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Abstract

We show an exponential gap between communication complexity and information

complexity, by giving an explicit example for a communication task (relation), with

information complexity ≤ O(k), and distributional communication complexity ≥ 2k.

This shows that a communication protocol cannot always be compressed to its internal

information. By a result of Braverman [Bra12b], our gap is the largest possible. By a

result of Braverman and Rao [BR11], our example shows a gap between communication

complexity and amortized communication complexity, implying that a tight direct sum

result for distributional communication complexity cannot hold.

1 Introduction

Communication complexity is a central model in complexity theory that has been extensively

studied in numerous works. In the two player distributional model, each player gets an input,

where the inputs are sampled from a joint distribution that is known to both players. The

players’ goal is to solve a communication task that depends on both inputs. The players

can use both common and private random strings and are allowed to err with some small

probability. The players communicate in rounds, where in each round one of the players

sends a message to the other player. The communication complexity of a protocol is the

total number of bits communicated by the two players. The communication complexity of a

communication task is the minimal number of bits that the players need to communicate in

order to solve the task with high probability, where the minimum is taken over all protocols.

For excellent surveys on communication complexity see [KN97, LS09].
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The information complexity model, first introduced by [CSWY01, BYJKS04, BBCR10],

studies the amount of information that the players need to reveal about their inputs in

order to solve a communication task. The model was motivated by fundamental information

theoretical questions of compressing communication, as well as by fascinating relations to

communication complexity, and in particular to the direct sum problem in communication

complexity, a problem that has a rich history, and has been studied in many works and various

settings [FKNN95, CSWY01, JRS03, HJMR07, BBCR10, Kla10, Jai11, JPY12, BRWY12,

BRWY13] (and many other works). In this paper we will mainly be interested in internal

information complexity (a.k.a, information complexity and information cost). Roughly

speaking, the internal information complexity of a protocol is the number of information bits

that the players learn about each other’s input, when running the protocol. The information

complexity of a communication task is the minimal number of information bits that the

players learn about each other’s input when solving the task, where the minimum is taken

over all protocols.

Many recent works focused on the problem of compressing interactive communication

protocols. Given a communication protocol with small information complexity, can the

protocol be compressed so that the total number of bits communicated by the protocol is also

small? There are several beautiful known results, showing how to compress communication

protocols in several cases. Barak, Braverman, Chen and Rao showed how to compress any

protocol with information complexity k and communication complexity c, to a protocol with

communication complexity Õ(
√
ck) in the general case, and Õ(k) in the case where the

underlying distribution is a product distribution [BBCR10]. Braverman and Rao showed

how to compress any one round (or small number of rounds) protocol with information

complexity k to a protocol with communication complexity O(k) [BR11]. Braverman

showed how to compress any protocol with information complexity k to a protocol with

communication complexity 2O(k) [Bra12b] (see also [BW12, KLL+12]). This last protocol

is the most related to our work, as it gives a compression result that works in the

general case and doesn’t depend at all on the communication complexity of the original

protocol. Braverman also described a communication complexity task that has information

complexity O(k) and no known communication protocol with communication complexity

smaller than 2k [Bra13]. However, there is no known lower bound on the communication

complexity of that problem.

Another line of works shows that many of the known general techniques for proving lower

bounds for randomized communication complexity also give lower bounds for information

complexity [Bra12b, BW12, KLL+12].

In this work we show the first gap between information complexity and communication

complexity of a communication task. We give an explicit example for a communication task

(a relation), called the bursting noise game, parameterized by k ∈ N and played with an input

distribution µ. We prove that the information complexity of the game is O(k), while any

communication protocol for solving this game, with communication complexity at most 2k,

almost always errs. By the above mentioned compression protocol of Braverman [Bra12b],
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our result gives the largest possible gap between information complexity and communication

complexity.

Theorem 1 (Communication Lower Bound). Every randomized protocol (with shared

randomness) for the bursting noise game with parameter k, that has communication

complexity at most 2k, errs with probability ϵ ≥ 1 − o(1) (over the input distribution µ,

where the o(1) is sub-constant in k).

Theorem 2 (Information Upper Bound). There exists a randomized protocol for the

bursting noise game with parameter k, that has information cost O(k) and errs with

probability ϵ ≤ 2−Ω(k) (over the input distribution µ).

We note that both the inputs and the outputs in our bursting noise game example are

very long. Namely, the input length is triple exponential in k, and the output length is double

exponential. The protocol that achieves information complexity O(k) has communication

complexity double exponential in k.

As mentioned above, information complexity is also related to the direct sum problem

in communication complexity. Braverman and Rao showed that information complexity is

equal to the amortized communication complexity, that is, the limit of the communication

complexity needed to solve n tasks of the same type, divided by n [BR11] (see also [Bra12a,

Bra12b, Bra13]). Our result therefore shows a gap between distributional communication

complexity and amortized distributional communication complexity, proving that tight direct

sum results for the communication complexity of relations cannot hold.

Organization. The paper is organized as follows. In Section 2 we define the bursting noise

game. Section 3 gives an overview of our main result, the lower bound for the communication

complexity of the bursting noise game (Theorem 1). In Section 4 we give general definitions

and preliminaries. In Section 5 we prove the graph correlation lemma, a central tool that

we will use in the lower bound proof. In Section 6 we prove the communication complexity

lower bound (Theorem 1). In Section 7 we show that the straightforward protocol for the

bursting noise game has low information cost, thus proving the upper bound required by

Theorem 2. The appendix contains proofs of information theoretic lemmas that are used by

the lower bound proof.

2 Bursting Noise Games

The bursting noise game is a communication game between two parties, called the first player

and the second player. The game is specified by a parameter k ∈ N, where k > 2100. We set

c = 24
k
, w0 = 2100k, w1 = 2100k, w = w0 + w1.

The game is played on the binary tree T with c · w layers (the root is in layer 1 and the

leaves are in layer c · w), with edges directed from the root to the leaves. Denote the vertex

set of T by V . Each player gets as input a bit for every vertex in the tree. Let x be the input
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given to the first player, and y be the input given to the second player, where x, y ∈ {0, 1}V .
For a vertex v ∈ V , we denote by xv and yv the bits in x and y associated with v. The input

pair (x, y) is selected according to a joint distribution µ on {0, 1}V ×{0, 1}V , defined below.

Denote by Even(T ) ⊆ V the set of non-leaf vertices in an even layer of T and by

Odd(T ) ⊆ V the set of non-leaf vertices in an odd layer of T . We think of the vertices

in Odd(T ) as “owned” by the first player and the vertices in Even(T ) as “owned” by the

second player. Let v ∈ V be a non-leaf vertex. Let v0 be the left child of v and v1 be the

right child of v. Let b ∈ {0, 1}. We say that vb is the correct child of v with respect to x, y,

if either the first player owns v and xv = b, or the second player owns v and yv = b.

For s ≤ t ∈ N, denote by [s, t] the set {s, . . . , t} and by [t] the set {1, . . . , t}. Let

s ≤ t < t′ ∈ [c · w] be layers of T and let v ∈ V be a vertex in layer t′. For j ∈ [s, t + 1],

let vj be v’s ancestor in layer j. Let ∆ = t− s+ 1. We say that v is typical with respect to

s,∆, x, y, if the followings hold:

1. For at least 0.8-fraction of the indices j ∈ [s, t]∩Odd(T ), the vertex vj+1 is the correct

child of vj with respect to x, y.

2. For at least 0.8-fraction of the indices j ∈ [s, t]∩Even(T ), the vertex vj+1 is the correct

child of vj with respect to x, y.

Observe that in order to decide whether v is typical with respect to s,∆, x, y, it suffices to

know the bits that x, y assign to the vertices vs, . . . , vt.

We think of the c ·w layers of the tree T as partitioned into c multi-layers, each consisting

of w consecutive layers (e.g., the first multi-layer consists of layers 1 to w). We denote by i∗

the first layer of the ith multi-layer, that is, i∗ = (i− 1)w + 1.

We next define the distribution µ on {0, 1}V × {0, 1}V by an algorithm for sampling an

input pair (x, y) (Algorithm 1 below). In the algorithm, when we say “set v to be non-

noisy”, we mean “select xv ∈ {0, 1} uniformly at random and set yv = xv”. By “set v to

be noisy”, we mean “select xv ∈ {0, 1} and yv ∈ {0, 1} independently and uniformly at

random”. Figure 1 illustrates Algorithm 1.

The players’ mutual goal is to output the same leaf v ∈ V , where v is typical with respect

to i∗, w0, x, y (that is, v is typical with respect to the main noise layers).

For i ∈ [c], we denote by µi the distribution µ conditioned on the event that the noisy

multi-layer selected by Step 1 of the algorithm defining µ, is i. Note that µ = 1
c

∑
i∈[c] µi.

Remark. Observe that it is not always possible to deduce i (i.e., the index of the noisy

multi-layer used to construct the pair (x, y)) from the pair (x, y). Therefore, the bursting

noise game does not induce a relation. Nevertheless, with extremely high probability, the

first multi-layer on which x and y disagree is i. Thus, the game can be easily converted to

a relation, by omitting the rare inputs (x, y) that agree on multi-layer i. Note that since the

statistical distance between the two distributions is negligible, both our upper bound and lower

bound trivially apply to the new game as well. For that reason, it will be helpful to think of

the supports of the different µi’s as if they were pairwise disjoint.
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Algorithm 1 Sample (x, y) according to µ

1. Randomly select i ∈ [c] (the noisy multi-layer).

2. Set every vertex in layers [i∗, i∗ + w0 − 1] to be noisy (main noise).

3. Let L1 be the set of all non-typical vertices in layer i∗ + w0 with respect to i∗, w0, x, y
(note that x, y were already defined on layers [i∗, i∗+w0− 1], and therefore the typical
vertices are defined). For every v ∈ L1, set all the vertices in the subtree with w1 layers
rooted at v to be noisy.

4. If i < c: Let L2 be the set of all vertices v in layer i∗+w0+w1 = (i+1)∗ with ancestors
in L1, such that v is non-typical with respect to i∗ + w0, w1, x, y (note that x, y were
already defined on the required vertices, and therefore the typical vertices are defined).
For every v ∈ L2, set all the vertices in the subtree rooted at v to be noisy.

5. Set all unset vertices in V to be non-noisy.

Figure 1: Illustration of Algorithm 1
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The straightforward protocol. Consider the following straightforward protocol for the

bursting noise game. Starting from the root until reaching a leaf, at every vertex v, if the first

player owns v, she sends the bit xv with probability 0.9, and the bit 1−xv with probability 0.1.

Similarly, if the second player owns v, she sends the bit yv with probability 0.9, and the

bit 1− yv with probability 0.1. Both players continue to the child of v that is indicated by

the communicated bit. When they reach a leaf they output that leaf.

By the Chernoff bound, the probability that the players output a leaf that is not typical

with respect to the main noise layers is at most 2−Ω(w0). That is, the error probability is

exponentially small in k. In Section 7, we show that the information cost of this protocol

is O(k). Intuitively, this will follow since the expected number of vertices reached by

the protocol, on which the players’ inputs disagree, is O(k) (with high probability the

disagreement is only on vertices in the main noise layers).

Remark. Observe that c is set to be double exponential in k. If c were set to be just

exponential in k, a simple binary search algorithm would have been able to find the location of

the main noise layers, and thus solve the bursting noise game with communication complexity

polynomial in k.

3 Overview of the Lower Bound Proof

Rectangle Partition

We will describe the proof of the lower bound for the communication complexity of the

bursting noise game. We fix the random strings for the protocol so that we have a

deterministic protocol. We show that if the protocol communicates at most 2k bits, it errs

with probability 1− o(1) on inputs sampled according to µ. We will show that for almost all

i ∈ [c], the protocol errs with probability 1 − o(1) on inputs sampled according to µi, that

is, the distribution µ conditioned on the event that the noisy multi-layer selected by Step 1

of Algorithm 1 defining µ, is i. Note that the distribution µi is uniformly distributed over

supp(µi), and that for every pair of inputs (x, y) ∈ supp(µi), the projection of x and y on

the first i− 1 multi-layers is the same.

As mentioned above, it will be helpful to think of the supports of the different µi’s as

if they were pairwise disjoint (this property holds if we remove a µi-negligible set of inputs

from the support of each µi).

