Shrinkage of de Morgan Formulae by Spectral Techniques

Avishay Tal*

Abstract

We give a new and improved proof that the shrinkage exponent of de Morgan formulae is 2 . Namely, we show that for any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, setting each variable out of x_{1}, \ldots, x_{n} with probability $1-p$ to a randomly chosen constant, reduces the expected formula size of the function by a factor of $O\left(p^{2}\right)$. This result is tight and improves the work of Håstad [Hås98] by removing logarithmic factors.

As a consequence of our results, the function defined by Andreev [And87], $A:\{0,1\}^{n} \rightarrow$ $\{0,1\}$, which is in \mathbf{P}, has formula size at least $\Omega\left(\frac{n^{3}}{\log ^{2} n \log \log n}\right)$. This lower bound is tight (for the function A) up to the $\log \log n$ factor, and is the best known lower bound for functions in \mathbf{P}. In addition, we strengthen the average-case hardness result of Komargodski et al. [KRT13]; we show that the functions defined in [KRT13], $h_{r}:\{0,1\}^{n} \rightarrow\{0,1\}$, which are also in \mathbf{P}, cannot be computed correctly on a fraction greater than $1 / 2+2^{-r}$ of the inputs, by de Morgan formulae of size at most $\frac{n^{3}}{r^{2} \text { poly } \log n}$, for any parameter $r \leq n^{1 / 3}$.

The proof relies on a result from quantum query complexity by [LLS06, HLS07, Rei11]: for any Boolean function $f, Q_{2}(f) \leq O(\sqrt{L(f)})$, where $Q_{2}(f)$ is the bounded-error quantum query complexity of f, and $L(f)$ is the minimal size de Morgan formula computing f.

[^0]
1 Introduction

The problem of \mathbf{P} vs. $\mathbf{N C}^{\mathbf{1}}$ is a major open-problem in computational complexity. It asks whether any function computable by a polynomial time Turing machine can also be computed by a formula of polynomial size. A de Morgan formula is a binary tree in which each leaf is labeled with a literal from $\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}\right\}$ and each internal node is labeled with either a Boolean AND or OR gate. Such a tree naturally describes a Boolean function on n variables by propagating values from leaves to root, and returning the root's value. The formula size is the number of leaves in the tree; for a Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}^{1}$ we denote by $L(f)$ the minimal size formula which computes f. Showing that some language in \mathbf{P} requires formulae of super-polynomial size would imply that $\mathbf{P} \nsubseteq \mathbf{N C}^{\mathbf{1}}$. ${ }^{2}$

Showing super-polynomial formula size lower bounds for problems in \mathbf{P} would be a major breakthrough in complexity theory, and such lower bounds are not even known for NEXP. However, lower bounds of the form $\Omega\left(n^{c}\right)$, for a fixed constant c, were achieved during the years for problems in \mathbf{P}. This line of research began with the work of Subbotovskaya [Sub61] who gave an $\Omega\left(n^{1.5}\right)$ lower bound for the parity function. Subbotovskaya introduced the technique of random restrictions in her proof; a method which was applied successfully to solve other problems such as giving lower bounds for $\mathbf{A C}^{\mathbf{0}}$. Subbotovskaya showed that the minimal formula size of a given function is shrunk, on expectation, by a factor of $O\left(p^{1.5}\right)$ under p-random restrictions. These are restrictions to the function variables keeping each variable "alive" with probability p (independently of other choices) and fixing it to a uniformly chosen random bit otherwise. We denote the distribution of p-random restrictions by \mathcal{R}_{p}; If $\rho \sim \mathcal{R}_{p}$, then $\left.f\right|_{\rho}$ denotes the restriction of the function f by ρ. Since the parity function does not become constant after fixing less than all of its input bits, this implies that its size is at least $\Omega\left(n^{1.5}\right)$. Khrapchenko [Khr71] used a different method to give a tight $\Omega\left(n^{2}\right)$ lower bound for the parity function. Andreev [And87] constructed a function in \mathbf{P} and showed that its formula size is at least $\Omega\left(n^{2.5-o(1)}\right)$. In fact, he got a lower bound of $\Omega\left(n^{1+\Gamma-o(1)}\right)$ where Γ is the shrinkage exponent of de Morgan formulae - the maximal constant such that any de Morgan formula is shrunk by a factor of $O\left(p^{\Gamma}\right)$ under p-random restrictions. Impagliazzo and Nisan [IN93] showed that $\Gamma \geq 1.55$; Paterson and Zwick [PZ93] improved this bound to $\Gamma \geq 1.63$; and finally Håstad [Hås98] showed that $\Gamma \geq 2-o(1)$. More precisely, Håstad proved the following result.

Theorem 1.1 ([Hås98]). Let f be a Boolean function. For every $p>0$,

$$
\underset{\rho \sim \mathcal{R}_{p}}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right)\right] \leq O\left(p^{2}\left(1+\log ^{3 / 2} \min \left\{\frac{1}{p}, L(f)\right\}\right) L(f)+p \sqrt{L(f)}\right) .
$$

This result is essentially tight up to the logarithmic terms as exhibited by the parity function. The formula size of the parity function of n variables is $\Theta\left(n^{2}\right)$ (see [Yab54, Khr71]). Applying a p random restriction on the parity function yields a smaller parity function (or its negation) on k variables where $k \sim \operatorname{Bin}(n, p)$. By Khrapchenko's argument, the formula size of the restricted function is $\geq k^{2}$, thus the expected formula size is at least $\mathbf{E}\left[k^{2}\right]=p^{2} n^{2}+p(1-p) n=\Omega\left(p^{2} L(f)+p \sqrt{L(f)}\right)$.

Other efforts have been made to give a function in \mathbf{P} that requires super-polynomial formula size: Karchmer, Raz and Wigderson [KRW95] suggested a function in \mathbf{P} that might require superpolynomial formula size. Recently, Gavinsky et al. [GMWW14] suggested an information theoretical approach to further understand the formula size of this function.

[^1]Another recent line of work ([San10, IMZ12, KR13, KRT13, CKK ${ }^{+}$14, CKS14]) concentrated on giving average-case formula lower bounds for problems in \mathbf{P}. These works also explored applications of shrinkage properties of formulae to: pseudo-random generators, compression algorithms and non-trivial \#SAT algorithms for small formulae. The state of the art average-case lower bound for de Morgan formulae is the result of Komargodski, Raz and Tal [KRT13] who gave an explicit $h_{r}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ such that any formula that computes this function on a fraction $\frac{1}{2}+2^{-r}$ must be of size at least $\frac{n^{3-o(1)}}{r^{2}}$ where r is an arbitrary parameter smaller than $n^{1 / 3}$.

1.1 Our Results

In this work, we give a new proof of Håstad's result. In fact, we obtain a tight result showing that the shrinkage exponent is exactly 2 .

Theorem 1.2. Let f be a Boolean function. For every $p>0$,

$$
\underset{\rho \sim \mathcal{R}_{p}}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right)\right]=O\left(p^{2} L(f)+p \sqrt{L(f)}\right) .
$$

Note that both terms in Theorem 1.2 (i.e., $p^{2} L(f)$ and $\left.p \sqrt{L(f)}\right)$ are needed as demonstrated by the parity function above. This improves the worst-case lower bound Håstad gave to Andreev's function from $\Omega\left(\frac{n^{3}}{(\log n)^{7 / 2}(\log \log n)^{3}}\right)$ to $\Omega\left(\frac{n^{3}}{(\log n)^{2}(\log \log n)^{3}}\right)$ immediately, following the proof of Theorem 8.1 in [Hås 98]. A more careful choice of distribution over restrictions gives a slightly better bound on Andreev's function, $\Omega\left(\frac{n^{3}}{(\log n)^{2} \log \log n}\right)$ (see Section 7). This is tight up to the $\log \log n$ factor. In addition, replacing Theorem 1.1 with Theorem 1.2 improves the analysis of the average-case lower bound in [KRT13].

Corollary 1.3. Let n be large enough, then for any parameter $r \leq n^{1 / 3}$ there is an explicit (computable in polynomial time) Boolean function $h_{r}:\{-1,1\}^{6 n} \rightarrow\{-1,1\}$ such that any formula of size $\frac{n^{3}}{r^{2} \cdot \text { poly } \log n}$ computes h_{r} correctly on a fraction of at most $1 / 2+2^{-r}$ of the inputs.

