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Abstract

We show that it is quasi-NP-hard to color 2-colorable 12-uniform hypergraphs with 2(logn)Ω(1)

colors
where n is the number of vertices. Previously, Guruswami et al. [GHH+14] showed that it is quasi-NP-
hard to color 2-colorable 8-uniform hypergraphs with 22

Ω(
√

log log n)

colors. Their result is obtained by
composing a standard Outer PCP with an Inner PCP based on the Short Code of super-constant degree.
Our result is instead obtained by composing a new Outer PCP with an Inner PCP based on the Short
Code of degree two.
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1 Introduction

A k-uniform hypergraph is a collection of vertices and hyperedges where each hyperedge is a subset of k
vertices. An independent set in a hypergraph is a subset of vertices that does not contain any hyperedge
completely inside it. A hypergraph is said to be q-colorable if the vertices can be partitioned into q dis-
joint independent sets, or equivalently if the vertices can be colored with q colors so that every edge is
non-monochromatic. Coloring a hypergraph using few colors is one of the most well studied problems in
combinatorics and theoretical computer science.

On graphs (i.e. k = 2), there is an efficient algorithm to determine 2-colorability, i.e. bipartiteness. A
series of results – [Wig83], [Blu94], [KMS98], [BK97], [ACC06] and [KT12] – give efficient algorithms to
color 3-colorable graphs with nβ colors, where the current best value of β is ≈ 0.2038. On the other hand,
it is known to be NP-hard to color 3-colorable graphs with 4 colors [KLS00, GK04]. For q-colorable graphs
with sufficiently large q, a lower bound of 2Ω(q1/3) colors was recently shown by Huang [Hua13], improving
upon an earlier bound of qΩ(log q) by Khot [Kho01]. Dinur, Mossel and Regev [DMR09] propose a variant
of the Unique Games Conjecture referred to as the α-Conjecture and show hardness of coloring 3-colorable
graphs with any constant number of colors under this conjecture.

Our understanding is much better for the problem of coloring q-colorable k-uniform hypergraphs with
k ≥ 3 (in this case, even determining 2-colorability is NP-hard). From the algorithmic side, the problem
becomes only harder, so the best known algorithms still require nΩ(1) colors, see Krivelevich et al. [KNS01],
Chen and Frieze [CF96] and Kelsen et al. [KMH96]. From the hardness side, there has been steady progress
on obtaining stronger and stronger results. We avoid giving a long list of all the known results for differ-
ent values of q and k and instead refer to the respective papers [Hol02, DRS05, Kho02b, GHH+14, KS14,
Sak14]. Here we focus on the case where q and k are allowed to be (preferably small) constants and the
concern is obtaining quantitatively strong lower bounds on the number of colors used by efficient algo-
rithms. Guruswami, Håstad and Sudan [GHS02] proved the first superconstant bound, showing hardness
of coloring 2-colorable 4-uniform hypergraphs with Ω

(
log logn

log log logn

)
colors. Subsequently, Khot [Kho02a]

showed the first poly-logarithmic bound, showing hardness of coloring q-colorable 4-uniform hypergraphs
with (log n)Ω(q) colors where q ≥ 7. In recent work, Guruswami et al. [GHH+14] obtained the first super-
polylogarithmic bound, showing hardness of coloring 2-colorable 8-uniform hypergraphs with 22Ω(

√
log logn)

colors. The main result of this work is a further “exponential” improvement:

Theorem 1.1. For some absolute constant c > 0, it is quasi-NP-hard1 to find an independent set of relative
size 2−(logn)c in an n-vertex 2-colorable 12-uniform hypergraph. Hence, it is quasi-NP-hard to color a
2-colorable 12-uniform hypergraph with 2(logn)c colors. In particular, any c < 1

20 works.

We note that all results quoted above, with the exception of [DRS05], also show hardness of finding an
independent set of relative size δ(n) which in turn implies hardness of coloring with 1/δ(n) colors. Our
result takes us another step closer to the nΩ(1) bound, which might perhaps be the truth. We further note that
significantly stronger results are known for the case of almost coloring: a hypergraph is almost q-colorable
if the removal of a small fraction of its vertices and incident hyperedges makes it q-colorable. Given an
almost q-colorable graph with q ≥ 3, it is known to be NP-hard to find an independent set of relative
size q−blog2 qc−1 [DKPS10, KS12] and of relative size 2−

q
2 [Cha13]. Given an almost 2-colorable 4-uniform

hypergraph, it is known to be quasi-NP-hard to find an independent set of relative size 2−(logn)1−o(1)
[KS14].

Hardness results (including ours) are typically obtained by constructing a probabilistically checkable
proof (PCP), letting the proof locations be vertices of a hypergraph and letting the tests (or rather the set

1A problem is said to be quasi-NP-hard if it admits a DTIME(N poly(logN)) reduction from 3SAT.
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of proof locations queried in a run of the test) be the hyperedges. Guruswami et al. [GHS02] related
the hardness of hypergraph coloring problem to the covering complexity of a PCP with the Not-All-Equal
predicate. The covering complexity is k if (in the NO case) one needs at least k proofs so that every
constraint is satisfied in at least one proof. The number of colors required to color the hypergraph is then
2k. Dinur and Kol [DK13] study the covering complexity of general predicates. It is easily observed that
the covering complexity is at most O(log n) where the PCP proof has size n and has poly(n) constraints.
This is because if O(log n) random proofs were constructed, then with high probability over the choice of
the proofs, every constraint is satisfied. In terms of covering complexity, ours is the first result to achieve
a PCP with covering complexity that is polynomial in log n, specifically (log n)c. This holds for the Not-
All-Equal predicate of arity 12 (optimizing the exponent c and the arity 12 is not the focus of the paper;
however the current techniques face a natural barrier of 1

2 for the exponent c). We consider a new notion
called super-position complexity of PCPs. Though it resembles the notion of covering complexity, there is
no obvious upper bound better than n for the super-position complexity of a PCP. We work with this new
notion for most of the paper and in the end show a hardness result for hypergraph coloring problem that
amounts to a (log n)c covering complexity result.

1.1 Overview of the Proof

Our hardness result follows from a long sequence of reductions, the successive steps presented as Theorems
3.1, 3.2, 3.6, 4.1, 5.2, 6.4, 7.1, 7.2 and 8.1 respectively. It is infeasible to give an overview of all these steps
here, so we present only a high level view of some of the steps and emphasize some aspects in which our
approach differs from the prior ones, in particular from that of Guruswami et al [GHH+14].

As mentioned before, hardness results (including ours) are typically obtained by constructing a proba-
bilistically checkable proof and letting the proof locations be vertices of a hypergraph and letting the tests
be the hyperedges. The PCP is typically viewed as a composition of an outer verifier with an inner verifier.
The quantitative strength of the hardness result depends (mainly) on the efficiency of the inner verifier and
in particular, on the efficiency (= length) of the encoding scheme used by the inner verifier. Several results –
such as [GHS02, Hol02, Kho02a, Kho02b, Sak14] – have been obtained using inner verifiers based on the
Long Code. The Long Code of an m-bit string is a string of length 22m and this leads to a large proof (=
hypergraph) size, limiting the hardness result to a poly-logarithmic number of colors. At the other end of the
spectrum, the Hadamard Code of an m-bit string is a string of length 2m. Using an inner verifier based on
the Hadamard Code, Khot and Saket [KS14] obtain a hardness result with 2(logn)1−o(1)

colors.2 However,
Hadamard Code can only incorporate (via a technique called folding) linear constraints and one is forced to
use an underlying NP-hard problem with linear constraints. This forces the PCP to have imperfect complete-
ness and one obtains a hardness result only for the almost coloring version of the problem. Recently, Barak
et al. [BGH+12] proposed a new encoding scheme referred to as the Short Code that has length intermediate
between the Hadamard Code and the Long Code. To encode an m-bit string u, the Hadamard Code writes
down the value of all linear functions on u, whereas the Long Code writes down the value of all functions
on u. The Short Code takes an intermediate route and writes down the value of all degree d functions on
u for some constant d. The length of the encoding is ≈ 2m

d
and even though much less than the Long

Code, it does increase rapidly for higher degree d. For d ≥ 2, it allows one to incorporate (via folding)
non-linear constraints and hence a PCP with perfect completeness is potentially feasible. In a recent work,
Dinur and Guruswami [DG13] were indeed able to construct an inner verifier based on the Short Code and

2This almost polynomial factor is a well-known barrier and should be considered as the best possible bound via the current
technology.
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obtain hardness results for a variant of the hypergraph coloring problem. Guruswami et al. [GHH+14] were
then able to adapt this Short Code based inner verifier for the hypergraph coloring problem, leading to the
22Ω(

√
log logn)

bound mentioned before. Their outer verifier is a standard one3 and its composition with the
inner verifier requires using a high degree d, limiting the quantitative bound to 22Ω(

√
log logn)

as stated.
Our key idea is to use, at the inner level, a Quadratic Code which is same as the Short Code with degree

d = 2. This leads to a significant saving in the encoding length and we are able to obtain a 2(logn)Ω(1)

bound. However, as we elaborate below, the composition now requires a much stronger guarantee from the
outer verifier. The guarantee from the outer verifier is usually in terms of low soundness, but we need an
additional guarantee that we refer to as the high super-position complexity (see below). Much of our effort
is then invested in constructing such an outer verifier. We now describe the testing primitive used by the
inner verifier and how its analysis motivates (and necessitates) the idea of super-position complexity.

We intend to use the Quadratic Code that encodes an m-bit input u ∈ F[2]m by writing down the values
of all quadratic functions on u. This is same as defining an m×m matrix M = u⊗ u and writing down the
values of all linear functions on M (i.e. the Hadamard Code of M ). The Quadratic Code is indexed by the
set of all m ×m matrices X and the value at location X is given by the entry-wise inner product 〈M,X〉.
We describe a 6-query test to check whether a supposed code is indeed a Quadratic Code (in a loose, list
decoding sense). It can be adapted, without much additional effort, to a 12-query test of an inner verifier,
leading to a hardness result for coloring 12-uniform hypergraphs. This involves reading 6 queries each from
two supposed codes and in addition to checking that these are indeed codewords, also checking that these
are consistent.

