S ⊆ [n].

Proof. We prove by contradiction. Let T be a maximal set with respect to inclusion for which
f̂(T) is not an integer multiple of 2−d. We first handle the case T 6= ∅. Equation (3) gives
aT = (−2)|T |−1

∑
S⊇T f̂(S). Multiplying both sides by (−2)d−|T |+1 we get

(−2)d−|T |+1 · aT = (−2)d
∑
S⊇T

f̂(S) .

By the assumption on maximality of T , all coefficients on the RHS except f̂(T) are integer multiples
of 2−d, hence the RHS is not an integer. On the other hand, the LHS is an integer since aT is an
integer, and we reach a contradiction.

For the case T = ∅, we have a∅ = 1/2 − 1/2 ·
∑

S f̂(S). Multiplying both sides by 2d+1 gives

2d+1a∅ = 2d − 2d
∑

S f̂(S). Again, the RHS is not an integer, while the LHS is an integer.

5

Definition 2.7. We define the sparsity of f : {−1, 1}n → {−1, 1} as sparsity(f) , |{S : f̂(S) 6= 0}|.

Corollary 2.8. Let f : {−1, 1}n → {−1, 1} with deg(f) = d, then sparsity(f) ≤ 22d.

Proof. By Parseval, 1 =
∑

S f̂(S)2 ≥ sparsity(f) ·
(
2−d
)2

.

Claim 2.9. Let f̃ : {0, 1}n → {0, 1} be a Boolean function with deg(f̃) = d then f̃ can be written
as

f̃(x) =

sparsity(f)∑
i=1

gi(x)

where each gi : {0, 1}n → Z is a d-junta, i.e. depends only on at most d coordinates.

Proof. Write f̃(x) =
∑

T⊆[n] aT
∏
i∈T xi. By Equation (3) any T ⊆ [n] such that aT 6= 0 is

contained in some subset S ⊆ [n] for which f̂(S) 6= 0. Arbitrarily order the sets {S : f̂(S) 6= 0} as
S1, . . . , Ssparsity(f) and let

gi(x) =
∑

T⊆Si,∀j<i:T*Sj

aT ·
∏
i∈T

xi .

Then, by definition f̃(x) =
∑sparsity(f)

i=1 gi(x). By the integrality of aT , each gi takes integer values.
Moreover, each gi depends only on the variables in the set Si, i.e. on at most d coordinates.

2.4 Approximate Degree

Let f : {−1, 1}n → {−1, 1}. Given an ε ≥ 0 we define the ε-approximate degree, denoted by d̃egε(f),
as the minimal degree of a multilinear polynomial p such that for all x ∈ {−1, 1}n, |f(x)−p(x)| ≤ ε.
We denote d̃eg1/3(f) by d̃eg(f).

When defining approximate degree the choice of 1/3 may seem arbitrary. The next fact (essen-
tially proved in [BNRdW07], Lemma 1) shows how approximate degree for different errors relate.
We prove this fact in Appendix B for completeness.

Fact 2.10. Let f : {−1, 1}n → {−1, 1} be a Boolean function and let 0 < ε < 1 then: d̃egε(f) ≤
d̃eg(f) · d8 · ln(2/ε)e.

Relating the approximate degree to the Fourier transform one gets the following fact.

Fact 2.11. Let f : {−1, 1}n → {−1, 1} be a Boolean function, 0 < ε < 1 and d = d̃egε(f), then
W>d[f] ≤ ε2.

Proof. Let p be a polynomial of degree d which ε approximates f pointwise. Obviously Ex[(f(x)−
p(x))2] ≤ ε2. Let q be the best `2 approximation of f by a degree d polynomial, namely the
polynomial of degree d which minimizes ‖f − q‖22 , Ex[(f(x) − q(x))2]. Obviously, ‖f − q‖22 ≤
‖f − p‖22 ≤ ε2 by the choice of p and q. Using Parseval’s equality ‖f − q‖22 =

∑
S

(
f̂(S)− q̂(S)

)2
,

and it is easy to see that the minimizer of this expression among degree d polynomials is the Fourier
expansion of f truncated above degree d:

q(x) =
∑

S⊆[n]:|S|≤d

f̂(S) ·
∏
i∈S

xi .

Overall, we get that ε2 ≥ ‖f − q‖22 =
∑

S:|S|>d f̂(S)2.

6

Our proof relies heavily on the following result from quantum query complexity.