1.2 Proof Outline

The proof comes from a surprising area: quantum query complexity. The connection between de Morgan formulae and quantum query complexity was first noted in the work of Laplante, Lee and Szegedy [LLS06]. They showed that the quantum adversary bound is at most the square root of the formula size of a function. Høyer, Lee and Špalek [HLS07] replaced the quantum adversary bound by the negative weight adversary bound, achieving a stronger relation. The long line of works [FGG08, Rei09, ACR ${ }^{+}$10, RS12, Rei11] showed that the negative weight adversary bound is equal up to a constant to the bounded-error quantum query complexity of a function, $Q_{2}(f)$. Combining all these results yields $Q_{2}(f)=O(\sqrt{L(f)})$. By the connection of quantum query complexity to the approximate degree ${ }^{3}, \widetilde{\operatorname{deg}}(f)=O\left(Q_{2}(f)\right)$, established by Beals et al. $\left[\mathrm{BBC}^{+} 01\right]$, we get a classical result: $\widetilde{\operatorname{deg}}(f)=O(\sqrt{L(f)})$ for any Boolean function f. To our best knowledge, no classical proof that $\widetilde{\operatorname{deg}}(f)=O(\sqrt{L(f)})$ is known - it might be interesting to find such a proof.

[^2]Small formulae have exponentially small Fourier tails. We obtain a somewhat simpler proof of our main theorem, compared to Håstad's original proof, by taking the result $\operatorname{deg}(f)=$ $O(\sqrt{L(f)})$ as a given. First, we note that by using amplification there exists a polynomial of degree $\tilde{d}=O(\sqrt{L(f)} \log (1 / \epsilon))$ which ϵ-approximates f pointwise. Using standard arguments this implies that the Fourier mass above degree \tilde{d}, i.e. $\sum_{S:|S|>\tilde{d}} \hat{f}(S)^{2}$, is at most ϵ. In other words, the Fourier mass above $O(\sqrt{L(f)} \cdot t)$ is at most 2^{-t}, and we call this property exponentially small tails of the Fourier spectrum of f above level $O(\sqrt{L(f)})$. ${ }^{4}$

Exponentially small Fourier tails imply a "switching lemma" type property. Our next step is novel. We show that exponentially small Fourier tails imply a strong behavior under random restrictions. If for all t, f has at most 2^{-t} of the mass above level $m \cdot t$, then under a p-random restriction we have

$$
\begin{equation*}
\forall d: \operatorname{Pr}_{\rho \sim \mathcal{R}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right) \geq d\right] \leq(8 p m)^{d} .{ }^{5} \tag{1}
\end{equation*}
$$

In particular, if we take p to be $\leq \frac{1}{c m}$ for a large enough constant c we get that the degree of the restricted function is d with probability $\exp (-10 d) .{ }^{6}$

We call such a property a "switching lemma" type property since the switching lemma ([Hås86]) states something similar for DNF formulae: If f can be computed by a DNF formula where each term is the logical AND of w literals, then

$$
\forall d: \underset{\rho \sim \mathcal{R}_{p}}{\operatorname{Pr}_{p}}\left[\mathrm{DT}\left(\left.f\right|_{\rho}\right) \geq d\right] \leq(5 p w)^{d} .
$$

Our conclusion is somewhat analogous for functions with exponentially small tails, replacing the decision tree complexity with the degree as a polynomial. We think that the relation between exponentially small Fourier tails and the "switching lemma" type property is of independent interest.

Proving the case $p=O(1 / \sqrt{L(f)})$. Using the fact that functions with small formula size have exponentially small tails above level $\sqrt{L(f)}$, we get that for $p=O(1 / \sqrt{L(f)})$, applying a p-random restriction yields a function with degree d with probability at most $\exp (-10 d)$. In particular, with high probability the function becomes a constant. As the formula size of a degree d polynomial is at most 32^{d} we get that for some large enough constant c, applying a p-random restriction with $p=\frac{1}{c \sqrt{L(f)}}$, yields a function with expected formula size at most 1 . This completes our proof for the case $p=\Theta(1 / \sqrt{L(f)})$, and in fact the case $p=O(1 / \sqrt{L(f)})$ as well.

Proving the general case. In order to establish the case where $p=\Omega(1 / \sqrt{L(f)})$, we use an idea from Impagliazzo, Meka and Zuckerman's work ([IMZ12]). They showed how to decompose a large formula into $O(L(f) / \ell$) many small formulae, each of size $O(\ell)$. Furthermore, applying any restriction, the formula size of the restricted function is at most the sum of formula sizes of the restricted sub-functions represented by the sub-formulae. Taking ℓ to be $1 / p^{2}$ and using linearity of expectation we get the required result for general p.

[^3]
1.3 Related Work

The recent work of Impagliazzo and Kabanets [IK14] shows that shrinkage properties imply Fourier concentration. In some sense, our result shows the opposite, although we need exponential small Fourier tails to begin with.

2 Preliminaries

2.1 Formulae

A de Morgan formula F on n variables x_{1}, \ldots, x_{n} is a binary tree whose leaves are labeled with variables or their negations, and whose internal nodes are labeled with either \vee or \wedge gates. The size of a de Morgan formula F, denoted by $L(F)$, is the number of leaves in the tree. The formula size of a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is the size of the minimal formula which computes the function, and is denoted by $L(f)$. A de Morgan formula is called read-once if every variable appears at most once in the tree.

2.2 Restrictions

Definition 2.1 (Restriction). Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a Boolean function. A restriction ρ is a vector of length n of elements from $\{-1,1, *\}$. We denote by $\left.f\right|_{\rho}$ the function f restricted according to ρ in the following sense: if $\rho_{i}=*$ then the i-th input bit of f is unassigned and otherwise the i-th input bit of f is assigned to be ρ_{i}.

Definition 2.2 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.1 that is sampled in the following way. For every $i \in[n]$, independently with probability p set $\rho_{i}=$ * and with probability $\frac{1-p}{2}$ set ρ_{i} to be -1 and 1 , respectively. We denote this distribution of restrictions by \mathcal{R}_{p}.

2.3 Fourier Analysis of Boolean Functions

For any Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ there is a unique Fourier representation:

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \cdot \prod_{i \in S} x_{i} .
$$

The coefficients $\hat{f}(S)$ are given by $\hat{f}(S)=\mathbf{E}_{x}\left[f(x) \cdot \prod_{i \in S} x_{i}\right]$. Parseval's equality states that $\sum_{S} \hat{f}(S)^{2}=\mathbf{E}_{x}\left[f(x)^{2}\right]=1$. Note that the Fourier representation is the unique multilinear polynomial which agrees with f on $\{-1,1\}^{n}$. The polynomial degree is denoted by $\operatorname{deg}(f)$ and is equal to $\max \{|S|: \hat{f}(S) \neq 0\}$. We denote by

$$
\mathbf{W}^{=k}[f] \triangleq \sum_{S \subseteq[n],|S|=k} \hat{f}(S)^{2}
$$

the Fourier weight at level k of f. Similarly, we denote by $\mathbf{W}^{\geq k}[f] \triangleq \sum_{S \subseteq[n],|S| \geq k} \hat{f}(S)^{2}$. The following fact relates the Fourier coefficients of f and of $\left.f\right|_{\rho}$ where ρ is a p-random restriction. In fact, the result holds for any distribution over restrictions which is random-valued, as defined next.

Definition 2.3. A distribution \mathcal{D} over restrictions is random-valued if for $\rho \sim \mathcal{D}$, given $J=\{i \in$ $[n]: \rho(i)=*\}$, the values of ρ on \bar{J} are uniform independent bits.

By definition, \mathcal{R}_{p} is random-valued.
Fact 2.4 (Proposition 4.17,[O'D14]). Let \mathcal{D} be a random-valued distribution of restrictions. Then,

$$
\underset{\rho \sim \mathcal{D}}{\mathbf{E}}\left[\widehat{\left.f\right|_{\rho}}(S)^{2}\right]=\sum_{U \subseteq[n]} \hat{f}(U)^{2} \cdot \operatorname{Prp}_{\rho \sim \mathcal{D}}[\{i \in U: \rho(i)=*\}=S]
$$

For the case of $\mathcal{D}=\mathcal{R}_{p}$, summing over all coefficients of size d, we get the following corollary.