The test is as follows. Pick matrices X,Y, Z ∈ F[2]m×m and vectors a, b ∈ F[2]m uniformly and
independently at random. Let Diag(a) be the diagonal matrix with a as the diagonal. Test whether,

[C(X) + C(X + Diag(a))] · [C(Y ) + C(Y + Diag(b))] = C(Z) + C(Z + a⊗ b).

It is easy to check that if C is the Quadratic Code of some u ∈ F[2]m, then the test always accepts. Indeed,
letting M = u⊗ u, the right hand side of the equation is (〈u, a〉 denotes the inner product over F[2]m)

〈M,Z〉+ 〈M,Z + a⊗ b〉 = 〈M,a⊗ b〉 = 〈u⊗ u, a⊗ b〉 = 〈u, a〉 · 〈u, b〉,

whereas the left hand side evaluates to the same value:

〈M,Diag(a)〉 · 〈M,Diag(b)〉 = 〈u, a〉 · 〈u, b〉.

On the other hand, it can be shown, by an elementary Fourier analysis, that if the test passes with probability
1
2+2−O(k), then the givenC-table can be decoded (by simply outputting a Fourier coefficient with significant
magnitude) to a symmetric rank k matrix M̃ . Writing M̃ as a super-position (i.e. sum) of k symmetric rank
one matrices M̃ =

∑k
`=1 u

(`)⊗u(`), this amounts to decoding the C-table to a bounded list u(1), . . . , u(k) ∈
F[2]m of inputs.4

Typically, the inner verifier also needs to check that the input u satisfies a constraint. In our setting, the
constraint will be given as a quadratic equation, say h(u) = 0 for some quadratic polynomial h (assume for
the ease of this overview that h has no constant term). Let’s write the constraint as

m∑
i,j=1

hi,juiuj = 0.

3By a standard outer verifier we mean the 2-Prover-1-Round Game, a.k.a. Label Cover, instance obtained by parallel repetition
of a clause versus variable game constructed from a Gap3SAT instance [ABSS97, BGS98, Hås01].

4To express a symmetric rank k matrix as a sum of symmetric rank one matrices needs up to 3k
2

summands, see Lemma 2.1.
We ignore this small issue here.
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This amounts to a linear constraint 〈H,M〉 on the matrix M = u ⊗ u where H = (hi,j) is also a matrix.
If C is the Quadratic Code of u such that h(u) = 0, then it satisfies C(X + H) = C(X) for every
index X . We can ensure that the supposed code always satisfies this property by identifying the proof
locations corresponding to X + H and X for every index X . Also, since M = u ⊗ u is symmetric, one
expects C(X) = C(XT) and this property can be ensured similarly. This trick is known as folding and its
consequence is that the decoded matrix M̃ (as described above, by outputting a significant Fourier coefficient
of the given C-table) is symmetric and satisfies the constraint 〈H,M〉 = 0. Since M̃ =

∑k
`=1 u

(`) ⊗ u(`),
this amounts to saying that

m∑
i,j=1

hi,j

(
k∑
`=1

u
(`)
i u

(`)
j

)
= 0. (1)

We say that the quadratic equation h = 0 is satisfied in super-position by the k inputs u(1), . . . , u(k). In
summary, the analysis of the inner verifier furnishes a short list of inputs that together satisfy the quadratic
equation h = 0 in super-position, in the sense of Equation (1). This is an aspect in which our PCP differs
from all earlier ones. In earlier PCPs, the inner verifier furnishes a short list of inputs such that every
input in the list satisfies the relevant constraint whereas in our case, the constraint is only satisfied in super-
position. To accommodate this weaker guarantee furnished by the inner verifier, the outer verifier needs a
correspondingly stronger guarantee, which we refer to as the high super-position complexity.

We hope it is now clear why we need the outer verifier to have both the low soundness and high super-
position complexity. We elaborate further on the latter property. As is standard, the outer verifier can be
viewed as a 2-prover-1-round game where the first prover’s answer is u ∈ F[2]m and the second prover’s
answer is v ∈ F[2]r (where r ≤ m). The verifier accepts if π(u) = v for some projection map π :
F[2]m 7→ F[2]r that happens to be linear in our setting. In addition, the answer u must satisfy a quadratic
equation h(u) = 0 for the verifier to accept. In the YES case, the provers have a strategy that makes the
verifier accept with probability 1. In the NO case, the verifier accepts with negligible probability even under
a looser criterion for acceptance. The provers are now allowed to furnish a short list u(1), . . . , u(k) and
v(1), . . . , v(k) of answers respectively and the verifier accepts if π(u(`)) = v(`) ∀` ∈ {1, . . . , k} and that
u(1), . . . , u(k) satisfy the constraint h = 0 in super-position. Once we have an outer verifier with such a
guarantee, it is straightforward to compose it with the inner verifier described above.

The formal description of the outer verifier appears as Theorem 7.1 and the bulk of our paper is devoted
to proving this theorem. It follows via a sequence of reductions (= PCPs), the successive steps presented as
Theorems 3.1, 3.2, 3.6, 4.1, 5.2 and 6.4. We focus on constraint satisfaction problems where the constraints
are quadratic equations over F[2]. The super-position complexity of a CSP instance is the minimum number
of assignments that satisfy every constraint in super-position in the sense of Equation (1). We start by
showing that it is NP-hard to distinguish whether a CSP has super-position complexity of 1 or at least k (we
choose the parameter k to be poly-logarithmic in the instance size though the result also holds for much
higher settings of the parameter). This appears as Theorems 3.1 and 3.2. Interestingly, we do use some of
the techniques from Dinur and Guruswami [DG13] here, specifically Lemma 2.3 which in turn is based on
techniques from [BKS+10] to test Reed-Muller codes over F[2]. However, we emphasize that Dinur and
Guruswami [DG13] employ these techniques in the analysis of the inner verifier whereas for us, these serve
as a starting point in a long sequence of reductions.5 We then use the ingredients used to prove the PCP

5One may view Dinur and Guruswami reduction as a sequence of four steps: NP-hardness of 3SAT (= Cook-Levin Theorem),
NP-hardness of Gap3SAT (= the PCP Theorem), the Outer PCP and the inner PCP. With this viewpoint, the techniques referred to,
are used by Dinur and Guruswami at the inner PCP level whereas we use them to prove the analogue of the Cook-Levin Theorem.
We then naturally proceed to prove the analogue of the PCP Theorem.
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Theorem (sum-check protocol, low degree test etc) to simultaneously reduce the arity of the constraints and
to achieve low soundness, while preserving the high super-position complexity at every step. In the last
step, the constraints are those given by a point-versus-surface low degree test and is naturally viewed as a
2-prover-1-round game, i.e. as the outer verifier. As mentioned before, the inner PCP is then based on the
Quadratic Code. Its analysis is elementary and does not use any of the machinery required to analyze the
Short Code.

2 Preliminaries

This section describes some useful tools that are used in subsequent sections.

2.1 Tensor Decomposition of Symmetric Matrices

The following lemma shows a canonical way to write a symmetric matrix as a sum of symmetric rank one
matrices. We only consider matrices over a field F[q] of characteristic 2.

Lemma 2.1. Given a symmetric matrix A ∈ F[q]m×m of rank k over a field F[q] of characteristic 2, there
are k linearly independent vectors z1, . . . , zk ∈ F[q]m from the column space of A such that,

A =

s∑
i=1

zi ⊗ zi +

t∑
j=1

(
zs+2j−1 ⊗ zs+2j + zs+2j ⊗ zs+2j−1

)
(2)

=
s∑
i=1

zi ⊗ zi +
t∑

j=1

(
zs+2j−1 ⊗ zs+2j−1 + zs+2j ⊗ zs+2j

+ (zs+2j−1 + zs+2j)⊗ (zs+2j−1 + zs+2j)

)
, (3)

where k = s+ 2t for some non-negative integers s and t. In particular, A is a sum of at most 3k
2 symmetric

rank one matrices.

Proof. Note that the second equation in the statement of the lemma follows from the first by observing that
a ⊗ b + b ⊗ a = a ⊗ a + b ⊗ b + (a + b) ⊗ (a + b). So we focus on obtaining the decomposition as in
the first equation. If A = 0, there is nothing to prove. If A = (aij) 6= 0, then we consider two cases and
in each case, we give a decomposition of A into a single term in Equation (2) and a matrix of lower rank
A′. The lemma then follows by an inductive argument on A′. We use a crucial fact that in a field F[q] of
characteristic 2, every element is a square. In particular, for any a ∈ F[q], a 6= 0, the element 1√

a
exists.

Case (i): Consider the case when A has a non-zero diagonal element, i.e. aii 6= 0 for some i ∈ {1, . . . ,m}.
Let ai be the ith column of A and let bi = 1√

aii
· ai. Consider the symmetric matrix,

A′ = A+ bi ⊗ bi.

It is easy to see that the ith column as well as row of A′ is zero. This implies that bi is linearly independent
of the columns of A′ and rank(A′) = rank(A)− 1. We can then inductively decompose A′ keeping in mind
that the decomposition will involve vectors that are linearly independent of bi.
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Case (ii): Now consider the case when all diagonal elements of A are zero, but there are indices i 6= j such
that aij = aji 6= 0. As before, let bi = 1√

aij
· ai and bj = 1√

aij
· aj . Since aii = ajj = 0, we have bi 6= bj .

Consider the symmetric matrix
A′ = A+ bi ⊗ bj + bj ⊗ bi.

The ith and the jth columns as well as rows of A′ are zero. This implies that bi and bj are linearly indepen-
dent of the columns of A′ and rank(A′) = rank(A)− 2. We can then inductively decompose A′ keeping in
mind that the decomposition will involve vectors that are linearly independent of bi and bj .

2.2 Representations of Monomial Assignments

This and the next section describe the basic setup used by Dinur and Guruswami [DG13] for analyzing their
inner verifier. Their verifier relies on the Short Code (we do not define it here since we won’t be using it)
that was proposed and analyzed by Barak et al. [BGH+12].

