
On the probabilistic closure of the loose unambiguous
hierarchy

Edward A. Hirsch Dmitry Sokolov∗

April 14, 2014

Abstract

Unambiguous hierarchies [NR93, LR94, NR98] are defined similarly to the polyno-
mial hierarchy; however, all witnesses must be unique. These hierarchies have subtle
differences in the mode of using oracles. We consider a “loose” unambiguous hierarchy
prUH• with relaxed definition of oracle access to promise problems. Namely, we allow
to make queries that miss the promise set; however, the oracle answer in this case can
be arbitrary (a similar definition of oracle access has been used in [CR08]).

In this short note we prove that the first part of Toda’s theorem PH ⊆ BP ·
⊕P ⊆ PPP can be rectified to PH = BP · prUH•, that is, the closure of our hierarchy
under Schöning’s BP operator equals the polynomial hierarchy. It is easily seen that
BP · prUH• ⊆ BP · ⊕P.

The proof follows the same lines as Toda’s proof, so the main contribution of the
present note is a new definition that allows to characterize PH as a probabilistic closure
of unambiguous computations.

1 Introduction

Around 1990, there was a burst of results about interactive protocols [GMR89, Bab85, GS86,
BOGKW88, BM88, LFKN92, BFL91, Sha90].

In the same time, Seinosuke Toda proved that PH ⊆ BP ·⊕P ⊆ PPP [Tod91]. The first
part of his result can be viewed as an Arthur-Merlin game (recall that AM = BP ·NP; cf.
also [Zac88]); however, Merlin must have an odd number of correct proofs. One can describe
the proof of this part as follows. We depart from a relativized version of Valiant-Vazirani’s
lemma and turn the polynomial hierarchy, level by level, into a multi-round Arthur-Merlin
game where Merlin has unique witnesses. Then, this multi-round game is collapsed to just
two rounds by a technique somewhat similar to the reduction of the number of rounds in

Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences, 27 Fontanka, 191023
St.Petersburg, Russia. Web: http://logic.pdmi.ras.ru/~hirsch/

∗Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences, 27 Fontanka, 191023
St.Petersburg, Russia. Web: http://logic.pdmi.ras.ru/~sokolov/

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 50 (2014)

Arthur-Merlin proofs (AM(k) = AM(2)) [BM88]: the probability of error is reduced and
this allows to exchange neighbouring Merlin and Arthur’s turns. However, it seems like to
make these ideas work one needs to argue about classes of computations that are closed under
the complement (since ∃ and ∀ quantifiers alternate in the polynomial hierarchy) and under
majority (to reduce the probability of error). Toda overcame these obstacles by generalizing
nondeterministic computations with unique witnesses to computations with an odd number
of witnesses. This nice solution, however, led to the intermediate class BP · ⊕P, which was
not known to belong to the polynomial hierarchy, and was actually wider than needed.

In this paper we rectify the first part of Toda’s theorem by replacing computations with
an odd number of witnesses by unambiguous computations. However, simply requiring
unique witnesses does not work. To the best of our knowledge, two notions of unambiguous
hierarchies (constant-round games with unique strategies) were studied to the date: a hi-
erarchy UH [NR93, NR98]1 of unambiguous computations with oracle access to languages

(UPUP...UP

, the computation needs to be unambiguous only for the correct oracle) and a hi-
erarchy UH [LR94, NR98] with guarded oracle access to promise problems2 (that is, the next
level of the hierarchy is obtained by adding an oracle access to the promise version of UP,
but queries outside the promise set are prohibited). Both hierarchies are contained in the
unambiguous alternating polynomial-time class UAP [CGRS04] and thus in SPP [NR98]
(hence in PP and ⊕P). Obviously these hierarchies are also contained in PH; however,
replacing ⊕P by UH or UH in Toda’s theorem does not work: Valiant-Vazirani’s reduction
NP ⊆ RPpromiseUP (in what follows, we abbreviate promise by pr) sometimes outputs an
instance that has more than one solution and it is unclear how to avoid querying the oracle
for such an instance (which is prohibited in UH or UH).

