Shrinkage of de Morgan Formulae by Spectral Techniques

Avishay Tal

Abstract

We give a new and improved proof that the shrinkage exponent of de Morgan formulae is 2. Namely, we show that for any Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, setting each variable out of x_1, \ldots, x_n with probability $1 - p$ to a randomly chosen constant, reduces the expected formula size of the function by a factor of $O(p^2)$. This result is tight and improves the work of Håstad [Häs98] by removing logarithmic factors.

As a consequence of our results, the function defined by Andreev [And87], $A : \{0, 1\}^n \rightarrow \{0, 1\}$, which is in P, has formula size at least $\Omega(\frac{n^3}{\log n \log \log n})$. This lower bound is tight (for the function A) up to the log log n factor, and is the best known lower bound for functions in P. In addition, we strengthen the average-case hardness result of Komargodski et al. [KRT13]; we show that the functions defined in [KRT13], $h_r : \{0, 1\}^n \rightarrow \{0, 1\}$, which are also in P, cannot be computed correctly on a fraction greater than $1/2 + 2^{-r}$ of the inputs, by de Morgan formulae of size at most $\frac{n^3}{r \text{poly log } n}$, for any parameter $r \leq n^{1/3}$.

The proof relies on a result from quantum query complexity by [LLS06, HLS07, Rei11]: for any Boolean function f, $Q_2(f) \leq O(\sqrt{L(f)})$, where $Q_2(f)$ is the bounded-error quantum query complexity of f, and $L(f)$ is the minimal size de Morgan formula computing f.

*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. avishay.tal@weizmann.ac.il. Supported by an Adams Fellowship of the Israel Academy of Sciences and Humanities, by an ISF grant and by the I-CORE Program of the Planning and Budgeting Committee.
1 Introduction

The problem of \mathbf{P} vs. \mathbf{NC}^1 is a major open-problem in computational complexity. It asks whether any function computable by a polynomial time Turing machine can also be computed by a formula of polynomial size. A de Morgan formula is a binary tree in which each leaf is labeled with a literal from $\{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\}$ and each internal node is labeled with either a Boolean AND or OR gate. Such a tree naturally describes a Boolean function on n variables by propagating values from leaves to root, and returning the root’s value. The formula size is the number of leaves in the tree; for a Boolean function $f : \{-1,1\}^n \to \{-1,1\}$ we denote by $L(f)$ the minimal size formula which computes f. Showing that some language in \mathbf{P} requires formulae of super-polynomial size would imply that $\mathbf{P} \not\subseteq \mathbf{NC}^1$.

Showing super-polynomial formula size lower bounds for problems in \mathbf{P} would be a major breakthrough in complexity theory, and such lower bounds are not even known for \mathbf{NEXP}. However, lower bounds of the form $\Omega(n^c)$, for a fixed constant c, were achieved during the years for problems in \mathbf{P}. This line of research began with the work of Subbotovskaya [Sub61] who gave an $\Omega(n^{1.5})$ lower bound for the parity function. Subbotovskaya introduced the technique of random restrictions in her proof; a method which was applied successfully to solve other problems such as giving lower bounds for \mathbf{AC}^0. Subbotovskaya showed that the minimal formula size of a given function is shrunk, on expectation, by a factor of $O(p^{1.5})$ under p-random restrictions. These are restrictions to the function variables keeping each variable “alive” with probability p (independently of other choices) and fixing it to a uniformly chosen random bit otherwise. We denote the distribution of p-random restrictions by R_p; if $\rho \sim R_p$, then $f|\rho$ denotes the restriction of the function f by ρ. Since the parity function does not become constant after fixing less than all of its input bits, this implies that its size is at least $\Omega(n^{1.5})$. Khrapchenko [Khr71] used a different method to give a tight $\Omega(n^2)$ lower bound for the parity function. Andreev [And87] constructed a function in \mathbf{P} and showed that its formula size is at least $\Omega(n^{2.5-o(1)})$. In fact, he got a lower bound of $\Omega(n^{1+\Gamma-o(1)})$ where Γ is the shrinkage exponent of de Morgan formulae - the maximal constant such that any de Morgan formula is shrunk by a factor of $O(p^{\Gamma})$ under p-random restrictions. Impagliazzo and Nisan [IN93] showed that $\Gamma \geq 1.55$; Paterson and Zwick [PZ93] improved this bound to $\Gamma \geq 1.63$; and finally Håstad [Hås98] showed that $\Gamma \geq 2 - o(1)$. More precisely, Håstad proved the following result.

Theorem 1.1 ([Hås98]). Let f be a Boolean function. For every $p > 0$,

$$E_{\rho \sim R_p} [L(f|\rho)] \leq O \left(p^2 \left(1 + \log^{3/2} \min \left\{ \frac{1}{p}, L(f) \right\} \right) L(f) + p\sqrt{L(f)} \right).$$

This result is essentially tight up to the logarithmic terms as exhibited by the parity function. The formula size of the parity function of n variables is $\Theta(n^2)$ (see [Yab54, Khr71]). Applying a p-random restriction on the parity function yields a smaller parity function (or its negation) on k variables where $k \sim \text{Bin}(n,p)$. By Khrapchenko’s argument, the formula size of the restricted function is $\geq k^2$, thus the expected formula size is at least $E[k^2] = p^2 n^2 + p(1-p)n = \Omega \left(p^2 L(f) + p\sqrt{L(f)} \right)$.

Other efforts have been made to give a function in \mathbf{P} that requires super-polynomial formula size: Karchmer, Raz and Wigderson [KRW95] suggested a function in \mathbf{P} that might require super-polynomial formula size. Recently, Gavinsky et al. [GMWW14] suggested an information theoretical approach to further understand the formula size of this function.

\footnote{We identify the truth values true and false with -1 and 1 respectively.

\footnote{Here we think of the non-uniform version of \mathbf{NC}^1: the class of languages $L \subseteq \{-1,1\}^*$ such that for each length n there exists a Boolean formula F_n of size $\text{poly}(n)$ which decides whether strings of length n are in the language.}
Another recent line of work ([San10, IMZ12, KR13, KRT13, CKK+14, CKS14]) concentrated on giving average-case formula lower bounds for problems in \(\mathbb{P} \). These works also explored applications of shrinkage properties of formulae to: pseudo-random generators, compression algorithms and non-trivial \#SAT algorithms for small formulae. The state of the art average-case lower bound for de Morgan formulae is the result of Komargodski, Raz and Tal [KRT13] who gave an explicit \(h_r : \{-1, 1\}^n \rightarrow \{-1, 1\} \) such that any formula that computes this function on a fraction \(\frac{1}{2} + 2^{-r} \) must be of size at least \(\frac{n^{3-o(1)}}{r^2} \) where \(r \) is an arbitrary parameter smaller than \(n^{1/3} \).

1.1 Our Results

In this work, we give a new proof of H˚astad’s result. In fact, we obtain a tight result showing that the shrinkage exponent is exactly 2.