Corollary 2.5.

$$
\underset{\rho \sim \mathcal{R}_{p}}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right]=\sum_{k=d}^{n} \mathbf{W}^{=k}[f] \cdot \mathbf{P r}[\operatorname{Bin}(k, p)=d]
$$

One can represent a Boolean function also as $\tilde{f}:\{0,1\}^{n} \rightarrow\{0,1\}$. Identifying $\{0,1\}$ with $\{1,-1\}$ by $b \mapsto 1-2 b$ we get the following relation between the $\{0,1\}$ and the $\{-1,1\}$ representation of the same function.

$$
\begin{equation*}
\tilde{f}(y)=\frac{1-f\left(1-2 y_{1}, \ldots, 1-2 y_{n}\right)}{2}=\frac{1}{2}-\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}(S) \cdot \prod_{i \in S}\left(1-2 y_{i}\right) \tag{2}
\end{equation*}
$$

Let $p(y)=\sum_{T \subseteq[n]} a_{T} \cdot \prod_{i \in T} y_{i}$ be the unique multilinear polynomial over the reals, which agrees with $\tilde{f}(y)$ on $\{0,1\}^{n}$. Using Equation (2) gives $a_{\emptyset}=1 / 2-1 / 2 \cdot \sum_{S} \hat{f}(S)$ and

$$
\begin{equation*}
\forall T \neq \emptyset: a_{T}=(-2)^{|T|-1} \cdot \sum_{S \supseteq T} \hat{f}(S) . \tag{3}
\end{equation*}
$$

It is clear from Equation (3) that $\operatorname{deg}(p)=\operatorname{deg}(f)$, hence the definition of degree does not depend whether we are considering the $\{-1,1\}$ or the $\{0,1\}$ representation of the function. Note that since \tilde{f} is Boolean, the coefficients a_{T} are integers, as we can write

$$
\tilde{f}(y)=\sum_{z \in\{0,1\}^{n}} \tilde{f}(z) \cdot \prod_{i: z_{i}=0}\left(1-y_{i}\right) \cdot \prod_{i: z_{i}=1} y_{i}
$$

which opens up to a multilinear polynomial over y with integer coefficients.
An immediate consequence of the above discussion is the following fact, which states that the Fourier coefficients of a degree d polynomial are 2^{-d} "granular", i.e. integer multiples of 2^{-d}.

Fact 2.6 (Granularity). Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\operatorname{deg}(f)=d$, then $\hat{f}(S)=k_{S} \cdot 2^{-d}$ where $k_{S} \in \mathbb{Z}$ for any $S \subseteq[n]$.

Proof. We prove by contradiction. Let T be a maximal set with respect to inclusion for which $\hat{f}(T)$ is not an integer multiple of 2^{-d}. We first handle the case $T \neq \emptyset$. Equation (3) gives $a_{T}=(-2)^{|T|-1} \sum_{S \supseteq T} \hat{f}(S)$. Multiplying both sides by $(-2)^{d-|T|+1}$ we get

$$
(-2)^{d-|T|+1} \cdot a_{T}=(-2)^{d} \sum_{S \supseteq T} \hat{f}(S) .
$$

By the assumption on maximality of T, all coefficients on the RHS except $\hat{f}(T)$ are integer multiples of 2^{-d}, hence the RHS is not an integer. On the other hand, the LHS is an integer since a_{T} is an integer, and we reach a contradiction.

For the case $T=\emptyset$, we have $a_{\emptyset}=1 / 2-1 / 2 \cdot \sum_{S} \hat{f}(S)$. Multiplying both sides by 2^{d+1} gives $2^{d+1} a_{\emptyset}=2^{d}-2^{d} \sum_{S} \hat{f}(S)$. Again, the RHS is not an integer, while the LHS is an integer.

Definition 2.7. We define the sparsity of $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ as $\operatorname{sparsity}(f) \triangleq|\{S: \hat{f}(S) \neq 0\}|$.
Corollary 2.8. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\operatorname{deg}(f)=d$, then $\operatorname{sparsity}(f) \leq 2^{2 d}$.
Proof. By Parseval, $1=\sum_{S} \hat{f}(S)^{2} \geq \operatorname{sparsity}(f) \cdot\left(2^{-d}\right)^{2}$.
Claim 2.9. Let $\tilde{f}:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function with $\operatorname{deg}(\tilde{f})=d$ then \tilde{f} can be written as

$$
\tilde{f}(x)=\sum_{i=1}^{\operatorname{sparsity}(f)} g_{i}(x)
$$

where each $g_{i}:\{0,1\}^{n} \rightarrow \mathbb{Z}$ is a d-junta, i.e. depends only on at most d coordinates.
Proof. Write $\tilde{f}(x)=\sum_{T \subseteq[n]} a_{T} \prod_{i \in T} x_{i}$. By Equation (3) any $T \subseteq[n]$ such that $a_{T} \neq 0$ is contained in some subset $S \subseteq[n]$ for which $\hat{f}(S) \neq 0$. Arbitrarily order the sets $\{S: \hat{f}(S) \neq 0\}$ as $S_{1}, \ldots, S_{\text {sparsity }(f)}$ and let

$$
g_{i}(x)=\sum_{T \subseteq S_{i}, \forall j<i: T \nsubseteq S_{j}} a_{T} \cdot \prod_{i \in T} x_{i} .
$$

Then, by definition $\tilde{f}(x)=\sum_{i=1}^{\text {sparsity }(f)} g_{i}(x)$. By the integrality of a_{T}, each g_{i} takes integer values. Moreover, each g_{i} depends only on the variables in the set S_{i}, i.e. on at most d coordinates.

2.4 Approximate Degree

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Given an $\epsilon \geq 0$ we define the ϵ-approximate degree, denoted by $\widetilde{\operatorname{deg}}_{\epsilon}(f)$, as the minimal degree of a multilinear polynomial p such that for all $x \in\{-1,1\}^{n},|f(x)-p(x)| \leq \epsilon$. We denote $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ by $\widetilde{\operatorname{deg}}(f)$.

When defining approximate degree the choice of $1 / 3$ may seem arbitrary. The next fact (essentially proved in [BNRdW07], Lemma 1) shows how approximate degree for different errors relate. We prove this fact in Appendix B for completeness.

Fact 2.10. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a Boolean function and let $0<\epsilon<1$ then: $\widetilde{\operatorname{deg}}_{\epsilon}(f) \leq$ $\widetilde{\operatorname{deg}}(f) \cdot\lceil 8 \cdot \ln (2 / \epsilon)\rceil$.

Relating the approximate degree to the Fourier transform one gets the following fact.
Fact 2.11. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a Boolean function, $0<\epsilon<1$ and $d=\widetilde{\operatorname{deg}}_{\epsilon}(f)$, then $\mathbf{W}^{>d}[f] \leq \epsilon^{2}$.

Proof. Let p be a polynomial of degree d which ϵ approximates f pointwise. Obviously $\mathbf{E}_{x}[(f(x)-$ $\left.p(x))^{2}\right] \leq \epsilon^{2}$. Let q be the best ℓ_{2} approximation of f by a degree d polynomial, namely the polynomial of degree d which minimizes $\|f-q\|_{2}^{2} \triangleq \mathbf{E}_{x}\left[(f(x)-q(x))^{2}\right]$. Obviously, $\|f-q\|_{2}^{2} \leq$ $\|f-p\|_{2}^{2} \leq \epsilon^{2}$ by the choice of p and q. Using Parseval's equality $\|f-q\|_{2}^{2}=\sum_{S}(\hat{f}(S)-\hat{q}(S))^{2}$, and it is easy to see that the minimizer of this expression among degree d polynomials is the Fourier expansion of f truncated above degree d :

$$
q(x)=\sum_{S \subseteq[n]:|S| \leq d} \hat{f}(S) \cdot \prod_{i \in S} x_{i} .
$$

Overall, we get that $\epsilon^{2} \geq\|f-q\|_{2}^{2}=\sum_{S:|S|>d} \hat{f}(S)^{2}$.

Our proof relies heavily on the following result from quantum query complexity.
Theorem 2.12 ($\left[\mathrm{BBC}^{+} 01\right.$, HLS07, Rei11]). There exists a universal constant $C_{1} \geq 1$ such that for any $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ we have $\widetilde{\operatorname{deg}}(f) \leq C_{1} \cdot \sqrt{L(f)}$.