Let {R1, . . . , Rm} be the rectangle partition induced by the protocol, where Rt = At×Bt,

and m ≤ 22
k
. For i ∈ [c] and an assignment z to the first i − 1 multi-layers, we denote by

Rt,z = At,z ×Bt,z, the rectangle of all pairs of inputs (x, y) ∈ Rt, such that the projection of

both x, y on the first i−1 multi-layers is equal to z. Let X t,z be a random variable uniformly

distributed over At,z. Let Y t,z be a random variable uniformly distributed over Bt,z. We

denote by X t,z
i , Y t,z

i the projections of X t,z, Y t,z, respectively, on multi-layer i.

For fixed i, z, we define ρi,z to be a probability distribution that selects a rectangle in
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{R1,z, . . . , Rm,z} according to its relative size. That is, ρi,z is defined as follows: Randomly

select x, y, such that the projection of both x and y on the first i−1 multi-layers is z. Select t

to be the index of the unique rectangle Rt,z containing (x, y).

Bounding the Information on the Noisy Multi-Layer

The main intuition of the proof is that since c is significantly larger than 2k, the protocol

cannot make progress on all multi-layers i ∈ [c] simultaneously. We first show that for a

random i ∈ [c], a random z, and a random rectangle Rt,z, chosen according to ρi,z, very little

information is known about X t,z
i and Y t,z

i .

Formally, we prove in Lemma 11 that

E
i

E
z

E
t←ρi,z

[
I
(
X t,z

i

)]
≤ m

c
, (1)

and similarly,

E
i

E
z

E
t←ρi,z

[
I
(
Y t,z
i

)]
≤ m

c
, (2)

where we denote by I(Z) := log(|Ω|) − H(Z) the information known about a random

variable Z, where Ω is the space that Z is defined over.

The proof of Lemma 11 doesn’t follow by a trivial application of super-additivity of

information. That’s because choosing i, z at random and t according to ρi,z and then choosing

a random variable X to be uniformly distributed on At,z, gives a random variable X with

distribution that may be very far from uniform. Moreover, the probability that X is in the

set At, associated with a rectangle Rt, may be very far from the probability that a uniformly

distributed input is in At. Nevertheless, we are still able to prove Lemma 11, using the fact

that we have a bound of m on the total number of times that an input x appears in the

cover {A1, . . . , Am}.
We fix 1

ko(1)
≤ γ ≤ o(1) to be sub-constant, and we fix i, z, t, such that,

1. I
(
X t,z

i

)
≤ 1

γ
· m

c

2. I
(
Y t,z
i

)
≤ 1

γ
· m

c

3. The rectangle Rt,z is not too small.

By Equation (1) and Equation (2), and by Markov’s inequality, we know that when we

choose i, z uniformly at random, and t according to ρi,z, the triplet (i, z, t) satisfies all three

conditions with high probability. Therefore, we ignore triplets (i, z, t) that do not satisfy all

three conditions.

How the Proof Works

Let Λi be the set of input pairs (x, y) ∈ supp(µi), such that the protocol errs on (x, y).

Let Pi be the probability for a uniformly distributed pair of inputs (x, y), that have the same
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projection on the first i− 1 multi-layers, to be in supp(µi). We prove that

Pr
Xt,z ,Y t,z

[
(X t,z, Y t,z) ∈ Λi

]
≥ Pi · (1− o(1)).

Summing over all possibilities for z, t, we obtain (for almost all i ∈ [c]) that the protocol errs

on µi with probability 1− o(1).

Unique Answer Rectangles

In the rectangle Rt,z, the answer of each of the two players in the protocol may not be unique,

as the answer of each player may also depend on the input that she gets. Nevertheless,

using the fact that if the two players answer differently then the protocol errs, we are

able to subdivide the rectangle Rt,z into poly(1/γ) sub-rectangles Rt,s,z, such that in each

rectangle Rt,s,z the answer is unique, except for a bad set of rectangles whose total size is

negligible compared to the size of Rt,z. When subdividing Rt,z, we also need to change the

answers given by the two players on each rectangle, but we are able to do that without

adding errors to the protocol.

We ignore rectangles Rt,s,z where the answer of the protocol is not unique, as their total

size is small, and only consider rectangles Rt,s,z = At,s,z ×Bt,s,z where the answer is unique.

Let X t,s,z be a random variable uniformly distributed over At,s,z. Let Y t,s,z be a random

variable uniformly distributed over Bt,s,z. For the rectangles Rt,s,z we no longer have the

strong bounds I
(
X t,z

i

)
≤ 1

γ
· m

c
, and I

(
Y t,z
i

)
≤ 1

γ
· m

c
, but rather the weaker bounds

I
(
X t,s,z

i

)
≤ O (log (1/γ)) ,

and

I
(
Y t,s,z
i

)
≤ O (log (1/γ)) .

The Main Lemma

Fix i, z, t, s. In the rectangle Rt,s,z the answer is unique, denote that answer by ωt,s,z. We

define Λt,s,z to be the set of input pairs (x, y) ∈ supp(µi), such that ωt,s,z is not a correct

answer for inputs (x, y). In Lemma 14, we prove that

Pr
Xt,s,z ,Y t,s,z

[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
≥ Pi · (1− o(1)), (3)

and as before, summing over all possibilities for t, s, z, this implies, for almost all i ∈ [c],

that the protocol errs on µi with probability 1− o(1).
In what follows, we outline the proof of Equation (3).

The Super Graph

We define the bipartite graph G = (U ∪W,E) with sets of vertices U,W and set of edges E

as follows: Let U =W be the set of all possible assignments for multi-layer i (for one player).
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For u ∈ U,w ∈ W , we have (u,w) ∈ E if there exists (x, y) ∈ supp(µi), such that xi = u and

yi = w.

Let M be the number of vertices in layer (i+ 1)∗ of the tree T . We identify the set [M ]

with the set of vertices in layer (i + 1)∗. Let u ∈ U,w ∈ W . We define T (u,w) ⊂ [M ] to

be the set of all vertices in layer (i + 1)∗ that are set to be non-noisy for inputs u,w, by

Algorithm 1 defining µ, when the noisy multi-layer is i. Observe that u and w determine for

every vertex in layer (i + 1)∗ if it is noisy or not. Note that by a symmetry argument, G is

bi-regular, and T (u,w) is of the same size T for every u,w.

Let E t,s,z ⊆ E be the set of all (u,w) ∈ E for which the output ωt,s,z is correct for some

input (x, y) ∈ supp(µi), where xi = u and yi = w. Note that if the noise is taken on the ith

multi-layer, then u and w determine the correctness of ωt,s,z. It holds that

|E t,s,z| ≤ 2−20k|E|,

as for any fixed u and every v ∈ [M ], at most a fraction of 2−20k of the sets {T (u,w)}(u,w)∈E

contain v, and the output ωt,s,z is correct only if it has an ancestor in T (u,w).

Let Σ be the set of all possible boolean assignments to the vertices of a subtree of T
rooted at layer (i+ 1)∗.

For u ∈ U , we define the random variable Xu, over the domain Σ[M ], to be the conditional

variable (X t,s,z
≥i |X

t,s,z
i = u), that is, Xu has the distribution of X t,s,z

≥i conditioned on the

event X t,s,z
i = u, where X t,s,z

≥i denotes the projection of X t,s,z to all multi-layers after multi-

layer i. Similarly, for w ∈ W , we define the random variable Y w, over the domain Σ[M ],

to be (Y t,s,z
≥i |Y

t,s,z
i = w), that is, Y w has the distribution of Y t,s,z

≥i conditioned on the event

Y t,s,z
i = w.

First Application of the Graph Correlation Lemma

By the definition of the distribution µi, the left hand side of Equation (3) is equal to∑
(u,w)∈E\Et,s,z

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
· Pr

[
Xu

T (u,w) = Y w
T (u,w)

]
, (4)

where Xu
T (u,w) and Y w

T (u,w) are the projections of Xu, Y w, respectively, to coordinates

in T (u,w). This is true because a pair (x, y) is in supp(µi) if and only if (xi, yi) ∈ E

and x, y agree on all the subtrees rooted at vertices in layer (i + 1)∗ that are set to be

non-noisy for inputs xi, yi, by Algorithm 1 defining µ, when the noisy multi-layer is i.

Our graph correlation lemma (Lemma 9), that may be interesting in its own right, gives

a general way to bound such expressions by

≥ (1− o(1)) |Σ|−T
∑

(u,w)∈E\(Et,s,z∪Dt,s,z)

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
, (5)

where Dt,s,z ⊂ E is a small set, compared to the size of E, and |Σ|−T is a normalization

factor that would be equal to Pr[Xu
T (u,w) = Y w

T (u,w)] if X
u, Y w were uniformly distributed
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(independent) random variables.

Thus, using Lemma 9, we are able to bound the left hand side of Equation (3), which is

an expression that depends on the variables X t,s,z, Y t,s,z, by the expression in Equation (5)

that depends only on the projections of these variables to multi-layer i.

We still need to bound from below the expression∑
(u,w)∈E\(Et,s,z∪Dt,s,z)

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
. (6)

Since E t,s,z ∪ Dt,s,z is a small set (compared to the size of E), we will first ignore the set

E t,s,z ∪ Dt,s,z, and bound from below the expression∑
(u,w)∈E

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
. (7)

In Lemma 18 we give a general bound on such expressions: Let P be a random variable

over the domain U , and Q be a random variable over the domain W , such that P and Q are

independent. Denote I = max {I(P ), I(Q), 1}. It holds that

Pr
P,Q

[(P,Q) ∈ E] ≥ |E|
|U | · |W |

(
1− I

k

)
.

Note that the expression in Equation (7) is of this type.

The proof of the lemma is by applying Lemma 9 once again, as described next.

The Mini Graph

Let Ĝ = (Û ∪ Ŵ , Ê) be the complete bipartite graph with sets of vertices Û , Ŵ and set

of edges Ê, defined as follows: Let Û = Ŵ be the set of all boolean assignments (for one

player) to the vertices in layers i∗ to i∗ + w0 − 1 of the tree T (that is, the first w0 layers in

multi-layer i; see Section 2). Set Ê = Û × Ŵ .

Let P̂ and Q̂ be the projections of P and Q on layers i∗ to i∗ + w0 − 1 (respectively).

Let P̃ and Q̃ be the projections of P and Q on layers i∗ + w0 to (i+ 1)∗ − 1 (respectively).

Let M̂ be the number of vertices in layer i∗ + w0 of the tree T . We identify the set [M̂ ]

with the set of vertices in layer i∗ + w0. Let û ∈ Û , ŵ ∈ Ŵ . We define T̂ (û, ŵ) ⊂ [M̂ ] to

be the set of all vertices in layer i∗ + w0 that are set to be non-noisy for inputs û, ŵ, by

Algorithm 1 defining µ, when the noisy multi-layer is i. That is, T̂ (û, ŵ) is the set of all

typical vertices in layer i∗+w0 with respect to i∗, w0, û, ŵ. Observe that û and ŵ determine

for every vertex in layer i∗ + w0 if it is noisy or not.

Note that by a symmetry argument, T̂ (û, ŵ) is of the same size T̂ for every û, ŵ.

Define the random variable X û to be (P̃ |P̂ = û), that is, X û has the distribution of P̃

conditioned on the event P̂ = û. Define the random variable Y ŵ to be (Q̃|Q̂ = ŵ), that

is, Y ŵ has the distribution of Q̃ conditioned on the event Q̂ = ŵ.

Let Σ̂ be the set of all possible boolean assignments to the vertices of a subtree with w1
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layers, rooted at layer i∗ + w0.

Second Application of the Graph Correlation Lemma

By the definitions of the graphs G, Ĝ,

Pr [(P,Q) ∈ E] =
∑

(û,ŵ)∈Ê

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
· Pr
Xû,Y ŵ

[
X û

T̂ (û,ŵ)
= Y ŵ

T̂ (û,ŵ)

]
,

where X û
T̂ (û,ŵ)

and Y ŵ
T̂ (û,ŵ)

are the projections of X û, Y ŵ, respectively, to coordinates

in T̂ (û, ŵ). This is true because a pair (u,w) is in E if and only if (û, ŵ) ∈ Ê and u,w

agree on all the subtrees rooted at vertices in layer i∗ + ω0 that are set to be non-noisy for

inputs û, ŵ, by Algorithm 1 defining µ, when the noisy multi-layer is i.