Theorem 1.2. Let \(f \) be a Boolean function. For every \(p > 0 \),

\[
\mathbb{E}_{\rho \sim R_p}[L(f|\rho)] = O\left(p^2 L(f) + p\sqrt{L(f)}\right).
\]

Note that both terms in Theorem 1.2 (i.e., \(p^2 L(f) \) and \(p\sqrt{L(f)} \)) are needed as demonstrated by the parity function above. This improves the worst-case lower bound H˚astad gave to Andreev’s function from \(\Omega\left(\frac{n^3}{(\log n)^2 (\log \log n)^3}\right) \) to \(\Omega\left(\frac{n^3}{(\log n)^2 (\log \log n)^3}\right) \) immediately, following the proof of Theorem 8.1 in [H˚as98]. A more careful choice of distribution over restrictions gives a slightly better bound on Andreev’s function, \(\Omega\left(\frac{n^3}{(\log n)^2 (\log \log n)}\right) \) (see Section 7). This is tight up to the \(\log \log n \) factor. In addition, replacing Theorem 1.1 with Theorem 1.2 improves the analysis of the average-case lower bound in [KRT13].

Corollary 1.3. Let \(n \) be large enough, then for any parameter \(r \leq n^{1/3} \) there is an explicit (computable in polynomial time) Boolean function \(h_r : \{-1, 1\}^n \rightarrow \{-1, 1\} \) such that any formula of size \(\frac{n^3}{r^2 \log \log n} \) computes \(h_r \) correctly on a fraction of at most \(1/2 + 2^{-r} \) of the inputs.

1.2 Proof Outline

The proof comes from a surprising area: quantum query complexity. The connection between de Morgan formulae and quantum query complexity was first noted in the work of Laplante, Lee and Szegedy [LLS06]. They showed that the quantum adversary bound is at most the square root of the formula size of a function. Hoyer, Lee and Špalek [HLS07] replaced the quantum adversary bound by the negative weight adversary bound, achieving a stronger relation. The long line of works [FGG08, Rei09, ACR+10, RS12, Rei11] showed that the negative weight adversary bound is equal up to a constant to the bounded-error quantum query complexity of a function, \(Q_2(f) \). Combining all these results yields \(Q_2(f) = O(\sqrt{L(f)}) \). By the connection of quantum query complexity to the approximate degree \(^3\), \(\deg(f) = O(Q_2(f)) \), established by Beals et al. [BBC+01], we get a classical result: \(\deg(f) = O(\sqrt{L(f)}) \) for any Boolean function \(f \). To our best knowledge, no classical proof that \(\deg(f) = O(\sqrt{L(f)}) \) is known – it might be interesting to find such a proof.

\(^3\)Let \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \), we say that a polynomial \(p(x) \) \(\epsilon \)-approximates \(f \) pointwise if \(|p(x) - f(x)| < \epsilon \) for all \(x \in \{-1, 1\}^n \). The approximate degree of a function \(f \), denoted by \(\deg(f) \), is the minimal degree of a polynomial \(p \) which \(1/3 \)-approximates \(f \) pointwise.
Small formulae have exponentially small Fourier tails. We obtain a somewhat simpler proof of our main theorem, compared to H˚astad’s original proof, by taking the result \(\deg(f) = O(\sqrt{L(f)}) \) as a given. First, we note that by using amplification there exists a polynomial of degree \(\tilde{d} = O(\sqrt{L(f)} \log(1/\epsilon)) \) which \(\epsilon \)-approximates \(f \) pointwise. Using standard arguments this implies that the Fourier mass above degree \(\tilde{d} \), i.e. \(\sum_{|S| > \tilde{d}} \hat{f}(S)^2 \), is at most \(\epsilon \). In other words, the Fourier mass above \(O(\sqrt{L(f)} \cdot t) \) is at most \(2^{-t} \), and we call this property exponentially small tails of the Fourier spectrum of \(f \) above level \(O(\sqrt{L(f)}) \).\(^4\)

Exponentially small Fourier tails imply a “switching lemma” type property. Our next step is novel. We show that exponentially small Fourier tails imply a strong behavior under random restrictions. If for all \(t \), \(f \) has at most \(2^{-t} \) of the mass above level \(m \cdot t \), then under a \(p \)-random restriction we have

\[
\forall d : \Pr_{\rho \sim R_p} [\deg(f|\rho) \geq d] \leq (8pm)^d . \tag{1}
\]

In particular, if we take \(p \) to be \(\leq \frac{1}{cm} \) for a large enough constant \(c \) we get that the degree of the restricted function is \(d \) with probability \(\exp(-10d) \).\(^6\)

We call such a property a “switching lemma” type property since the switching lemma ([H˚as86]) states something similar for DNF formulae: If \(f \) can be computed by a DNF formula where each term is the logical AND of \(w \) literals, then

\[
\forall d : \Pr_{\rho \sim R_p} [\text{DT}(f|\rho) \geq d] \leq (5pw)^d .
\]

Our conclusion is somewhat analogous for functions with exponentially small tails, replacing the decision tree complexity with the degree as a polynomial. We think that the relation between exponentially small Fourier tails and the “switching lemma” type property is of independent interest.

Proving the case \(p = O(1/\sqrt{L(f)}) \). Using the fact that functions with small formula size have exponentially small tails above level \(\sqrt{L(f)} \), we get that for \(p = O(1/\sqrt{L(f)}) \), applying a \(p \)-random restriction yields a function with degree \(d \) with probability at most \(\exp(-10d) \). In particular, with high probability the function becomes a constant. As the formula size of a degree \(d \) polynomial is at most \(32^d \) we get that for some large enough constant \(c \), applying a \(p \)-random restriction with \(p = \frac{1}{c\sqrt{L(f)}} \), yields a function with expected formula size at most 1. This completes our proof for the case \(p = \Theta(1/\sqrt{L(f)}) \), and in fact the case \(p = O(1/\sqrt{L(f)}) \) as well.

Proving the general case. In order to establish the case where \(p = \Omega(1/\sqrt{L(f)}) \), we use an idea from Impagliazzo, Meka and Zuckerman’s work ([IMZ12]). They showed how to decompose a large formula into \(O(L(f)/\ell) \) many small formulae, each of size \(O(\ell) \). Furthermore, applying any restriction, the formula size of the restricted function is at most the sum of formula sizes of the restricted sub-functions represented by the sub-formulae. Taking \(\ell \) to be \(1/p^2 \) and using linearity of expectation we get the required result for general \(p \).

\(^4\)Of course, this is meaningless when \(L(f) \geq n^2 \), since there is no Fourier mass above level \(n \).

\(^5\) For technical reasons, it is more convenient for us to argue about the probability of having degree exactly \(d \). We actually show \(\Pr_{\rho \sim R_p} [\deg(f|\rho) = d] \leq (4pm)^d \) and this implies the statement above by simple arithmetics.

\(^6\)This is essentially the opposite of a key step in the proof of Linial, Mansour and Nisan [LMN93] which showed that \(\text{AC}^0 \) circuits have Fourier spectrum concentrated on the poly \(\log(n) \) first levels.
1.3 Related Work
The recent work of Impagliazzo and Kabanets [IK14] shows that shrinkage properties imply Fourier concentration. In some sense, our result shows the opposite, although we need exponential small Fourier tails to begin with.