Theorem 2.12 ([BBC+01, HLS07, Rei11]). There exists a universal constant C1 ≥ 1 such that for

any f : {−1, 1}n → {−1, 1} we have d̃eg(f) ≤ C1 ·
√
L(f).

The next claim states that functions have exponentially small fourier tails above level
√
L(f).

Claim 2.13. There exists a constant C > 0 such that for any f : {−1, 1}n → {−1, 1} and k ∈ N,

W≥k[f] ≤ e · exp

(
−k

C
√
L(f)

)
.

Proof. Let t = k

C
√
L(f)

where C is some constant we shall set later. We prove that W≥k[f] ≤ e ·e−t.

Assume without loss of generality that t ≥ 1 or else the claim is trivial since W≥k[f] ≤ 1 ≤ e · e−t.
Put ε = e−t/2, and combine Theorem 2.12 and Fact 2.10 to get

d̃egε(f) ≤
√
L(f) · C1 · d8 ln(2/ε)e =

√
L(f) · C1 · d4t+ 8 ln(2)e ≤

(t≥1)

√
L(f) · C1 · 11t .

Using Fact 2.11 we get W>
√
L(f)·C1·11t[f] ≤ e−t. Hence W≥

√
L(f)·C1·12t[f] ≤ e−t. Setting C :=

C1 · 12 completes the proof.

2.5 The Generalized Binomial Theorem

Theorem 2.14 (The generalized binomial theorem). Let |x| < 1, and d ∈ N, then

∞∑
n=0

(
d+ n− 1

d− 1

)
· xn =

1

(1− x)d
.

Multiplying both sides by xd one get the following corollary.

Corollary 2.15. Let |x| < 1, and d ∈ N then
∑∞

k=d

(
k−1
d−1

)
· xk = xd

(1−x)d
.

3 Exponentially Small Tails and The Switching Lemma

In this section we prove the main technical part of our proof by showing a close relation between
two properties of Boolean functions:

1. Having exponentially small Fourier tails above level t: ∀k : W≥k[f] ≤ e−k/t.

2. A “switching lemma” type property with parameter t′: ∀p, d : Prρ∼Rp [deg(f |ρ) ≥ d] ≤ (t′p)d.

Linial, Mansour and Nisan proved that Property 2 implies Property 1. For completeness we include
a proof of their theorem in Appendix A.

Theorem 3.1 ([LMN93], restated slightly). Let f : {−1, 1}n → {−1, 1} and assume there exists
t > 0 such that for all d ∈ N, p ∈ (0, 1), Prρ∼Rp [deg(f |ρ) ≥ d] ≤ (tp)d; then for any k, W≥k[f] ≤
2e · e−k/te.

Next, we prove a converse to Theorem 3.1.

Theorem 3.2. Let f : {−1, 1}n → {−1, 1} be a Boolean function, let t, C > 0 such that for all k,
W≥k[f] ≤ C ·e−k/t and let ρ be a p-random restriction; then for all d, Pr[deg(f |ρ) = d] ≤ C ·(4pt)d.

7

Proof Sketch If a function f has exponentially small Fourier tails above level t then on expec-
tation the restricted function f |ρ will have exponentially small Fourier tails above level pt, since
the Fourier spectrum of f roughly squeezes by a factor of p under a p-random restriction (see
Corollary 2.5). However, the Fourier mass above level d of a Boolean function of degree d cannot
be smaller than 4−d by the granularity property. We get that if pt� 1, then with high probability
the restricted function is not a degree d polynomial.

Proof. Our proof strategy is as follows: we bound the value of Eρ

[∑
S:|S|=d f̂ |ρ(S)2

]
from below

and above showing

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 ≥ Pr[deg(f |ρ) = d] · 4−d (4)

and

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 ≤ C (pt)d . (5)

Combining the two estimates will complete the proof.
We begin by proving Equation (4). Conditioning on the event that deg(f |ρ) = d, Fact 2.6 implies

that any nonzero Fourier coefficient of f |ρ is of magnitude ≥ 2−d. Hence,
∑

S:|S|=d f̂ |ρ(S)2 ≥ 4−d,
and we get

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 ≥ Pr[deg(f |ρ) = d]·E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

∣∣∣∣ deg(f |ρ) = d

 ≥ Pr[deg(f |ρ) = d]·4−d .

Next, we turn to prove Equation (5).