The next claim states that functions have exponentially small fourier tails above level $\sqrt{L(f)}$.
Claim 2.13. There exists a constant $C>0$ such that for any $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and $k \in \mathbb{N}$,

$$
\mathbf{W}^{\geq k}[f] \leq e \cdot \exp \left(\frac{-k}{C \sqrt{L(f)}}\right)
$$

Proof. Let $t=\frac{k}{C \sqrt{L(f)}}$ where C is some constant we shall set later. We prove that $\mathbf{W}^{\geq k}[f] \leq e \cdot e^{-t}$. Assume without loss of generality that $t \geq 1$ or else the claim is trivial since $\mathbf{W}^{\geq k}[f] \leq 1 \leq e \cdot e^{-t}$. Put $\epsilon=e^{-t / 2}$, and combine Theorem 2.12 and Fact 2.10 to get

$$
\widetilde{\operatorname{deg}}_{\epsilon}(f) \leq \sqrt{L(f)} \cdot C_{1} \cdot\lceil 8 \ln (2 / \epsilon)\rceil=\sqrt{L(f)} \cdot C_{1} \cdot\lceil 4 t+8 \ln (2)\rceil \underset{(t \geq 1)}{\leq} \sqrt{L(f)} \cdot C_{1} \cdot 11 t
$$

Using Fact 2.11 we get $\mathbf{W}^{>\sqrt{L(f)} \cdot C_{1} \cdot 11 t}[f] \leq e^{-t}$. Hence $\mathbf{W}^{\geq} \sqrt{L(f) \cdot} \cdot C_{1} \cdot 12 t[f] \leq e^{-t}$. Setting $C:=$ $C_{1} \cdot 12$ completes the proof.

2.5 The Generalized Binomial Theorem

Theorem 2.14 (The generalized binomial theorem). Let $|x|<1$, and $d \in \mathbb{N}$, then

$$
\sum_{n=0}^{\infty}\binom{d+n-1}{d-1} \cdot x^{n}=\frac{1}{(1-x)^{d}}
$$

Multiplying both sides by x^{d} one get the following corollary.
Corollary 2.15. Let $|x|<1$, and $d \in \mathbb{N}$ then $\sum_{k=d}^{\infty}\binom{k-1}{d-1} \cdot x^{k}=\frac{x^{d}}{(1-x)^{d}}$.

3 Exponentially Small Tails and The Switching Lemma

In this section we prove the main technical part of our proof by showing a close relation between two properties of Boolean functions:

1. Having exponentially small Fourier tails above level $t: \forall k: \mathbf{W}^{\geq k}[f] \leq e^{-k / t}$.
2. A "switching lemma" type property with parameter $t^{\prime}: \forall p, d: \operatorname{Pr}_{\rho \sim \mathcal{R}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right) \geq d\right] \leq\left(t^{\prime} p\right)^{d}$.

Linial, Mansour and Nisan proved that Property 2 implies Property 1. For completeness we include a proof of their theorem in Appendix A.
Theorem 3.1 ([LMN93], restated slightly). Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and assume there exists $t>0$ such that for all $d \in \mathbb{N}, p \in(0,1), \operatorname{Pr}_{\rho \sim \mathcal{R}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right) \geq d\right] \leq(t p)^{d}$; then for any $k, \mathbf{W}^{\geq k}[f] \leq$ $2 e \cdot e^{-k / t e}$.

Next, we prove a converse to Theorem 3.1.
Theorem 3.2. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a Boolean function, let $t, C>0$ such that for all k, $\mathbf{W}^{\geq k}[f] \leq C \cdot e^{-k / t}$ and let ρ be a p-random restriction; then for all $d, \operatorname{Pr}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \leq C \cdot(4 p t)^{d}$.

Proof Sketch If a function f has exponentially small Fourier tails above level t then on expectation the restricted function $\left.f\right|_{\rho}$ will have exponentially small Fourier tails above level $p t$, since the Fourier spectrum of f roughly squeezes by a factor of p under a p-random restriction (see Corollary 2.5). However, the Fourier mass above level d of a Boolean function of degree d cannot be smaller than 4^{-d} by the granularity property. We get that if $p t \ll 1$, then with high probability the restricted function is not a degree d polynomial.

Proof. Our proof strategy is as follows: we bound the value of $\mathbf{E}_{\rho}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right]$ from below and above showing

$$
\begin{equation*}
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \geq \operatorname{Pr}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \cdot 4^{-d} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \leq C(p t)^{d} . \tag{5}
\end{equation*}
$$

Combining the two estimates will complete the proof.
We begin by proving Equation (4). Conditioning on the event that $\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d$, Fact 2.6 implies that any nonzero Fourier coefficient of $\left.f\right|_{\rho}$ is of magnitude $\geq 2^{-d}$. Hence, $\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2} \geq 4^{-d}$, and we get
$\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \geq \operatorname{Pr}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \cdot \underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2} \mid \operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \geq \operatorname{Pr}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \cdot 4^{-d}$.
Next, we turn to prove Equation (5).

$$
\begin{align*}
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] & =\sum_{k \geq d} \mathbf{W}^{=k}[f] \cdot\binom{k}{d} \cdot p^{d} \cdot(1-p)^{k-d} \tag{Corollary2.5}\\
& \leq \sum_{k \geq d} \mathbf{W}^{=k}[f] \cdot\binom{k}{d} \cdot p^{d} \\
& =p^{d} \cdot \sum_{k \geq d}\left(\mathbf{W}^{\geq k}[f]-\mathbf{W}^{\geq k+1}[f]\right) \cdot\binom{k}{d}
\end{align*}
$$

We can rearrange the RHS of the above equation, gathering terms according to $\mathbf{W}^{\geq k}[f]$. We denote $\binom{d-1}{d}=0$, and get:

$$
\begin{aligned}
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] & =p^{d} \cdot \sum_{k \geq d} \mathbf{W}^{\geq k}[f] \cdot\left(\binom{k}{d}-\binom{k-1}{d}\right) \\
& =p^{d} \cdot \sum_{k \geq d} \mathbf{W}^{\geq k}[f] \cdot\binom{k-1}{d-1} .
\end{aligned}
$$

Let $a:=e^{-1 / t}$. The assumption on the Fourier tails of $f, \mathbf{W}^{\geq k}[f] \leq C \cdot a^{k}$, gives

$$
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \leq p^{d} \cdot \sum_{k \geq d} C \cdot a^{k} \cdot\binom{k-1}{d-1} .
$$

Next we use Corollary 2.15 with $x:=a$ to get

$$
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \leq C\left(\frac{a p}{1-a}\right)^{d}=C\left(\frac{p}{1 / a-1}\right)^{d} .
$$

Substituting a with $e^{-1 / t}$ gives

$$
\underset{\rho}{\mathbf{E}}\left[\sum_{S:|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \leq C\left(\frac{p}{e^{1 / t}-1}\right)^{d} \leq C(p t)^{d},
$$

where the last inequality follows since $e^{x}-1 \geq x$ for any $x \geq 0$.

4 Degree vs. Formula Size

We use the following fact about the formula size of the parity function
Fact 4.1 ([Yab54]). $L\left(\right.$ PARITY $\left._{m}\right) \leq 9 / 8 \cdot m^{2}$. Furthermore, if $m=2^{k}$ for some integer k, then $L\left(\right.$ PARITY $\left._{m}\right) \leq m^{2}$.

Claim 4.2. Let $\tilde{f}:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $\operatorname{deg}(\tilde{f})=d$, then $L(\tilde{f}) \leq 2 \cdot 32^{d}$.
Proof. According to Claim 2.9, \tilde{f} can be written as $\sum_{i=1}^{4^{d}} g_{i}(x)$, where the functions $g_{i}(x)$ take integer values, and each of them depends on at most d variables. Since $\tilde{f}(x) \in\{0,1\}$ we may perform all operations modulo 2 and get $\tilde{f}(x)=\bigoplus_{i=1}^{4^{d}} h_{i}(x)$, where $h_{i}(x)=g_{i}(x) \bmod 2$. Taking a formula for the parity of $m=4^{d}$ variables, y_{1}, \ldots, y_{m}, and replacing each instance of a variable y_{i} with a formula computing $h_{i}(x)$ gives a formula for \tilde{f}. The size of the formula computing each h_{i} is at most 2^{d+1} since any function on d variables can be computed by a formula of such size. Thus, the size of the combined formula is $\leq L\left(\right.$ PARITY $\left._{m}\right) \cdot 2^{d+1}=16^{d} \cdot 2^{d+1}=2 \cdot 32^{d}$.