Let x1, . . . , xm be variables over F[2]. Fix a degree parameter d ≥ 1 and let Sd be the set of all monomi-
als
∏
i∈S xi corresponding to non-empty subsets S ⊆ [m] of size at most d. An assignment σ : Sd 7→ F[2] is

referred to as a monomial assignment. One can naturally extend assignment σ to all polynomials of degree
at most d by linearity, i.e. if q(x) = c+

∑
S⊆[m],1≤|S|≤d cS

∏
i∈S xi is a polynomial, then

σ(q) = c+
∑

S⊆[m],1≤|S|≤d

cS · σ

(∏
i∈S

xi

)
.

Lemma 2.2. For any monomial assignment σ : Sd 7→ F[2], there is a subset β ⊆ F[2]m such that for all
polynomials q(x) of degree at most d,

σ(q) =
∑
a∈β

q(a). (4)

Proof. Let Pd be the linear vector space of all polynomials q(x) of degree at most d. The dimension of
this space equals the number of monomials (including the empty monomial), i.e.

∑d
i=0

(
m
i

)
. Let A be

the set of all inputs a ∈ F[2]m with Hamming weight at most d so that |A| =
∑d

i=0

(
m
i

)
is same as the

dimension of Pd. For every fixed a ∈ F[2]m, the map q(x) 7→ q(a) is a linear map on Pd. We will show
that these maps are linearly independent and hence form a basis for the space of all linear maps on Pd and
in particular, the linear map σ can be expressed as their linear combination, proving the lemma. In order to
show the linear independence of the maps {q(x) 7→ q(a) | a ∈ A}, it suffices to show that if a degree (at
most) d polynomial q(x) vanishes on all inputs in A, then it vanishes identically. Indeed, if on the contrary,
q(x) 6= 0, then q(x) =

∏
i∈S xi +

∑
S′ 6=S cS′

∏
j∈S′ xj where

∏
i∈S xi is a monomial of highest degree

that has a non-zero coefficient in q(x). Clearly, for the input a ∈ F[2]m whose non-zero co-ordinates are
precisely on the set S, we have q(a) 6= 0 reaching a contradiction.

Note that the subset β guaranteed by Lemma 2.2 need not be unique. For a monomial assignment
σ : Sd 7→ F[2], let βσ denote a minimum sized subset β satisfying the conclusion of the lemma (i.e.
Equation (4)).

2.3 A Useful Tool from Dinur and Guruswami [DG13]

We now state (a minor variant of) the main tool we borrow from Dinur and Guruswami [DG13] paper.
Let Fm be the space of all functions f : F[2]m 7→ F[2]. For a subset β ⊆ F[2]m, define the character

6



χβ : Fm 7→ {−1, 1} as:

χβ(f) = (−1)
∑
x∈β f(x) = (−1)

∑
x∈F[2]m 1β(x)f(x) = (−1)〈1β ,f〉,

where 1β denotes the indicator function of that subset. If βσ is a (minimum sized) subset corresponding to
a monomial assignment σ as defined earlier, then for any polynomial g of degree at most d,

χβσ(g) = (−1)
∑
x∈βσ g(x) = (−1)σ(g).

The following is a minor variant of a theorem proved in [DG13]. The ideas in its proof go back to the
analysis of testing Reed-Muller codes in [BKS+10].

Lemma 2.3. Let β = βσ be a (minimum sized) subset corresponding to some monomial assignment σ such
that |β| ≥ 2d/2 and α, γ ⊆ F[2]m are arbitrary. Then

|Eg,h [χβ(gh)χγ(g)χα(h)]| ≤ 2−2d/4−2+1,

where g is a uniformly random polynomial of degree at most 3d/4 and h is a uniformly random polynomial
of degree at most d/4 with no constant term.

Proof. The expectation can be upper bounded by

Eh [|Eg [χβ(gh)χγ(g)]|] . (5)

The inner expectation is same as

Eg [χβ(gh)χγ(g)] = Eg
[
(−1)〈1β ·h+1γ ,g〉

]
. (6)

We use the fact that the space of polynomials of degree at most m − 3d/4 − 1 is precisely the orthogonal
space of the space of polynomials of degree at most 3d/4. Thus the expectation in Equation (6) is 1 if
1β · h + 1γ is a polynomial of degree at most m − 3d/4 − 1 and zero otherwise. Hence the expression in
Equation (5) is same as

Pr
h

[1β · h+ 1γ is a polynomial of degree at most m− 3d/4− 1] ,

where h is a random polynomial of degree at most d/4 with no constant term. By Lemma 2.5, this probability
is upper bounded by 2−2d/4−2+1.

Lemma 2.5 is an immediate consequence of a similar lemma in [DG13].

Lemma 2.4. For a uniformly random polynomial h of degree at most d/4 and β such that |β| ≥ 2d/2,

Pr
h

[1β · h is a polynomial of degree at most m− 3d/4− 1] ≤ 2−2d/4−2
.

Lemma 2.5. For a uniformly random polynomial h of degree at most d/4 with no constant term and any
γ, β such that |β| ≥ 2d/2,

Pr
h

[1β · h+ 1γ is a polynomial of degree at most m− 3d/4− 1] ≤ 2−2d/4−2+1.

Proof. If there is no h such that 1β · h + 1γ is a polynomial of degree at most m − 3d/4 − 1 then we are
done. Otherwise the set of all such h is an affine subspace and translating it to include the origin yields the
subspace (of the same size) of h′ such that 1β ·h′ is a polynomial of degree at mostm−3d/4−1. An appeal
to Lemma 2.4 completes the proof. We may lose a factor of 2 in the probability bound due to conditioning
on only those h that have no constant term.
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2.4 Arora-Sudan Analysis of the Low Degree Test

Let F[q] be a field and d,m be positive integers. Suppose we are given a table of values of a function
f : F[q]m 7→ F[q] that is supposed to be a degree d polynomial. Suppose, in addition, we are given, for
every line ` in the space F[q]m, a univariate degree d polynomial f` that is supposed to be the restriction of
the supposed global polynomial f to that line.6 For a point v on the line `, we denote by f`(v) the value
given by f` at the point v. The following theorem was proved by Arora and Sudan [AS03].

Theorem 2.6. There are constants c0, c1, c2, c3 > 0 such that the following holds. For any parameter δ > 0
such that q ≥ c0(dm/δ)c1 , let {P1, . . . , Pt} be the set of degree d polynomials that agree with f at δc2/c3

fraction of the points. Then, taking the probability over a random line ` and random point v on the line,

Pr
`,v

[f(v) 6∈ {P1(v), . . . , Pt(v)} and f`(v) = f(v)] ≤ δ.

Also, by coding theoretic bounds t ≤ 2c3/δ
c2 .

2.5 Super-position Complexity

Definition 2.7. Let a(1), . . . , a(t) ∈ F[2]m be t assignments and q(x) = 0 be a quadratic equation in m
boolean variables with q(x) = c +

∑m
i=1 cixi +

∑
1≤i<j≤m cijxixj . We say that the t assignments satisfy

the equation q(x) = 0 in super-position if

c+
m∑
i=1

ci

(
t∑

`=1

a
(`)
i

)
+

∑
1≤i<j≤m

cij

(
t∑

`=1

a
(`)
i a

(`)
j

)
= 0.

Note that for t = 1, this is same as saying that q(a(1)) = 0, i.e. that a(1) satisfies the equation (in the
standard sense). Also, if q(x) is linear, this is same as saying that the assignment a =

∑t
`=1 a

(`) satisfies
the equation (in the standard sense).

Definition 2.8. Given a system of quadratic equations {qi(x) = 0}Li=1, its super-position complexity is
the minimum number t, if it exists, such that there are t assignments a(1), . . . , a(t) ∈ F[2]m that satisfy
every equation qi(x) = 0, i ∈ {1, . . . , L} in super-position. Otherwise, one may define the super-position
complexity to be∞ (but we will not encounter this scenario).

3 Starting Point for Our PCPs

In this section, we describe a set of results that serve as the starting point for our PCPs. The main theorem
is Theorem 3.2 that provides a super-position gap for constraint satisfaction problems with constraints that
are quadratic equations over F[2]. The theorem states that given an instance of such a CSP, it is NP-hard
to distinguish whether it has a satisfying assignment (i.e. has super-position complexity of 1) or has high
super-position complexity. Theorem 3.1 is a preparatory step towards the main Theorem 3.2. For subsequent
applications, we need certain strengthenings of the main theorem stated as Theorem 3.4 and 3.6.

6A line is a set `(t) = α+ tβ parameterized by t ∈ F[q] for some α, β ∈ F[q]m.
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3.1 CSPs with High Degree Equations

Recall that given n boolean variables x1, . . . , xn and the degree parameter d, Sd denotes the set of all (non-
empty) monomials of size at most d over the n variables. Given a monomial assignment σ : Sd 7→ F[2],
one can extend it naturally to all polynomials of degree at most d by linearity. Moreover there exists a
set βσ ⊆ F[2]n (of minimal size, by definition) such that for all polynomials q(x) of degree at most d,
σ(q) =

∑
s∈βσ q(s). A monomial assignment σ is said to satisfy a system of degree d polynomial equations

{qi(x) = 0}mi=1 if σ(qi) = 0 for every i ∈ {1, . . . ,m}. We prove the following theorem in this section.

Theorem 3.1. For any d ≥ 3, there is a DTIME(nO(d)) reduction from 3SAT to a system B of degree d
equations over F[2] such that,

YES Case: If the 3SAT instance is satisfiable then there is an assignment that satisfies (all equations in) B.

NO Case: If the 3SAT instance is unsatisfiable then for any monomial assignment σ : Sd 7→ F[2] that
satisfies (all equations in) B, one must have |βσ| ≥ 2d−3.

Proof. Suppose the 3SAT instance consists of n boolean variables x1, . . . , xn and m clauses. For i =
1, . . . ,m, the ith clause can be written as an equation pi(x) = 0 where pi(x) is a polynomial of degree at
most 3. It depends on at most 3 variables, but this will not be relevant to us. Let d ≥ 3 be as in the statement
of the theorem. We construct a system B of equations as desired by adding the equation(∏

i∈S
xi

)
pi(x) = 0,

for all monomials
∏
i∈S xi of degree at most d − 3 and i = 1, . . . ,m. Note that every equation in B

has degree at most d. In the YES case, if the 3SAT instance has a satisfying assignment, then clearly the
same assignment satisfies all equations in B. So we focus on the NO case. Let a monomial assignment
σ : Sd 7→ F[2] be given that satisfies all equations in B and let βσ ⊆ F[2]n be the corresponding set. Note
that for any polynomial q(x) of degree at most d − 3 and any i ∈ {1, . . . ,m}, the equation q(x)pi(x) = 0
is a linear combination of equations in B and hence must be satisfied by σ, i.e. σ(q · pi) = 0.