2 Preliminaries

2.1 Formulae

A de Morgan formula F on n variables x_1, \ldots, x_n is a binary tree whose leaves are labeled with variables or their negations, and whose internal nodes are labeled with either \lor or \land gates. The size of a de Morgan formula F, denoted by $L(F)$, is the number of leaves in the tree. The formula size of a function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ is the size of the minimal formula which computes the function, and is denoted by $L(f)$. A de Morgan formula is called read-once if every variable appears at most once in the tree.

2.2 Restrictions

Definition 2.1 (Restriction). Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ be a Boolean function. A restriction ρ is a vector of length n of elements from $\{-1, 1, \ast\}$. We denote by $f|_\rho$ the function f restricted according to ρ in the following sense: if $\rho_i = \ast$ then the i-th input bit of f is unassigned and otherwise the i-th input bit of f is assigned to be ρ_i.

Definition 2.2 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.1 that is sampled in the following way. For every $i \in [n]$, independently with probability p set $\rho_i = \ast$ and with probability $\frac{1-p}{2}$ set ρ_i to be -1 and 1, respectively. We denote this distribution of restrictions by \mathcal{R}_p.

2.3 Fourier Analysis of Boolean Functions

For any Boolean function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ there is a unique Fourier representation:

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i.$$

The coefficients $\hat{f}(S)$ are given by $\hat{f}(S) = E_x[f(x) \cdot \prod_{i \in S} x_i]$. Parseval’s equality states that $\sum_S \hat{f}(S)^2 = E_x[f(x)^2] = 1$. Note that the Fourier representation is the unique multilinear polynomial which agrees with f on $\{-1, 1\}^n$. The polynomial degree is denoted by $\deg(f)$ and is equal to $\max\{|S| : \hat{f}(S) \neq 0\}$. We denote by

$$W^{\leq k}[f] \triangleq \sum_{S \subseteq [n], |S| = k} \hat{f}(S)^2$$

the Fourier weight at level k of f. Similarly, we denote by $W^{\geq k}[f] \triangleq \sum_{S \subseteq [n], |S| \geq k} \hat{f}(S)^2$. The following fact relates the Fourier coefficients of f and of $f|_\rho$ where ρ is a p-random restriction. In fact, the result holds for any distribution over restrictions which is random-valued, as defined next.

Definition 2.3. A distribution \mathcal{D} over restrictions is random-valued if for $\rho \sim \mathcal{D}$, given $J = \{i \in [n] : \rho(i) = \ast\}$, the values of ρ on \tilde{J} are uniform independent bits.
By definition, \mathcal{R}_p is random-valued.

Fact 2.4 (Proposition 4.17,[O’D14]). Let \mathcal{D} be a random-valued distribution of restrictions. Then,

$$
\mathbb{E}_{\rho \sim \mathcal{D}} \left[\hat{f}_\rho(S)^2 \right] = \sum_{U \subseteq [n]} \hat{f}(U)^2 \cdot \mathbb{Pr}_{\rho \sim \mathcal{D}}\{\{i \in U : \rho(i) = *\} = S\}
$$

For the case of $\mathcal{D} = \mathcal{R}_p$, summing over all coefficients of size d, we get the following corollary.

Corollary 2.5.

$$
\mathbb{E}_{\rho \sim \mathcal{R}_p} \left[\sum_{S:|S|=d} \hat{f}_\rho(S)^2 \right] = \sum_{k=d}^{n} W^{-k}[f] \cdot \mathbb{Pr}[\text{Bin}(k, p) = d]
$$

One can represent a Boolean function also as $\tilde{f} : \{0, 1\}^n \rightarrow \{0, 1\}$. Identifying $\{0, 1\}$ with $\{1, -1\}$ by $b \mapsto 1 - 2b$ we get the following relation between the $\{0, 1\}$ and the $\{-1, 1\}$ representation of the same function.

$$
\tilde{f}(y) = \frac{1 - f(1 - 2y_1, \ldots, 1 - 2y_n)}{2} = \frac{1}{2} - \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} (1 - 2y_i)
$$

(2)

Let $p(y) = \sum_{T \subseteq [n]} a_T \cdot \prod_{i \in T} y_i$ be the unique multilinear polynomial over the reals, which agrees with $\tilde{f}(y)$ on $\{0, 1\}^n$. Using Equation (2) gives $a_0 = 1/2 - 1/2 \cdot \sum_S \hat{f}(S)$ and

$$
\forall T \neq \emptyset : a_T = (-2)^{|T| - 1} \cdot \sum_{S \supseteq T} \hat{f}(S).
$$

(3)

It is clear from Equation (3) that $\deg(p) = \deg(f)$, hence the definition of degree does not depend whether we are considering the $\{-1, 1\}$ or the $\{0, 1\}$ representation of the function. Note that since \tilde{f} is Boolean, the coefficients a_T are integers, as we can write

$$
\tilde{f}(y) = \sum_{z \in \{0, 1\}^n} \tilde{f}(z) \cdot \prod_{i:z_i=0} (1 - y_i) \cdot \prod_{i:z_i=1} y_i
$$

which opens up to a multilinear polynomial over y with integer coefficients.

An immediate consequence of the above discussion is the following fact, which states that the Fourier coefficients of a degree d polynomial are 2^{-d} “granular”, i.e. integer multiples of 2^{-d}.

Fact 2.6 (Granularity). Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ with $\deg(f) = d$, then $\hat{f}(S) = k_S \cdot 2^{-d}$ where $k_S \in \mathbb{Z}$ for any $S \subseteq [n]$.

Proof. We prove by contradiction. Let T be a maximal set with respect to inclusion for which $\hat{f}(T)$ is not an integer multiple of 2^{-d}. We first handle the case $T \neq \emptyset$. Equation (3) gives $a_T = (-2)^{|T| - 1} \sum_{S \supseteq T} \hat{f}(S)$. Multiplying both sides by $(-2)^{d-|T|+1}$ we get

$$
(-2)^{d-|T|+1} \cdot a_T = (-2)^d \sum_{S \supseteq T} \hat{f}(S).
$$

By the assumption on maximality of T, all coefficients on the RHS except $\hat{f}(T)$ are integer multiples of 2^{-d}, hence the RHS is not an integer. On the other hand, the LHS is an integer since a_T is an integer, and we reach a contradiction.

For the case $T = \emptyset$, we have $a_0 = 1/2 - 1/2 \cdot \sum_S \hat{f}(S)$. Multiplying both sides by 2^{d+1} gives $2^{d+1}a_0 = 2^d - 2^d \sum_S \hat{f}(S)$. Again, the RHS is not an integer, while the LHS is an integer.

\qed
Definition 2.7. We define the sparsity of \(f : \{-1, 1\}^n \to \{-1, 1\} \) as \(\text{sparsity}(f) \triangleq |\{S : \hat{f}(S) \neq 0\}|. \)

Corollary 2.8. Let \(f : \{-1, 1\}^n \to \{-1, 1\} \) with \(\deg(f) = d \), then \(\text{sparsity}(f) \leq 2^{2d} \).

Proof. By Parseval, \(1 = \sum_S \hat{f}(S)^2 \geq \text{sparsity}(f) \cdot (2^{-d})^2. \)

Claim 2.9. Let \(\hat{f} : \{0, 1\}^n \to \{0, 1\} \) be a Boolean function with \(\deg(\hat{f}) = d \) then \(\hat{f} \) can be written as

\[
\hat{f}(x) = \sum_{i=1}^{\text{sparsity}(f)} g_i(x)
\]

where each \(g_i : \{0, 1\}^n \to \mathbb{Z} \) is a \(d \)-junta, i.e. depends only on at most \(d \) coordinates.