We therefore relax the definition of the unambiguous hierarchy allowing to query the
oracle outside its promise set. However, the computation must return a correct answer for
all possible answers of the oracle to such queries. We call this a loose access to the oracle. (A
similar notion was used by Chakaravarthy and Roy [CR08] for querying prMA and prAM
by deterministic computations, and it is also implicitly used for probabilistic computations
querying prUP when one formulates Valiant-Vazirani’s lemma as NP ⊆ RPprUP.) The
resulting hierarchy prUH• contains the two hierarchies UH and UH and is still contained
in PH. We prove that PH ⊆ BP · prUH• (the proof goes along the same lines as Toda’s
theorem; however, we have to use oracles instead of Schöning’s dot-operators all the way
until the very end). Since BP · prUH• ⊆ BP · ⊕P, this is a strengthening of the first
part of Toda’s theorem. Moreover, our result is actually an equality ; thus, we give a natural
characterization of PH as a probabilistic closure of unambiguous computations.

Spakowski and Tripathi [ST09] asked3 whether UH and UH collapse simultaneously with
PH. Since our result is proved level by level, it implies that a collapse of prUH• to the i-th
level collapses PH to the (i + 2)-th level. This, however, leaves open the question whether

1The authors of [NR93, NR98] attribute the initiation of this study to Hemachandra.
2This is similar to smart reductions used in [GS88] and was apparently suggested in the context of

unambiguous computations in [CHV92a, CHV92b].
3They attribute this question to [LR94]; however, we did not find it there.

2

a collapse of UH or UH implies a collapse of prUH• (and PH).
In what follows, we give definitions and prove our main theorem and its consequences.

We conclude with a big list of further directions.

2 Definitions

Promise problems. A language is a subset of {0, 1}∗, and a promise problem is a pair
(L,A), where L is a language, and A ⊆ {0, 1}∗ is a promise set. To solve a promise problem,
we need to solve only its instances belonging to A.

For a class of languages C, we consider the class of promise problems prC (slightly abusing
the notation): namely, we consider the definition of C and replace all references to “every
input” by references to “every input in A”, where A is a promise set.

For example, (L,A) ∈ prBPP ⇐⇒ there is a polynomial-time probabilistic machine
M such that ∀x ∈ A Pr{M(x) = L(x)} ≥ 3/4.

Note that if a class has a semantic requirement (such as bounded error or witness unique-
ness), the machine needs to satisfy it only on the promise set. Also note that nevertheless
if machines in the original class stop in polynomial time, we can w.l.o.g. assume that the
machines in the new class still stop in polynomial time even outside the promise set (if the
computational model allows to add a polynomial alarm clock).

However, if a class C of languages has syntactic requirements only (that is, the correspond-
ing machines can be recursively enumerated), the corresponding promise class essentially
equals C, i.e., prC = {(L,A) | L ∈ C, A ⊆ {0, 1}∗}.

When considering a class D of promise problems, we assume it is closed downwards w.r.t.
the promise set, i.e., if (L,A) ∈ D and B ⊆ A, then (L,B) ∈ D.

Loose oracle access. We define loose oracle access to a promise problem so that the oracle
returns a correct answer if a query is in the promise set and returns an arbitrary answer
otherwise.

The notion is absolutely clear for P(O,A), that is, for polynomial-time deterministic oracle
Turing machines. It can be applied also to other computational devices. For example,
L ∈ BPP(O,A) ⇐⇒ there is a probabilistic polynomial-time oracle machine M• that
decides the membership in L correctly with probability at least 3/4 irrespectively of the
answers returned by the oracle on queries that do not belong to A. In particular, the oracle
can return different answers for the same query outside A.

We will use the notion of loose access similarly not just for bounded-error probabilistic
oracle Turing machines (BPP•), but for other oracle machine types as well. Throughout
this paper, whenever we talk about oracle access to promise problems, we mean the “loose”
definition by default. In order to avoid misunderstanding, we include more formal definition
for the two main classes of computations used in this paper.