5 The Case $p=O(1 / \sqrt{L(f)})$

Claim 5.1. There exists a constant $C>0$ such that for any function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and any $p \leq \frac{1}{C \sqrt{L(f)}}$ the following hold. Let ρ be a p-random restriction, then $\mathbf{E}_{\rho}\left[L\left(\left.f\right|_{\rho}\right)\right]=O(p \sqrt{L(f)})$. In particular, in this regime of parameters, $\mathbf{E}_{\rho}\left[L\left(\left.f\right|_{\rho}\right)\right]=O(1)$.

Proof of Claim 5.1. From Claim 2.13, there exists a constant $C>0$ such that

$$
\forall k: \mathbf{W}^{\geq k}[f] \leq e \cdot e^{-k /(C \sqrt{L(f)})}
$$

This implies, using Theorem 3.2, that $\mathbf{P r}_{\rho \sim \mathcal{R}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \leq e \cdot(4 p C \sqrt{L(f)})^{d}$. Using Claim 4.2,
if $\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d$ then $L\left(\left.f\right|_{\rho}\right) \leq 2 \cdot 32^{d}$. For $p \leq \frac{1}{64 \cdot 4 C \sqrt{L(f)}}$ we get

$$
\begin{aligned}
\underset{\rho \sim \mathcal{R}_{p}}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right)\right] & =\sum_{d=0}^{n} \underset{\rho}{\operatorname{Pr}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \cdot \underset{\rho}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right) \mid \operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \\
& =\sum_{d=1}^{n} \mathbf{P r}_{\rho}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \cdot \underset{\rho}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right) \mid \operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \quad\left(\operatorname{deg}\left(\left.f\right|_{\rho}\right)=0 \text { implies } L\left(\left.f\right|_{\rho}\right)=0\right) \\
& \leq \sum_{d=1}^{\infty} e \cdot(4 p C \sqrt{L(f)})^{d} \cdot 2 \cdot 32^{d} \\
& \leq O(p \sqrt{L(f)}) \cdot \sum_{d=1}^{\infty}(4 p C \sqrt{L(f)})^{d-1} \cdot 32^{d-1} \\
& \leq O(p \sqrt{L(f)}) \cdot \sum_{d=1}^{\infty}(1 / 64)^{d-1} \cdot 32^{d-1} \\
& =O(p \sqrt{L(f)}) .
\end{aligned}
$$

6 The General Case

In Section 5 we have proved Theorem 1.2 for the case $p=O(1 / \sqrt{L(f)})$. In this section we give a reduction from the case where p is larger, i.e. $p=\Omega(1 / \sqrt{L(f)})$, to the case where p is small, i.e. $p=\Theta(1 / \sqrt{L(f)})$. We use the tree decompsition of Impagliazzo, Meka and Zuckerman [IMZ12] to establish this reduction. ${ }^{7}$

The next lemma states that every binary tree can be decomposed into smaller subtrees with some small overhead. Its proof can be found in [IMZ12].

Lemma 6.1 ([IMZ12]). Let $\ell \in \mathbb{N}$. Any binary tree with $s \geq \ell$ leaves can be decomposed into at most $6 \mathrm{~s} / \ell$ subtrees, each with at most ℓ leaves, such that each subtree has at most two other subtree children. Here subtree T_{1} is a child of subtree T_{2} if there exists nodes $t_{1} \in T_{1}, t_{2} \in T_{2}$, such that t_{1} is a child of t_{2}.

Claim 6.2. Let F be a formula over the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and $\ell \in \mathbb{N}$ be some parameter; then, there exist $m \leq 36 \cdot L(F) / \ell$ formulae over X, denoted by G_{1}, \ldots, G_{m}, each of size at most ℓ, and there exists a read-once formula F^{\prime} of size m such that $F^{\prime}\left(G_{1}(x), \ldots, G_{m}(x)\right)=F(x)$ for all $x \in\{-1,1\}^{n}$.

Proof. Consider the decomposition promised by Lemma 6.1 with parameter ℓ. Let $T_{1}, \ldots, T_{m^{\prime}}$ be the subtrees in this decomposition where $m^{\prime} \leq 6 n / \ell$. We will show by induction on m^{\prime}, that one can construct a read-once formula F^{\prime} of size $m \leq 6 m^{\prime}$ along with m sub-formulae G_{1}, \ldots, G_{m} of size ℓ such that $F \equiv F^{\prime}\left(G_{1}, \ldots, G_{m}\right)$. For $m^{\prime}=1$ the statement holds trivially.

Assume that the root of the formula F is a node in the subtree T_{1}, and that the subtree T_{1} has two subtree children: T_{2} and T_{3} (the case where T_{1} has one subtree child can be handled similarly, and is in fact slightly simpler). We now add two special leaves to the tree T_{1}. Let $t_{2} \in T_{2}, t_{1} \in T_{1}$ (respectively $\left.t_{3} \in T_{3}, t_{1}^{\prime} \in T_{1}\right)$ be the nodes such that $t_{2}\left(t_{3}\right.$, resp.) is a child of $t_{1}\left(t_{1}^{\prime}\right.$, resp.) in the tree represented by F, and add a leaf labeled by the "special" variable z_{2} (z_{3}, resp.) as a child of

[^4]t_{1} (t_{1}^{\prime}, resp.). Call the new subtree T. Note that since T is a de Morgan formula, the value of T is monotone in z_{2} and z_{3}. Let T^{\prime} be the minimal subtree of T which contains both leaves marked by z_{2} and z_{3}. By minimality $T^{\prime}=T_{2}^{\prime}$ op T_{3}^{\prime}, for $\mathbf{o p} \in\{\wedge, \vee\}$, where T_{2}^{\prime} contains z_{2} and not z_{3}, and T_{3}^{\prime} contains z_{3} and not z_{2}.

We will construct a formula equivalent to T^{\prime} by finding equivalent formulae for T_{2}^{\prime} and T_{3}^{\prime}. We claim that $T_{2}^{\prime}=\left(\left.T_{2}^{\prime}\right|_{z_{2}=\text { false }}\right) \vee\left(\left.T_{2}^{\prime}\right|_{z_{2}=\text { true }} \wedge z_{2}\right)$. This follows since T_{2}^{\prime} is monotone in z_{2} : if $\left.T_{2}^{\prime}\right|_{z_{2}=\text { false }}=$ true then $T_{2}^{\prime}=$ true, otherwise $T_{2}^{\prime}=$ true only if both $\left.T_{2}^{\prime}\right|_{z_{2}=\text { true }}$ and z_{2} are true. Same goes for T_{3}^{\prime}, and we get

$$
T^{\prime} \equiv\left(\left(\left.T_{2}^{\prime}\right|_{z_{2}=\text { false }}\right) \vee\left(\left.T_{2}^{\prime}\right|_{z_{2}=\text { true }} \wedge z_{2}\right)\right) \text { op }\left(\left(\left.T_{3}^{\prime}\right|_{z_{3}=\text { false }}\right) \vee\left(\left.T_{3}^{\prime}\right|_{z_{3}=\text { true }} \wedge z_{3}\right)\right)
$$

Replacing T^{\prime} with a leaf labeled with z, where z is a new "special" variable, and doing the same trick we get: $\left.T \equiv T\right|_{z=\text { false }} \vee\left(\left.T\right|_{z=\text { true }} \wedge z\right)$. Combining both formulae, we get the following equivalence:

$$
\left.T \equiv T\right|_{z=\text { false }} \vee\left(\left.T\right|_{z=\text { true }} \wedge\left(\left(\left.T_{2}^{\prime}\right|_{z_{2}=\text { false }}\right) \vee\left(\left.T_{2}^{\prime}\right|_{z_{2}=\text { true }} \wedge z_{2}\right)\right) \text { op }\left(\left(\left.T_{3}^{\prime}\right|_{z_{3}=\text { false }}\right) \vee\left(\left.T_{3}^{\prime}\right|_{z_{3}=\text { true }} \wedge z_{3}\right)\right)\right) .
$$

Note that the RHS of the equation above can be written as $F^{\prime \prime}\left(G_{1}(x), \ldots, G_{6}(x), z_{2}, z_{3}\right)$ where $F^{\prime \prime}$ is read-once and $G_{1}(x), \ldots, G_{6}(x)$ are formulae of size ℓ, defined on the variables in X.