Proof. Write \(\hat{f}(x) = \sum_{T \subseteq [n]} a_T \prod_{i \in T} x_i. \) By Equation (3) any \(T \subseteq [n] \) such that \(a_T \neq 0 \) is contained in some subset \(S \subseteq [n] \) for which \(\hat{f}(S) \neq 0 \). Arbitrarily order the sets \(\{S : \hat{f}(S) \neq 0\} \) as \(S_1, \ldots, S_{\text{sparsity}(f)} \) and let

\[
g_i(x) = \sum_{T \subseteq S_i, \forall j < i : T \nsubseteq S_j} a_T \cdot \prod_{i \in T} x_i.
\]

Then, by definition \(\hat{f}(x) = \sum_{i=1}^{\text{sparsity}(f)} g_i(x) \). By the integrality of \(a_T \), each \(g_i \) takes integer values. Moreover, each \(g_i \) depends only on the variables in the set \(S_i \), i.e. on at most \(d \) coordinates. □

2.4 Approximate Degree

Let \(f : \{-1, 1\}^n \to \{-1, 1\} \). Given an \(\epsilon \geq 0 \) we define the \(\epsilon \)-approximate degree, denoted by \(\tilde{\deg}_\epsilon(f) \), as the minimal degree of a multilinear polynomial \(p \) such that for all \(x \in \{-1, 1\}^n \), \(|f(x) - p(x)| \leq \epsilon \).

We denote \(\tilde{\deg}_{1/\delta}(f) \) by \(\tilde{\deg}(f) \).

When defining approximate degree the choice of 1/3 may seem arbitrary. The next fact (essentially proved in [BNRdW07], Lemma 1) shows how approximate degree for different errors relate. We prove this fact in Appendix B for completeness.

Fact 2.10. Let \(f : \{-1, 1\}^n \to \{-1, 1\} \) be a Boolean function and let \(0 < \epsilon < 1 \) then: \(\tilde{\deg}_\epsilon(f) \leq \tilde{\deg}(f) \cdot [8 \cdot \ln(2/\epsilon)]. \)

Relating the approximate degree to the Fourier transform one gets the following fact.

Fact 2.11. Let \(f : \{-1, 1\}^n \to \{-1, 1\} \) be a Boolean function, \(0 < \epsilon < 1 \) and \(d = \tilde{\deg}_\epsilon(f) \), then \(W^d[f] \leq \epsilon^2 \).

Proof. Let \(p \) be a polynomial of degree \(d \) which \(\epsilon \) approximates \(f \) pointwise. Obviously \(E_x[(f(x) - p(x))^2] \leq \epsilon^2 \). Let \(q \) be the best \(\ell_2 \) approximation of \(f \) by a degree \(d \) polynomial, namely the polynomial of degree \(d \) which minimizes \(\|f - q\|^2_2 \triangleq E_x[(f(x) - q(x))^2] \). Obviously, \(\|f - q\|^2_2 \leq \|f - p\|^2_2 \leq \epsilon^2 \) by the choice of \(p \) and \(q \). Using Parseval’s equality \(\|f - q\|^2_2 = \sum_S (\hat{f}(S) - \hat{q}(S))^2 \), and it is easy to see that the minimizer of this expression among degree \(d \) polynomials is the Fourier expansion of \(f \) truncated above degree \(d \):

\[
q(x) = \sum_{S \subseteq [n] : |S| \leq d} \hat{f}(S) \cdot \prod_{i \in S} x_i.
\]

Overall, we get that \(\epsilon^2 \geq \|f - q\|^2_2 = \sum_{S : |S| > d} \hat{f}(S)^2. \) □
Our proof relies heavily on the following result from quantum query complexity.

Theorem 2.12 ([BBC+01, HLS07, Rei11]). There exists a universal constant $C_1 \geq 1$ such that for any $f : \{-1,1\}^n \to \{-1,1\}$ we have $\deg(f) \leq C_1 \cdot \sqrt{L(f)}$.

The next claim states that functions have exponentially small fourier tails above level $\sqrt{L(f)}$.

Claim 2.13. There exists a constant $C > 0$ such that for all $f : \{-1,1\}^n \to \{-1,1\}$ and $k \in \mathbb{N}$,

$$W^{\geq k}[f] \leq e \cdot \exp\left(\frac{-k}{C \sqrt{L(f)}}\right).$$

Proof. Let $t = \frac{k}{C \sqrt{L(f)}}$ where C is some constant we shall set later. We prove that $W^{\geq k}[f] \leq e \cdot e^{-t}$. Assume without loss of generality that $t \geq 1$ or else the claim is trivial since $W^{\geq k}[f] \leq 1 \leq e \cdot e^{-t}$. Put $\epsilon = e^{-t/2}$, and combine Theorem 2.12 and Fact 2.10 to get

$$\overline{\deg}_e(f) \leq \sqrt{L(f)} \cdot C_1 \cdot \lceil 8 \ln(2/\epsilon) \rceil = \sqrt{L(f)} \cdot C_1 \cdot \lceil 4t + 8 \ln(2) \rceil \leq (t \geq 1) \sqrt{L(f)} \cdot C_1 \cdot 11t.$$

Using Fact 2.11 we get $W^{>\sqrt{L(f)} \cdot C_1 \cdot 11t}[f] \leq e^{-t}$. Hence $W^{\geq \sqrt{L(f)} \cdot C_1 \cdot 11t}[f] \leq e^{-t}$. Setting $C := C_1 \cdot 12$ completes the proof. \hfill \Box

2.5 The Generalized Binomial Theorem

Theorem 2.14 (The generalized binomial theorem). Let $|x| < 1$, and $d \in \mathbb{N}$, then

$$\sum_{n=0}^{\infty} d \cdot \binom{n-1}{d-1} \cdot x^n = \frac{1}{(1-x)^d}.$$

Multiplying both sides by x^d one get the following corollary.

Corollary 2.15. Let $|x| < 1$, and $d \in \mathbb{N}$ then $\sum_{k=d}^{\infty} \binom{k-1}{d-1} \cdot x^k = \frac{x^d}{(1-x)^d}.$

3 Exponentially Small Tails and The Switching Lemma

In this section we prove the main technical part of our proof by showing a close relation between two properties of Boolean functions:

1. Having exponentially small Fourier tails above level t: $\forall k : W^{\geq k}[f] \leq e^{-k/t}$.

2. A “switching lemma” type property with parameter t': $\forall p, d : \Pr_{\rho \sim \mathcal{R}_p}[\deg(f|\rho) \geq d] \leq (t'p)^d$.

Linial, Mansour and Nisan proved that Property 2 implies Property 1. For completeness we include a proof of their theorem in Appendix A.

Theorem 3.1 ([LMN93], restated slightly). Let $f : \{-1,1\}^n \to \{-1,1\}$ and assume there exists $t > 0$ such that for all $d \in \mathbb{N}, p \in (0, 1)$, $\Pr_{\rho \sim \mathcal{R}_p}[\deg(f|\rho) \geq d] \leq (tp)^d$; then for any k, $W^{\geq k}[f] \leq 2e \cdot e^{-k/te}$.