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 =
∑
k≥d

W=k[f] ·
(
k

d

)
· pd · (1− p)k−d (Corollary 2.5)

≤
∑
k≥d

W=k[f] ·
(
k

d

)
· pd

= pd ·
∑
k≥d

(
W≥k[f]−W≥k+1[f]

)
·
(
k

d

)
We can rearrange the RHS of the above equation, gathering terms according to W≥k[f]. We denote(
d−1
d

)
= 0, and get:

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 = pd ·
∑
k≥d

W≥k[f] ·
((

k

d

)
−
(
k − 1

d

))

= pd ·
∑
k≥d

W≥k[f] ·
(
k − 1

d− 1

)
.

Let a := e−1/t. The assumption on the Fourier tails of f , W≥k[f] ≤ C · ak, gives

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 ≤ pd ·∑
k≥d

C · ak ·
(
k − 1

d− 1

)
.

8

Next we use Corollary 2.15 with x := a to get

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 ≤ C (ap

1− a

)d
= C

(
p

1/a− 1

)d
.

Substituting a with e−1/t gives

E
ρ

 ∑
S:|S|=d

f̂ |ρ(S)2

 ≤ C (p

e1/t − 1

)d
≤ C (pt)d ,

where the last inequality follows since ex − 1 ≥ x for any x ≥ 0.

4 Degree vs. Formula Size

We use the following fact about the formula size of the parity function

Fact 4.1 ([Yab54]). L(PARITYm) ≤ 9/8 ·m2. Furthermore, if m = 2k for some integer k, then
L(PARITYm) ≤ m2.

Claim 4.2. Let f̃ : {0, 1}n → {0, 1} such that deg(f̃) = d, then L(f̃) ≤ 2 · 32d.

Proof. According to Claim 2.9, f̃ can be written as
∑4d

i=1 gi(x), where the functions gi(x) take
integer values, and each of them depends on at most d variables. Since f̃(x) ∈ {0, 1} we may

perform all operations modulo 2 and get f̃(x) =
⊕4d

i=1 hi(x), where hi(x) = gi(x) mod 2. Taking
a formula for the parity of m = 4d variables, y1, . . . , ym, and replacing each instance of a variable
yi with a formula computing hi(x) gives a formula for f̃ . The size of the formula computing each
hi is at most 2d+1 since any function on d variables can be computed by a formula of such size.
Thus, the size of the combined formula is ≤ L(PARITYm) · 2d+1 = 16d · 2d+1 = 2 · 32d.

5 The Case p = O(1/
√

L(f))

Claim 5.1. There exists a constant C > 0 such that for any function f : {−1, 1}n → {−1, 1} and
any p ≤ 1

C
√
L(f)

the following hold. Let ρ be a p-random restriction, then Eρ[L(f |ρ)] = O(p
√
L(f)).

In particular, in this regime of parameters, Eρ[L(f |ρ)] = O(1).

Proof of Claim 5.1. From Claim 2.13, there exists a constant C > 0 such that

∀k : W≥k[f] ≤ e · e−k/(C
√
L(f)) .

This implies, using Theorem 3.2, that Prρ∼Rp [deg(f |ρ) = d] ≤ e ·
(

4pC
√
L(f)

)d
. Using Claim 4.2,

9

if deg(f |ρ) = d then L(f |ρ) ≤ 2 · 32d. For p ≤ 1

64·4C
√
L(f)

we get

E
ρ∼Rp

[L(f |ρ)] =

n∑
d=0

Pr
ρ

[deg(f |ρ) = d] ·E
ρ

[L(f |ρ)| deg(f |ρ) = d]

=

n∑
d=1

Pr
ρ

[deg(f |ρ) = d] ·E
ρ

[L(f |ρ)| deg(f |ρ) = d] (deg(f |ρ) = 0 implies L(f |ρ) = 0)

≤
∞∑
d=1

e ·
(

4pC
√
L(f)

)d
· 2 · 32d

≤ O(p
√
L(f)) ·

∞∑
d=1

(
4pC

√
L(f)

)d−1
· 32d−1

≤ O(p
√
L(f)) ·

∞∑
d=1

(1/64)d−1 · 32d−1

= O(p
√
L(f)) .