Definition 1. L ∈ BPP(O,A) iff there is a probabilistic polynomial-time oracle machine
M• that uses r(n) random bits such that for every input x of length n, there is a set R of

3

random strings of length r(n) such that |R| ≥ 3
4
2r(n) and for every string h ∈ R and for

every language L′ that agrees with O on the promise set A, ML′(x, h) = L(x) (where M• is
considered as a deterministic machine receiving the input x and the random string h).

Remark 1. Note that for any polynomial p(n), one can amplify the probability of success to
1− 2−p(n) as usual, yielding |R| ≥ (1− 2−p(n))2r(n).

Definition 2. L ∈ UP(O,A) iff there is a nondeterministic polynomial-time oracle machine
M• with input x and witness w such that

• for every x /∈ L, for every w, for every language L′ that agrees with O on the promise
set A, ML′(x,w) rejects;

• for every x ∈ L, there exists a single w such that for every language L′ that agrees with
O on the promise set A, ML′(x,w) accepts (for any other w and for every language L′′

that agrees with O on the promise set A, ML′′(x,w) rejects).

Remark 2. In the informal definition preceding the formal ones, we allowed the oracle to
give different answers for a query outside the promise set. One can safely assume it: since
the language L′ depends on a witness (or a random string), and M• can make at most a
polynomial number of queries to it, M• may store and reuse the first oracle’s answer for each
query.

Loose unambiguous hierarchy. We define the loose unambiguous hierarchy as follows.
(To avoid possible confusion, we define only the promise version.)

• prUΣ1
• = prUP,

• prUΣi+1
• = prUPprUΣi

• (with loose oracle access),

• prUH• =
⋃

i prUΣi
•.

Trivially, the unambiguous hierarchies considered in [NR93, LR94, NR98] are level-by-
level contained in the levels of prUH•.

Proposition 1. For any class of languages C, CprUH• ⊆ C⊕P.

Proof. For any language A, queries to D ∈ prUPA can be answered by a ⊕PA oracle
(consider the machine corresponding to D and treat it as a ⊕P machine; its answers on the
promise set will be the same as D’s, its answers outside the promise set may be arbitrary, but
it does not harm as loose access assumes that any answers will do). The statement follows

by gradual top-down replacement of the oracle in prUΣi+1
• = prUPprUP...prUP

starting
from the highest level oracle prUP and collapsing ⊕P⊕P to ⊕P [PZ83], i.e., MprUPprUP ⊆
MprUP⊕P ⊆M⊕P⊕P

=M⊕P ⊆ . . . ⊆ C⊕P.
Note that machines underlying the class C do not matter since all oracle queries made

by them on which their answer depends are answered correctly.

4

Schöning’s BP· operator. Uwe Schöning [Sch89] introduced the following dot-operator
BP· in order to consider a probabilistic version of any complexity class.

For any class of languages C, the class BP · C is the class of languages L such that there
exist C ∈ C, ε > 0 and a polynomial p such that

∀x ∈ {0, 1}∗ Pr
y∈{0,1}p(|x|)

{x ∈ L ⇐⇒ (x, y) ∈ C} > 1

2
+ ε,

or, put another way,

∀x ∈ {0, 1}∗ x ∈ L⇒ Pr
y∈{0,1}p(|x|)

{(x, y) ∈ C} > 1

2
+ ε, and

x /∈ L⇒ Pr
y∈{0,1}p(|x|)

{(x, y) ∈ C} > 1

2
+ ε.

Later other similar operators were introduced. The original proof of the first part of
Toda’s theorem goes in terms of these operators and concludes with BP · ⊕P. Our proof
(as well as folklore versions of the proof of Toda’s theorem) goes in terms of oracle classes;
however, the final result can be formulated in terms of the BP· operator as well. In order
to be able to reformulate it, we need to define a promise version of the BP· operator with
loose access to the inner promise problem.