Assume for the sake of contradiction that |βσ| < 2d−3. Fix an arbitrary a ∈ βσ. By Lemma 2.13 of
[GHH+14], there exists a polynomial q(x) of degree at most d − 3 such that q(a) = 1 and ∀b ∈ βσ, b 6=
a, q(b) = 0. Since the 3SAT instance is unsatisfiable, the assignment a fails on some, say jth, clause, i.e.
pj(a) = 1. We reach a contradiction by observing that

σ(q · pj) =
∑
s∈βσ

q(s)pj(s) = q(a)pj(a) +
∑

s∈βσ ,s 6=a
q(s)pj(s) = pj(a) = 1.

3.2 Quadratic CSP with Superposition Gap

We recall Definition 2.7 and prove our main theorem in this section.

Theorem 3.2. There is a reduction from 3SAT to an instance A of quadratic equations such that,

YES Case. If the 3SAT instance is satisfiable then there is an assignment toA that satisfies all the equations.

NO Case. If the 3SAT instance is unsatisfiable then there are no t assignments to A that satisfy all the
equations simultaneously in super-position for any 1 ≤ t ≤ k. Here k is a parameter and the reduction runs
in time NO(log k) where N is the size of the 3SAT instance.
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Proof. We first reduce 3SAT to a system of degree d equations B as given by Theorem 3.1. The size of
instance B is NO(d) where N is the size of the 3SAT instance. Let x1, . . . , xn be the variables of the
instance B and the degree parameter d will be set later. Note that in the YES case, the instance B has a
satisfying assignment a ∈ F[2]n whereas in the NO case, for any assignment σ : Sd 7→ F[2] that satisfies
B, it must be that |βσ| ≥ 2d−3 (to recall again, Sd is the set of all (non-empty) monomials over variables
x1, . . . , xn of degree at most d). We construct the desired system A of quadratic equations as follows.

• For every A ⊆ [n], 1 ≤ |A| ≤ d we have a variable yA. This variable is supposed to represent the
monomial

∏
i∈A xi and in the YES case, it takes the same value as this monomial under a satisfying

assignment to B.

• Add all the equations of B replacing each monomial
∏
i∈A xi by the corresponding variable yA. These

equations are linear in the variables {yA | 1 ≤ |A| ≤ d} (so this is simply a linearization of B).

• For every pair A,B ⊆ [n] such that 1 ≤ |A|, |B|, |A ∪ B| ≤ d, add the quadratic equation yAyB =
yA∪B . Note that this quadratic equation is indeed satisfied in the YES case since the variables yA have
values same as the corresponding monomials under an assignment to the variables x1, . . . , xn.

This completes the construction of the instance A. In the YES case, taking the satisfying assignment
a ∈ F[2]n to instance B and assigning to every variable yA the value

∏
i∈A ai satisfies all equations of

instanceA. In the NO case, we wish to show that no t assignments σ1, . . . , σt : {yA | 1 ≤ |A| ≤ d} 7→ F[2]
can satisfy all equations of A in super-position for any 1 ≤ t ≤ k. Assume on the contrary that this is the
case. Note that any assignment σi is naturally also an assignment σi : Sd 7→ F[2]. Hence there exists a
corresponding set βσi ⊆ F[2]n as in Lemma 2.2. Let σ =

∑t
i=1 σi so that βσ =

⊕t
i=1 βσi (here ⊕ is the

symmetric difference operator on sets; strictly speaking, βσ is the set of minimal size that is equivalent to⊕t
i=1 βσi).

The equations of A are either those obtained by linearization of B or those of the type yAyB = yA∪B .
The equations of the first kind are linear in the variables {yA} and since σ1, . . . , σt satisfy these equations
in super-position, the assignment σ =

∑t
i=1 σi also satisfies all these equations. In other words, σ : Sd 7→

F[2] satisfies the instance B and hence by the guarantee offered by the NO case of Theorem 3.1, we have
|βσ| ≥ 2d−3. We now show that |βσ| being large implies that σ1, . . . , σt : {yA | 1 ≤ |A| ≤ d} 7→ F[2]
cannot simultaneously satisfy the equations yAyB = yA∪B in super-position. Assume on the contrary that
this is the case, i.e. for all A,B such that 1 ≤ |A|, |B|, |A ∪B| ≤ d,

t∑
i=1

σi(yA∪B) =
t∑
i=1

σi(yA)σi(yB).

Since σi are also thought of as monomial assignments σi : Sd 7→ F[2], the above amounts to saying that

t∑
i=1

σi(gh) =
t∑
i=1

σi(g)σi(h), (7)

where g, h are non-empty monomials in variables x1, . . . , xn such that the sizes of g, h, gh are all upper
bounded by d. In particular, this holds whenever g and h are non-empty monomials of degree at most 3d/4
and d/4 respectively (assume d is divisible by 4). We observe that by linearity, Equation (7) holds also
when g is a polynomial of degree at most 3d/4 and h is a polynomial of degree at most d/4 with no constant
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term. Indeed, suppose g = c +
∑

A cA
∏
j∈A xj where 1 ≤ |A| ≤ 3d/4 and h =

∑
B c
′
B

∏
j∈B xj where

1 ≤ |B| ≤ d/4. Then

t∑
i=1

σi(gh) =
∑
B

c · c′B
t∑
i=1

σi

∏
j∈B

xj

+
∑
A,B

cAc
′
B

t∑
i=1

σi

 ∏
j∈A∪B

xj

 ,

which is same as∑
B

c · c′B
t∑
i=1

σi

∏
j∈B

xj

+
∑
A,B

cAc
′
B

t∑
i=1

σi

∏
j∈A

xj

σi

∏
j∈B

xj

 ,

which in turn can be re-written as

t∑
i=1

c+
∑
A

cA σi

∏
j∈A

xj

 ·
∑

B

c′B σi

∏
j∈B

xj

 ,

which equals
∑t

i=1 σi(g)σi(h) as desired. We get back to Equation (7) and switch from values over F[2] to
real values in {−1, 1}, i.e. replace σi(g) by (−1)σi(g). Noting that σ =

∑t
i=1 σi, we get

(−1)σ(gh) =

t∏
i=1

(
(−1)σi(g) ∧ (−1)σi(h)

)
.

Note that addition over F[2] now becomes multiplication over signs {−1, 1} and multiplication over F[2]
now becomes the operation a∧ b = (1 + a+ b− ab)/2 over signs {−1, 1}. Since (−1)σi(g) = χβσi (g), we
get that

χβσ(gh)

[
t∏
i=1

(χβσi (g) ∧ χβσi (h))

]
= 1, (8)

whenever g is a polynomial of degree at most 3d/4 and h is a polynomial of degree at most d/4 with no
constant term. We reach a contradiction by showing that if g and h are chosen as random polynomials of the
kind prescribed, the expectation of the left hand side of Equation (8) is nearly zero. Indeed, replacing each
expression a∧ b by (1 + a+ b− ab)/2 and expanding the product into a sum of 4t terms, the left hand side
of Equation (8) is a sum of 4t terms of type(

1

2t

)
χβσ(gh)χγ(g)χα(h),

for some γ, α ⊆ F[2]n. The sets γ, α are related to the sets βσi , but this is not relevant for the argument.
We finish the proof by showing that the expectation of the term above is negligible and hence the sum of the
expectations of the 4t terms is negligible too. The claim follows by Lemma 3.3 below. It is enough to take
d = O(log k).

Lemma 3.3. For βσ ⊆ F[2]n, |βσ| ≥ 2d−3, d ≥ 6 and arbitrary γ, α ⊆ F[2]n, we have

|Eg,h[χβσ(gh)χγ(g)χα(h)]| ≤ 2−2d/4−2+1,

where g is a random polynomial of degree at most 3d/4 and h is a random polynomial of degree at most
d/4 with no constant term.

Proof. For d ≥ 6, we have 2d−3 ≥ 2d/2. The proof follows from Lemma 2.3.
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3.3 Strengthening of Theorem 3.2

We will need to consider quadratic equations over F[q] that is an extension field of F[2]. In particular we
need analogue of Theorem 3.2 where the conclusion holds even for F[q]-valued assignments. In this section,
while considering quadratic equations over F[q], we only consider equations that have F[2] coefficients and
no linear terms, i.e. equations of the form c +

∑
1≤i≤j≤m cijxixj = 0 where c, cij ∈ F[2]. The notion of

satisfying an equation in super-position is similar as before. Assignments a(1), . . . , a(t) ∈ F[q]m are said to
satisfy an equation c+

∑
1≤i≤j≤m cijxixj = 0 in super-position if,

c+
∑

1≤i≤j≤m
cij

(
t∑

`=1

a
(`)
i a

(`)
j

)
= 0.

Theorem 3.2 easily implies the theorem below.

Theorem 3.4. Let F[q] be an extension field of F[2] with q = 2r. There is a reduction from 3SAT to an
instance C of quadratic equations over F[q] such that

• The equations have F[2] coefficients and no linear terms.

• YES Case. If the 3SAT instance is satisfiable then there is an assignment to C that satisfies all the
equations. In fact there is such an assignment that is F[2] valued.

• NO Case. If the 3SAT instance is unsatisfiable then there are no t assignments to C that are F[q]
valued and satisfy all the equations simultaneously in super-position for any 1 ≤ t ≤ k. Here k is a
parameter and the reduction runs in time NO(r log k) where N is the size of the 3SAT instance.

Proof. The instance C is essentially the same as the instance A given by Theorem 3.2. The only difference
is that every linear term xi is replaced by a quadratic term x2

i . Specifically, an equation c +
∑m

i=1 cixi +∑
1≤i<j≤m cijxixj = 0 in instance A is now written as c +

∑
1≤i≤j≤m cijxixj = 0 in instance C where

cii = ci. The claim in the YES case follows from the analogous claim in Theorem 3.2, so we focus on the
NO case.