6 The General Case

In Section 5 we have proved Theorem 1.2 for the case p = O(1/
√
L(f)). In this section we give a

reduction from the case where p is larger, i.e. p = Ω(1/
√
L(f)), to the case where p is small, i.e.

p = Θ(1/
√
L(f)). We use the tree decompsition of Impagliazzo, Meka and Zuckerman [IMZ12] to

establish this reduction.7

The next lemma states that every binary tree can be decomposed into smaller subtrees with
some small overhead. Its proof can be found in [IMZ12].

Lemma 6.1 ([IMZ12]). Let ` ∈ N. Any binary tree with s ≥ ` leaves can be decomposed into at
most 6s/` subtrees, each with at most ` leaves, such that each subtree has at most two other subtree
children. Here subtree T1 is a child of subtree T2 if there exists nodes t1 ∈ T1, t2 ∈ T2, such that t1
is a child of t2.

Claim 6.2. Let F be a formula over the set of variables X = {x1, . . . , xn}, and ` ∈ N be some
parameter; then, there exist m ≤ 36 ·L(F)/` formulae over X, denoted by G1, . . . , Gm, each of size
at most `, and there exists a read-once formula F ′ of size m such that F ′(G1(x), . . . , Gm(x)) = F (x)
for all x ∈ {−1, 1}n.

Proof. Consider the decomposition promised by Lemma 6.1 with parameter `. Let T1, . . . , Tm′ be
the subtrees in this decomposition where m′ ≤ 6n/`. We will show by induction on m′, that one
can construct a read-once formula F ′ of size m ≤ 6m′ along with m sub-formulae G1, . . . , Gm of
size ` such that F ≡ F ′(G1, . . . , Gm). For m′ = 1 the statement holds trivially.

Assume that the root of the formula F is a node in the subtree T1, and that the subtree T1 has
two subtree children: T2 and T3 (the case where T1 has one subtree child can be handled similarly,
and is in fact slightly simpler). We now add two special leaves to the tree T1. Let t2 ∈ T2, t1 ∈ T1

(respectively t3 ∈ T3, t
′
1 ∈ T1) be the nodes such that t2 (t3, resp.) is a child of t1 (t′1, resp.) in the

tree represented by F , and add a leaf labeled by the “special” variable z2 (z3, resp.) as a child of

7Another approach to prove the general case is to follow H̊astad original proof, changing the estimates when
p = O(1/

√
L(F)) with what we showed in Section 5. The reduction we suggest simplifies this approach significantly.

10

t1 (t′1, resp.). Call the new subtree T . Note that since T is a de Morgan formula, the value of T is
monotone in z2 and z3. Let T ′ be the minimal subtree of T which contains both leaves marked by
z2 and z3. By minimality T ′ = T ′2 op T ′3, for op ∈ {∧,∨}, where T ′2 contains z2 and not z3, and T ′3
contains z3 and not z2.

We will construct a formula equivalent to T ′ by finding equivalent formulae for T ′2 and T ′3.
We claim that T ′2 = (T ′2|z2=false) ∨ (T ′2|z2=true ∧ z2). This follows since T ′2 is monotone in z2: if
T ′2|z2=false = true then T ′2 = true, otherwise T ′2 = true only if both T ′2|z2=true and z2 are true.
Same goes for T ′3, and we get

T ′ ≡
(
(T ′2|z2=false) ∨ (T ′2|z2=true ∧ z2)

)
op

(
(T ′3|z3=false) ∨ (T ′3|z3=true ∧ z3)

)
.

Replacing T ′ with a leaf labeled with z, where z is a new “special” variable, and doing the same trick
we get: T ≡ T |z=false ∨ (T |z=true ∧ z). Combining both formulae, we get the following equivalence:

T ≡ T |z=false∨
(
T |z=true ∧

(
(T ′2|z2=false) ∨ (T ′2|z2=true ∧ z2)

)
op

(
(T ′3|z3=false) ∨ (T ′3|z3=true ∧ z3)

))
.

Note that the RHS of the equation above can be written as F ′′(G1(x), . . . , G6(x), z2, z3) where F ′′

is read-once and G1(x), . . . , G6(x) are formulae of size `, defined on the variables in X.
Let m2,m3 be the number of subtrees which are descendants of T2, T3 in the tree-decomposition

given by Lemma 6.1. By induction, the subformula of F rooted at t2 is equivalent to
F ′2(G2

1(x), . . . , G2
6m2

(x)) where F ′2 is read-once and G2
i (x) are formulae of size ≤ `. Similarly for t3.