For any class of promise problems D, the class BP · D is the class of languages L such
that there exist D = (C,A) ∈ D, ε > 0 and a polynomial p such that

∀x ∈ {0, 1}∗ x ∈ L⇒ Pr
y∈{0,1}p(|x|)

{(x, y) ∈ C ∩ A} > 1

2
+ ε, and

x /∈ L⇒ Pr
y∈{0,1}p(|x|)

{(x, y) ∈ C ∩ A} > 1

2
+ ε.

Note that the probability is not conditioned on (x, y) ∈ A, so A itself also must be large
enough.

The following proposition is well-known and easy to see. We include its proof for com-
pleteness and to make sure it works for the loose oracle access.

Proposition 2.
1. For a class of languages C, BPPC = BP ·PC.
2. For a class of promise problems D, BPPD = BP · prPD.

Proof. 1. Inclusion BP ·PC ⊆ BPPC is trivial.
Consider L ∈ BPPC. Let MC be an oracle polynomial-time Turing machine for L.

Consider a new language L′ = {(x, r) |MC
r (x) = 1}, where MC

r is the answer of MC for the
particular string r of random bits.

Clearly, L′ ∈ PC. Also Prr[L(x) = L′(x, r)] > 2
3
, hence L ∈ BP ·PC.

2. We use the same strategy for promise classes. Inclusion BP ·prPD ⊆ BPPD is trivial.

5

Let us write N (C,B)(x) = 1 if the machine N accepts x for any possible answers returned
by the oracle for queries outside B, N (C,B)(x) = 0 if it always rejects x, and N (C,B) = ⊥
if the answer depends on the oracle answers to queries outside B. Note that this notation
makes sense even for deterministic machines.

Consider L ∈ BPPD. Let MD be an oracle polynomial-time Turing machine for L with
loose access to the promise problem D. Consider a new promise problem (L′, A) = ({(x, r) |
MD

r (x) = 1}, {(x, r) |MD
r (x) = L(x)})

Clearly, (L′, A) ∈ prPD. Also Prr[L(x) = L′(x, r)] > 2
3
, hence L ∈ BP · prPD.

Proposition 3. BP · prUH• ⊆ BP · ⊕P.

Proof. Note that BPP⊕P = BP ·P⊕P by Proposition 2. Since ⊕P = P⊕P = ⊕P⊕P [PZ83],
BP·⊕P = BPP⊕P. On the other hand, by Proposition 1 BPPprUH• ⊆ BPP⊕P. It remains
to check that BP ·prUH• ⊆ BPPprUH• , that is, that our definitions of loose access for the
BP· operator and for oracle access match each other. Indeed, if on input x the BPP machine
picks a random string, queries the oracle for (x, r) and returns its answer, the definition of
BP ·prUH• guarantees that in case x ∈ L the proportion of strings r that yield the positive
answer is at least 1

2
+ ε. Simlarly, for x /∈ L the probability to get the negative answer is

at least 1
2

+ ε. The probability of success is then amplified to 3/4 by repetition and taking
majority.

3 Proofs

In order to prove the result, we need a relativized version of Valiant-Vazirani lemma. (Since
its proof hashes witnesses of the nondeterministic machine without accessing the computation
itself, it clearly relativizes. The relativized ⊕P version of this lemma was implicitly used by
[Tod91] and explicitly mentioned, for example, in [For09]).

Lemma 1 (Valiant, Vazirani [VV86]; Toda [Tod91]). NPC ⊆ BPPprUPC .

The following two lemmas generalize the proof in [Tod91]. Their proofs go along the
same lines.

Lemma 2. BPPprBPPC = BPPC, where C can be either a class of languages or a class of
promise problems.

Proof. Consider the corresponding oracle machine M• making oracle queries to the oracle
(O,A) ∈ prBPPC. We can assume w.l.o.g. that the error probability of both probabilistic
machines is exponentially small, say, 2−n where n is the input length. In order to simulate
the oracle O we just run the corresponding machine as a subroutine. The overall error of
the new algorithm is the error of M (O,A) plus O(nk · 2−n), where O(nk) bounds the running
time (hence, the number of queries) of M•. Note that since promise misses do not harm
M•, they won’t harm the new algorithm either (they are counted in the error probability of
M (O,A)).