We show that if there are t assignments over F[q] that satisfy all equations in the instance C in super-
position, then there are t·s assignments over F[2] that satisfy all equations in the instanceA in super-position
and s ≤ 2r. Let a typical equation in the instance C be c +

∑
1≤i≤j≤m cijxixj = 0, where c, cij ∈ F[2].

Suppose there are F[q]-valued assignments a(1), . . . , a(t) ∈ F[q]m that satisfy the equation in super-position,
i.e.

c+
∑

1≤i≤j≤m
cij

(
t∑

`=1

a
(`)
i a

(`)
j

)
= 0.

The computations above are over F[q]. Fixing an arbitrary representation of F[q] as a r-dimensional vector
space over F[2], the above equation must hold in the last bit of the vector representation, i.e. in the notation
of Lemma 3.5,

c+
∑

1≤i≤j≤m
cij

(
t∑

`=1

(a
(`)
i a

(`)
j )last

)
= 0.

However by Lemma 3.5, there are vectors λ1, . . . , λs ∈ F[2]r, that capture the computation of the last bit of
a product of two elements in F[q]. Hence, the above equation can be written as

c+
∑

1≤i≤j≤m
cij

 t∑
`=1

s∑
p=1

〈a(`)
i , λp〉 · 〈a(`)

j , λp〉

 = 0.
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Since all values now are in F[2], we can separate the diagonal terms and re-write them as linear terms (note
ci = cii), i.e.

c+
∑

1≤i≤m
ci

 t∑
`=1

s∑
p=1

〈a(`)
i , λp〉

+
∑

1≤i<j≤m
cij

 t∑
`=1

s∑
p=1

〈a(`)
i , λp〉 · 〈a(`)

j , λp〉

 = 0.

This is same as saying that the t · s many F[2]-valued assignments given by 〈a(`), λp〉 for ` ∈ [t], p ∈ [s]
satisfy the corresponding equation in the instanceA in super-position. Noting that the choice of the equation
is arbitrary, the theorem follows by the guarantee on the NO case in Theorem 3.2.

Lemma 3.5. Let F[q] be an extension field of F[2] with q = 2r. Any x ∈ F[q] can be thought of as a (row)
vector in F[2]r in some fixed representation of F[q] as a r-dimensional vector space over F[2]. For x ∈ F[q],
let (x)last denote the last bit of the corresponding vector. Then there exist vectors λ1, . . . , λs ∈ F[2]r, s ≤ 2r
such that

∀x, y ∈ F[q] (xy)last =
s∑
i=1

〈x, λi〉 · 〈y, λi〉,

where 〈·, ·〉 denotes the inner product over F[2]r and while computing the expression 〈x, λi〉, x is being
thought of as a vector in F[2]r.

Proof. The map (x, y) 7→ (xy)last can be thought of as a symmetric bilinear map F[2]r × F[2]r 7→ F[2].
Hence there is a r × r symmetric matrix Λ over F[2] such that

∀x, y ∈ F[q] (xy)last = x · Λ · yT .

The matrix Λ can be written as
∑s

i=1 λi ⊗ λi for some s ≤ 2r and λi ∈ F[2]r by Lemma 2.1. The same s
and λi satisfy the conclusion of the lemma.

The conclusion in the NO case (i.e. soundness) of Theorem 3.4 can be boosted via a standard trick, so
that a constant fraction of equations must fail instead of at least one equation failing. Suppose the instance C
in Theorem 3.4 has L equations written as E1 = 0, . . . , EL = 0. One can take a M ×L matrix Γ over F[2],
M = O(L), that is a generator matrix of a linear code of constant relative distance, say 0.10, and construct
a new system C′ of equations

L∑
j=1

ΓijEj = 0 i = 1, . . . ,M.

Clearly, a satisfying assignment to C is also a satisfying assignment to C′. On other other hand, if no t
assignments satisfy all equations in C in super-position, then no t assignments satisfy even 0.90 fraction of
the equations in C′ in super-position. With this observation, we re-state Theorem 3.4 as:

Theorem 3.6. Let F[q] be an extension field of F[2] with q = 2r. There is a reduction from 3SAT to an
instance C of quadratic equations over F[q] such that,

• The equations have F[2] coefficients and no linear terms.

• YES Case. If the 3SAT instance is satisfiable then there is an assignment to C that satisfies all the
equations. In fact there is such an assignment that is F[2] valued.
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• NO Case. If the 3SAT instance is unsatisfiable then there are no t assignments to C that are F[q]
valued and satisfy 0.90 fraction of the equations in super-position for any 1 ≤ t ≤ k. Here k is a
parameter and the reduction runs in time NO(r log k) where N is the size of the 3SAT instance.

Note however that the equations in the instance above have unbounded arity, i.e. a typical equation may
depend on almost all the variables. In the next section, we show how to reduce arity while preserving (in the
NO case) the high super-position complexity and soundness that is appreciably bounded away from 1.

4 A Low Arity Quadratic CSP with Superposition and Approximation Gap

In this section, we prove a theorem that is analogous to Theorem 3.6, but the equations depend only on
polylog variables. The soundness suffers a little and is 1 − 1

polylog instead of 0.90, but this presents no
problem in further reductions. The idea is to start with the instance C of quadratic equations in Theorem 3.6
and produce a new system of quadratic equations by running the (initial part of) the algebraic proof of PCP
Theorem and in particular the Sum-Check Protocol.

Theorem 4.1. Let F[q] be an extension field of F[2]. There is a reduction from 3SAT to an instance D of
quadratic equations over F[q], with N variables and poly(N) equations, such that

• Every equation depends on O( log2N
log logN ) variables and q = O(logO(1)N).

• The set of variables is partitioned into sets U, V,W . The equations are either linear that involve
variables only from U ∪ V or quadratic of the form y = xx′ where y ∈ V and x, x′ ∈W .

• YES Case. If the 3SAT instance is satisfiable then there is an F[q] valued assignment to D that
satisfies all the equations.

• NO Case. If the 3SAT instance is unsatisfiable then there are no t assignments to D that are F[q]
valued and satisfy 1 − 1

1000k fraction of the equations in super-position for any 1 ≤ t ≤ k. Here the
parameter k can be taken as k = (logN)c where c > 10 is a constant that can be chosen as desired.

• The reduction runs in time RO((log logR)O(1)) if R is the size of the 3SAT instance.

Remark: Assignments ρ1, . . . , ρt : U ∪ V ∪W 7→ F[q] are said to satisfy an equation of instance D in
super-position if either (1) the equation is linear that involves variables only from U ∪V and the assignment
ρ =

∑t
i=1 ρi satisfies the equation or (2) the equation is of the form y = xx′ where y ∈ V and x, x′ ∈ W

and ρ(y) =
∑t

i=1 ρi(x)ρi(x
′).

The PCP Construction

We start with an instance C given by Theorem 3.6 consisting of n variables X1, . . . , Xn and n′ equations
E1, . . . , En′ . We will construct a PCP over the alphabet F[q] such that the PCP proof is partitioned into
three parts U, V,W . The proof locations then correspond to the sets of variables U, V,W for the instance D
and the PCP tests correspond to linear or quadratic equations in these variables.

Let h = dlog ne,m = dlog n/ log log ne, so that hm ≥ n. Let d := 2m(h−1). The size of the field F[q]
is chosen to be (10d)3m. The parameter k in Theorem 3.6 is chosen to be (log n)c+4. It can be verified that
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if R is the size of the 3SAT instance which reduces to Theorem 3.6, then qm = exp(logR(log logR)O(1)).
The number of variables produced by the present reduction will be poly(qm) = poly(n).

Let S be any subset of F[q] of size h. We identify the indices {1, 2, . . . , n} with points in Sm. Let
σ : {X1, . . . , Xn} 7→ F[q] be a supposed satisfying assignment to the instance C. It is now thought of as
an assignment σ : Sm 7→ F[q]. Given such an assignment, there is a unique m-variate polynomial g with
degree h− 1 in each co-ordinate such that g agrees with the assignment σ on Sm. In literature, g is known
as the low degree extension of the supposed satisfying assignment σ. Let the rth equation in the instance C
be

Er :
∑

1≤i≤j≤n
cr,i,jXiXj = cr.

Let ur(z, w) be the unique 2m-variate polynomial with degree h−1 in each co-ordinate, such that ur(a, b) =
cr,i,j where the index i is identified with a ∈ Sm and j with b ∈ Sm. Note that ur can be computed from
the coefficients cr,i,j . The equation can now be written as

Er :
∑

a∈Sm,b∈Sm
ur(a, b)g(a)g(b) = cr.

The goal of the verifier is to check whether g is indeed a low degree extension of a satisfying assignment
σ to the instance C. It will be convenient to let f be the 2m-variate polynomial defined as f(z, w) =
g(z)g(w). Thus f is a polynomial with degree h − 1 in each co-ordinate and hence of total degree d =
2m(h− 1). The equation Er can be re-written as

Er :
∑

a∈Sm,b∈Sm
ur(a, b)f(a, b) = cr.

We are now ready to describe the PCP. The PCP verifier expects the following proof.

• The table of values of the supposed polynomial f(z, w) at all points (z, w) ∈ F[q]2m. It is ensured
that f is symmetric, i.e f(z, w) = f(w, z) for all z, w ∈ F[q]m, by identifying the corresponding
proof locations.

• For each line ` = α+ tβ in F[q]2m, the coefficients of a univariate polynomial φ`(t) of degree at most
d which is supposed to be the restriction of the polynomial f to the line `.

• For the rth equation Er,m′ ∈ {0, 1, . . . , 2m − 1}, and (θ1, . . . , θm′) ∈ F[q]m
′
, the coefficients of a

(supposed) univariate polynomial of degree 2(h− 1), denoted as pr,θ1,...,θm′ (ym′+1). This polynomial
is supposed to be∑
ym′+2,...,y2m∈S

ur(θ1, . . . , θm′ , ym′+1, ym′+2, . . . , y2m)f(θ1, . . . , θm′ , ym′+1, ym′+2, . . . , y2m). (9)

Note that in the above sum, ym′+1 is the only formal variable, so the sum is a polynomial in that
variable. The polynomial for m′ = 0 is denoted by pr,∅(y1). These polynomials are referred to as the
partial sum polynomials.