Next, we prove a converse to Theorem 3.1.

Theorem 3.2. Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function, let $t, C > 0$ such that for all k, $W^{\geq k}[f] \leq C \cdot e^{-k/t}$ and let ρ be a p-random restriction; then for all d, $\Pr[\deg(f|\rho) = d] \leq C \cdot (4pt)^d$.

7
Proof Sketch If a function f has exponentially small Fourier tails above level t then on expectation the restricted function $f_{|_\rho}$ will have exponentially small Fourier tails above level pt, since the Fourier spectrum of f roughly squeezes by a factor of p under a p-random restriction (see Corollary 2.5). However, the Fourier mass above level d of a Boolean function of degree d cannot be smaller than 4^{-d} by the granularity property. We get that if $pt \ll 1$, then with high probability the restricted function is not a degree d polynomial.

Proof. Our proof strategy is as follows: we bound the value of $E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right]$ from below and above showing

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right] \geq \Pr[\deg(f_{|_\rho}) = d] \cdot 4^{-d}$$ (4)

and

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right] \leq C (pt)^d.$$ (5)

Combining the two estimates will complete the proof.

We begin by proving Equation (4). Conditioning on the event that $\deg(f_{|_\rho}) = d$, Fact 2.6 implies that any nonzero Fourier coefficient of $f_{|_\rho}$ is of magnitude $\geq 2^{-d}$. Hence, $\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \geq 4^{-d}$, and we get

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right] \geq \Pr[\deg(f_{|_\rho}) = d] \cdot E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right] \geq \Pr[\deg(f_{|_\rho}) = d] \cdot 4^{-d}.$$

Next, we turn to prove Equation (5).

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right] = \sum_{k \geq d} W^{=k}[f] \cdot \binom{k}{d} \cdot p^d \cdot (1-p)^{k-d} \quad (\text{Corollary 2.5})$$

$$\leq \sum_{k \geq d} W^{=k}[f] \cdot \binom{k}{d} \cdot p^d$$

$$= p^d \cdot \sum_{k \geq d} \left(W^{\geq k}[f] - W^{\geq k+1}[f] \right) \cdot \binom{k}{d}$$

We can rearrange the RHS of the above equation, gathering terms according to $W^{\geq k}[f]$. We denote $\binom{d-1}{d} = 0$, and get:

$$E_{\rho} \left[\sum_{S:|S|=d} \hat{f}_{|_\rho}(S)^2 \right] = p^d \cdot \sum_{k \geq d} W^{\geq k}[f] \cdot \left(\binom{k}{d} - \binom{k-1}{d} \right)$$

$$= p^d \cdot \sum_{k \geq d} W^{\geq k}[f] \cdot \binom{k-1}{d-1}.$$
Next we use Corollary 2.15 with $x := a$ to get
\[
E_\rho \left[\sum_{S:|S|=d} \widehat{f}_\rho(S)^2 \right] \leq C \left(\frac{ap}{1-a} \right)^d = C \left(\frac{p}{1/a-1} \right)^d .
\]
Substituting a with $e^{-1/t}$ gives
\[
E_\rho \left[\sum_{S:|S|=d} \widehat{f}_\rho(S)^2 \right] \leq C \left(\frac{p}{e^{1/t}-1} \right)^d \leq C (pt)^d ,
\]
where the last inequality follows since $e^x - 1 \geq x$ for any $x \geq 0$.

4 Degree vs. Formula Size

We use the following fact about the formula size of the parity function

Fact 4.1 ([Yab54]). $L(PARITY_m) \leq 9/8 \cdot m^2$. Furthermore, if $m = 2^k$ for some integer k, then $L(PARITY_m) \leq m^2$.

Claim 4.2. Let $\tilde{f} : \{0,1\}^n \rightarrow \{0,1\}$ such that $\deg(\tilde{f}) = d$, then $L(\tilde{f}) \leq 2 \cdot 32^d$.

Proof. According to Claim 2.9, \tilde{f} can be written as $\sum_{i=1}^d g_i(x)$, where the functions $g_i(x)$ take integer values, and each of them depends on at most d variables. Since $\tilde{f}(x) \in \{0,1\}$ we may perform all operations modulo 2 and get $\tilde{f}(x) = \bigoplus_{i=1}^d h_i(x)$, where $h_i(x) = g_i(x) \mod 2$. Taking a formula for the parity of $m = 4^d$ variables, y_1, \ldots, y_m, and replacing each instance of a variable y_i with a formula computing $h_i(x)$ gives a formula for \tilde{f}. The size of the formula computing each h_i is at most 2^{d+1} since any function on d variables can be computed by a formula of such size. Thus, the size of the combined formula is $\leq L(PARITY_m) \cdot 2^{d+1} = 16^d \cdot 2^{d+1} = 2 \cdot 32^d$. \qed

5 The Case $p = O(1/\sqrt{L(f)})$

Claim 5.1. There exists a constant $C > 0$ such that for any function $f : \{-1,1\}^n \rightarrow \{-1,1\}$ and any $p \leq \frac{1}{C\sqrt{L(f)}}$ the following hold. Let ρ be a p-random restriction, then $E_\rho[L(f|_\rho)] = O(p\sqrt{L(f)})$. In particular, in this regime of parameters, $E_\rho[L(f|_\rho)] = O(1)$.

Proof of Claim 5.1. From Claim 2.13, there exists a constant $C > 0$ such that
\[
\forall k : W^{\geq k}[f] \leq e \cdot e^{-k/(C\sqrt{L(f)})} .
\]
This implies, using Theorem 3.2, that $\Pr_{\rho \sim R_p}[\deg(f|_\rho) = d] \leq e \cdot \left(4pC \sqrt{L(f)} \right)^d$. Using Claim 4.2,
if \(\deg(f|_\rho) = d \) then \(L(f|_\rho) \leq 2 \cdot 32^d \). For \(p \leq \frac{1}{64c\sqrt{L(f)}} \) we get

\[
\mathbb{E}_{\rho \sim \mathcal{R}_p}[L(f|_\rho)] = \sum_{d=0}^{n} \mathcal{P}_\rho[\deg(f|_\rho) = d] \cdot \mathbb{E}_{\rho}[L(f|_\rho)| \deg(f|_\rho) = d]
\]

\[
= \sum_{d=1}^{n} \mathcal{P}_\rho[\deg(f|_\rho) = d] \cdot \mathbb{E}_{\rho}[L(f|_\rho)| \deg(f|_\rho) = d] \quad (\text{deg}(f|_\rho) = 0 \text{ implies } L(f|_\rho) = 0)
\]

\[
\leq \sum_{d=1}^{\infty} e \cdot \left(4pC\sqrt{L(f)}\right)^{d} \cdot 2 \cdot 32^d
\]

\[
\leq O(p\sqrt{L(f)}) \cdot \sum_{d=1}^{\infty} \left(4pC\sqrt{L(f)}\right)^{d-1} \cdot 32^{d-1}
\]

\[
\leq O(p\sqrt{L(f)}) \cdot \sum_{d=1}^{\infty} (1/64)^{d-1} \cdot 32^{d-1}
\]

\[
= O(p\sqrt{L(f)}).
\]

\[\square\]

6 The General Case

In Section 5 we have proved Theorem 1.2 for the case \(p = O(1/\sqrt{L(f)}) \). In this section we give a reduction from the case where \(p \) is larger, i.e. \(p = \Omega(1/\sqrt{L(f)}) \), to the case where \(p \) is small, i.e. \(p = \Theta(1/\sqrt{L(f)}) \). We use the tree decomposition of Impagliazzo, Meka and Zuckerman [IMZ12] to establish this reduction.\(^7\)

The next lemma states that every binary tree can be decomposed into smaller subtrees with some small overhead. Its proof can be found in [IMZ12].