Lemma 9 gives a general way to bound such expressions by

≥ (1− o(1)) |Σ̂|−T̂
∑

(û,ŵ)∈Ê\D̂

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
, (8)

where D̂ ⊂ Ê is a small set, compared to the size of Ê, and |Σ̂|−T̂ is a normalization factor

that would be equal to Pr[X û
T̂ (û,ŵ)

= Y ŵ
T̂ (û,ŵ)

] if X û
T̂ (û,ŵ)

, Y ŵ
T̂ (û,ŵ)

were uniformly distributed

(independent) random variables.

Thus, using Lemma 9, we are able to bound the expression in Equation (7), which is an

expression that depends on the variables P,Q, by an expression that depends only on the

projections of these variables to the first ω0 layers of multi-layer i.

Since D̂ is small, we will first ignore it, and note that since Ĝ is the complete graph,∑
(û,ŵ)∈Ê

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
= 1,

and we use this to bound the right hand side of Equation (8).

Completing the Proof

In both applications of Lemma 9, we ignored the sum on small sets, E t,s,z ∪Dt,s,z in the first

application, and D̂ in the second application. To complete the proof, we need to show that∑
(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
,

in the first application (see Equation (6) and Equation (7)), and∑
(û,ŵ)∈D̂

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
,

in the second application, are both negligible.
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In the second application, we are able to prove that, using the fact that D̂ is small and Ĝ

is the complete graph, and using the bound that we have on I(P ) and I(Q).

In the first application, we use the fact that Rt,s,z ⊆ Rt,z, to bound the sum by

|Rt,z|
|Rt,s,z|

∑
(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,z

i = u
]
· Pr

[
Y t,z
i = w

]
.

Since I
(
X t,z

i

)
≤ 1

γ
·m
c
, and I

(
Y t,z
i

)
≤ 1

γ
·m
c
, we know that the distributions of X t,z

i and Y t,z
i

are extremely close to uniform, and hence the sum in the last expression is negligible. Using

also the fact that |Rt,z |
|Rt,s,z | is relatively small, we obtain that the entire expression is negligible.

Another difficulty that we ignored in the discussion so far, is that Lemma 9 requires

random variables Xu, Y w with bounded information for all u,w, while we have variables with

bounded information for almost all u,w. In the two applications of the lemma, we fix this

by two different simple manipulations. In the first application, we change the variables X t,s,z

and Y t,s,z by taking them to be uniformly distributed with very small probability. This works

because X t,s,z and Y t,s,z are uniformly distributed over a subset. In the second application,

we just replace every X û or Y ŵ that has large information, with a uniformly distributed

random variable. This works since Ĝ is the complete graph.

Proof of the Graph Correlation Lemma and Shearer’s Inequality

To bound expressions such as the expression in Equation (4), we show that if Pr[Xu
T (u,w) =

Y w
T (u,w)] is significantly larger than what is obtained by uniformly distributed variables, then

either I(Xu
T (u,w)) or I(Y w

T (u,w)) are non negligible (or both). We use this to show that for

some u (or some w) we have that I(Xu) (or I(Y w)) are large, deriving a contradiction.

Our proof relies on a variant of Shearer’s inequality [CGFS86, Kah01] that follows easily

by Radhakrishnan’s beautiful information theoretical proof [Rad03] (see Lemmas 7 and 8

and [MT10]).

4 Definitions and Preliminaries

4.1 General Notation

Throughout the paper, all logarithms are taken with base 2, and we define 0 log(0) = 0. For

a set S, when we write “x ∈R S” we mean that x is selected uniformly at random from the

set S. For a distribution τ , when we write “x ← τ” we mean that x is selected according

to the distribution τ . For Z that is either a random variable taking values in {0, 1}V or an

element in {0, 1}V , and a set T ⊆ V , we define ZT to be the projection of Z to T .

12



4.2 Information Cost

Definition 1 (Information Cost). The information cost of a protocol π over random

inputs (X,Y ) that are drawn according to a joint distribution µ, is defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

where Π is a random variable which is the transcript of the protocol π with respect to µ. That

is, Π is the concatenation of all the messages exchanged during the execution of π. The ϵ

information cost of a computational task f with respect to a distribution µ is defined as

ICµ(f, ϵ) = inf
π
ICµ(π),

where the infimum ranges over all protocols π that solve f with error at most ϵ on inputs

that are sampled according to µ.

4.3 Relative Entropy

Definition 2 (Relative Entropy). Let µ1, µ2 : Ω → [0, 1] be two distributions, where Ω

is discrete (but not necessarily finite). The relative entropy between µ1 and µ2, denoted

D(µ1∥µ2), is defined as

D(µ1∥µ2) =
∑
x∈Ω

µ1(x) log
(

µ1(x)
µ2(x)

)
.

Proposition 3. Let µ1, µ2 : Ω→ [0, 1] be two distributions. Then,

D(µ1∥µ2) ≥ 0.

The following relation is called Pinsker’s inequality, and it relates the relative entropy to

the ℓ1 distance.

Proposition 4 (Pinsker’s Inequality). Let µ1, µ2 : Ω→ [0, 1] be two distributions. Then,

2 ln(2) ·D(µ1∥µ2) ≥ ∥µ1 − µ2∥2,

where

∥µ1 − µ2∥ =
∑
x∈Ω

|µ1(x)− µ2(x)| = 2max
E⊆Ω
{µ1(E)− µ2(E)} .

4.4 Information

Definition 3 (Information). Let µ : Ω→ [0, 1] be a distribution and let U be the uniform

distribution over Ω. The information of µ, denoted I(µ), is defined by

I(µ) = D(µ ∥ U) =
∑

x∈supp(µ)

µ(x) log

(
µ(x)

1
|Ω|

)
=

∑
x∈supp(µ)

µ(x) log (|Ω|µ(x)) .

13



Equivalently,

I(µ) = log(|Ω|)−H(µ),

where H(µ) denotes the Shannon entropy of µ.

For a random variable X taking values in Ω, with distribution PX : Ω→ [0, 1], we define

I(X) = I(PX).

Proposition 5 (Supper-Additivity of Information). Let X1, . . . , Xm be m random

variables, taking values in Ω1, . . . ,Ωm, respectively. Consider the random variable

(X1, . . . , Xm), taking values in Ω1 × . . .× Ωm. Then,

I ((X1, . . . , Xm)) ≥
∑
i∈[m]

I(Xi).

Proof. Using the sub-additivity of the Shannon entropy function, we have

I ((X1, . . . , Xm)) = log(|Ω1 × . . .× Ωm|)−H(X1, . . . , Xm)

≥
∑
i∈[m]

log(|Ωi|)−
∑
i∈[m]

H(Xi)

=
∑
i∈[m]

(log(|Ωi|)−H(Xi)) =
∑
i∈[m]

I(Xi).

4.5 Shearer-Like Inequality for Information

The following version of Shearer’s inequality [CGFS86, Kah01] is due to [Rad03].

Lemma 6 (Shearer’s Inequality). Let X1, . . . , XM be M random variables. Let X =

(X1, . . . , XM). Let T = {Ti}i∈I be a collection of subsets of [M ], such that each element

of [M ] appears in at least K members of T . For A ⊆ [M ], let XA = {Xj : j ∈ A}. Then,∑
i∈I

H[XTi
] ≥ K ·H[X].

We state and prove here the following “Shearer-like” inequality for information. A variant

of this lemma was proved in [MT10].

Lemma 7 (Shearer-Like Inequality for Information). Let X1, . . . , XM be M random

variables, taking values in Ω1, . . . ,ΩM , respectively. Let X = (X1, . . . , XM) be a random

variable, taking values in Ω1 × · · · × ΩM . Let T = {Ti}i∈I be a collection of subsets of [M ],

such that each element of [M ] appears in at most 1
K

fraction of the members of T . For

A ⊆ [M ], let XA = {Xj : j ∈ A}. Then,

K · E
i∈RI

[I(XTi
)] ≤ I(X).
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Proof. Fix i ∈ I. By the definition of information,

I(XTi
) =

∑
j∈Ti

log(|Ωj|)−H[XTi
].

For every j ∈ [M ], define H[Xj|X<j] = H[Xj|(Xℓ : ℓ < j)]. By the chain rule for the

entropy function,

I(X) =
∑
j∈[M ]

(
log(|Ωj|)−H[Xj|X<j]

)
,

I(XTi
) =

∑
j∈Ti

(
log(|Ωj|)−H[Xj|(Xℓ : ℓ ∈ Ti, ℓ < j)]

)
.

For every j ∈ Ti it holds that H[Xj|(Xℓ : ℓ ∈ Ti, ℓ < j)] ≥ H[Xj|X<j]. Therefore,

I(XTi
) ≤

∑
j∈Ti

(
log(|Ωj|)−H[Xj|X<j]

)
.

Summing over all i ∈ I we get that∑
i∈I

I(XTi
) ≤

∑
i∈I

∑
j∈Ti

(
log(|Ωj|)−H[Xj|X<j]

)
. (9)

For every j ∈ [M ], the term log(|Ωj|) − H[Xj|X<j] appears on the right-hand side of

Equation (9) at most |I|
K

times. Therefore,∑
i∈I

I(XTi
) ≤ |I|

K
·
∑
j∈[M ]

(
log(|Ωj|)−H[Xj|X<j]

)
=
|I|
K
· I(X).

Dividing by |I|
K

we get that the claim holds.

The next lemma generalizes Lemma 7, and gives a Shearer-like inequality for relative

entropy. A variant of this lemma was proved in [MT10]. The lemma will not be used in

the paper, but we include it here as it may be useful in this context. The proof is given in

Appendix A.

Lemma 8 (Shearer-Like Inequality for Relative Entropy). Let P,Q : Ω1×· · ·×ΩM →
[0, 1] be two distributions, such that Q is a product distribution, i.e., for every j ∈ [M ], there

exists Qj : Ωj → [0, 1], such that Q(x1, . . . , xM) =
∏

j∈[M ]Qj(xj). Let T = {Ti}i∈I be a

collection of subsets of [M ], such that each element of [M ] appears in at most 1
K

fraction of

the members of T . For A ⊆ [M ], let PA and QA be the marginal distributions of A in the

distributions P and Q (respectively). Then,

K · E
i∈RI

[D(PTi
∥QTi

)] ≤ D(P∥Q).
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5 The Graph Correlation Lemma

Lemma 9 (Graph Correlation Lemma). 1 Let G = (U ∪W,E) be a bipartite (multi)-

graph with sets of vertices U,W and (multi)-set of edges E, such that, G is bi-regular and

|U | = |W |. LetM > T > k ∈ N be such that, T ≤ 2−20kM , and k ≥ 4. For every (u,w) ∈ E,
let T (u,w) ⊂ [M ] be a set of size T , such that, for every u ∈ U , each element of [M ] appears

in at most 2−20k fraction of the sets in {T (u,w)}(u,w)∈E, and for every w ∈ W , each element

of [M ] appears in at most 2−20k fraction of the sets in {T (u,w)}(u,w)∈E.

Let Σ be a finite set. For every u ∈ U , let Xu ∈ ΣM be a random variable, such

that, I(Xu) ≤ 24k, and for every w ∈ W , let Y w ∈ ΣM be a random variable, such that,

I(Y w) ≤ 24k, and such that, for every u ∈ U and w ∈ W , the random variables Xu and Y w

are mutually independent.

For (u,w) ∈ E, denote

µ(u,w) =
PrXu,Y w [Xu

T (u,w) = Y w
T (u,w)]

|Σ|−T
.

Let

D = {(u,w) ∈ E : µ(u,w) ≤ 1− 2−4k}.

Then,
|D|
|E|
≤ 2−4k.

Proof. We will start by proving the following claim.

Claim 10. If (u,w) ∈ D then at least one of the following two inequalities holds,

I
(
Xu

T (u,w)

)
≥ 2−8k−4,

I
(
Y w
T (u,w)

)
≥ 2−8k−4.