Let m_{2}, m_{3} be the number of subtrees which are descendants of T_{2}, T_{3} in the tree-decomposition given by Lemma 6.1. By induction, the subformula of F rooted at t_{2} is equivalent to $F_{2}^{\prime}\left(G_{1}^{2}(x), \ldots, G_{6 m_{2}}^{2}(x)\right)$ where F_{2}^{\prime} is read-once and $G_{i}^{2}(x)$ are formulae of size $\leq \ell$. Similarly for t_{3}. We thus get that

$$
F(x)=F^{\prime \prime}\left(G_{1}(x), \ldots, G_{6}(x), F_{2}^{\prime}\left(G_{1}^{2}(x), \ldots, G_{6 m_{2}}^{2}(x)\right), F_{3}^{\prime}\left(G_{1}^{3}(x), \ldots, G_{6 m_{3}}^{3}(x)\right)\right) .
$$

Rearranging the RHS, we get a read-once formula of size $m \leq 6+6 m_{2}+6 m_{3}=6 m^{\prime}$ alongside m sub-formulae, each of size ℓ, such that their composition is equivalent to F.

We now turn to complete the proof of our main theorem.
Theorem (Theorem 1.2, restated). Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a Boolean function, and let $p>0$, then $\mathbf{E}_{\rho \sim \mathcal{R}_{p}}\left[L\left(\left.f\right|_{\rho}\right)\right]=O\left(p^{2} L(f)+p \sqrt{L(f)}\right)$.

Proof. The case $p \leq \frac{1}{C \sqrt{L}}$ is implied by Claim 5.1. Therefore, it is enough to show the statement holds when $p>\frac{1}{C \sqrt{L}}$. Let F be the smallest de Morgan formula computing f. Applying Claim 6.2 with $\ell:=\frac{1}{p^{2} \cdot C^{2}}$, we get a read-once de Morgan formula F^{\prime} of size $m=O(L(F) / \ell)$ along with formulae G_{1}, \ldots, G_{m}, each of size at most ℓ, such that $f(x)=F^{\prime}\left(G_{1}(x), \ldots, G_{m}(x)\right)$ for all $x \in$ $\{-1,1\}^{n}$. Denote the functions that G_{1}, \ldots, G_{m} compute by g_{1}, \ldots, g_{m} respectively. Applying a restriction ρ we get $\left.f\right|_{\rho} \equiv F^{\prime}\left(\left.g_{1}\right|_{\rho}, \ldots,\left.g_{m}\right|_{\rho}\right)$, hence $L\left(\left.f\right|_{\rho}\right) \leq \sum_{i=1}^{m} L\left(\left.g_{i}\right|_{\rho}\right)$. By linearity of expectation,

$$
\underset{\rho}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right)\right] \leq \underset{\rho}{\mathbf{E}}\left[\sum_{i=1}^{m} L\left(\left.g_{i}\right|_{\rho}\right)\right] \leq m \cdot O(p \cdot \sqrt{\ell})=m \cdot O(1)=O\left(p^{2} \cdot L(f)\right) .
$$

7 Lower Bound for Andreev's Function

In this section, we prove a $\Omega\left(\frac{n^{3}}{\log ^{2} n \log \log n}\right)$ formula lower bound for Andreev's function.

For two Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{m} \rightarrow\{0,1\}$, the composition of f and g is defined as $f \circ g:\{0,1\}^{n m} \rightarrow\{0,1\}$, where

$$
(f \circ g)\left(x_{1,1}, x_{1,2}, \ldots, x_{n, m}\right)=f\left(g\left(x_{1,1}, \ldots, x_{1, m}\right), \ldots, g\left(x_{n, 1}, \ldots, x_{n, m}\right)\right)
$$

In words, $f \circ g$ is a function whose value is the value of f on n input bits, each of them is the calculation of g on an independent set of m bits.

The next lemma shows that the size of $h \circ \oplus_{m}$, where \oplus_{m} is the parity function on m variables, is equal, up to a constant factor, to the product of the formula sizes of h and \oplus_{m}.

Lemma 7.1. For any $h:\{0,1\}^{r} \rightarrow\{0,1\}$, let $f=h \circ \oplus_{m}$, then

$$
L(f)=\Theta\left(L(h) \cdot L\left(\oplus_{m}\right)\right)=\Theta\left(L(h) \cdot m^{2}\right)
$$

Proof. Recall that by Fact 4.1 and Khrapchenko's Theorem [Khr71], $m^{2} \leq L\left(\oplus_{m}\right) \leq 9 / 8 \cdot m^{2}$.
Think of the input to f as an $r \times m$ matrix $\left\{y_{i, j}\right\}_{i \in[r], j \in[m]}$, and of the input to h as a vector $z=\left(z_{1}, \ldots, z_{r}\right)$. The upper bound, $L(f) \leq L(h) \cdot L\left(\oplus_{m}\right)$, is easy, since replacing each leaf marked by a variable z_{i} (or its negation) in the formula for h with a formula computing $\oplus_{j \in[m]} y_{i, j}$ (or its negation), gives a formula for f whose size is at most $L(h) \cdot L\left(\oplus_{m}\right)=O\left(L(h) \cdot m^{2}\right)$.

For the lower bound, $L(f)=\Omega\left(L(h) \cdot L\left(\oplus_{m}\right)\right)$, we can assume without loss of generality that $L(h) \geq 2 C$ for a large enough constant C. This is without loss of generality since:

1. if $L(h)=0$, then we have nothing to prove.
2. We show that if $1 \leq L(h)<2 C$ then $L(f)$ is at least $L\left(\oplus_{m}\right)$. Since h is not the constant function, there is an input bit z_{k} of h and a restriction fixing $z_{1}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{r}$ under which h becomes the dictatorship function z_{k} or the anti-dictatorship function $\neg z_{k}$. Fixing each row in $\left\{y_{i, j}\right\}$ except the k-th row, such that the parity of the i-th row equals the required value for z_{i}, gives a restriction ρ under which $\left.f\right|_{\rho}$ is the parity of $y_{k, 1}, \ldots, y_{k, m}$ or its negation. Hence, $L(f) \geq L\left(\left.f\right|_{\rho}\right) \geq L\left(\oplus_{m}\right) \geq \frac{L(h) L\left(\oplus_{m}\right)}{2 C} \geq \Omega\left(L(h) L\left(\oplus_{m}\right)\right)$.
For larger values of $L(h)$, we shall establish the lower bound $L(f) \geq \Omega\left(L(h) \cdot m^{2}\right)$ using a tailored distribution of random restrictions, which is not a distribution of p-random restrictions. For each row in the matrix $\left\{y_{i, j}\right\}$, we pick one variable uniformly, keep it alive, and fix all the rest uniformly. This leaves us with a function on r variables which is equivalent to h, up to negations to the inputs, hence its formula size is $L(h)$.

We want to analyze the shrinkage factor due to this distribution of random restrictions. Noting that our distribution is random-valued (Recall Def. 2.3), as required in Fact 2.4, we get

$$
\underset{\rho}{\mathbf{E}}\left[\widehat{\left.f\right|_{\rho}}(S)^{2}\right]=\sum_{U \supseteq S} \hat{f}(U)^{2} \operatorname{Pr}_{\rho}[S=\{i \in U: \rho(i)=*\}] .
$$

By the definition of the distribution of random restrictions, $\operatorname{Pr}_{\rho}[S=\{i \in U: \rho(i)=*\}]=0$ if S contains more than one coordinate in a certain row. Thus, we may restrict our attention to sets S which contain at most one variable from each row. Since the probability that ρ restricts U to S is at most the probability that ρ keeps alive all the variables in S, and since each variable in S is in its own row, we get

$$
\underset{\rho}{\operatorname{Pr}}[S=\{i \in U: \rho(i)=*\}] \leq \frac{1}{m^{|S|}} .
$$

Summing over all sets S of size d we get

$$
\underset{\rho}{\mathbf{E}}\left[\sum_{|S|=d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right]=\sum_{U} \hat{f}(U)^{2} \sum_{\substack{S \subseteq U \\|S|=d}} \operatorname{Pr}_{\rho}[S=\{i \in U: \rho(i)=*\}] \leq \sum_{U} \hat{f}(U)^{2}\binom{|U|}{d} \frac{1}{m^{d}} .
$$

Plugging this in the analysis of Theorem 3.2 we get $\operatorname{Pr}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \leq C(4 t / m)^{d}$. From here we can continue the proofs of Claim 5.1 and Theorem 1.2 by replacing p with $1 / m$. We get that $\mathbf{E}_{\rho}\left[L\left(\left.f\right|_{\rho}\right)\right]=O\left(\frac{L(f)}{m^{2}}+1\right)$. Conversely,

$$
L(f) \geq \Omega\left(m^{2} \cdot\left(\underset{\rho}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right)\right]-C\right)\right)
$$

for some universal constant C. Since

$$
\left.\underset{\rho}{\mathbf{E}}\left[L\left(\left.f\right|_{\rho}\right)\right]\right)-C \geq L(h)-C \geq L(h) / 2,
$$

where we used the assumption $L(h) \geq 2 C$ in the last inequality, we get $L(f) \geq \Omega\left(m^{2} L(h)\right)$.
We now describe Andreev's function $A:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$. A gets two inputs $x, y \in$ $\{0,1\}^{n}$. Let $r=\log n$ and $m=n / \log n$. We interpret the second input y as an $r \times m$ matrix $\left\{y_{i, j}\right\}_{i \in[r], j \in[m]}$. Let $z_{1}, \ldots z_{r} \in\{0,1\}$ be the parities of each row, i.e., $z_{i}=\oplus_{j=1}^{m} y_{i, j}$. Then $A(x, y)=$ $x_{\operatorname{bin}(z)}$ where $\operatorname{bin}(z)$ is the integer between 1 and 2^{r} represented by the string z_{1}, \ldots, z_{r}. An alternative way to view the function is to think of x as the truth table of a Boolean function on $\log n$ bits, and then take the value of this function on the input z.