• The table of values of the supposed polynomial g(z) at all points z ∈ F[q]m.
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The proof locations are partitioned into sets U, V,W as follows. V consists of the table of values of f , W
consists of the table of values of g and U consists of the rest (i.e. the line polynomials and the partial sum
polynomials).

Test of the Verifier.

Perform one of the three tests below with equal probability. In the second test, perform one of the 2m + 1
sub-tests with equal probability.

1. (Low Degree Test) Pick a line ` = α + tβ in F[q]2m and t ∈ F[q] uniformly at random. Check that
φ`(t) = f(`(t)).

2. (Sum Check Protocol) Pick an equation Er uniformly at random to verify. Pick θ = (θ1, . . . , θ2m) ∈
F[q]2m uniformly at random.

a. Check that
∑

y1∈S pr,∅(y1) = cr.

b. Check that for j ∈ {1, . . . , 2m− 1},∑
yj+1∈S

pr,θ1,...,θj (yj+1) = pr,θ1,...,θj−1
(θj).

c. Check that pr,θ1,...,θ2m−1(θ2m) = ur(θ1, . . . , θ2m)f(θ1, . . . , θ2m).

3. (Consistency) For a uniformly random pair z, w ∈ F[q]m, check that f(z, w) = g(z)g(w).

Note that the low degree test produces a linear equation. The Sum-Check protocol produces a set of 2m+ 1
linear equations. Finally, the consistency test produces a quadratic equation. Note that the linear equations
have variables only from the set U ∪ V whereas the quadratic equation is of the type y = xx′ with y ∈ V
and x, x′ ∈ W . Every equation depends on at most O(d) variables. This completes the description of the
instance D produced by our reduction.

YES Case

In the YES case, we show that there is an assignment U ∪ V ∪W 7→ F[q] that satisfies all equations in
D. Indeed, there is an assignment σ to the variables X1, . . . , Xn that satisfies the equations of C. Let g
be its low degree extension, let f(z, w) = g(z)g(w), and let the line polynomials φ` and the partial sum
polynomials be as they ought to be. It is clear that this yields an assignment U ∪V ∪W 7→ F[q] that satisfies
all equations in D.

NO Case

We wish to show that there are no k assignments ρ1, . . . , ρk : U ∪ V ∪ W 7→ F[q] that satisfy 1 − δ
fraction of the equations in super-position where δ =

(
1

1000k

)
. Assume on the contrary that this is the case.

Let ρ =
∑k

i=1 ρi. Note that if a linear equation (over variables in U ∪ V ) is satisfied in super-position,
this amounts to saying that ρ satisfies it. On the other hand if a quadratic equation y = xx′ is satisfied in
super-position for y ∈ V , x, x′ ∈W , this amounts to saying that ρ(y) =

∑k
i=1 ρi(x)ρi(x

′).
Let f(·, ·) be the f -table (i.e. assignment to V ) according to the assignment ρ. Let φ`(·), pr,θ1,...,θj (·)

be polynomials (given as their coefficients, i.e. assignment to U ) according to the assignment ρ. Let
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g1(·), . . . , gk(·) be the g-tables (i.e. assignment toW ) according to assignments ρ1, . . . , ρk respectively. Let
M denote the F[q]m×F[q]m matrix whose entries areM(z, w) =

∑k
i=1 gi(z)gi(w). Note that f, g1, . . . , gk

are supposed to be low degree polynomials, but this might not be the case in cheating proof(s).
Since 1 − δ fraction of the equations overall are satisfied (in super-position), the Low Degree Test on

function f and the line polynomials {φ`} passes with probability 1 − 3δ, and by Theorem 5.1 of [Aro94],
there is a polynomial F of total degree d which agrees with f at 1 − 6δ fraction of points. Since f is
symmetric, i.e. f(z, w) = f(w, z), so is F . Otherwise F (z, w) and F (w, z) would be different polynomials,
disagreeing almost everywhere, and F would not be close to f .

By averaging argument, for 99% of the equationsEr, with probability at least 1−O(δm), all the tests in
the Sum-Check Protocol succeed. We choose parameters so that this probability is at least 1

2 and larger than
the error probability O(md/q) of the Sum-Check Protocol. Fix any such “good’ equation Er. We claim
that ∑

a∈Sm,b∈Sm
ur(a, b)F (a, b) = cr. (10)

This is because otherwise, by the standard analysis of the Sum-Check Protocol, the polynomials pr,θ1,...,θj
for j = 0, 1, . . . , 2m−1 given in the proof will be different from the (correct) partial sums of the polynomial
ur(·, ·)F (·, ·) (as in Equation (9)) and then for j = 2m− 1, Test 2.c would fail with high probability given
that f and F are (1−O(δ))-close.

Finally, the consistency test passes with probability 1 − 3δ in super-position. This amounts to saying
that f , and hence F , agrees with matrix M on 1− 9δ fraction of the entries. The rank of M is at most k and
by Lemma 4.2, and the setting of δ = (1/1000k), the rank of F is also at most k. Using Lemma 2.1, one
can write F =

∑s
i=1 fi ⊗ fi with s ≤ 2k. We have shown that for 99% of the equations Er,∑

a∈Sm,b∈Sm
ur(a, b)

s∑
i=1

fi(a)fi(b) = cr. (11)

This is same as saying that fi : Sm 7→ F[q] thought of as assignments fi : {X1, . . . , Xn} 7→ F[q]
satisfy 99% of the equations Er in super-position. This is a contradiction to the guarantee in the NO case of
Theorem 3.6.

Lemma 4.2. Let F : F[q]m× F[q]m 7→ F[q] be a degree d polynomial in 2m variables. Written as a matrix
of its values, assume that F agrees with a matrix M of rank at most k in 1 − δ fraction of the entries and
δ < 1

16k ,
d
q <

1
2 . Then as a matrix F also has rank at most k.

Proof. F agrees withM on at least 1−δ fraction of the entries. By averaging, there are at least 3
4 fraction of

the columns – call them as “good” columns – such that in each of these columns F and M agree on 1− 4δ
fraction of the entries. Since M is of rank at most k, its sub-matrix given by the good columns is also of
rank at most k. Thus there are k good columns – say M(·, b1), . . . ,M(·, bk) – whose span contains all the
good columns of M . For any good column, say M(·, b), we have M(·, b) =

∑k
i=1 ζi ·M(·, bi) for some

ζi ∈ F[q]. Consider the combination
∑k

i=1 ζi · F (·, bi). This combination agrees with M(·, b) in 1 − 4kδ
fraction of the entries and thus agrees with F (·, b) at 1 − 4(k + 1)δ fraction of the entries. By Schwartz-
Zippel Lemma, since each column of F is a degree d polynomial, we obtain that

∑k
i=1 ζi ·F (·, bi) = F (·, b)

provided 1− 4(k + 1)δ > d
q . Thus the sub-matrix of F given by its good columns has column rank at most

k. Since column rank is the same as row rank, there is a row basis of size at most k for this sub-matrix of F .
Let F (a1, ·), . . . , F (ak, ·) be the rows that span the row space of this sub-matrix. Any other row F (a, ·) is a
linear combination F (a, ·) =

∑k
i=1 ζi · F (ai, ·) in the entries corresponding to the good columns. However
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since all the rows are degree d polynomials, this linear combination is an identity of polynomials and hence
holds in all the columns of F , completing the proof.

5 Gap Amplification

We will need a theorem that is similar to Theorem 4.1 in spirit, but rather different in form.

Definition 5.1. Let C be a constraint that is a conjunction of quadratic equations {qi(x) = 0}si=1 over F[2]
and over boolean variables x = (x1, . . . , xn). A set of t global assignments σ1, . . . , σt : {x1, . . . , xn} 7→
F[2] is said to satisfy the constraint C “k-locally” if there is a subset T ⊆ {σ1, . . . , σt} such that |T | ≤ k
and the assignments in T satisfy each quadratic equation qi(x) = 0 of C in super-position.

Theorem 5.2. For any large enough constant b > 0, there is a reduction from 3SAT to a system of constraints
A over boolean variables x1, . . . , xn such that:

• Every constraint C is a conjunction of (log n)8b+2 quadratic equations, each of which depends on at
most O(log2 n) variables.

• YES Case: There is a boolean assignment that satisfies all the constraints.

• NO Case: Given any t = 2(logn)2b
global assignments σ1, . . . , σt, the fraction of the constraints that

are satisfied k-locally is at most 2−(logn)5b
and k = (log n)3b.

• The reduction runs in time exp
(
(logR)8b+5

)
where R is the size of the 3SAT instance. The number

of constraints produced is n(logn)8b+2+O(1).

Proof. We first observe that the instance D given by Theorem 4.1 can be turned into a boolean instance
D′ where all variables and constraints are over F[2]. This is simply by writing every F[q] valued variable,
q = 2r, by a string of r boolean variables that represent it when F[q] is considered as a r-dimensional vector
space over F[2]. It is easily observed that every linear or quadratic equation in D leads to an equivalent sys-
tem of r linear or quadratic equations over the new boolean variables, one for each of the r “co-ordinates”.
Each equation now involves O( log2 N

log logN ) · log q = O(log2N) variables. In the YES case, D has a satis-
fying assignment and the same assignment, viewed as boolean assignment to the new variables, satisfies
the instance D′. In the NO case, we are guaranteed that no k = (logN)3b assignments (c = 3b in the
notation of Theorem 4.1) that are F[q] valued satisfy

(
1− 1

1000(logN)3b

)
fraction of the equations in D in

super-position. This statement is almost preserved: when an equation over F[q] fails, at least one from the
system of r equations over F[2] that is equivalent to it, must fail. Thus we can conclude that in the NO
case, no k assignments that are F[2] valued satisfy

(
1− 1

1000r·(logN)3b

)
fraction of the equations in D′ in

super-position. Let’s be generous and upper bound this fraction by
(

1− 1
(logN)3b+1

)
. Let n = rN denote

the number of variables in D′ so that log n ≈ logN . Thus, we can rewrite the statement of Theorem 4.1
over n F[2]-valued variables and poly(n) quadratic equations – each involving O((log n)2) variables – with
k = (log n)3b and the soundness in the NO case

(
1− 1

(logn)3b+1

)
. This holds for every constant b > 4.