Proof. Assume (u,w) ∈ D. Thus,

−2−4k ≥ µ(u,w)− 1 = |Σ|T ·
(

Pr
Xu,Y w

[Xu
T (u,w) = Y w

T (u,w)]− |Σ|−T
)

=

|Σ|T ·

 ∑
z∈ΣT (u,w)

Pr
Xu

[Xu
T (u,w) = z] · Pr

Y w
[Y w

T (u,w) = z]

− |Σ|−T
 =

|Σ|T ·
∑

z∈ΣT (u,w)

(
Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

)
·
(
Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

)
. (10)

1Many variants of this lemma can be proven. In particular, a similar argument can be used to prove a
similar statement with sets T (u,w) that are not of the same size. We state the lemma here for sets T (u,w)
of the same size T , for convenience of notation.
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In the last sum, we can omit the positive summands (and the inequality still holds). As

for the negative summands, we split them into summands where (Pr[Xu
T (u,w) = z] − |Σ|−T )

is negative and (Pr[Y w
T (u,w) = z]−|Σ|−T ) is positive, and summands where it’s the other way

around. In the first case, we bound the first term by(
Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

)
≥ −|Σ|−T ,

and for the second term, we use(
Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

)
=
∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣ .
Similarly, in the second case, we bound the terms the other way around. Note also that

we can add to the sum arbitrary negative summands (and the inequality still holds). Thus,

Equation (10) implies

−2−4k ≥ |Σ|T ·
∑

z∈ΣT (u,w)

(
−|Σ|−T

)
·
∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣+
|Σ|T ·

∑
z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ · (−|Σ|−T ) =
−

∑
z∈ΣT (u,w)

∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣− ∑
z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ ,
that is, ∑

z∈ΣT (u,w)

∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣+ ∑
z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ ≥ 2−4k.

Hence, for every (u,w) ∈ D, at least one of the following two inequalities holds,∑
z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ ≥ 2−4k−1,

∑
z∈ΣT (u,w)

∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣ ≥ 2−4k−1.

The claim follows by Pinsker’s inequality.

We will now proceed with the proof of Lemma 9. By Claim 10, we know that one of the

following two statements must hold:

1. For at least half of the edges (u,w) ∈ D, we have I
(
Xu

T (u,w)

)
≥ 2−8k−4.

2. For at least half of the edges (u,w) ∈ D, we have I
(
Y w
T (u,w)

)
≥ 2−8k−4.

Without loss of generality, assume that the first statement holds.
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Assume for a contradiction that

|D|
|E|

> 2−4k.

Thus, by an averaging argument, there exists u ∈ U , such that, for at least 2−4k−1

fraction of the edges (u,w) ∈ E, we have I
(
Xu

T (u,w)

)
≥ 2−8k−4. Fix u ∈ U that has

this property. Denote by E(u) the (multi)-set of edges in E that contain u, that is,

E(u) = {(u,w) : (u,w) ∈ E}. Thus,

E
(u,w)∈RE(u)

[
I
(
Xu

T (u,w)

)]
≥ 2−4k−1 · 2−8k−4 = 2−12k−5.

Since each element of [M ] appears in at most 2−20k fraction of the sets in

{T (u,w)}(u,w)∈E(u), we have by Lemma 7,

I(Xu) ≥ 2−12k−5 · 220k = 28k−5,

in contradiction to the assumption of the lemma.

6 Communication Lower Bound

In this section we prove Theorem 1. Assume that π is a deterministic communication protocol

for the bursting noise game with parameter k, that has communication complexity at most 2k.

The rest of this section is devoted to showing that π has error ϵ ≥ 1−o(1) (when the inputs are

selected according to the distribution µ). That is, the protocol almost always errs. Observe

that this also implies that every probabilistic protocol errs with probability ϵ ≥ 1− o(1), as
it is a distribution over deterministic protocols.

6.1 Notation

Let {R1, . . . , Rm} be the rectangle partition induced by the protocol π, where Rt = At×Bt

for At, Bt ⊆ {0, 1}V and m ≤ 22
k
. Let t ∈ [m]. Let X t be a random variable taking values

in {0, 1}V , that is uniformly distributed over At. Let Y t be a random variable taking values

in {0, 1}V , that is uniformly distributed over Bt.

Let i ∈ [c] be a multi-layer. Define V<i ⊆ V to be the set of vertices in multi-layers 1

to i − 1. Define Vi ⊆ V to be the set of vertices in multi-layer i. Define V≥i ⊆ V to be the

set of vertices in multi-layers i to c. For Z that is either a random variable taking values in

{0, 1}V or an element in {0, 1}V , we define Z<i, Zi, Z≥i to be the projections of Z to V<i,

Vi, V≥i (respectively).

Let i ∈ [c] and z ∈ {0, 1}V<i . Define Ψz to be the set of all elements ψ ∈ {0, 1}V with

ψ<i = z. It holds that |Ψz| = |{0, 1}V≥i|.
Let i ∈ [c], z ∈ {0, 1}V<i and t ∈ [m]. Define At,z = At ∩ Ψz and Bt,z = Bt ∩ Ψz. Define

Rt,z = At,z × Bt,z. Let X t,z be a random variable taking values in Ψz, that is uniformly
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distributed over At,z. Let Y t,z be a random variable taking values in Ψz, that is uniformly

distributed over Bt,z.

6.2 Bounding the Information on the Noisy Multi-Layer

Let i ∈ [c] and z ∈ {0, 1}V<i . We define ρi,z : [m]→ [0, 1] to be the distribution that selects a

rectangle index t ∈ [m] as follows: Randomly select an input pair (x, y) ∈ Ψz ×Ψz. Select t

to be the index of the unique rectangle Rt containing (x, y). That is, ρi,z(t) is the density of

the rectangle Rt,z with respect to input pairs that agree with z,

ρi,z(t) =
|Rt,z|
|Ψz ×Ψz|

.

The following lemma shows that, in expectation, the distribution of the projections of inputs

in Rt,z to multi-layer i is close to uniform.

Lemma 11. It holds that

E
i∈R[c]

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
X t,z

i

)]
≤ m

c
,

and similarly,

E
i∈R[c]

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
Y t,z
i

)]
≤ m

c
.

Proof. Fix i ∈ [c]. It holds that

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
X t,z

i

)]
=

∑
z∈{0,1}V<i

1

|{0, 1}V<i|
∑
t∈[m]

|Rt,z|
|{0, 1}V≥i|2

· I
(
X t,z

i

)
=

∑
z∈{0,1}V<i

1

|{0, 1}V |
∑
t∈[m]

|At,z| · |Bt,z|
|{0, 1}V≥i|

· I
(
X t,z

i

)
≤

∑
z∈{0,1}V<i

1

|{0, 1}V |
∑
t∈[m]

|At,z| · |{0, 1}V≥i|
|{0, 1}V≥i|

· I
(
X t,z

i

)
=
∑
t∈[m]

1

|{0, 1}V |
∑

z∈{0,1}V<i

|At,z| · I
(
X t,z

i

)
=
∑
t∈[m]

|At|
|{0, 1}V |

∑
z∈{0,1}V<i

|At,z|
|At|

· I
(
X t,z

i

)
=
∑
t∈[m]

|At|
|{0, 1}V |

∑
z∈{0,1}V<i

|At,z|
|At|

(
|Vi| −H

(
X t,z

i

))
.
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Denote

s :=
∑
t∈[m]

|At|
|{0, 1}V |

=
∑
t∈[m]

∑
z∈{0,1}V<i

|At,z|
|{0, 1}V |

.

Observe that 1 ≤ s ≤ m. We have that

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
X t,z

i

)]
≤ s|Vi| −

∑
t∈[m]

|At|
|{0, 1}V |

∑
z∈{0,1}V<i

|At,z|
|At|

·H
(
X t,z

i

)
= s|Vi| −

∑
t∈[m]

|At|
|{0, 1}V |

∑
z∈{0,1}V<i

|At,z|
|At|

·H
(
X t

i |X t
<i = z

)
= s|Vi| −

∑
t∈[m]

|At|
|{0, 1}V |

E
z←Xt

<i

[
H
(
X t

i |X t
<i = z

)]
= s|Vi| −

∑
t∈[m]

|At|
|{0, 1}V |

·H
(
X t

i |X t
<i

)
.

By the chain rule for the entropy function,

E
i∈R[c]

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
X t,z

i

)]
≤ E

i∈R[c]

s|Vi| −∑
t∈[m]

|At|
|{0, 1}V |

·H
(
X t

i |X t
<i

)
= E

i∈R[c]
[s|Vi|]−

∑
t∈[m]

|At|
|{0, 1}V |

· E
i∈R[c]

[
H
(
X t

i |X t
<i

)]
=
s|V |
c
− 1

c

∑
t∈[m]

|At|
|{0, 1}V |

∑
i∈[c]

[
H
(
X t

i |X t
<i

)]

=
s

c

|V | −∑
t∈[m]

|At|
s|{0, 1}V |

·H(X t)


=
s

c

|V |+ ∑
t∈[m]

|At|
s|{0, 1}V |

· log
(

1

|At|

)
≤ s

c

|V |+ log

∑
t∈[m]

|At|
s|{0, 1}V |

· 1

|At|


≤ s

c
log
(m
s

)
≤ m

c
,
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where the third to last inequality is by the concavity of the log function. The last inequality

holds as −x log(x) < 1 for x ∈ [0, 1].

6.3 Unique Answer Rectangles

Lemma 12 (Unique Answer Lemma). Let A be a set of inputs for the first player, B be

a set of inputs for the second player, and Ω be a set of possible outputs. Let π1 : A → Ω,

π2 : B → Ω be any functions determining the players’ outputs.

Let γ > 0. There exist a partition of A into a disjoint union A = A1∪· · ·∪Aℓ, a partition

of B into a disjoint union B = B1 ∪ · · · ∪ Bℓ, where ℓ = O(1/γ4), and for every s1, s2 ∈ [ℓ]

there exist functions πs1,s2
1 : As1 → Ω, πs1,s2

2 : Bs2 → Ω, such that the followings hold: Denote

Rs1,s2 = As1 ×Bs2.

1. Let s1, s2 ∈ [ℓ] and let (x, y) ∈ Rs1,s2. If π1(x) = π2(y) then

πs1,s2
1 (x) = πs1,s2

2 (y) = π1(x) = π2(y).

2. For s1, s2 ∈ [ℓ], we say that the rectangle Rs1,s2 is a unique answer rectangle if there

exists ω ∈ Ω such that for every (x, y) ∈ Rs1,s2, it holds that πs1,s2
1 (x) = πs1,s2

2 (y) = ω.

Let S be the union of all unique answer rectangles Rs1,s2, where s1, s2 ∈ [ℓ]. Then,

Pr
(x,y)∈RA×B

[(x, y) /∈ S] ≤ γ.

3. For s1, s2 ∈ [ℓ], we say that the rectangle Rs1,s2 is a γ-large rectangle if |As1 ||Bs2 | ≥
γ4

104
|A||B|. Let L be the union of all γ-large rectangles Rs1,s2, where s1, s2 ∈ [ℓ]. Then,

Pr
(x,y)∈RA×B

[(x, y) /∈ L] ≤ γ.

Proof. For Ω′ ⊆ Ω, define

p1(Ω
′) = Pr

x∈RA
[π1(x) ∈ Ω′],

p2(Ω
′) = Pr

y∈RB
[π2(y) ∈ Ω′],

A(Ω′) = {x ∈ A : π1(x) ∈ Ω′},
B(Ω′) = {y ∈ B : π2(y) ∈ Ω′}.

We define the partitions of A and B as follows: For every ω ∈ Ω such that either

p1({ω}) ≥ γ
10

or p2({ω}) ≥ γ
10
, add A({ω}) to the partition of A and B({ω}) to the partition

of B. So far, we added at most 20
γ
sets to each partition. Let

T =
{
ω ∈ Ω : p1({ω}), p2({ω}) <

γ

10

}
.
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Let T1, . . . , Tt be a minimal partition of T , such that for every j ∈ [t], we have

p1(Tj), p2(Tj) <
γ

10
.

Since T is minimal, there is at most one set Tj in T with both p1(Tj), p2(Tj) <
γ
20

(as if

there were two such sets we could have merged them). Therefore, t ≤ 2 · 20
γ
+ 1. For every

i ∈ [t], add A(Ti) to the partition of A and B(Ti) to the partition of B. This concludes the

definition of the partitions of A and B, where the number of sets in each partition, denoted

by ℓ, is at most 20
γ
+ 40

γ
+ 1 ≤ 70

γ
.

Fix s1, s2 ∈ [ℓ]. Let ΩA = {π1(x) : x ∈ As1} and ΩB = {π2(y) : y ∈ Bs2}. For every

(x, y) ∈ As1×Bs2 , we define πs1,s2
1 (x) and πs1,s2

2 (y) by the following steps (once the conditions

of a step are fulfilled and the outputs of the functions are defined we do not continue to the

next step):

1. If p1(ΩA) ≥ γ
10
, then ΩA contains a single value ω. Define πs1,s2

1 (x) = πs1,s2
2 (y) = ω.

2. If p2(ΩB) ≥ γ
10
, then ΩB contains a single value ω. Define πs1,s2

1 (x) = πs1,s2
2 (y) = ω.