6

Lemma 3. prUPprBPPC ⊆ prBPPprUPC , where C can be either a class of languages or a
class of promise problems.

Proof. Let (L,A) ∈ prUPprBPPC . Consider the corresponding nondeterministic oracle ma-
chine M• making oracle queries to an oracle (O,B) ∈ prBPPC. Assume that M• stops in
time p(n) ≥ n + 1 (in particular, makes at most p(n) queries of length at most p(n) each),
where n is the input length. Assume also that the promise problem (O,B) is decided by a
probabilistic polynomial-time machine QC (where C ∈ C) that has error probability at most
2−p(n)

2
for every query of length at most p(n) in its promise set B. Let r(n) be a polynomial

bounding the running time of Q on queries of length at most p(n) (in particular, r(n) bounds
the number of random bits used by QC). Consider the set of random strings Rn of length
r(n) that lead to the correct answer of QC on every input in {0, 1}≤p(n) ∩ B. Note that

|Rn|/2r(n) ≥ 1−
p(n)∑
i=1

2i2−p(n)
2 ≥ 1− 2−p(n)+1.

On input x, the new probabilistic oracle machine simply picks a random string ρ of length
r(n) and makes a query (x, ρ) to the promise problem(

∞⋃
i=1

(L ∩ {0, 1}i)× {0, 1}r(i) ,
∞⋃
i=1

(A ∩ {0, 1}i)×Ri

)
,

accepted by the following UPC machine. This machineN• behaves similarly toM•. However,
instead of querying M ’s oracle O (to which it does not have access) M uses the oracle C
and employs QC as a subroutine using ρ as its random string (the same random string for
each query). If ρ ∈ Rn, then all possible queries to O are answered correctly (in particular,
all queries in all branches of the nondeterministic computation of NC), and the computation
protocol of NC in this case is exactly the same as the protocol of M (O,B). The probability
to choose such a random string is at least 1− 2−p(n)+1 ≥ 1− 2−n.

We are now ready to prove the main result.

Theorem 1. ΣiP,ΠiP ⊆ BPPprUΣi
• .

Proof. We prove this statement by induction. Indeed, ΣiP = NPΣi−1P ⊆ NPBPPprUΣi−1
•

by

the induction hypothesis. Then by Lemma 1 ΣiP ⊆ BPPprUPBPPprUΣi−1
•

. Lemma 3 puts

the latter class into BPPprBPPprUPprUΣi−1
•

= BPPprBPPprUΣi
•
. Then Lemma 2 collapses it

to BPPprUΣi
• . The induction base is given by Lemma 1 for C = {∅}.

Since BPPC is closed under complement, the statement for ΠiP also follows.

Corollary 1. PH = BP · prUH•. Moreover, a collapse of prUH• to the i-th level implies
a collapse of PH to the (i + 2)-th level, and a collapse of PH to the i-th level implies
BP · prUH• ⊆ BP · prUΣi+1

• .

7

Proof. By the relativized version of Gács–Sipser–Lautemann’s theorem BPPprUΣi
• ⊆ Σ2P

prUΣi
• .

Then Σ2P
prUΣi

• ⊆ Σi+2P, because querying prUP• can be replaced by querying NP•. Thus
BP · prUΣi

• ⊆ Σi+2P and BP · prUH• ⊆ PH.
On the other hand, Theorem 1 and Proposition 2 imply ΣiP ⊆ BP · UΣi+1

• and thus
PH ⊆ BP · prUH•.

If prUH• collapses to the i-th level, then PH ⊆ BP · prUH• = BP · prUΣi
• ⊆ Σi+2P.

If PH collapses to the i-level, then BP · prUH• = PH ⊆ ΣiP ⊆ BPPprUΣi
• ⊆ BP ·

prPprUΣi
• ⊆ BP · prUΣi+1

• .

Then the following corollary (proved by Toda [Tod91]) is immediate (see Propositions 1
and 2).