Now we construct the desired instanceA whose variables are same as in the instanceD′ and whose con-
straints are all s-wise conjunctions of the equations inD′ where s = (log n)8b+2. The satisfying assignment
in the YES case is preserved. In the NO case, let σ1, . . . , σt be any t = 2(logn)2b

global assignments. We
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know that any k = (log n)3b of these assignments satisfy at most
(

1− 1
(logn)3b+1

)
fraction of the equa-

tions in D′ in super-position. Thus, the fraction of the new constraints satisfied in super-position is at most(
1− 1

(logn)3b+1

)s
which is at most 2−(logn)5b+1

. One can now take a union bound over all subsets of the
t global assignments of size at most k and the theorem follows. Note that in this reduction, the number of
constraints produced is n(logn)8b+2+O(1).

We will need analogue of Theorem 5.2 over a large field F[q] of characteristic 2. Applying the same
trick as in Theorem 3.4 and Lemma 3.5, we easily obtain the following theorem from Theorem 5.2. The
parameter k denoting the super-position complexity suffers a loss of 2 log q. Setting q = 2(logn)2b

, the
parameter k is now reduced to 1

2(log n)b.

Theorem 5.3. For any large enough constant b > 0, there is a reduction from 3SAT to a system of constraints
A over F[q]-valued variables x1, . . . , xn, where q = 2(logn)2b

, such that:

• Every constraint C is a conjunction of (log n)8b+2 quadratic equations, each of which depends on at
most O(log2 n) variables. The quadratic equations have no linear terms.

• YES Case: There is a boolean assignment that satisfies all the constraints.

• NO Case: Given any t = 2(logn)2b
global assignments σ1, . . . , σt, the fraction of the constraints that

are satisfied k-locally is at most 2−(logn)5b
where k = 1

2(log n)b.

• The reduction runs in time exp
(
(logR)8b+5

)
where R is the size of the 3SAT instance. The number

of constraints produced is n(logn)8b+2+O(1).

6 The Outer PCP

We are now ready to present our construction of the Outer PCP, a.k.a. the Label Cover problem. It is
constructed algebraically via a “point versus ruled-surface” low degree test analogous to the point versus
line test in [AS03]. The analysis is rather straightforward using [AS03] result as a black-box. We start with
the instance A produced by the reduction in Theorem 5.3.

Let m = dlog n/ log log ne and h = dlog ne so that hm ≥ n and let d := m(h − 1). We identify
the variables of A with Sm where S ⊆ F[q] is of size h. Any F[q] valued assignment ρ to the variables
of A is interpreted as an assignment ρ : Sm 7→ F[q] and can be extended to a corresponding polynomial
g : F[q]m 7→ F[q] of degree at most (h − 1) in each of the m coordinates, i.e. of total degree d. Let C
denote the set of constraints of A, each over at most l = O((log n)8b+4) variables. For convenience, we
shall denote every constraint C ∈ C as C[{xi}li=1], where {xi}li=1 is the set of points in Sm corresponding
to the l variables of A on which the constraint is defined.

Definition 6.1. A curve ω : F[q] 7→ F[q]m of degree r is a mapping ω(t) := (ω1(t), . . . , ωm(t)) where each
ωj is a degree r univariate polynomial in t.

Fix, for the rest of this section, distinct values t∗0, t
∗
1, . . . , t

∗
l ∈ F[q]. It is easy to see that for any set

of points x, x1, . . . , xl ∈ F[q]m, there is a degree l curve ω such that ω(t∗0) = x and ω(t∗i ) = xi for
i = 1, . . . , l. A curve ω is said to correspond to a constraint C = C[{xi}li=1] and an additional point x if
the said condition holds (the points t∗0, t

∗
1, . . . , t

∗
l ∈ F[q] are understood implicitly). We have the following

observation.
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Observation 6.2. Given a constraint C, consider a random curve ω corresponding to C and a uniformly
random point x. Then, for any t ∈ F[q] \ {t∗1, . . . , t∗l }, the point ω(t) is uniformly distributed in F[q]m.

Definition 6.3. A ruled surfaceR = R[ω, y] where ω(t) is a curve and y ∈ F[q]m is a direction, is a surface
parametrized by two parameters t, s ∈ F[q] where,

R[ω, y](t, s) = ω(t) + sy.

For a constraint C, a point x and a direction y, let R[ω, y] be a ruled surface where ω is the curve
of degree l corresponding to C and x. Let RC be the class of all such ruled surfaces corresponding to a
constraint C ∈ C and let R := ∪C∈CRC . Suppose g : F[q]m 7→ F[q] is a (global) polynomial of degree d.
The restriction of g to a ruled surface R ∈ RC , for any constraint C, is a bivariate polynomial – in t and
s – of degree at most d∗ := ld ≤ (log n)8b+6 in variable t and at most d in variable s. The total number
coefficients of such a polynomial is at most d∗d = (log n)8b+8. We are now ready to describe the Label
Cover instance L.

Left vertex set: This consists of all points in F[q]m. The label set – same for each vertex – is the set of
values F[q] that can be assigned to the points.

Right vertex set: The set of right vertices is R, namely the class of all ruled surfaces over all constraints
C ∈ C. The label set for a ruled surface R ∈ R is the set of all bivariate polynomials in t and s of degree at
most d∗ in the variable t and at most d in the variable s. Such a polynomial is represented by a vector of its
coefficients, at most (log n)8b+8 in number as mentioned before. For a ruled surface R corresponding to a
constraint C, there is a conjunction of (log n)8b+2 quadratic equations on these coefficients that determines
whether the values given by the polynomial at points {(t∗i , s = 0)}li=1 satisfy C.

Edges: For every ruled surface R ∈ R and every point v ∈ R, there is an edge between v and R. The
edge is satisfied by a labeling g to the surface R and a label p to the point v if g(v) = p, i.e. if the surface
polynomial and the value at the point are consistent. Note that the computation of g(v) is linear in the
coefficients of g. In the rest of this section we shall prove the correctness of our reduction.

Theorem 6.4. Let k = 1
2(log n)b, q = 2(logn)2b

and δ = 2−(logn)2b−1
. Let L be the Label Cover instance

described above.

1. The labels are elements of F[q] for the points in F[q]m and coefficient vectors of length (log n)8b+8

over F[q] for the surfaces. The projection maps, mapping a coefficient vector of a surface polynomial
to its value at a point on the surface, are homogeneous and F[q]-linear. The coefficient vector is
supposed to satisfy a constraint C that is a conjunction of quadratic equations over F[q]. The size
of the instance L is at most 2(logn)8b+4

(taking into account the choice of the constraint C and the
corresponding ruled surface).

2. YES Case. If the instance A given by Theorem 5.3 is a YES instance then there is a labeling to the
vertices of L that satisfies all the edges. Further, the label (coefficient vector) for any ruled surface R
satisfies the associated constraint C ∈ C.

3. NO Case. ((k, δ)-Soundness) If the instance A given by Theorem 5.3 is a NO instance then the fol-
lowing cannot hold for the instance L:

• For every v ∈ F[q]m there are k labels pv1, . . . , p
v
k ∈ F[q].
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• For every ruled surface R ∈ R, there are k labels (polynomials given as coefficient vectors)
gR1 , . . . , g

R
k , such that the constraint C corresponding to the ruled surface is satisfied in super-

position by the k labels.

• For δ fraction of the edges of L, between a point v and a ruled surface R:

gRj (v) = pvj ∀j ∈ {1, . . . , k}.

4. δ-Smoothness: For any surface R, let g be a non-zero label. Then

Pr
v∈R

[g(v) = 0] ≤ δ. (12)

We note that in the statement above, poly(δ) � poly(lk)
q , which shall be useful for our analysis. The

properties listed in the first item are clear from the construction. The YES and NO cases of the above
theorem are proved as follows.

6.1 YES Case

In the YES case, there is an assignment to each variable of A given by Theorem 5.3 that satisfies all the
constraints. Therefore, there is a degree d polynomial f : F[q]m 7→ F[q] that gives this assignment to the
corresponding points in Sm. The left vertices of L are labeled using the assignment given by f . Each ruled
surface R is labeled by the polynomial given by the restriction of f to R. This assignment satisfies the
constraint C associated with R and is consistent with the assignment to all the points v ∈ R.

6.2 NO Case

For the sake of contradiction assume that there exists a labeling as in the NO case of Theorem 6.4. An
averaging argument shows that for δ

2 fraction of the constraints C, we have

Pr
R∈Rc
v∈R

 k∧
j=1

(
gRj (v) = pvj

) ≥ δ

2
. (13)

Call such a constraint “good”. For the rest of the analysis we fix a good constraint C. Our analysis shall
show that there exists a set F of poly(k/δ) global assignments to the variables of A such that for every
“good” constraint C, there is a subset βC ⊆ F such that |βC | ≤ k, and the assignments in βC satisfy the
constraint C in super-position. This implies that F k-locally satisfies δ

2 fraction of the constraints ofA. This
yields a contradiction to the NO Case of Theorem 5.3 by our choice of parameters.