Lemma 6.1 ([IMZ12]). Let \(\ell \in \mathbb{N} \). Any binary tree with \(s \geq \ell \) leaves can be decomposed into at most \(6s/\ell \) subtrees, each with at most \(\ell \) leaves, such that each subtree has at most two other subtree children. Here subtree \(T_1 \) is a child of subtree \(T_2 \) if there exists nodes \(t_1 \in T_1, t_2 \in T_2 \), such that \(t_1 \) is a child of \(t_2 \).

Claim 6.2. Let \(F \) be a formula over the set of variables \(X = \{x_1, \ldots, x_n\} \), and \(\ell \in \mathbb{N} \) be some parameter; then, there exist \(m \leq 36 \cdot L(F)/\ell \) formulae over \(X \), denoted by \(G_1, \ldots, G_m \), each of size at most \(\ell \), and there exists a read-once formula \(F' \) of size \(m \) such that \(F'(G_1(x), \ldots, G_m(x)) = F(x) \) for all \(x \in \{-1,1\}^n \).

Proof. Consider the decomposition promised by Lemma 6.1 with parameter \(\ell \). Let \(T_1, \ldots, T_{m'} \) be the subtrees in this decomposition where \(m' \leq 6n/\ell \). We will show by induction on \(m' \), that one can construct a read-once formula \(F' \) of size \(m \leq 6m' \) along with \(m \) sub-formulæ \(G_1, \ldots, G_m \) of size \(\ell \) such that \(F \equiv F'(G_1, \ldots, G_m) \). For \(m' = 1 \) the statement holds trivally.

Assume that the root of the formula \(F \) is a node in the subtree \(T_1 \), and that the subtree \(T_1 \) has two subtree children: \(T_2 \) and \(T_3 \) (the case where \(T_1 \) has one subtree child can be handled similarly, and is in fact slightly simpler). We now add two special leaves to the tree \(T_1 \). Let \(t_2 \in T_2, t_1 \in T_1 \) (respectively \(t_3 \in T_3, t'_1 \in T_1 \)) be the nodes such that \(t_2 \) (\(t_3 \), resp.) is a child of \(t_1 \) (\(t'_1 \), resp.) in the tree represented by \(F \), and add a leaf labeled by the “special” variable \(z_2 \) (\(z_3 \), resp.) as a child of

\(^7\)Another approach to prove the general case is to follow Håstad original proof, changing the estimates when \(p = O(1/\sqrt{L(F)}) \) with what we showed in Section 5. The reduction we suggest simplifies this approach significantly.
In this section, we prove a \(\Omega \) restriction \(\rho \) holds when \(p > 0 \) (Theorem 1.2, restated). By minimality \(T' = T_2' \op T_3' \), for \(\op \in \{ \land, \lor \} \), where \(T_2' \) contains \(z_2 \) and not \(z_3 \), and \(T_3' \) contains \(z_3 \) and not \(z_2 \).

We will construct a formula equivalent to \(T' \) by finding equivalent formulae for \(T_2' \) and \(T_3' \). We claim that \(T_2' = (T_2'|_{z_2}=\text{false}) \lor (T_2'|_{z_2}=\text{true} \land z_2) \). This follows since \(T_2' \) is monotone in \(z_2 \): if \(T_2'|_{z_2}=\text{false} \) then \(T_2' = \text{true} \), otherwise \(T_2' = \text{true} \) only if both \(T_2'|_{z_2=\text{true}} \) and \(z_2 \) are \text{true}. Same goes for \(T_3' \), and we get

\[
T' = ((T_2'|_{z_2}=\text{false}) \lor (T_2'|_{z_2}=\text{true} \land z_2)) \op ((T_3'|_{z_3}=\text{false}) \lor (T_3'|_{z_3}=\text{true} \land z_3)) .
\]

Replacing \(T' \) with a leaf labeled with \(z \), where \(z \) is a new “special” variable, and doing the same trick we get: \(T \equiv T|_{z=\text{false}} \lor (T|_{z=\text{true} \land z}) \). Combining both formulae, we get the following equivalence:

\[
T \equiv T|_{z=\text{false}} \lor (T|_{z=\text{true} \land z}) \equiv ((T_2|_{z_2}=\text{false}) \lor (T_2'|_{z_2}=\text{true} \land z_2)) \op ((T_3|_{z_3}=\text{false}) \lor (T_3'|_{z_3}=\text{true} \land z_3)) .
\]

Note that the RHS of the equation above can be written as \(F''(G_1(x), \ldots, G_6(x), z_2, z_3) \) where \(F'' \) is read-once and \(G_1(x), \ldots, G_6(x) \) are formulae of size \(\ell \), defined on the variables in \(X \).

Let \(m_2, m_3 \) be the number of subtrees which are descendants of \(T_2, T_3 \) in the tree-decomposition given by Lemma 6.1. By induction, the subformula of \(F \) rooted at \(t_2 \) is equivalent to \(F_2'(G_2^2(x), \ldots, G_{6m_2}^2(x)) \) where \(F_2' \) is read-once and \(G_i^2(x) \) are formulae of size \(\leq \ell \). Similarly for \(t_3 \). We thus get that

\[
F(x) = F''(G_1(x), \ldots, G_6(x), F_2'(G_1^2(x), \ldots, G_{6m_2}^2(x)), F_3'(G_1^3(x), \ldots, G_{6m_3}^3(x))) .
\]

Rearranging the RHS, we get a read-once formula of size \(m \leq 6 + 6m_2 + 6m_3 = 6m' \) alongside \(m \) sub-formulae, each of size \(\ell \), such that their composition is equivalent to \(F \).

We now turn to complete the proof of our main theorem.

Theorem (Theorem 1.2, restated). Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) be a Boolean function, and let \(p > 0 \), then \(E_{\rho \sim \mathcal{R}_p}[L(f|_\rho)] = O(p^2 L(f) + p \sqrt{L(f)}) \).