Corollary 2. PH is contained in BP · ⊕P.

Remark 3. Note that one can consider BP· classes as an analogue of AM = BP · NP
(cf. [Zac88]). For example, Toda’s theorem provides Arthur-Merlin protocols with an odd
number of correct proofs. For protocols it suffices for the innermost machine to provide
correct answers (and satisfy the requirements of the class) only for a substantial number of
“useful” queries; we can ignore queries that appear with small total probability. Valiant-
Vazirani’s construction can be considered as an Arthur-Merlin protocol where in the positive
case Merlin has a unique correct answer with high probability; however, in case of a bad
luck Merlin may have zero or many correct answers. Theorem 1 and Corollary 1 can be
considered in similar terms.

Böhler, Glaßer and Meister [BGM06] have a series of results regarding sequences of
various dot-operators of Schöning’s type, the classes they consider can also be considered as
interactive games.

4 Open questions

Given the present rectification of the first part of Toda’s theorem (actually, an equality
PH = BP · prUH•), it is natural to ask about the second part. With new formulation in
hand, can we do better than PPP as the upper bound for PH?

Similarly to PH and to other versions of the unambiguous hierarchy, it is natural to
ask what class comprises “more-than-constant” levels of it, i.e., what is the analogue of the
unambiguous alternative time UAP for prUH•? Can one formulate a better computational
model than just unambiguous computations with loosy access to subroutines?

A shot in the same direction would be a full classification of alternating machines that
have ∃, ∃!, ∀, ∀!, BP and other interesting types of states for both bounded and unbounded
alternation. This classification would put Toda’s theorem, AM = AM(k), IP = PSPACE
and other results in a common framework. Böhler, Glaßer and Meister [BGM06] make
a major step towards this goal; however, their considerations are based on the class of
languages UP and not on the classes of promise problems (that arise naturally in Valiant–
Vazirani’s lemma and Toda’s theorem).

8

Even if we cannot provide an analogue of UAP, what is the smallest known class con-
taining prUH•? All we know is prUH• ⊆ pr⊕P; can we put prUH• in prSPP? If it is
not the case, then even the question prUH• ⊆? prPP remains open, and the containment
in Wagner’s ∇P class [Wag] or its analogue is also open (in both cases, one can only hope
for the corresponding level of the counting hierarchy and the similarly built ∇P-hierarchy,
respectively).

The relation of prUH• to other versions of the unambiguous hierarchy remains unclear.
In particularly, while we partially resolve the question of [ST09] affirmatively for prUH• (it
implies a collapse of PH), the question remains unresolved for other unambiguous hierar-
chies, and also the backwards collapse remains unclear (if PH collapses, then BP · prUH•
collapses to a finite level, but what about prUH• itself?..).

The last (but still very important) question, is the smallest class for which we can prove
fixed-polynomial circuit lower bounds. To the best of our knowledge the current progress is
limited to prMA [San09] and O2 (the input-oblivious version of the symmetric second level
class S2) [CR06], but even though these classes are contained in prZPPNP and ZPPNP ⊆
BPPNP = BPPprUP, respectively, the question of proving such bounds for the “Valiant-
Vazirani” class RPprUP (and even prRPprUP) remains open.

Acknowledgement

The authors are indebted to Alexander Knop who participated in numerous discussions on
the matter. The authors are also grateful to Dmitry Itsykson for multiple comments.

The second author is partially supported by the president grant MK-2813.2014.1 for
young scientists.

References

[Bab85] László Babai. Trading group theory for randomness. In Robert Sedgewick,
editor, STOC, pages 421–429. ACM, 1985.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic expo-
nential time has two-prover interactive protocols. Computational Complexity,
1:3–40, 1991.

[BGM06] Elmar Böhler, Christian Glaßer, and Daniel Meister. Error-bounded proba-
bilistic computations between ma and am. Journal of Computer and System
Sciences, 72:1043–1076, 2006.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof
system, and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–
276, 1988.