3. If ΩA ∩ ΩB ̸= ∅, define πs1,s2
1 (x) = π1(x) and π

s1,s2
2 (y) = π2(y).

4. Define πs1,s2
1 (x) = πs1,s2

2 (y) = w for some fixed w ∈ Ω.

We prove that the three requirements of the lemma are met:

1. Assume that π1(x) = π2(y) = ω. Then, ω ∈ ΩA ∩ ΩB. Thus, the outputs πs1,s2
1 (x)

and πs1,s2
2 (y) are defined in one of the first three steps, and therefore, πs1,s2

1 (x) =

πs1,s2
2 (y) = ω.

2. Assume that Rs1,s2 is not a unique answer rectangle. Then, there exists (x, y) ∈ Rs1,s2

such that πs1,s2
1 (x) ̸= πs1,s2

2 (y). Then, the outputs are defined in Step 3, and it holds

that p1(ΩA), p2(ΩB) <
γ
10

and ΩA ∩ ΩB ̸= ∅. By the definition of the partitions of A

and B, there exists i ∈ [t] such that ΩA,ΩB ⊆ Ti (we mention that if there is no ω ∈ Ti
with p1(ω) = 0 or p2(ω) = 0 then ΩA = ΩB = Ti). Therefore,

Pr
(x,y)∈RA×B

[(x, y) /∈ S] ≤
∑
i∈[t]

p1(Ti) · p2(Ti) ≤
γ

10

∑
i∈[t]

p1(Ti) ≤
γ

10
.

3. Since the number of rectangles Rs1,s2 , where s1, s2 ∈ [ℓ], is ℓ2 ≤ 702

γ2 ,

Pr
(x,y)∈RA×B

[(x, y) /∈ L] ≤ 702

γ2
· γ

4

104
≤ γ.
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6.4 Good Rectangles

Fix γ = γ(k) > 0 to be sub-constant (i.e., γ = o(1)), and such that γ > 1
ko(1)

. Let i ∈ [c].

We say that i is good if

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
X t,z

i

)]
≤ m

γc
. (11)

E
z∈R{0,1}V<i

E
t←ρi,z

[
I
(
Y t,z
i

)]
≤ m

γc
. (12)

By Markov’s inequality and Lemma 11,

Pr
i∈R[c]

[ i is good ] ≥ 1− 2γ. (13)

For the rest of the lower bound proof, fix a good i ∈ [c].

For every z ∈ {0, 1}V<i and t ∈ [m], consider the rectangle Rt,z = At,z × Bt,z. Apply

Lemma 12 to the sets At,z, Bt,z, where the functions π1, π2 are the outputs of the two

players for the rectangle Rt, in the protocol π. Lemma 12 partitions each rectangle Rt,z

into ℓ = O(1/γ8) new rectangles, denoted Rt,1,z, . . . , Rt,ℓ,z. Observe that {Rt,s,z}t∈[m],s∈[ℓ] is

a cover of Ψz ×Ψz, ∪
t∈[m]
s∈[ℓ]

Rt,s,z = Ψz ×Ψz. (14)

For t ∈ [m] and s ∈ [ℓ], denote Rt,s,z = At,s,z ×Bt,s,z, where At,s,z, Bt,s,z ⊆ Ψz. Let X t,s,z

be a random variable taking values in Ψz, that is uniformly distributed over At,s,z. Let Y t,s,z

be a random variable taking values in Ψz, that is uniformly distributed over Bt,s,z.

Let z ∈ {0, 1}V<i . We define ηi,z : [m] × [ℓ] → [0, 1] to be the distribution that selects

rectangle indices (t, s) ∈ [m]× [ℓ] as follows: Randomly select an input pair (x, y) ∈ Ψz×Ψz.

Select (t, s) to be the indices of the unique rectangle Rt,s,z containing (x, y). That is, ηi,z(t, s)

is the density of the rectangle Rt,s,z with respect to input pairs that agree with z,

ηi,z(t, s) =
|Rt,s,z|
|Ψz ×Ψz|

.

Observe that for every t ∈ [m] it holds that

ρi,z(t) =
∑
s∈[ℓ]

ηi,z(t, s).

We say that (i, z, t, s) is good if all the followings holds:

1. Rt,s,z is a unique answer rectangle (as in Lemma 12). Recall that for each unique answer

rectangle Rt,s,z, there is a unique leaf in V , denoted ωt,s,z, returned as an output by

both players on all input pairs in the rectangle Rt,s,z.

2. Rt,s,z is γ-large (as in Lemma 12). That is, |Rt,s,z| ≥ γ4

104
|Rt,z|.

3. I (X t,s,z) ≤ 2 log(m), and therefore also, I (X t,z) ≤ 2 log(m).
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4. I (Y t,s,z) ≤ 2 log(m), and therefore also, I (Y t,z) ≤ 2 log(m).

5. I
(
X t,z

i

)
≤ m

γ2c
.

6. I
(
Y t,z
i

)
≤ m

γ2c
.

7. I
(
X t,s,z

i

)
≤ O (log(1/γ)).

8. I
(
Y t,s,z
i

)
≤ O (log(1/γ)).

Lemma 13. It holds that

Pr
z∈R{0,1}V<i ,
(t,s)←ηi,z

[ (i, z, t, s) is good ] ≥ 1−O(γ).

Proof. We claim that each of the eight requirements in the definition of a good tuple (i, z, t, x)

is violated with probability O(γ):

1. By the second item of Lemma 12.

2. By the third item of Lemma 12.

3. If I (X t,s,z) > 2 log(m), then ηi,z(t, s) = |Rt,s,z |
|Ψz×Ψz | ≤ 1/m2. Since for every z there

are at most m · ℓ rectangles Rt,s,z, the ηi,z-measure of all such rectangles is at most

ℓ/m < O(γ).

4. Same.

5. Since i is good, follows from Equation (11) and Markov’s inequality.

6. Since i is good, follows from Equation (12) and Markov’s inequality.

7. Since the the second and fifth properties of a good (i, z, t, s) imply this (seventh)

property as follows. Let τ and τ ′ be the distributions of the random variables X t,s,z
i and

X t,z
i (respectively). By the second property of a good tuple (i, z, t, s) (i.e., γ-largeness),

for every ω ∈ {0, 1}Vi it holds that τ(ω) ≤ 104

γ4 · τ ′(ω). We denote Ψ = {0, 1}Vi ,
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Ψpos = {ω ∈ Ψ : log (|Ψ| · τ ′(ω)) ≥ 0} and Ψneg = Ψ \Ψpos. Therefore,

I
(
X t,s,z

i

)
= I(τ) =

∑
ω∈Ψ

τ(ω) log (|Ψ| · τ(ω))

≤
∑
ω∈Ψ

τ(ω) log

(
|Ψ| · 10

4

γ4
· τ ′(ω)

)
≤ O (log(1/γ)) +

∑
ω∈Ψ

τ(ω) log (|Ψ| · τ ′(ω))

≤ O (log(1/γ)) +
∑

ω∈Ψpos

τ(ω) log (|Ψ| · τ ′(ω))

≤ O (log(1/γ)) +
104

γ4

∑
ω∈Ψpos

τ ′(ω) log (|Ψ| · τ ′(ω)) .

By the fifth property of a good tuple (i, z, t, s), it holds that

I(τ ′) = I
(
X t,z

i

)
≤ m

γ2c
< 0.01,

and thus by Lemma 5.11 in [KR13] (stated for convenience in Appendix A, Lemma 24)

−
∑

ω∈Ψneg

τ ′(ω) log (|Ψ| · τ ′(ω)) < 4I(τ ′)0.1.

Therefore,

I
(
X t,s,z

i

)
< O (log(1/γ)) +

104

γ4

(∑
ω∈Ψ

τ ′(ω) log (|Ψ| · τ ′(ω)) + 4I(τ ′)0.1

)

= O (log(1/γ)) +
104

γ4
(
I(τ ′) + 4I(τ ′)0.1

)
≤ O (log(1/γ)) .

8. Since the the second and sixth properties of a good (i, z, t, s) imply this (eighth)

property, as above.

We recall that for every unique answer rectangle Rt,s,z and for every (x, y) ∈ Rt,s,z, if

the protocol π is correct on (x, y), then in the protocol π both players output ωt,s,z on the

input (x, y). The reason is that if the protocol π is correct on (x, y), then, in particular,

both players return the same output ω on (x, y) in the protocol π. In this case, by the first

item in Lemma 12, the output on the rectangle Rt,s,z is the same as the original output, i.e.,

ω = ωt,s,z.
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6.5 The Super Graph

Let G = (U ∪W,E) be the bipartite graph with sets of vertices U,W and set of edges E,

defined as follows: Recall that we fixed a good i. Let U =W = {0, 1}Vi . For u ∈ U,w ∈ W ,

we have (u,w) ∈ E if there exists (x, y) ∈ supp(µi), such that xi = u and yi = w.

Let M be the number of vertices in layer (i+ 1)∗ of the tree T . We identify the set [M ]

with the set of vertices in layer (i+1)∗. Let u ∈ U,w ∈ W , such that (u,w) ∈ E. We define

T (u,w) ⊂ [M ] to be the set of all vertices in layer (i + 1)∗ that are set to be non-noisy for

inputs u,w, by Algorithm 1 defining µ, when the noisy multi-layer is i. Observe that u and

w determine for every vertex in layer (i+1)∗ if it is noisy or not. By a symmetry argument,

G is bi-regular and T (u,w) is of the same size T for every u,w. Let Σ be the set of all

possible boolean assignments to the vertices of a subtree of T rooted at layer (i+ 1)∗.

We observe that an input pair (x, y) with x<i = y<i and (xi, yi) ∈ E, is in supp(µi), if

and only if x and y agree on the subtrees rooted at each of the vertices in T (xi, yi) (these

are non-noisy subtrees). Therefore,

Pr
(x,y)∈RΨz×Ψz

[(x, y) ∈ supp(µi)] = |Σ|−T
|E|

|U | · |W |
. (15)

Let Gi be the set of all (t, s, z) ∈ [m] × [ℓ] × {0, 1}V<i such that (i, z, t, s) is good (see

Section 6.4). Let (t, s, z) ∈ Gi. Let E t,s,z ⊆ E be the set of all (u,w) ∈ E for which the

output ωt,s,z is correct for inputs (x, y) ∈ supp(µi), with xi = u and yi = w. Note that if the

noise is taken on the ith multi-layer, then u and w determine the correctness of ωt,s,z. Let

Λt,s,z =
{
(x, y) ∈ supp(µi) : (xi, yi) ∈ E \ E t,s,z

}
.

Let Si be the set of inputs (x, y) ∈ supp(µi) that the protocol π errs on, when the noisy

multi-layer is i. Our goal is to lower bound the size of Si. Observe that the protocol π

errs on all the inputs in Λt,s,z ∩ Rt,s,z, when the noisy multi-layer is i. The reason is that,

as remarked at the end of Section 6.4, by the first property of a good tuple (i, z, t, s) (i.e.,

unique answer), if the protocol π is correct on (x, y) ∈ Rt,s,z, then in the protocol π both

players output ωt,s,z on the input (x, y). Therefore,

Λt,s,z ∩Rt,s,z ⊆ Si.

Define

P t,s,z := Pr
(x,y)∈RRt,s,z

[
(x, y) ∈ Λt,s,z

]
= Pr

[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
,

and get that

|Si| ≥
∑

(t,s,z)∈Gi

|Rt,s,z| · P t,s,z.

The following lemma, proved in Section 6.5.1, lower bounds P t,s,z.
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Lemma 14. For (t, s, z) ∈ Gi, it holds that

P t,s,z ≥
(
1− poly(1/γ)

k

)
Pr

(x,y)∈RΨz×Ψz

[(x, y) ∈ supp(µi)] .

We continue to bound the size of Si using Lemma 14,

|Si| ≥
(
1− poly(1/γ)

k

)
Pr

(x,y)∈RΨz×Ψz

[(x, y) ∈ supp(µi)] ·
∑

(t,s,z)∈Gi

|Rt,s,z|.

By Lemma 13, ∑
(t,s,z)∈Gi

|Rt,s,z| ≥ (1−O(γ)) · |{0, 1}V <i| · |{0, 1}V ≥i|2.