Proof. The case \(p \leq \frac{1}{C \sqrt{\ell}} \) is implied by Claim 5.1. Therefore, it is enough to show the statement holds when \(p > \frac{1}{C \sqrt{\ell}} \). Let \(F \) be the smallest de Morgan formula computing \(f \). Applying Claim 6.2 with \(\ell := \frac{1}{p^2 C^2} \), we get a read-once de Morgan formula \(F' \) of size \(m = O(L(F)/\ell) \) along with formulae \(G_1, \ldots, G_m \), each of size at most \(\ell \), such that \(f(x) = F'(G_1(x), \ldots, G_m(x)) \) for all \(x \in \{-1,1\}^n \). Denote the functions that \(G_1, \ldots, G_m \) compute by \(g_1, \ldots, g_m \) respectively. Applying a restriction \(\rho \) we get \(f|_{\rho} \equiv F'(g_1|_{\rho}, \ldots, g_m|_{\rho}) \), hence \(L(f|_{\rho}) \leq \sum_{i=1}^m L(g_i|_{\rho}) \). By linearity of expectation,

\[
E_{\rho}[L(f|_{\rho})] \leq E_{\rho} \left[\sum_{i=1}^m L(g_i|_{\rho}) \right] \leq m \cdot O(p \cdot \sqrt{\ell}) = m \cdot O(1) = O(p^2 \cdot L(f)) .
\]

7 Lower Bound for Andreev’s Function

In this section, we prove a \(\Omega \left(\frac{n^3}{\log^2 n \log \log n} \right) \) formula lower bound for Andreev’s function.
For two Boolean functions \(f : \{0,1\}^n \to \{0,1\} \) and \(g : \{0,1\}^m \to \{0,1\} \), the composition of \(f \) and \(g \) is defined as \(f \circ g : \{0,1\}^{nm} \to \{0,1\} \), where

\[
(f \circ g)(x_{1,1}, x_{1,2}, \ldots, x_{n,m}) = f(g(x_{1,1}, \ldots, x_{1,m}), \ldots, g(x_{n,1}, \ldots, x_{n,m})).
\]

In words, \(f \circ g \) is a function whose value is the value of \(f \) on \(n \) input bits, each of them is the calculation of \(g \) on an independent set of \(m \) bits.

The next lemma shows that the size of \(h \circ \oplus_m \), where \(\oplus_m \) is the parity function on \(m \) variables, is equal, up to a constant factor, to the product of the formula sizes of \(h \) and \(\oplus_m \).

Lemma 7.1. For any \(h : \{0,1\}^r \to \{0,1\} \), let \(f = h \circ \oplus_m \), then

\[
L(f) = \Theta(L(h) \cdot L(\oplus_m)) = \Theta(L(h) \cdot m^2)
\]

Proof. Recall that by Fact 4.1 and Khrapchenko’s Theorem [Khr71], \(m^2 \leq L(\oplus_m) \leq 9/8 \cdot m^2 \).

Think of the input to \(f \) as an \(r \times m \) matrix \(\{y_{i,j}\}_{i,j} \), and of the input to \(h \) as a vector \(z = (z_1, \ldots, z_r) \). The upper bound, \(L(f) \leq L(h) \cdot L(\oplus_m) \), is easy, since replacing each leaf marked by a variable \(z_i \) (or its negation) in the formula for \(h \) with a formula computing \(\oplus_{j \in [m]} y_{i,j} \) (or its negation), gives a formula for \(f \) whose size is at most \(L(h) \cdot L(\oplus_m) = O(L(h) \cdot m^2) \).

For the lower bound, \(L(f) = \Omega(L(h) \cdot L(\oplus_m)) \), we can assume without loss of generality that \(L(h) \geq 2C \) for a large enough constant \(C \). This is without loss of generality since:

1. if \(L(h) = 0 \), then we have nothing to prove.
2. We show that if \(1 \leq L(h) < 2C \) then \(L(f) \) is at least \(L(\oplus_m) \). Since \(h \) is not the constant function, there is an input bit \(z_k \) of \(h \) and a restriction fixing \(z_1, \ldots, z_{k-1}, z_{k+1}, \ldots, z_r \) under which \(h \) becomes the dictatorship function \(z_k \) or the anti-dictatorship function \(\lnot z_k \). Fixing each row in \(\{y_{i,j}\} \) except the \(k \)-th row, such that the parity of the \(i \)-th row equals the required value for \(z_i \), gives a restriction \(\rho \) under which \(f|_\rho \) is the parity of \(y_{k,1}, \ldots, y_{k,m} \) or its negation. Hence, \(L(f) \geq L(f|_\rho) \geq L(\oplus_m) \geq \frac{L(h)L(\oplus_m)}{2C} \geq \Omega(L(h)L(\oplus_m)) \).

For larger values of \(L(h) \), we shall establish the lower bound \(L(f) \geq \Omega(L(h) \cdot m^2) \) using a tailored distribution of random restrictions, which is not a distribution of \(p \)-random restrictions. For each row in the matrix \(\{y_{i,j}\} \), we pick one variable uniformly, keep it alive, and fix all the rest uniformly. This leaves us with a function on \(r \) variables which is equivalent to \(h \), up to negations to the inputs, hence its formula size is \(L(h) \).

We want to analyze the shrinkage factor due to this distribution of random restrictions. Noting that our distribution is random-valued (Recall Def. 2.3), as required in Fact 2.4, we get

\[
\mathbb{E}_\rho \left[\left(\hat{f}|_\rho(S) \right)^2 \right] = \sum_{U \supseteq S} \hat{f}(U)^2 \Pr_\rho[S = \{i \in U : \rho(i) = *\}] .
\]

By the definition of the distribution of random restrictions, \(\Pr_\rho[S = \{i \in U : \rho(i) = *\}] = 0 \) if \(S \) contains more than one coordinate in a certain row. Thus, we may restrict our attention to sets \(S \) which contain at most one variable from each row. Since the probability that \(\rho \) restricts \(U \) to \(S \) is at most the probability that \(\rho \) keeps alive all the variables in \(S \), and since each variable in \(S \) is in its own row, we get

\[
\Pr_\rho[S = \{i \in U : \rho(i) = *\}] \leq \frac{1}{m|S|} .
\]
where we used the assumption L we can continue the proofs of Claim 5.1 and Theorem 1.2 by replacing s decomposition done in Section 6 respects monotonicity). Hence, in order to show Γ shrinkage, i.e. the analysis in Section 6 implies that it is enough to find the critical probability $p \Gamma = \Theta(1)$. Since $L(h) \leq C n / \log n$. Define $A_h : \{0,1\}^n \to \{0,1\}$ as $A_h(y) = A(h \circ \oplus_m)(y_1,\ldots,y_m)$ where \oplus_m stands for the truth table of h. Using Lemma 7.1, $L(A_h) = L(h \circ \oplus_m) = \Theta(L(h) \cdot m^2) = \Theta\left(\frac{n^3}{\log^2 n \log \log n}\right)$. Since A_h is a subfunction of A, $L(A) \geq L(A_h)$, which completes the proof.

8 Open Ends

An interesting open question raised by Håstad in [Hås98] is

What is the shrinkage exponent of monotone de Morgan formulae?

In particular, this has strong connections with understanding the monotone formula size of Majority. The analysis in Section 6 implies that it is enough to find the critical probability p_c for which $\mathbf{E}_{p \sim \mathcal{R}_{p_c}}[L(f|\rho)] = 1$, and then use the tree decomposition to argue for $p \geq p_c$ (note that the decomposition done in Section 6 respects monotonicity). Hence, in order to show Γ shrinkage, i.e. that formulae of size s shrink to expected size $O(p^t s + 1)$ after applying a p-random restriction, it is necessary and sufficient to show that for $p = \frac{1}{L(f)^{\frac{1}{t}}}$, the expected size of the minimal monotone formula computing $f|\rho$ is $O(1)$.
Acknowledgement
I wish to thank my advisor Ran Raz for his guidance and encouragement. I thank Zeev Dvir and Ilan Komargodski for helpful discussions. I thank Robin Kothari, Igor Sergeev and the anonymous referees for their helpful comments.