We thus get that

F (x) = F ′′
(
G1(x), . . . , G6(x), F ′2(G2

1(x), . . . , G2
6m2

(x)), F ′3(G3
1(x), . . . , G3

6m3
(x))

)
.

Rearranging the RHS, we get a read-once formula of size m ≤ 6 + 6m2 + 6m3 = 6m′ alongside m
sub-formulae, each of size `, such that their composition is equivalent to F .

We now turn to complete the proof of our main theorem.

Theorem (Theorem 1.2, restated). Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let

p > 0, then Eρ∼Rp [L(f |ρ)] = O
(
p2L(f) + p

√
L(f)

)
.

Proof. The case p ≤ 1
C
√
L

is implied by Claim 5.1. Therefore, it is enough to show the statement

holds when p > 1
C
√
L

. Let F be the smallest de Morgan formula computing f . Applying Claim 6.2

with ` := 1
p2·C2 , we get a read-once de Morgan formula F ′ of size m = O(L(F)/`) along with

formulae G1, . . . , Gm, each of size at most `, such that f(x) = F ′(G1(x), . . . , Gm(x)) for all x ∈
{−1, 1}n. Denote the functions that G1, . . . , Gm compute by g1, . . . , gm respectively. Applying
a restriction ρ we get f |ρ ≡ F ′(g1|ρ, . . . , gm|ρ), hence L(f |ρ) ≤

∑m
i=1 L(gi|ρ). By linearity of

expectation,

E
ρ

[L(f |ρ)] ≤ E
ρ

[
m∑
i=1

L(gi|ρ)

]
≤ m ·O(p ·

√
`) = m ·O(1) = O(p2 · L(f)) .

7 Lower Bound for Andreev’s Function

In this section, we prove a Ω
(

n3

log2 n log logn

)
formula lower bound for Andreev’s function.

11

For two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, the composition of f
and g is defined as f ◦ g : {0, 1}nm → {0, 1}, where

(f ◦ g)(x1,1, x1,2, . . . , xn,m) = f(g(x1,1, . . . , x1,m), . . . , g(xn,1, . . . , xn,m)) .

In words, f ◦ g is a function whose value is the value of f on n input bits, each of them is the
calculation of g on an independent set of m bits.

The next lemma shows that the size of h ◦⊕m, where ⊕m is the parity function on m variables,
is equal, up to a constant factor, to the product of the formula sizes of h and ⊕m.

Lemma 7.1. For any h : {0, 1}r → {0, 1}, let f = h ◦ ⊕m, then

L(f) = Θ(L(h) · L(⊕m)) = Θ(L(h) ·m2)

Proof. Recall that by Fact 4.1 and Khrapchenko’s Theorem [Khr71], m2 ≤ L(⊕m) ≤ 9/8 ·m2.
Think of the input to f as an r ×m matrix {yi,j}i∈[r],j∈[m], and of the input to h as a vector

z = (z1, . . . , zr). The upper bound, L(f) ≤ L(h) · L(⊕m), is easy, since replacing each leaf marked
by a variable zi (or its negation) in the formula for h with a formula computing ⊕j∈[m]yi,j (or its
negation), gives a formula for f whose size is at most L(h) · L(⊕m) = O(L(h) ·m2).

For the lower bound, L(f) = Ω(L(h) · L(⊕m)), we can assume without loss of generality that
L(h) ≥ 2C for a large enough constant C. This is without loss of generality since:

1. if L(h) = 0, then we have nothing to prove.

2. We show that if 1 ≤ L(h) < 2C then L(f) is at least L(⊕m). Since h is not the constant
function, there is an input bit zk of h and a restriction fixing z1, . . . , zk−1, zk+1, . . . , zr under
which h becomes the dictatorship function zk or the anti-dictatorship function ¬zk. Fixing
each row in {yi,j} except the k-th row, such that the parity of the i-th row equals the required
value for zi, gives a restriction ρ under which f |ρ is the parity of yk,1, . . . , yk,m or its negation.

Hence, L(f) ≥ L(f |ρ) ≥ L(⊕m) ≥ L(h)L(⊕m)
2C ≥ Ω(L(h)L(⊕m)).

For larger values of L(h), we shall establish the lower bound L(f) ≥ Ω
(
L(h) ·m2

)
using a tailored

distribution of random restrictions, which is not a distribution of p-random restrictions. For each
row in the matrix {yi,j}, we pick one variable uniformly, keep it alive, and fix all the rest uniformly.
This leaves us with a function on r variables which is equivalent to h, up to negations to the inputs,
hence its formula size is L(h).