Theorem 7.2.

$$
L(A) \geq \Omega\left(\frac{n^{3}}{\log ^{2} n \log \log n}\right) .
$$

Proof. Let $h:\{0,1\}^{\log n} \rightarrow\{0,1\}$ be the function on $\log n$ variables with largest formula size. It is well known (Theorem 1.23, [Juk12]) that $L(h)=\Omega\left(n / \log \log n\right.$). Define $A_{h}:\{0,1\}^{n} \rightarrow\{0,1\}$ as $A_{h}(y)=A(\operatorname{tt}(h), y)=\left(h \circ \oplus_{m}\right)\left(y_{1,1}, \ldots, y_{r, m}\right)$ where $\operatorname{tt}(h)$ stands for the truth table of h. Using Lemma 7.1, $L\left(A_{h}\right)=L\left(h \circ \oplus_{m}\right)=\Theta\left(L(h) \cdot m^{2}\right)=\Theta\left(\frac{n^{3}}{\log ^{2} n \log \log n}\right)$. Since A_{h} is a subfunction of $A, L(A) \geq L\left(A_{h}\right)$, which completes the proof.

8 Open Ends

An interesting open question raised by Håstad in [Hås98] is
What is the shrinkage exponent of monotone de Morgan formulae?
In particular, this has strong connections with understanding the monotone formula size of Majority. The analysis in Section 6 implies that it is enough to find the critical probability p_{c} for which $\mathbf{E}_{\rho \sim \mathcal{R}_{p_{c}}}\left[L\left(\left.f\right|_{\rho}\right)\right]=1$, and then use the tree decomposition to argue for $p \geq p_{c}$ (note that the decomposition done in Section 6 respects monotonicity). Hence, in order to show Γ shrinkage, i.e. that formulae of size s shrink to expected size $O\left(p^{\Gamma} s+1\right)$ after applying a p-random restriction, it is necessary and sufficient to show that for $p=\frac{1}{L(f)^{1 / \Gamma}}$, the expected size of the minimal monotone formula computing $\left.f\right|_{\rho}$ is $O(1)$.

Acknowledgement

I wish to thank my advisor Ran Raz for his guidance and encouragement. I thank Zeev Dvir and Ilan Komargodski for helpful discussions. I thank Robin Kothari, Igor Sergeev and the anonymous referees for their helpful comments.

References

$\left[\mathrm{ACR}^{+} 10\right]$ A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek, and S. Zhang. Any AND-OR formula of size n can be evaluated in time $n^{1 / 2+o(1)}$ on a quantum computer. SIAM J. Comput., 39(6):2513-2530, 2010.
[And87] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63-66, 1987. In Russian.
[$\left.\mathrm{BBC}^{+} 01\right]$ R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778-797, 2001.
[BNRdW07] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust polynomials and quantum algorithms. Theory Comput. Syst., 40(4):379-395, 2007.
$\left[\mathrm{CKK}^{+} 14\right]$ R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining circuit lower bound proofs for meta-algorithms. In CCC, 2014.
[CKS14] R. Chen, V. Kabanets, and N. Saurabh. An improved deterministic \#SAT algorithm for small De Morgan formulas. In MFCS, pages 165-176, 2014.
[FGG08] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the hamiltonian nand tree. Theory of Computing, 4(1):169-190, 2008.
[GMWW14] D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson. Toward better formula lower bounds: an information complexity approach to the KRW composition conjecture. In David B. Shmoys, editor, STOC, pages 213-222. ACM, 2014.
[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis, editor, STOC, pages 6-20. ACM, 1986.
[Hås98] J. Håstad. The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput., 27(1):48-64, 1998.
[HLS07] P. Høyer, T. Lee, and R. Spalek. Negative weights make adversaries stronger. In David S. Johnson and Uriel Feige, editors, STOC, pages 526-535. ACM, 2007.
[IK14] R. Impagliazzo and V. Kabanets. Fourier concentration from shrinkage. In CCC, 2014.
[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In FOCS, pages 111-119. IEEE Computer Society, 2012.
[IN93] R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size. Random Struct. Algorithms, 4(2):121-134, 1993.
[Juk12] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer Berlin Heidelberg, 2012.
[KB80] R. Kaas and J. M. Buhrman. Mean, median and mode in binomial distributions. Statistica Neerlandica, 34(1):13-18, 1980.
[Khr71] V. M. Khrapchenko. A method of determining lower bounds for the complexity of π schemes. Matematischi Zametki, 10:83-92, 1971. In Russian.
[KR13] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, STOC, pages 171-180. ACM, 2013.
[KRT13] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for De Morgan formula size. In FOCS, pages 588-597. IEEE Computer Society, 2013.
[KRW95] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Computational Complexity, 5(3/4):191204, 1995.
[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical formula size lower bounds. Computational Complexity, 15(2):163-196, 2006.
[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learnability. J. ACM, 40(3):607-620, 1993.
[O'D14] R. O'Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.
[PZ93] M. Paterson and U. Zwick. Shrinkage of De Morgan formulae under restriction. Random Struct. Algorithms, 4(2):135-150, 1993.
[Rei09] B. Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In FOCS, pages 544-551. IEEE Computer Society, 2009.
[Rei11] B. Reichardt. Reflections for quantum query algorithms. In Dana Randall, editor, SODA, pages 560-569. SIAM, 2011.
[RS12] B. Reichardt and R. Spalek. Span-program-based quantum algorithm for evaluating formulas. Theory of Computing, 8(1):291-319, 2012.
[San10] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF satisfiability. In FOCS, pages 183-192. IEEE Computer Society, 2010.
[Sub61] B. A. Subbotovskaya. Realizations of linear function by formulas using $+, \cdot,-$. Doklady Akademii Nauk SSSR, 136:3:553-555, 1961. In Russian.
[Yab54] S. V. Yablonskii. Realization of the linear function in the class of π-schemes. In Dokl. Akad. Nauk SSSR, volume 94, pages 805 - 806, 1954. In Russian.

A A Theorem of Linial, Mansour and Nisan

Theorem (Theorem 3.1, restated). Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and assume there exists $t \in \mathbb{R}$ such that for all $d, p, \operatorname{Pr}_{\rho \sim \mathcal{R}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right) \geq d\right] \leq(t p)^{d}$. Then for any $k, \mathbf{W}^{\geq k}[f] \leq 2 e \cdot e^{-k /(t e)}$.
Proof. For any $d \in \mathbb{N}$ and $p \in(0,1]$ we have

$$
\begin{align*}
\underset{\rho \sim \mathcal{R}_{p}}{\mathbf{E}}\left[\sum_{S:|S| \geq d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] & =\sum_{k \geq d} \mathbf{W}^{=k}[f] \cdot \operatorname{Pr}[\operatorname{Bin}(k, p) \geq d] \tag{Corollary2.5}\\
& \geq \sum_{k \geq d / p} \mathbf{W}^{=k}[f] \cdot \operatorname{Pr}[\operatorname{Bin}(k, p) \geq d] \\
& \geq \sum_{k \geq d / p} \mathbf{W}^{=k}[f] \cdot 1 / 2 \quad \quad \text { (Corollary 2.5) } \\
& =1 / 2 \cdot \mathbf{W}^{\geq d / p}[f]
\end{align*}
$$

Overall we got

$$
\begin{equation*}
\mathbf{W}^{\geq d / p}[f] \leq 2 \cdot \underset{\rho \sim \mathcal{R}_{p}}{\mathbf{E}}\left[\sum_{S:|S| \geq d} \widehat{\left.f\right|_{\rho}}(S)^{2}\right] \leq 2 \underset{\rho \sim \mathcal{R}_{p}}{\mathbf{P r}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right) \geq d\right] \leq 2(t p)^{d} . \tag{6}
\end{equation*}
$$

Given k and t we choose $p:=1 /(t e)$ and $d:=\lfloor k p\rfloor$. Substituting d and p in Equation (6) we get $\mathbf{W}^{\geq k}[f] \leq 2 \cdot e^{-\lfloor k /(t e)\rfloor} \leq 2 e \cdot e^{-k /(t e)}$.