References

A A Theorem of Linial, Mansour and Nisan

Theorem (Theorem 3.1, restated). Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ and assume there exists $t \in \mathbb{R}$ such that for all d, p, $\Pr_{\rho \sim \mathcal{R}_p}[\deg(f|_{\rho}) \geq d] \leq (tp)^d$. Then for any k, $W^{\geq k}[f] \leq 2e \cdot e^{-k/(te)}$.

Proof. For any $d \in \mathbb{N}$ and $p \in (0, 1)$ we have

$$\mathbb{E}_{\rho \sim \mathcal{R}_p} \left[\sum_{S:|S| \geq d} \widehat{f}_{\rho}(S)^2 \right] = \sum_{k \geq d} W^{=k}[f] \cdot \Pr[\text{Bin}(k, p) \geq d] \quad \text{(Corollary 2.5)}$$

$$\geq \sum_{k \geq d/p} W^{=k}[f] \cdot \Pr[\text{Bin}(k, p) \geq d]$$

$$\geq \sum_{k \geq d/p} W^{=k}[f] \cdot \frac{1}{2} \quad \text{(median}(\text{Bin}(k, p)) \geq \lfloor kp \rfloor \geq d, \ [KB80])$$

$$= \frac{1}{2} \cdot W^{\geq d/p}[f]$$

Overall we got

$$W^{\geq d/p}[f] \leq 2 \cdot \mathbb{E}_{\rho \sim \mathcal{R}_p} \left[\sum_{S:|S| \geq d} \widehat{f}_{\rho}(S)^2 \right] \leq 2 \Pr_{\rho \sim \mathcal{R}_p}[\deg(f|_{\rho}) \geq d] \leq 2(tp)^d. \quad \text{(6)}$$

Given k and t we choose $p := 1/(te)$ and $d := \lfloor kp \rfloor$. Substituting d and p in Equation (6) we get $W^{\geq k}[f] \leq 2 \cdot e^{-k/(te)} \leq 2e \cdot e^{-k/(te)}$. \qed

B Amplification of Approximate Degree

The proof in this section is essentially the same as the one in [BNRdW07]; we present it here for completeness.

Definition B.1. For $q \in [-1, 1]$ we say that x is a q-biased bit, denoted by $x \sim N_q$, if $\Pr[x = 1] = \frac{1+q}{2}$ and $\Pr[x = -1] = \frac{1-q}{2}$. In other words, x is a random variable taking values from $\{-1, 1\}$ with $\mathbb{E}[x] = q$.

The next lemma connects the value of a polynomial representing a Boolean function on non-Boolean inputs with a product-measure distribution.

Lemma B.2. Let $f : \{-1, 1\}^n \rightarrow \mathbb{R}$ and let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be the unique multilinear polynomial agreeing with f on $\{-1, 1\}^n$. Let $q_1, \ldots, q_n \in [-1, 1]$ then

$$\mathbb{E}_{x_i \sim N_{q_i}}[f(x_1, \ldots, x_n)] = p(q_1, \ldots, q_n)$$

where the x_is are drawn independently.

Proof. We write $p(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i$. We first show the lemma for a single monomial:

$$\mathbb{E}_{x_i \sim N_{q_i}} \left[\prod_{i \in S} x_i \right]_{x_i \text{ are ind.}} = \prod_{i \in S} \mathbb{E}_{x_i \sim N_{q_i}}[x_i] = \prod_{i \in S} q_i.$$

By linearity of expectation we have:

$$\mathbb{E}_{x_i \sim N_{q_i}}[p(x_1, \ldots, x_n)] = \mathbb{E}_{x_i \sim N_{q_i}} \left[\sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} x_i \right] = \sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} q_i = p(q_1, \ldots, q_n). \quad \Box$$
We now turn to prove Fact 2.10, restated next.

Fact B.3. Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) be Boolean function and let \(0 < \epsilon < 1 \) then:
\[
\tilde{\deg}_\epsilon(f) \leq \tilde{\deg}(f) \cdot \lceil 8 \cdot \ln(2/\epsilon) \rceil.
\]

Proof. Let \(m \) be some parameter we will set later. Take \(\text{MAJ}_m : \{-1,1\}^m \rightarrow \{-1,1\} \) to be the majority of \(m \) inputs, and denote by \(p_{\text{MAJ}} \in \mathbb{R}[x_1, \ldots, x_m] \) the multilinear polynomial agreeing with \(\text{MAJ}_m \) on \(\{-1,1\}^m \). Let \(q \in (0, 1] \) (the case \(q \in [-1,0) \) is similar), then by Lemma B.2 we have
\[
p_{\text{MAJ}}(q, q, \ldots, q) = \mathbb{E}_{x_i \sim N_q} [\text{MAJ}_m(x_1, \ldots, x_m)] = \mathbb{Pr}_{x_i \sim N_q} \left[\sum x_i \geq 0 \right] - \mathbb{Pr}_{x_i \sim N_q} \left[\sum x_i < 0 \right].
\]
Let \(X = \sum x_i \), then by Chernoff-Hoeffding bound we have
\[
\mathbb{Pr}[X \geq 0] = \mathbb{Pr}[X - \mathbb{E}[X] \geq -q \cdot m] \geq 1 - e^{-(qm)^2/2m} = 1 - e^{-mq^2/2},
\]
which implies
\[
p_{\text{MAJ}}(q, q, \ldots, q) \geq 1 - 2e^{-mq^2/2}.
\]
By definition there exists a polynomial \(p \) of degree \(\tilde{\deg}(f) \) such that \(p(x) \in [-4/3, -2/3] \) if \(f(x) = -1 \) and \(p(x) \in [2/3, 4/3] \) if \(f(x) = 1 \). Take \(p'(x) = \frac{p(x)}{4/3} \), then \(p'(x) \in [1/2, 1] \) if \(f(x) = 1 \) and \(p'(x) \in [-1, -1/2] \) if \(f(x) = -1 \). Consider the polynomial
\[
g(x) = p_{\text{MAJ}}(p'(x), p'(x), \ldots, p'(x)),
\]
then \(\deg(g) \leq \deg(p_{\text{MAJ}}) \cdot \deg(p') = m \cdot \tilde{\deg}(f) \). On the other hand, for \(x \) such that \(f(x) = 1 \) (the case where \(f(x) = -1 \) is analogous) we have \(g(x) = p_{\text{MAJ}}(q, q, \ldots, q) \) for some \(q \in [1/2, 1] \). Since \(p_{\text{MAJ}} \) is monotone and using Equation (7), we have
\[
1 \geq g(x) = p_{\text{MAJ}}(q, q, \ldots, q) \geq p_{\text{MAJ}}(1/2, \ldots, 1/2) \geq 1 - 2e^{-m/8}.
\]
Picking \(m = \lceil 8 \cdot \ln(2/\epsilon) \rceil \) completes the proof. \(\Box \)