We want to analyze the shrinkage factor due to this distribution of random restrictions. Noting
that our distribution is random-valued (Recall Def. 2.3), as required in Fact 2.4, we get

E
ρ

[
f̂ |ρ(S)2

]
=
∑
U⊇S

f̂(U)2 Pr
ρ

[S = {i ∈ U : ρ(i) = ∗}] .

By the definition of the distribution of random restrictions, Prρ[S = {i ∈ U : ρ(i) = ∗}] = 0 if S
contains more than one coordinate in a certain row. Thus, we may restrict our attention to sets S
which contain at most one variable from each row. Since the probability that ρ restricts U to S is
at most the probability that ρ keeps alive all the variables in S, and since each variable in S is in
its own row, we get

Pr
ρ

[S = {i ∈ U : ρ(i) = ∗}] ≤ 1

m|S|
.

12

Summing over all sets S of size d we get

E
ρ

∑
|S|=d

f̂ |ρ(S)2

 =
∑
U

f̂(U)2
∑
S⊆U :
|S|=d

Pr
ρ

[S = {i ∈ U : ρ(i) = ∗}] ≤
∑
U

f̂(U)2

(
|U |
d

)
1

md
.

Plugging this in the analysis of Theorem 3.2 we get Pr[deg(f |ρ) = d] ≤ C(4t/m)d. From here
we can continue the proofs of Claim 5.1 and Theorem 1.2 by replacing p with 1/m. We get that

Eρ[L(f |ρ)] = O
(
L(f)
m2 + 1

)
. Conversely,

L(f) ≥ Ω

(
m2 · (E

ρ
[L(f |ρ)]− C)

)
for some universal constant C. Since

E
ρ

[L(f |ρ)])− C ≥ L(h)− C ≥ L(h)/2 ,

where we used the assumption L(h) ≥ 2C in the last inequality, we get L(f) ≥ Ω(m2L(h)).

We now describe Andreev’s function A : {0, 1}n × {0, 1}n → {0, 1}. A gets two inputs x, y ∈
{0, 1}n. Let r = log n and m = n/ log n. We interpret the second input y as an r × m matrix
{yi,j}i∈[r],j∈[m]. Let z1, . . . zr ∈ {0, 1} be the parities of each row, i.e., zi = ⊕mj=1yi,j . Then A(x, y) =
xbin(z) where bin(z) is the integer between 1 and 2r represented by the string z1, . . . , zr. An
alternative way to view the function is to think of x as the truth table of a Boolean function on
log n bits, and then take the value of this function on the input z.

Theorem 7.2.

L(A) ≥ Ω

(
n3

log2 n log logn

)
.

Proof. Let h : {0, 1}logn → {0, 1} be the function on log n variables with largest formula size. It is
well known (Theorem 1.23, [Juk12]) that L(h) = Ω(n/ log log n). Define Ah : {0, 1}n → {0, 1} as
Ah(y) = A(tt(h), y) = (h ◦ ⊕m)(y1,1, . . . , yr,m) where tt(h) stands for the truth table of h. Using

Lemma 7.1, L(Ah) = L(h ◦ ⊕m) = Θ(L(h) ·m2) = Θ
(

n3

log2 n log logn

)
. Since Ah is a subfunction of

A, L(A) ≥ L(Ah), which completes the proof.

8 Open Ends

An interesting open question raised by H̊astad in [H̊as98] is

What is the shrinkage exponent of monotone de Morgan formulae?

In particular, this has strong connections with understanding the monotone formula size of Majority.
The analysis in Section 6 implies that it is enough to find the critical probability pc for which
Eρ∼Rpc [L(f |ρ)] = 1, and then use the tree decomposition to argue for p ≥ pc (note that the
decomposition done in Section 6 respects monotonicity). Hence, in order to show Γ shrinkage, i.e.
that formulae of size s shrink to expected size O(pΓs+ 1) after applying a p-random restriction, it
is necessary and sufficient to show that for p = 1

L(f)1/Γ , the expected size of the minimal monotone

formula computing f |ρ is O(1).

13

Acknowledgement

I wish to thank my advisor Ran Raz for his guidance and encouragement. I thank Zeev Dvir and
Ilan Komargodski for helpful discussions. I thank Robin Kothari, Igor Sergeev and the anonymous
referees for their helpful comments.