B Amplification of Approximate Degree

The proof in this section is essentially the same as the one in [BNRdW07]; we present it here for completeness.
Definition B.1. For $q \in[-1,1]$ we say that x is a q-biased bit, denoted by $x \sim N_{q}$, if $\operatorname{Pr}[x=1]=$ $\frac{1+q}{2}$ and $\operatorname{Pr}[x=-1]=\frac{1-q}{2}$. In other words, x is a random variable taking values from $\{-1,1\}$ with $\mathbf{E}[x]=q$.

The next lemma connects the value of a polynomial representing a Boolean function on nonBoolean inputs with a product-measure distribution.
Lemma B.2. Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the unique multilinear polynomial agreeing with f on $\{-1,1\}^{n}$. Let $q_{1}, \ldots, q_{n} \in[-1,1]$ then

$$
\underset{x_{i} \sim N_{q_{i}}}{\mathbf{E}}\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=p\left(q_{1}, \ldots, q_{n}\right)
$$

where the $x_{i} s$ are drawn independently.
Proof. We write $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} \hat{f}(S) \cdot \prod_{i \in S} x_{i}$. We first show the lemma for a single monomial:

$$
\underset{x_{i} \sim N_{q_{i}}}{\mathbf{E}}\left[\prod_{i \in S} x_{i}\right] \underset{x_{i} \text { are ind. }}{=} \prod_{i \in S} \underset{x_{i} \sim N_{q_{i}}}{\mathbf{E}}\left[x_{i}\right]=\prod_{i \in S} q_{i} .
$$

By linearity of expectation we have:

$$
\underset{x_{i} \sim N_{q_{i}}}{\mathbf{E}}\left[p\left(x_{1}, \ldots, x_{n}\right)\right]=\underset{x_{i} \sim N_{q_{i}}}{\mathbf{E}}\left[\sum_{S \subseteq[n]} \hat{f}(S) \cdot \prod_{i \in S} x_{i}\right]=\sum_{S \subseteq[n]} \hat{f}(S) \cdot \prod_{i \in S} q_{i}=p\left(q_{1}, \ldots, q_{n}\right) .
$$

We now turn to prove Fact 2.10, restated next.
Fact B.3. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be Boolean function and let $0<\epsilon<1$ then: $\widetilde{\operatorname{deg}}_{\epsilon}(f) \leq$ $\widetilde{\operatorname{deg}}(f) \cdot\lceil 8 \cdot \ln (2 / \epsilon)\rceil$.

Proof. Let m be some parameter we will set later. Take $\operatorname{MAJ}_{m}:\{-1,1\}^{m} \rightarrow\{-1,1\}$ to be the majority of m inputs, and denote by $p_{\mathrm{MAJ}} \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ the multilinear polynomial agreeing with MAJ_{m} on $\{-1,1\}^{m}$. Let $q \in(0,1]$ (the case $q \in[-1,0)$ is similar), then by Lemma B. 2 we have

$$
p_{\mathrm{MAJ}}(q, q, \ldots, q)=\underset{x_{i} \sim N_{q}}{\mathbf{E}}\left[\operatorname{MAJ}_{m}\left(x_{1}, \ldots, x_{m}\right)\right]=\underset{x_{i} \sim N_{q}}{\operatorname{Pr}}\left[\sum_{i} x_{i} \geq 0\right]-\underset{x_{i} \sim N_{q}}{\operatorname{Pr}}\left[\sum_{i} x_{i}<0\right]
$$

Let $X=\sum_{i} x_{i}$, then by Chernoff-Hoeffding bound we have

$$
\operatorname{Pr}[X \geq 0]=\operatorname{Pr}[X-\mathbf{E}[X] \geq-q \cdot m] \geq 1-e^{-(q m)^{2} / 2 m}=1-e^{-m q^{2} / 2}
$$

which implies

$$
\begin{equation*}
p_{\mathrm{MAJ}}(q, q, \ldots, q) \geq 1-2 e^{-m q^{2} / 2} \tag{7}
\end{equation*}
$$

By definition there exists a polynomial p of degree $\widetilde{\operatorname{deg}}(f)$ such that $p(x) \in[-4 / 3,-2 / 3]$ if $f(x)=$ -1 and $p(x) \in[2 / 3,4 / 3]$ if $f(x)=1$. Take $p^{\prime}(x)=\frac{p(x)}{4 / 3}$, then $p^{\prime}(x) \in[1 / 2,1]$ if $f(x)=1$ and $p^{\prime}(x) \in[-1,-1 / 2]$ if $f(x)=-1$. Consider the polynomial

$$
g(x)=p_{\mathrm{MAJ}}\left(p^{\prime}(x), p^{\prime}(x), \ldots, p^{\prime}(x)\right),
$$

then $\operatorname{deg}(g) \leq \operatorname{deg}\left(p_{\mathrm{MAJ}}\right) \cdot \operatorname{deg}\left(p^{\prime}\right)=m \cdot \widetilde{\operatorname{deg}}(f)$. On the other hand, for x such that $f(x)=1$ (the case where $f(x)=-1$ is analogous) we have $g(x)=p_{\mathrm{MAJ}}(q, q, \ldots, q)$ for some $q \in[1 / 2,1]$. Since $p_{\text {MAJ }}$ is monotone and using Equation (7), we have

$$
1 \geq g(x)=p_{\mathrm{MAJ}}(q, \ldots, q) \geq p_{\mathrm{MAJ}}(1 / 2, \ldots, 1 / 2) \geq 1-2 e^{-m / 8}
$$

Picking $m=\lceil 8 \cdot \ln (2 / \epsilon)\rceil$ completes the proof.

[^0]: *Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, IsRaEL. avishay.tal@weizmann.ac.il. Supported by an Adams Fellowship of the Israel Academy of Sciences and Humanities, by an ISF grant and by the I-CORE Program of the Planning and Budgeting Committee.

[^1]: ${ }^{1}$ We identify the truth values true and false with -1 and 1 respectively.
 ${ }^{2}$ Here we think of the non-uniform version of $\mathbf{N C}^{\mathbf{1}}$: the class of languages $L \subseteq\{-1,1\}^{*}$ such that for each length n there exists a Boolean formula F_{n} of size poly (n) which decides whether strings of length n are in the language.

[^2]: ${ }^{3}$ Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, we say that a polynomial $p(x) \epsilon$-approximates f pointwise if $|p(x)-f(x)|<\epsilon$ for all $x \in\{-1,1\}^{n}$. The approximate degree of a function f, denoted by $\widetilde{\operatorname{deg}}(f)$, is the minimal degree of a polynomial p which $1 / 3$-approximates f pointwise.

[^3]: ${ }^{4}$ Of course, this is meaningless when $L(f) \geq n^{2}$, since there is no Fourier mass above level n.
 ${ }^{5}$ For technical reasons, it is more convinent for us to argue about the probablity of having degree exactly d. We actually show $\operatorname{Pr}_{\rho \sim \mathcal{R}_{p}}\left[\operatorname{deg}\left(\left.f\right|_{\rho}\right)=d\right] \leq(4 p m)^{d}$ and this implies the statement above by simple arithmetics.
 ${ }^{6}$ This is essentially the opposite of a key step in the proof of Linial, Mansour and Nisan [LMN93] which showed that $\mathbf{A C} \mathbf{C}^{\mathbf{0}}$ circuits have Fourier spectrum concentrated on the poly $\log (n)$ first levels.

[^4]: ${ }^{7}$ Another approach to prove the general case is to follow Håstad original proof, changing the estimates when $p=O(1 / \sqrt{L(F)})$ with what we showed in Section 5 . The reduction we suggest simplifies this approach significantly.