9

[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-
prover interactive proofs: How to remove intractability assumptions. In Janos
Simon, editor, STOC, pages 113–131. ACM, 1988.

[CGRS04] Marcel Crâsmaru, Christian Glaßer, Kenneth W. Regan, and Samik Sengupta.
A protocol for serializing unique strategies. In Jiŕı Fiala, Václav Koubek, and
Jan Kratochv́ıl, editors, MFCS, volume 3153 of Lecture Notes in Computer
Science, pages 660–672. Springer, 2004.

[CHV92a] Jin-Yi Cai, Lane A. Hemachandra, and Jozef Vyskoč. Promise problems and
access to unambiguous computation. In Ivan M. Havel and Václav Koubek,
editors, MFCS, volume 629 of Lecture Notes in Computer Science, pages 162–
171. Springer, 1992.

[CHV92b] Jin-Yi Cai, Lane A. Hemachandra, and Jozef Vyskoč. Promise problems and
guarded access to unambiguous computation. In Klaus Ambos-Spies, Steven
Homer, and Uwe Schöning, editors, Complexity Theory: Current Research,
pages 101–146. Cambridge University Press, 1992.

[CR06] Venkatesan T. Chakaravarthy and Sambuddha Roy. Oblivious symmetric al-
ternation. In Bruno Durand and Wolfgang Thomas, editors, STACS, volume
3884 of Lecture Notes in Computer Science, pages 230–241. Springer, 2006.

[CR08] Venkatesan T. Chakaravarthy and Sambuddha Roy. Finding irrefutable certifi-
cates for S2

p via Arthur and Merlin. In Susanne Albers and Pascal Weil, edi-
tors, STACS, volume 1 of LIPIcs, pages 157–168. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2008.

[For09] Lance Fortnow. A simple proof of Toda’s theorem. Theory of Computing,
5(1):135–140, 2009.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. In Juris Hartmanis, editor, STOC, pages 59–68.
ACM, 1986.

[GS88] Joachim Grollmann and Alan L. Selman. Complexity measures for public-key
cryptosystems. SIAM J. Comput., 17(2):309–335, 1988.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LR94] Klaus-Jörn Lange and Peter Rossmanith. Unambiguous polynomial hierarchies
and exponential size. In Structure in Complexity Theory Conference, pages
106–115. IEEE Computer Society, 1994.

10

[NR93] Rolf Niedermeier and Peter Rossmanith. Extended locally definable acceptance
types (extended abstract). In Patrice Enjalbert, Alain Finkel, and Klaus W.
Wagner, editors, STACS, volume 665 of Lecture Notes in Computer Science,
pages 473–483. Springer, 1993.

[NR98] Rolf Niedermeier and Peter Rossmanith. Unambiguous computations and lo-
cally definable acceptance types. Theor. Comput. Sci., 194(1-2):137–161, 1998.

[PZ83] Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of
counting. In Armin B. Cremers and Hans-Peter Kriegel, editors, Theoretical
Computer Science, volume 145 of Lecture Notes in Computer Science, pages
269–276. Springer, 1983.

[San09] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J.
Comput., 39(3):1038–1061, 2009.

[Sch89] Uwe Schöning. Probabilistic complexity classes and lowness. J. Comput. Syst.
Sci., 39(1):84–100, 1989.

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, pages 11–15. IEEE Computer Society,
1990.

[ST09] Holger Spakowski and Rahul Tripathi. Hierarchical unambiguity. SIAM J.
Comput., 38(5):2079–2112, 2009.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J.
Comput., 20(5):865–877, 1991.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique
solutions. Theor. Comput. Sci., 47(3):85–93, 1986.

[Wag] Klaus W. Wagner. On weak alternation versus strong counting. Personal
communication, 2013. A preliminary version appeared as Alternating machines
using partially defined “AND” and “OR”. Technical Report 39, Institut fur
Informatik, Universität Würzburg, January 1992.

[Zac88] Stathis Zachos. Probabilistic quantifiers and games. Journal of Computer and
System Sciences, 36:433–451, 1988.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