Therefore,

|Si| ≥
(
1− poly(1/γ)

k
−O(γ)

)
· |{0, 1}V <i| · |{0, 1}V ≥i|2 Pr

(x,y)∈RΨz×Ψz

[(x, y) ∈ supp(µi)] ,

which implies
|Si|

|supp(µi)|
≥ 1− poly(1/γ)

k
−O(γ).

We conclude that the protocol π errs on 1 − o(1) fraction of the inputs in supp(µi), when

the noisy multi-layer is i. The lower bound follows.

6.5.1 Proof of Lemma 14

In this section we prove Lemma 14. By Equation (15), it suffices to show that

P t,s,z := Pr
[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
≥
(
1− poly(1/γ)

k

)
|Σ|−T |E|

|U | · |W |
.

The proof uses several claims and lemmas. All the claims used by the proof are proved in

Section 6.5.2. Lemma 18 is stated and proved in Section 6.6. Lemma 22 is stated and proved

in Appendix A.

Adding randomness. We start by “adding” some more randomness to the variablesX t,s,z

and Y t,s,z, to obtain new variables X̆ t,s,z and Y̆ t,s,z, for a reason that will be explained shortly.

Let δ = 2−2
2k
. Define X̆ t,s,z to be X t,s,z with probability 1 − δ, and uniformly distributed

over Ψz with probability δ. Define Y̆ t,s,z to be Y t,s,z with probability 1 − δ, and uniformly

distributed over Ψz with probability δ.

For u ∈ U , we define the random variable Xu to be (X̆ t,s,z
≥i |X̆

t,s,z
i = u), that is, Xu has the

distribution of X̆ t,s,z
≥i conditioned on the event X̆ t,s,z

i = u. For w ∈ W , we define the random

variable Y w to be (Y̆ t,s,z
≥i |Y̆

t,s,z
i = w), that is, Y w has the distribution of Y̆ t,s,z

≥i conditioned on

the event Y̆ t,s,z
i = w. By applying Lemma 22 twice (see Appendix A), once with Θ1 = X t,s,z

i

and Θ2 = X t,s,z
≥i and then with Θ1 = Y t,s,z

i and Θ2 = Y t,s,z
≥i , and using the third and fourth

27



properties of a good tuple (i, z, t, s), we get I(Xu), I(Y w) ≤ 24k for every u ∈ U,w ∈ W .

We mention that Lemma 9, that will be applied next, requires that I(Xu), I(Y w) ≤ 24k, and

that without the addition of randomness to the variables X t,s,z and Y t,s,z, this requirement

may not by satisfied.

Recall that we want to lower bound the expression

P t,s,z := Pr
[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
.

Consider the expression

P̆ t,s,z := Pr
[
(X̆ t,s,z, Y̆ t,s,z) ∈ Λt,s,z

]
.

The following claim shows that P t,s,z cannot be much smaller than P̆ t,s,z, thus it suffices to

bound P̆ t,s,z.

Claim 15. It holds that

P t,s,z ≥ P̆ t,s,z − 2δ|Σ|−T |E|
|U | · |W |

.

Applying Lemma 9 to bound P̆t,s,z. We turn to bound P̆ t,s,z. Lemma 9 can be applied

to the graph G, as by a symmetry argument, for any fixed u or w and every v ∈ [M ], it

holds that at most a fraction of 2−20k of the sets {T (u,w)}(u,w)∈E contain v (by definition

of the bursting noise game and by the Chernoff bound). This argument also shows that

T ≤ 2−20kM , and that

|E t,s,z| ≤ 2−20k|E|, (16)

as the output ωt,s,z is correct only if it has an ancestor in T (u,w).

By applying Lemma 9 to the graph G, there exists a set Dt,s,z ⊆ E such that

|Dt,s,z|
|E|

≤ 2−4k, (17)

and for every (u,w) ∈ E \ Dt,s,z it holds that

Pr
Xu,Y w

[
Xu

T (u,w) = Y w
T (u,w)

]
≥
(
1− 2−4k

)
|Σ|−T .

Recall that an input pair (x, y) with x<i = y<i and (xi, yi) ∈ E, is in supp(µi), if and only

if x and y agree on the subtrees rooted at each of the vertices in T (xi, yi) (these are non-noisy

subtrees). Therefore, by the definition of Xu,Y w and the last equation,

P̆ t,s,z =
∑

(u,w)∈E\Et,s,z
Pr
[
X̆ t,s,z

i = u
]
· Pr

[
Y̆ t,s,z
i = w

]
· Pr
Xu,Y w

[
Xu

T (u,w) = Y w
T (u,w)

]
≥
(
1− 2−4k

)
|Σ|−T

∑
(u,w)∈E\(Et,s,z∪Dt,s,z)

Pr
[
X̆ t,s,z

i = u
]
· Pr

[
Y̆ t,s,z
i = w

]
. (18)

28



We write the sum in the last expression as the sum on pairs (u,w) ∈ E, minus the sum on

pairs (u,w) ∈ E t,s,z ∪Dt,s,z (sum over the bad sets), and bound each partial sum separately.

Applying Lemma 18 to lower bound the sum on E. We apply Lemma 18 (see

Section 6.6) with P = X̆ t,s,z
i , Q = Y̆ t,s,z

i and I ≤ O (log(1/γ)), as by the seventh and eighth

properties of a good tuple (i, z, t, s),

I(X̆ t,s,z
i ) ≤ I(X t,s,z

i ) ≤ O (log(1/γ)) ,

I(Y̆ t,s,z
i ) ≤ I(Y t,s,z

i ) ≤ O (log(1/γ)) .

We get ∑
(u,w)∈E

Pr
[
X̆ t,s,z

i = u
]
· Pr

[
Y̆ t,s,z
i = w

]
≥ |E|
|U | · |W |

(
1− O (log(1/γ))

k

)
. (19)

Upper bounding the sum over the bad sets. In order to lower bound P̆ t,s,z, it remains

to upper bound the expression

C̆t,s,z :=
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X̆ t,s,z

i = u
]
· Pr

[
Y̆ t,s,z
i = w

]
.

Consider the expression

Ct,s,z :=
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
.

The following claim shows that C̆t,s,z cannot be much larger than Ct,s,z, thus it suffices to

bound Ct,s,z.

Claim 16. It holds that

C̆t,s,z ≤ Ct,s,z + 2δ · |E|
|U | · |W |

.

The following claim upper bounds Ct,s,z.

Claim 17. It holds that

Ct,s,z ≤ O(1/γ4) · 2−2k · |E|
|U | · |W |

.

By combining Claims 16 and 17, we get

C̆t,s,z ≤ poly(1/γ) · 2−k · |E|
|U | · |W |

. (20)

By Equations (18), (19), (20) and Claim 15,

P t,s,z ≥
(
1− poly(1/γ)

k

)
|Σ|−T |E|

|U | · |W |
,
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and the assertion holds.

6.5.2 Proof of Claims

Proof of Claim 15. Let U1,U2 be two independent random variables, each uniformly

distributed over Ψz. It holds that

P̆ t,s,z = Pr
[
(X̆ t,s,z, Y̆ t,s,z) ∈ Λt,s,z

]
= (1− δ)2 · Pr

[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
+ δ2 · Pr

[
(U1,U2) ∈ Λt,s,z

]
+ (1− δ)δ · Pr

[
(X t,s,z,U2) ∈ Λt,s,z

]
+ (1− δ)δ · Pr

[
(U1, Y t,s,z) ∈ Λt,s,z

]
≤ (1− δ)2 · Pr

[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
+ δ2 · Pr [(U1,U2) ∈ supp(µi)]

+ (1− δ)δ · Pr
[
(X t,s,z,U2) ∈ supp(µi)

]
+ (1− δ)δ · Pr

[
(U1, Y t,s,z) ∈ supp(µi)

]
≤ Pr

[
(X t,s,z, Y t,s,z) ∈ Λt,s,z

]
+ 2δ|Σ|−T |E|

|U | · |W |

= P t,s,z + 2δ|Σ|−T |E|
|U | · |W |

.

The last inequality uses the fact that for every x, y ∈ Ψz,

Pr [(x,U2) ∈ supp(µi)] = Pr [(U1, y) ∈ supp(µi)] = Pr [(U1,U2) ∈ supp(µi)] .

By Equation (15), this equals |Σ|−T |E|
|U |·|W | .

Proof of Claim 16. Let U1,U2 be two independent random variables, each uniformly

distributed over {0, 1}Vi . It holds that

C̆t,s,z =
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X̆ t,s,z

i = u
]
· Pr

[
Y̆ t,s,z
i = w

]
= (1− δ)2

∑
(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
+ δ2

∑
(u,w)∈Et,s,z∪Dt,s,z

Pr [U1 = u] · Pr [U2 = w]

+ (1− δ)δ
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,s,z

i = u
]
· Pr [U2 = w]

+ (1− δ)δ
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr [U1 = u] · Pr
[
Y t,s,z
i = w

]
.

The first term (out of the four) in the last sum is (1− δ)2 ·Ct,s,z. We bound each of the last
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three terms in the same way, and get the desired inequality. For example,∑
(u,w)∈Et,s,z∪Dt,s,z

Pr [U1 = u] · Pr
[
Y t,s,z
i = w

]
≤

∑
(u,w)∈E

Pr [U1 = u] · Pr
[
Y t,s,z
i = w

]
≤ 1

|U |
∑

(u,w)∈E

Pr
[
Y t,s,z
i = w

]
=

1

|U |
· |E|
|W |

∑
w∈W

Pr
[
Y t,s,z
i = w

]
=

|E|
|U | · |W |

,

where second to last equality is due to the bi-regularity of G.

Proof of Claim 17. We want to upper bound the expression

Ct,s,z :=
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,s,z

i = u
]
· Pr

[
Y t,s,z
i = w

]
.

First, observe that Ct,s,z · |Rt,s,z| is exactly the number of input pairs (x, y) ∈ Rt,s,z with

(xi, yi) ∈ E t,s,z ∪ Dt,s,z. Consider the expression

Ct,z :=
∑

(u,w)∈Et,s,z∪Dt,s,z

Pr
[
X t,z

i = u
]
· Pr

[
Y t,z
i = w

]
.

Again, Ct,z ·|Rt,z| is exactly the number of input pairs (x, y) ∈ Rt,z with (xi, yi) ∈ E t,s,z∪Dt,s,z.

Since Rt,z contains Rt,s,z, and by the second property of a good tuple (i, z, t, s) (i.e., γ-

largeness), it holds that

Ct,s,z ≤ |R
t,z|

|Rt,s,z|
Ct,z ≤ O(1/γ4) · Ct,z. (21)

Therefore, in order to bound Ct,s,z, it suffices to bound Ct,z.

By the third and fourth properties of a good tuple (i, z, t, s), we have I (X t,z) , I (Y t,z) ≤
2 log(m), which means that |Rt,z| ≥ 1

m4 |Ψz × Ψz|. This implies that for every set L ⊆ Ψz,

the probability that X t,z is in L is at most m4 the probability that a uniformly distributed

variable over Ψz obtains a value in L. In particular, for every u ∈ U ,

Pr
[
X t,z

i = u
]
≤ m4

|U |
. (22)

Similarly, for w ∈ W ,

Pr
[
Y t,z
i = w

]
≤ m4

|W |
. (23)

Define

U ′ =

{
u ∈ U : Pr

[
X t,z

i = u
]
≥ 2

|U |

}
,

31



W ′ =

{
w ∈ W : Pr

[
Y t,z
i = w

]
≥ 2

|W |

}
.

By the fifth and sixth properties of a good tuple (i, z, t, s), we have

I
(
X t,z

i

)
≤ m

γ2c
,

I
(
Y t,z
i

)
≤ m

γ2c
.

Using Lemma 5.12 in [KR13] (stated for convenience in Appendix A, Lemma 25) it holds

that

Pr
[
X t,z

i ∈ U ′
]
< 5 ·

(
m

γ2c

)0.1

, (24)

Similarly,

Pr
[
Y t,z
i ∈ W ′] < 5 ·

(
m

γ2c

)0.1

, (25)

The expression Ct,z is a sum over pairs (u,w) ∈ E t,s,z ∪ Dt,s,z. We bound Ct,z by a sum

of three partial sums, and work on each partial sum separately. The first partial sum is over

pairs (u,w) ∈ E with u ∈ U ′, the second is over pairs (u,w) ∈ E with w ∈ W ′, the third is

over pairs (u,w) ∈ E t,s,z ∪ Dt,s,z with u /∈ U ′ and w /∈ W ′.