References

[ACR+10] A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek, and S. Zhang. Any AND-OR
formula of size n can be evaluated in time n1/2+o(1) on a quantum computer. SIAM
J. Comput., 39(6):2513–2530, 2010.

[And87] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds
for the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63–66, 1987. In
Russian.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. J. ACM, 48(4):778–797, 2001.

[BNRdW07] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust polynomials and quan-
tum algorithms. Theory Comput. Syst., 40(4):379–395, 2007.

[CKK+14] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining circuit
lower bound proofs for meta-algorithms. In CCC, 2014.

[CKS14] R. Chen, V. Kabanets, and N. Saurabh. An improved deterministic #SAT algorithm
for small De Morgan formulas. In MFCS, pages 165–176, 2014.

[FGG08] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the hamiltonian
nand tree. Theory of Computing, 4(1):169–190, 2008.

[GMWW14] D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson. Toward better formula lower
bounds: an information complexity approach to the KRW composition conjecture. In
David B. Shmoys, editor, STOC, pages 213–222. ACM, 2014.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Juris Hart-
manis, editor, STOC, pages 6–20. ACM, 1986.

[H̊as98] J. H̊astad. The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[HLS07] P. Høyer, T. Lee, and R. Spalek. Negative weights make adversaries stronger. In
David S. Johnson and Uriel Feige, editors, STOC, pages 526–535. ACM, 2007.

[IK14] R. Impagliazzo and V. Kabanets. Fourier concentration from shrinkage. In CCC,
2014.

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In
FOCS, pages 111–119. IEEE Computer Society, 2012.

[IN93] R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993.

14

[Juk12] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Berlin
Heidelberg, 2012.

[KB80] R. Kaas and J. M. Buhrman. Mean, median and mode in binomial distributions.
Statistica Neerlandica, 34(1):13–18, 1980.

[Khr71] V. M. Khrapchenko. A method of determining lower bounds for the complexity of π
schemes. Matematischi Zametki, 10:83–92, 1971. In Russian.

[KR13] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, STOC, pages 171–180. ACM, 2013.

[KRT13] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for De
Morgan formula size. In FOCS, pages 588–597. IEEE Computer Society, 2013.

[KRW95] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5(3/4):191–
204, 1995.

[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical
formula size lower bounds. Computational Complexity, 15(2):163–196, 2006.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and
learnability. J. ACM, 40(3):607–620, 1993.

[O’D14] R. O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[PZ93] M. Paterson and U. Zwick. Shrinkage of De Morgan formulae under restriction.
Random Struct. Algorithms, 4(2):135–150, 1993.

[Rei09] B. Reichardt. Span programs and quantum query complexity: The general adversary
bound is nearly tight for every boolean function. In FOCS, pages 544–551. IEEE
Computer Society, 2009.

[Rei11] B. Reichardt. Reflections for quantum query algorithms. In Dana Randall, editor,
SODA, pages 560–569. SIAM, 2011.

[RS12] B. Reichardt and R. Spalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8(1):291–319, 2012.

[San10] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In FOCS, pages 183–192. IEEE Computer Society, 2010.

[Sub61] B. A. Subbotovskaya. Realizations of linear function by formulas using +, ·,−. Doklady
Akademii Nauk SSSR, 136:3:553–555, 1961. In Russian.

[Yab54] S. V. Yablonskii. Realization of the linear function in the class of π-schemes. In Dokl.
Akad. Nauk SSSR, volume 94, pages 805 – 806, 1954. In Russian.

15

A A Theorem of Linial, Mansour and Nisan

Theorem (Theorem 3.1, restated). Let f : {−1, 1}n → {−1, 1} and assume there exists t ∈ R such
that for all d, p, Prρ∼Rp [deg(f |ρ) ≥ d] ≤ (tp)d. Then for any k, W≥k[f] ≤ 2e · e−k/(te).