We bound the first partial sum as follows. We use Equation (23) for the first inequality,

the bi-regularity of G for the second, and Equation (24) for the third.∑
(u,w)∈E
u∈U ′

Pr
[
X t,z

i = u
]
· Pr

[
Y t,z
i = w

]

≤ m4

|W |
∑

(u,w)∈E
u∈U ′

Pr
[
X t,z

i = u
]

=
m4

|W |
· |E|
|U |

∑
u∈U ′

Pr
[
X t,z

i = u
]

≤ 5m4

|W |
· |E|
|U |
·
(
m

γ2c

)0.1

≤ |E|
|U | · |W |

· c−0.05.

The second partial sum is bounded in a similar way. We bound the third partial sum using

Equations (16) and (17),∑
(u,w)∈Et,s,z∪Dt,s,z

u/∈U ′,w/∈W ′

Pr
[
X t,z

i = u
]
· Pr

[
Y t,z
i = w

]
≤ |E t,s,z ∪ Dt,s,z| · 2

|U |
· 2

|W |
<

|E|
|U | · |W |

· 2−3k.
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We conclude that Ct,z ≤ |E|
|U |·|W | · 2

−2k. Using Equation (21),

Ct,s,z ≤ O(1/γ4) · |E|
|U | · |W |

· 2−2k.

6.6 The Mini Graph

Lemma 18. Let P be a random variable over the domain U , and Q be a random variable

over the domain W , such that P and Q are independent. Denote I = max {I(P ), I(Q), 1}.
It holds that

Pr
P,Q

[(P,Q) ∈ E] ≥ |E|
|U | · |W |

(
1− I

k

)
.

Proof. Let Ĝ = (Û ∪ Ŵ , Ê) be the complete bipartite graph with sets of vertices Û , Ŵ and

set of edges Ê, defined as follows: Let Û = Ŵ be the set of all boolean assignments to the

vertices in layers i∗ to i∗+w0−1 of the tree T (that is, the first w0 layers in multi-layer i; see

Section 2). Let Ũ = W̃ be the set of all boolean assignments to the vertices in layers i∗+w0

to i∗+w0 +w1− 1 = (i+1)∗− 1 of the tree T (that is, all other layers in multi-layer i). Set

Ê = Û × Ŵ .

Let M̂ be the number of vertices in layer i∗ + w0 of the tree T . We identify the set [M̂ ]

with the set of vertices in layer i∗ + w0. Let û ∈ Û , ŵ ∈ Ŵ . We define T̂ (û, ŵ) ⊂ [M̂ ] to

be the set of all vertices in layer i∗ + w0 that are set to be non-noisy for inputs û, ŵ, by

Algorithm 1 defining µ, when the noisy multi-layer is i. That is, T̂ (û, ŵ) is the set of all

typical vertices in layer i∗+w0 with respect to i∗, w0, û, ŵ. Observe that û and ŵ determine

for every vertex in layer i∗ + w0 if it is noisy or not.

Note that by a symmetry argument, Ĝ is bi-regular and T̂ (û, ŵ) is of the same size T̂

for every û, ŵ. By the definition of the bursting noise game and by the Chernoff bound, for

any fixed û or ŵ and every v ∈ [M̂ ], it holds that at most a fraction of 2−20k of the sets

{T̂ (û, ŵ)}(û,ŵ)∈Ê contain v.

Let P be a random variable over the domain U , and Q be a random variable over the

domain W , such that P and Q are independent. Let P̂ and Q̂ be the projections of P and Q

on layers i∗ to i∗ + w0 − 1 (respectively). Let P̃ and Q̃ be the projections of P and Q on

layers i∗ + w0 to (i+ 1)∗ − 1 (respectively).

Define the bad sets

D1 =
{
û ∈ Û : Pr

P
[P̂ = û] = 0 or I(P̃ |P̂ = û) > 24k

}
,

D2 =

{
ŵ ∈ Ŵ : Pr

Q
[Q̂ = ŵ] = 0 or I(Q̃|Q̂ = ŵ) > 24k

}
.
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By the chain rule for the entropy function,

I ≥ I(P ) = log(|U |)−H(P )

= log(|Û | · |Ũ |)−H(P̂ , P̃ )

= log(|Û |) + log(|Ũ |)−H(P̂ )−H(P̃ |P̂ )

= I(P̂ ) + log(|Ũ |)− E
û←P̂

[
H(P̃ |P̂ = û)

]
≥ E

û←P̂

[
I(P̃ |P̂ = û)

]
.

By Markov’s inequality,

Pr
P

[
P̂ ∈ D1

]
≤ I

24k
. (26)

By a similar argument,

Pr
Q

[
Q̂ ∈ D2

]
≤ I

24k
. (27)

For û /∈ D1, we define the random variable X û to be (P̃ |P̂ = û), that is, X û has the

distribution of P̃ conditioned on the event P̂ = û. For û ∈ D1, we define the random

variable X û to be uniformly distributed over Ũ . Similarly, for ŵ /∈ D2, we define the random

variable Y ŵ to be (Q̃|Q̂ = ŵ), that is, Y ŵ has the distribution of Q̃ conditioned on the event

Q̂ = ŵ. For ŵ ∈ D2, we define the random variable Y ŵ to be uniformly distributed over W̃ .

Let Σ̂ be the set of all possible boolean assignments to the vertices of a subtree with w1

layers, rooted at layer i∗ + w0.

By Lemma 9 applied to the graph Ĝ, there exists a set D̂ ⊂ Ê such that |D̂||Ê| ≤ 2−4k, and

for every (û, ŵ) /∈ D̂ it holds that

Pr
Xû,Y ŵ

[
X û

T̂ (û,ŵ)
= Y ŵ

T̂ (û,ŵ)

]
≥
(
1− 2−4k

)
|Σ̂|−T̂ . (28)

It holds that

Pr [(P,Q) ∈ E]

=
∑

û∈Û ,ŵ∈Ŵ

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
· Pr
P,Q

[
(P,Q) ∈ E

∣∣∣ P̂ = û, Q̂ = ŵ
]

≥
∑

û∈Û\D1,

ŵ∈Ŵ\D2,

(û,ŵ)/∈D̂

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
· Pr
P,Q

[
(P,Q) ∈ E

∣∣∣ P̂ = û, Q̂ = ŵ
]
.

By the definition of the bursting noise game (when the main noise is on multi-layer i),

for every û, ŵ, the following holds: Conditioned on P̂ = û and Q̂ = ŵ, we have (P,Q) ∈ E
if and only if P̃ and Q̃ agree on the subtrees rooted at vertices in T̂ (û, ŵ). Therefore, using
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Equation (28) and the fact that Ê contains all pairs (û, ŵ),

Pr [(P,Q) ∈ E]

≥
∑

û∈Û\D1,

ŵ∈Ŵ\D2,

(û,ŵ)/∈D̂

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
· Pr
Xû,Y ŵ

[
X û

T̂ (û,ŵ)
= Y ŵ

T̂ (û,ŵ)

]

≥
(
1− 2−4k

)
|Σ̂|−T̂

∑
û∈Û\D1,

ŵ∈Ŵ\D2,

(û,ŵ)/∈D̂

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
.

To bound the last term, we consider four partial sums. Clearly,∑
(û,ŵ)∈Û×Ŵ

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
= 1.

By Equation (26), ∑
û∈D1

Pr
P

[
P̂ = û

]
≤ I

24k
,

and by Equation (27), ∑
ŵ∈D2

Pr
Q

[
Q̂ = ŵ

]
≤ I

24k
.

We next apply Lemma 23 (stated and proved in Appendix A) with a distribution τ over the

set Û × Ŵ , defined by τ(û, ŵ) = Pr[P̂ = û] · Pr[Q̂ = ŵ]. Observe that by the independence

of P andQ and by the super additivity of information, I(τ) = I(P̂ )+I(Q̂) ≤ I(P )+I(Q) ≤ 2I.

Lemma 23 implies that ∑
(û,ŵ)∈D̂

Pr
P

[
P̂ = û

]
· Pr

Q

[
Q̂ = ŵ

]
≤ 2I + 1

4k
.

Therefore,

Pr [(P,Q) ∈ E] ≥
(
1− 2−4k

)
|Σ̂|−T̂

(
1− I

24k
− I

24k
− 2I + 1

4k

)
≥ |Σ̂|−T̂

(
1− I

k

)
.

Finally, note that for every u ∈ U and w ∈ W , such that the projection of u and w to

layers i∗ to i∗+w0−1 is û and ŵ (respectively), the following holds: (u,w) ∈ E if and only if u

and w agree on the subtrees rooted at vertices in T̂ (û, ŵ). Therefore, |E| = |U | · |W | · |Σ̂|−T̂ ,
and the assertion follows.

Remark. We remark that Lemma 18 is only used in the proof of Lemma 14, for P and Q

such that the sets D1,D2 defined in the proof of Lemma 18 are empty. Hence, we could have

used a restricted version of Lemma 18 with a simpler proof. We included here the more

general version of Lemma 18, as the general claim and proof method may be of independent
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interest.

7 Information Upper Bound

In this section we prove Theorem 2. Let (x, y) ∈ {0, 1}V × {0, 1}V be an input pair to the

bursting noise game. For every vertex v ∈ V , we define two distributions Pv = (pv, 1 − pv)
and Qv = (qv, 1− qv), both over {0, 1}. If the player who owns v gets as an input the bit 0

for v, then Pv = (0.9, 0.1), else Pv = (0.1, 0.9). Similarly, if the player who doesn’t own v gets

as an input the bit 0 for v, then Qv = (0.9, 0.1), else Qv = (0.1, 0.9). We think of every Pv

as the “correct” distribution over the two children of v, and of every Qv as an estimation

of Pv, based on the knowledge of the player who doesn’t own v.

Consider the following protocol for the bursting noise game. Starting from the root until

reaching a leaf, at every vertex v, the player who owns v samples a bit according to Pv and

sends this bit to the other player. Both players continue to the child of v that is indicated

by the communicated bit. When they reach a leaf they output that leaf. We denote this

protocol by π. By the Chernoff bound, the probability that the players output a leaf that

is not typical with respect to the main noise layers is at most 2−Ω(w0). That is, the error

probability of π is exponentially small in k.

To upper bound the information cost of the protocol π it is convenient to use the notion

of divergence cost of a tree. This notion is implicit in [BBCR10] and was formally defined

in [BR11].

Definition 4 (Divergence Cost). Given a binary tree T , whose root is r, and distributions

Pv = (pv, 1 − pv), Qv = (qv, 1 − qv) for every vertex v in the tree, we define the divergence

cost of the tree, recursively, as follows. D(T ) = 0 if the tree has depth 0, otherwise,

D(T ) = D(Pr∥Qr) + E
v∼Pr

[D(Tv)],

where for every vertex v, Tv is the subtree of T whose root is v.

Let T be the binary tree on which the bursting noise game is played, and let Pv, Qv,

for every vertex v ∈ V , be the distributions defined according to the input pair (x, y) ∈
{0, 1}V ×{0, 1}V . Following the recursion in the definition of the divergence cost we get the

following equation:

D(T ) =
∑
v∈V

p̃v ·D(Pv∥Qv), (29)

where p̃v, for a vertex v ∈ V , is the probability to reach v during the execution of the

protocol π, defined above. That is, if v is the root of the tree, p̃v = 1, otherwise,

p̃v =

{
p̃u · pu if v is the left-hand child of u

p̃u · (1− pu) if v is the right-hand child of u.

Using Equation (29), we give an upper bound on the divergence cost of T .
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Proposition 19.

D(T ) = O(k).

Proof. For every non-noisy vertex v we have D(Pv∥Qv) = 0, and for every noisy vertex v we

have D(Pv∥Qv) ≤ 4. Let i be the noisy multi-layer. Then,

1. The vertices above the ith multi-layer add nothing to the divergence cost.

2. The main noise in layers [i∗, i∗ + w0 − 1] adds O(w0) to the divergence cost.

3. Let v be the vertex that the players reach during the execution of the protocol π, in

layer i∗ + w0, that is, at the end of the main noise. If v is typical with respect to

i∗, w0, x, y, the vertices below v add nothing to the divergence cost. The probability

that v is a non-typical vertex with respect to i∗, w0, x, y, that is, v ∈ L1, is at most

2−Ω(w0). In such a case, the vertices in the subtree with w1 layers rooted at v add

O(2−Ω(w0) · w1) = O(1) to the divergence cost (where w0 was chosen to be sufficiently

larger than log(w1)).

4. If i < c: Let v be the vertex that the players reach during the execution of the protocol

in layer i∗ + w0 + w1. If v is a typical vertex with respect to i∗ + w0, w1, x, y or v

has no ancestor in L1, the vertices below v add nothing to the divergence cost. The

probability that v has an ancestor in L1 and is a non-typical vertex with respect to

i∗ + w0, w1, x, y, that is, v ∈ L2, is at most 2−Ω(w1). In such a case, the vertices in

the subtree rooted at v add at most O(2−Ω(w1) · w · c) = O(1) to the divergence cost

(where w1 was chosen to be sufficiently larger than log(w · c)).

Together, the total divergence cost is O(w0) = O(k) as claimed.

Let X be the input to the first player and Y be the input to the second player. In the

protocol π, the players use two private random strings and no public randomness. Denote the

private random string of the first player by R1, and the private random string of the second

player by R2. For a layer d ∈ [c · w], let Πd be the vertex in layer d that the players reach

during the execution of the protocol π, when the inputs are (X, Y ) and the private random

strings are R1 and R2. Let the tree T ′ be the same as T , except that every distribution Qv,

for every vertex v ∈ V , is replaced with the distribution Q′v = (q′v, 1−q′v), where q′v is defined
as follows: Let d be the layer of v. If v is owned by the first player, q′v is the function of v, y

and r2, defined as

q′v = E
X,R1

[pv|Y = y,R2 = r2,Πd = v].

If v is owned by the second player, q′v is the function of v, x and r1, defined as

q′v = E
Y,R2

[pv|X = x,R1 = r1,Πd = v].

We think of Q′v as the best estimation of the correct distribution Pv, based on the

knowledge of the player who doesn’t own v, whereas Qv is some estimation. Intuitively,
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D(Pv∥Qv) is the information that the player who doesn’t own v learns on Pv from the bit

sent during the protocol at the vertex v, assuming that she expects this bit to be distributed

according to Qv, whereas D(Pv∥Q′v) is the information that she learns based on the best

possible estimation of Pv. Therefore, intuitively, the divergence cost of T ′ is at most the

divergence cost of T , in expectation. This is formulated in the following proposition.

Proposition 20.

E[D(T ′)] ≤ E[D(T )],

where the expectation is over the sampling of the inputs according to µ and over the

randomness.

Proof. By Equation (29),

E
X,Y,R1,R2

[D(T )−D(T ′)] = E
X,Y,R1,R2

[∑
v∈V

p̃v (D(Pv∥Qv)−D(Pv∥Q′v))

]
.

We separate the sum on the vertices to layers and work on each layer separately. Fix a

layer d in the tree. Let Ld be the set of vertices in layer d. To simplify notation, let A denote

(X,R1), let B denote (Y,R2), and let V denote Πd. Then,

E
X,Y,R1,R2

[∑
v∈Ld

p̃v (D(Pv∥Qv)−D(Pv∥Q′v))

]
= E

A,B,V
[D(PV ∥QV )−D(PV ∥Q′V )] .

By the definition of relative entropy,

E
A,B,V

[D(PV ∥QV )−D(PV ∥Q′V )]

= E
A,B,V

[
pV

(
log

(
pV
qV

)
− log

(
pV
q′V

))
+ (1− pV )

(
log

(
1− pV
1− qV

)
− log

(
1− pV
1− q′V

))]
= E

A,B,V

[
pV log

(
q′V
qV

)
+ (1− pV ) log

(
1− q′V
1− qV

)]
. (30)

Assume that the vertices in layer d are owned by the first player. The case that the vertices

in layer d are owned by the second player is analogous. Consider the first summand in

Equation (30). It holds that,

E
A,B,V

[
pV log

(
q′V
qV

)]
= E

B,V

[
E
A

[(
pV log

(
q′V
qV

))∣∣∣∣B, V ]] .
By the definition of q′V , for fixed B, V , it holds that q′V = EA [pV |B, V ]. Since q′V and qV
are functions of B and V , when we condition on B and V , q′V and qV are fixed. Therefore,
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conditioned on B and V , the term log
(

q′V
qV

)
is independent of A. We get that,

E
B,V

[
E
A

[(
pV log

(
q′V
qV

))∣∣∣∣B, V ]] = E
B,V

[
E
A
[pV |B, V ] log

(
q′V
qV

)]
= E

B,V

[
q′V log

(
q′V
qV

)]
.

In the same way, we get that the second summand in Equation (30) is

E
A,B,V

[
(1− pV ) log

(
1− q′V
1− qV

)]
= E

B,V

[
(1− q′V ) log

(
1− q′V
1− qV

)]
.

Put together it holds that,

E
A,B,V

[D(PV ∥QV )−D(PV ∥Q′V )] = E
B,V

[D(Q′V ∥QV )] .

Since the divergence is non-negative, EA,B,V [D(PV ∥QV )−D(PV ∥Q′V )] ≥ 0. This is true

for every layer d in the tree, therefore, summing over all layers, we get that EA,B[D(T ′)] ≤
EA,B[D(T )], as stated.

The following lemma relates the information cost of π to the expected divergence cost

of T ′. The proof appears in [BR11] (see Lemma 5.3 therein). Together with Propositions 19

and 20 we get that ICµ(π) = O(k).

Lemma 21.

E[D(T ′)] = ICµ(π),

where the expectation is over the sampling of the inputs according to µ and over the

randomness.
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A Information Theoretic Lemmas

Lemma (Lemma 8 restated, Shearer-Like Inequality for Relative Entropy). Let

P,Q : Ω1× · · ·×ΩM → [0, 1] be two distributions, such that Q is a product distribution, i.e.,

for every j ∈ [M ], there exists Qj : Ωj → [0, 1], such that Q(x1, . . . , xM) =
∏

j∈[M ]Qj(xj).

Let T = {Ti}i∈I be a collection of subsets of [M ], such that each element of [M ] appears

in at most 1
K

fraction of the members of T . For A ⊆ [M ], let PA and QA be the marginal

distributions of A in the distributions P and Q (respectively). Then,

K · E
i∈RI

[D(PTi
∥QTi

)] ≤ D(P∥Q).

Proof. For the proof of this lemma, it will be convenient to use the notion of conditional

relative entropy using the notation of [CT06] (see Section 2.5 of [CT06]). For A ⊆ [M ], and

41



(x1, . . . , xM) ∈ Ω1 × . . . × ΩM , we denote xA = {xj : j ∈ A}. In this notation, we need to

prove that

K · E
i∈RI

[D (P (xTi
)∥Q(xTi

))] ≤ D
(
P (x[M ])∥Q(x[M ])

)
.

Define x<j = {xℓ : ℓ < j} and xTi,<j = {xℓ : ℓ ∈ Ti, ℓ < j}. By the chain rule for

relative entropy (see Section 2.5 in [CT06]),

D
(
P (x[M ])∥Q(x[M ])

)
=
∑
j∈[M ]

D (P (xj|x<j)∥Q(xj|x<j)) ,

D (P (xTi
)∥Q(xTi

)) =
∑
j∈Ti

D (P (xj|xTi,<j)∥Q(xj|xTi,<j)) .

Since Q is a product distribution, conditioning can only increase the relative entropy (see,

for example, Lemma 2.5.3 in [Gra90]). In particular, for every j ∈ Ti it holds that

D (P (xj|xTi,<j)∥Q(xj|xTi,<j)) ≤ D (P (xj|x<j)∥Q(xj|x<j)) .

Therefore,

D (P (xTi
)∥Q(xTi

)) ≤
∑
j∈Ti

D (P (xj|x<j)∥Q(xj|x<j)) .

Summing over all i ∈ I we get that∑
i∈I

D (P (xTi
)∥Q(xTi

)) ≤
∑
i∈I

∑
j∈Ti

D (P (xj|x<j)∥Q(xj|x<j)) . (31)

For every j ∈ [M ], the term D (P (xj|x<j)∥Q(xj|x<j)) appears on the right-hand side of

Equation (31) at most |I|
K

times. Therefore,∑
i∈I

D (P (xTi
)∥Q(xTi

)) ≤ |I|
K
·
∑
j∈[M ]

D (P (xj|x<j)∥Q(xj|x<j))

=
|I|
K
·D
(
P (x[M ])∥Q(x[M ])

)
.

Dividing by |I|
K

we get that the claim holds.

Lemma 22. Let Θ = (Θ1,Θ2) be a random variable uniformly distributed over a subset Γ

of a domain Ω = Ω1 × Ω2, such that β = |Γ|
|Ω| ≥ 2−2

2k
. Let δ = 2−2

2k
. Let Z be a boolean

random variable, obtaining the value 1 with probability 1− δ and 0 with probability δ. Define

Θ′ = (Θ′1,Θ
′
2) to be Θ whenever Z = 1 and uniformly distributed over Ω whenever Z = 0.

Then, for every θ1 ∈ Ω1, it holds that

I(Θ′2|Θ′1 = θ1) ≤ 24k.

Proof. For θ1 ∈ Ω1, define

Γ(θ1) = {θ2 ∈ Ω2 | (θ1, θ2) ∈ Γ} .
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Let β1 =
|Γ(θ1)|
|Ω2| . It holds that

H(Θ′2|Θ′1 = θ1) ≥ H(Θ′2|Z,Θ′1 = θ1)

= Pr
Z,Θ

[Z = 1|Θ′1 = θ1] · log(|Γ(θ1)|) + Pr
Z,Θ

[Z = 0|Θ′1 = θ1] · log(|Ω2|)

= log(|Ω2|)− Pr
Z,Θ

[Z = 1|Θ′1 = θ1] · log (1/β1) .

Therefore,

I(Θ′2|Θ′1 = θ1) ≤ Pr
Z,Θ

[Z = 1|Θ′1 = θ1] · log (1/β1) .

If β1 ≥ 2−2
4k
, then the assertion follows. Otherwise, β1 < 2−2

4k
.

Pr
Z,Θ

[Z = 1|Θ′1 = θ1]

=
(1− δ) · Pr[Θ′1 = θ1|Z = 1]

δ · Pr[Θ′1 = θ1|Z = 0] + (1− δ) · Pr[Θ′1 = θ1|Z = 1]

=
(1− δ) · |Γ(θ1)||Γ|

δ · 1
|Ω1| + (1− δ) · |Γ(θ1)||Γ|

=
(1− δ) · β1

β

δ + (1− δ) · β1

β

<
β1
δ · β

.

This implies,

I(Θ′2|Θ′1 = θ1) ≤
β1 log (1/β1)

δ · β
<

2−2
4k · 24k

2−22k · 2−22k
< 1,

where the second to last inequality is since the function x log(1/x) is monotone increasing

for 0 ≤ x ≤ 1
e
.

Lemma 23. Let τ be a probability distribution over a domain Ω. Assume I(τ) ≤ I for

I ∈ R+. Let D ⊂ Ω be such that |D||Ω| ≤ α. Then,

τ(D) ≤ I + 1

log
(
1
α

) .
Proof. Let δ := τ(D). Consider the distribution τ ′ that assigns each of the elements in D a

probability of δ
|D| ≥

δ
α|Ω| , and each of the other elements a probability of 1−δ

|Ω|−|D| ≥
1−δ
|Ω| . That

is, τ ′ is obtained by re-distributing the weight of τ , so it will be uniform on D and on Ω \D.

Observe that H(τ ′) ≥ H(τ), and hence I(τ ′) ≤ I(τ). Therefore,

I ≥ I(τ) ≥ I(τ ′) ≥ δ log
(
δ
α

)
+ (1− δ) log(1− δ)

= δ log
(
1
α

)
−H(δ, 1− δ) ≥ δ log

(
1
α

)
− 1 = τ(D) log

(
1
α

)
− 1.
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Lemma 24 (Lemma 5.11 in [KR13]). Let µ : Ω → [0, 1] be a distribution satisfying

I = I(µ) ≤ 0.01. Let A ⊆ Ω be the set of elements with µ(x) < 1
|Ω| . Denote

Ineg(µ) = −
∑
x∈A

µ(x) log(|Ω|µ(x)).

Then,

Ineg(µ) < 4I0.25 log
(

1
I0.25

)
< 4I0.1.

Lemma 25 (Lemma 5.12 in [KR13]). Let µ : Ω → [0, 1] be a distribution satisfying

I = I(µ) ≤ 0.01. Let A ⊆ Ω be the set of elements with µ(x) ≥ 2
|Ω| . Then,

µ(A) < 4I0.25 log
(

1
I0.25

)
+ I < 5I0.1.
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