Proof. For any d ∈ N and p ∈ (0, 1] we have

E
ρ∼Rp

 ∑
S:|S|≥d

f̂ |ρ(S)2

 =
∑
k≥d

W=k[f] ·Pr[Bin(k, p) ≥ d] (Corollary 2.5)

≥
∑
k≥d/p

W=k[f] ·Pr[Bin(k, p) ≥ d]

≥
∑
k≥d/p

W=k[f] · 1/2 (median(Bin(k, p)) ≥ bkpc ≥ d, [KB80])

= 1/2 ·W≥d/p[f]

Overall we got

W≥d/p[f] ≤ 2 · E
ρ∼Rp

 ∑
S:|S|≥d

f̂ |ρ(S)2

 ≤ 2 Pr
ρ∼Rp

[deg(f |ρ) ≥ d] ≤ 2(tp)d. (6)

Given k and t we choose p := 1/(te) and d := bkpc. Substituting d and p in Equation (6) we
get W≥k[f] ≤ 2 · e−bk/(te)c ≤ 2e · e−k/(te).

B Amplification of Approximate Degree

The proof in this section is essentially the same as the one in [BNRdW07]; we present it here for
completeness.

Definition B.1. For q ∈ [−1, 1] we say that x is a q-biased bit, denoted by x ∼ Nq, if Pr[x = 1] =
1+q

2 and Pr[x = −1] = 1−q
2 . In other words, x is a random variable taking values from {−1, 1}

with E[x] = q.

The next lemma connects the value of a polynomial representing a Boolean function on non-
Boolean inputs with a product-measure distribution.

Lemma B.2. Let f : {−1, 1}n → R and let p ∈ R[x1, . . . , xn] be the unique multilinear polynomial
agreeing with f on {−1, 1}n. Let q1, . . . , qn ∈ [−1, 1] then

E
xi∼Nqi

[f(x1, . . . , xn)] = p(q1, . . . , qn)

where the xis are drawn independently.

Proof. We write p(x1, . . . , xn) =
∑

S⊆[n] f̂(S) ·
∏
i∈S xi. We first show the lemma for a single

monomial:

E
xi∼Nqi

[∏
i∈S

xi

]
=

xi are ind.

∏
i∈S

E
xi∼Nqi

[xi] =
∏
i∈S

qi .

By linearity of expectation we have:

E
xi∼Nqi

[p(x1, . . . , xn)] = E
xi∼Nqi

∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi

 =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

qi = p(q1, . . . , qn) .

16

We now turn to prove Fact 2.10, restated next.

Fact B.3. Let f : {−1, 1}n → {−1, 1} be Boolean function and let 0 < ε < 1 then: d̃egε(f) ≤
d̃eg(f) · d8 · ln(2/ε)e.

Proof. Let m be some parameter we will set later. Take MAJm : {−1, 1}m → {−1, 1} to be the
majority of m inputs, and denote by pMAJ ∈ R[x1, . . . , xm] the multilinear polynomial agreeing
with MAJm on {−1, 1}m. Let q ∈ (0, 1] (the case q ∈ [−1, 0) is similar), then by Lemma B.2 we
have

pMAJ(q, q, . . . , q) = E
xi∼Nq

[MAJm(x1, . . . , xm)] = Pr
xi∼Nq

[∑
i

xi ≥ 0

]
− Pr
xi∼Nq

[∑
i

xi < 0

]
.

Let X =
∑

i xi, then by Chernoff-Hoeffding bound we have

Pr [X ≥ 0] = Pr [X −E[X] ≥ −q ·m] ≥ 1− e−(qm)2/2m = 1− e−mq2/2 ,

which implies
pMAJ(q, q, . . . , q) ≥ 1− 2e−mq

2/2 . (7)

By definition there exists a polynomial p of degree d̃eg(f) such that p(x) ∈ [−4/3,−2/3] if f(x) =

−1 and p(x) ∈ [2/3, 4/3] if f(x) = 1. Take p′(x) = p(x)
4/3 , then p′(x) ∈ [1/2, 1] if f(x) = 1 and

p′(x) ∈ [−1,−1/2] if f(x) = −1. Consider the polynomial

g(x) = pMAJ(p′(x), p′(x), . . . , p′(x)),

then deg(g) ≤ deg(pMAJ) · deg(p′) = m · d̃eg(f). On the other hand, for x such that f(x) = 1 (the
case where f(x) = −1 is analogous) we have g(x) = pMAJ(q, q, . . . , q) for some q ∈ [1/2, 1]. Since
pMAJ is monotone and using Equation (7), we have

1 ≥ g(x) = pMAJ(q, . . . , q) ≥ pMAJ(1/2, . . . , 1/2) ≥ 1− 2e−m/8 .

Picking m = d8 · ln(2/ε)e completes the proof.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