We say that a line `(s) is contained in a ruled surface R(t, s) if it is obtained by fixing a value of t in
R(t, s) = ω(t)+sy. Since choosing a random point on a ruled surfaceR is equivalent to choosing a random
line ` contained in R and then choosing a random point on `, the Equation (13) can be rewritten as:

Pr
R∈Rc
`∈R, v∈`

 k∧
j=1

(
gRj (v) = pvj

) ≥ δ

2
. (14)

From Observation 6.2, it is easy to see that the above probability is essentially equal to the probability
obtained by first picking a random line ` and then a random R ∈ RC containing the line. LetR`C be the set
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of ruled surfaces R ∈ RC that contain `. Thus we have,

Pr
`, v∈`
R∈R`C

 k∧
j=1

(
gRj (v) = pvj

) ≥ δ

3
. (15)

Let us define k points tables, f1, . . . , fk : F[q]m 7→ F[q] as f j(v) := pvj for all v ∈ F[q]m and
j ∈ {1, . . . , k}. We also have a randomized k-tuple of lines tables H = (h1, . . . , hk). For each line `,
H(`) = (h1(`), . . . , hk(`)) where each hj(`) is a degree d univariate polynomial. The randomized tuple
H is constructed as follows: for each line `, choose a random R ∈ R`C and let hj(`) be the univariate
restriction of the bivariate polynomial gRj to the line `. Let E be the following event (over the choice of `,
v ∈ ` and H):

E ≡
k∧
j=1

(
f j(v) = hj(`)(v)

)
. (16)

Equation (15) can be re-stated as Pr`,v∈`,H [E] ≥ δ
3 . Applying the result of Arora and Sudan [AS03], stated

as Theorem 2.6, the following holds. For each j ∈ {1, . . . , k}, let {P j1 , . . . , P
j
u} be the list of degree d

polynomials over F[q]m which agree with f j on at least poly(δ/k) fraction of points. Here the size of the
list u is upper bounded by poly(k/δ). Then, for each j ∈ {1, . . . , k},

Pr
`,v∈`,H

[
f j(v) 6∈ {P j1 (v), . . . , P ju(v)} , f j(v) = hj(`)(v)

]
≤ δ

6k
. (17)

A point to note here is that the statement above holds if hj(·) is a deterministic lines table and hence also if
it is a randomized table. Taking a union bound over j ∈ {1, . . . , k}, we obtain,

Pr
`,v∈`,H

 k∨
j=1

(
f j(v) 6∈ {P j1 (v), . . . , P ju(v)} , f j(v) = hj(`)(v)

) ≤ δ

6
. (18)

If E′ denotes the event in the above equation, then it follows that

Pr
`,v∈`,H

 k∧
j=1

(
hj(v) ∈ {P j1 (v), . . . , P ju(v)}

) ≥ Pr[E]− Pr[E′] ≥ δ

3
− δ

6
=
δ

6
. (19)

Incurring a negligible loss, we switch the order of random choices made to the original order, i.e. choosing
a random R ∈ RC , then a random line ` ∈ R and then a point v ∈ `. The value hj(v) is then same as gRj (v)
and we obtain:

Pr
R∈RC
v∈R

 k∧
j=1

(
gRj (v) ∈ {P j1 (v), . . . , P ju(v)}

) ≥ δ

12
. (20)

In particular, there is one R ∈ RC such that,

Pr
v∈R

 k∧
j=1

(
gRj (v) ∈ {P j1 (v), . . . , P ju(v)}

) ≥ δ

12
.
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By the setting of our parameters and an application of the Schwartz-Zippel Lemma, the above cannot
occur unless gRj ∈ {P

j
1 (R), . . . , P ju(R)} for each j ∈ {1, . . . , k}, where P ji (R) is the restriction of the

polynomial P ji to surface R. From our assumption, the labels {gRj }kj=1 satisfy the constraint C associated
with the surface R in super-position. Let P be the set of at most ku assignments to F[q]m given by the
polynomials {P ji | j = 1, . . . , k; i = 1, . . . , u}. Thus, there is a subset βC of k global assignments from
P such that they satisfy C in super-position. This holds for every good constraint C and at least δ2 fraction
of constraints are good. Noting that from our setting of parameters and analysis above, ku ≤ 2(logn)2b

and
δ
2 ≥ 2−(logn)2b

. This yields a contradiction to the NO case of Theorem 5.3 and thus completes the analysis
of the NO case of Theorem 6.4.

6.3 Smoothness Property

For the Label Cover constructed in this section the following smoothness property holds. For any ruled
surface R, let g be a non-zero label i.e. a vector over F[q] representing coefficients of a non-zero degree d∗

polynomial on R. The Schwartz-Zippel Lemma implies,

Pr
v∈R

[g(v) = 0] ≤ d∗

q
≤ δ, (21)

by the setting of parameters. We end this section by noting that Observation 6.2 implies that the Label Cover
instance constructed is essentially bi-regular.

7 Abstracting out the Outer PCP

The Label Cover instance constructed in the previous section is defined over algebraic and geometric objects
which makes it rather cumbersome to use directly in a hardness reduction. So we provide an abstraction of
this Label Cover instance in two steps. The first abstraction, Label-Cover-Intermediate is a clean restatement
of the Label Cover instance (along with a useful trick) where the labels are boolean vectors. The second
abstraction, Label-Cover-Final is a more compact representation of the former, where the labels are boolean
matrices instead of boolean vectors. The matrix representation allows us to re-state the super-position com-
plexity succinctly in terms of the rank of matrices.

7.1 The First Abstraction

Consider the Label Cover instance from Theorem 6.4. We first replace the instance over F[q] by an equivalent
instance over F[2]. Every element of F[q] is now written as a F[2]-vector of length log q. An F[q] valued
assignment to a set of s variables is now thought of as a F[2] valued assignment to a corresponding set of
s · log q many F[2] valued variables. A quadratic equation in the F[q]-variables is replaced by an equivalent
system of log q quadratic equations in the F[2]-variables, one for each of the log q “co-ordinates”. If a set of
F[q] valued assignments satisfies a quadratic equation in super-position, then the set of corresponding F[2]
valued assignments satisfies the equivalent system of quadratic equations in super-position, and vice-versa.
The maps that are F[q]-linear are now F[2]-linear. Clearly, re-writing everything over F[2] increases the
number of variables and constraints by a factor of log q.

Thus the Label Cover instance now consists of a set of vertices U on the left hand side, a set of vertices
V on the right hand side, and a set of edges E ⊆ U × V . A label to a vertex u ∈ U is a vector from F[2]r−1

and a label to a vertex v ∈ V is a vector from F[2]m−1 (the reason why the label lengths are denoted r − 1
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and m − 1 instead of r and m respectively will be clear shortly). For every edge e = (u, v), there is a
homogeneous linear map ρ̃e : F[2]m−1 7→ F[2]r−1. The edge is satisfied by a labeling wu and zv to vertices
u and v respectively if and only if ρ̃e(zv) = (wu). Also, the label zv is supposed to satisfy a constraint
C̃v that is a conjunction of quadratic equations (we do not care at this point as to the number of constraints
involved in the conjunction).

It will be convenient in future to extend the labels by an additional co-ordinate that is supposed to
be constant 1. Thus the label sets are now F[2]r and F[2]m respectively and the new labels xu and yv
are now supposed to be xu = (wu, 1) and yv = (zv, 1) respectively. A new homogeneous linear map
ρe : F[2]m 7→ F[2]r is defined as (ρ̃e, id), i.e. it maps the first m−1 co-ordinates according to ρ̃e and retains
the last co-ordinate. The convenience offered by this extension is that the constraint C̃v can now be replaced
by a constraint Cv that is a conjunction of homogeneous quadratic equations. This is by simply replacing a
quadratic equation

c+
∑

1≤i≤m−1

ci zv,i +
∑

1≤i<j≤m−1

cij zv,i zv,j = 0, (22)

by a homogeneous7 quadratic equation

c · yv,m +
∑

1≤i≤m−1

ci yv,i +
∑

1≤i<j≤m−1

cij yv,i yv,j = 0. (23)

Since the last co-ordinate of the label yv is supposed to be yv,m = 1, the equation is equivalent to the original
equation provided yv,m indeed equals 1. On the other hand, if k assignments y1

v = (z1
v, b1), . . . , ykv =

(zkv , bk) satisfy Equation (23) in super-position and moreover that
∑k

`=1 b` = 1, then the k assignments
z1
v, . . . , z

k
v satisfy Equation (22) in super-position. In other words, while considering equations in k-wise

super-position, Equation (23) is equivalent to (22) provided that the sum of the last bits of the k (new)
assignments equals 1.

After the minor transformations above, we note the quantitative parameters of the Label Cover instance
in Theorem 6.4. We have |V | = 2(logn)8b+4

(the “larger” side of Label Cover), m = (log n)10b+8 (length
of labels to the “larger” side), δ = 2−(logn)2b−1

and k = 1
2(log n)b. Let |V | = N denote the instance

size and b be a large enough constant. Note that the reductions in Theorem 5.3 and Theorem 6.4 are both
quasi-polynomial in the size of the original 3SAT instance. We now state our first abstraction:

Theorem 7.1. For any small enough constant ε > 0, there is a quasi-polynomial time reduction from an
instance of 3SAT to a bi-regular instance A of Label-Cover-Intermediate such that

• Vertex sets U and V are bounded in size by N .

• Lengths of labels r and m are bounded in size by (logN)5/4+ε.

• For each edge e = (u, v), the map ρe : F[2]m 7→ F[2]r is homogeneous linear.

• For each vertex v ∈ V , there is a constraint Cv that is a conjunction of homogenous quadratic
equations over the label set F[2]m.

• δ = 2−(logN)1/4−ε
and k = (logN)1/8−ε.

The reduction satisfies:
7By homogeneous we mean here that there is no constant term. This usage of the term is somewhat abused. If one wishes, one

can replace the linear terms by squared terms which is equivalent over F[2] and then the term homogeneous will be correct.
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1. YES Case. If the 3SAT instance is satisfiable then there is a labeling xu ∈ F[2]r and yv ∈ F[2]m

for vertices u ∈ U and v ∈ V such that for all vertices u, v and all edges e = (u, v), we have (i)
the last coordinates of xu and yv are 1, i.e. xu,r = yv,m = 1 (ii) the labeling satisfies the edge, i.e
ρe(yv) = (xu) and (iii) the label yv satisfies the constraint Cv.

2. NO Case. ((k, δ) Soundness) If the 3SAT instance is not satisfiable then the following cannot hold:

• There are k labels x1
u, . . . , x

k
u for each u ∈ U .

• There are k labels y1
v, . . . , y

k
v for each v ∈ V that satisfy Cv in super-position and

∑k
j=1 y

j
v,m =

1, i.e. the sum of their last co-ordinates is 1.

• For δ fraction of the edges e = (v, u), we have ρe(yjv) = xju, ∀j ∈ {1, . . . , k}.

3. δ-Smoothness. For any v ∈ V and yv ∈ F[2]m, yv 6= 0, over the choice of a random a edge e = (u, v)
incident on v,

Pr
e=(u,v)

[ρe(yv) = 0] ≤ δ.

Remark: To see the smoothness property above, consider any v ∈ V and yv = (zv, b) 6= 0. For any
e = (u, v), ρe(yv) = (ρ̃e(zv), b). Clearly, if b 6= 0, then the property holds. Otherwise, if zv 6= 0, then it
follows from the smoothness property given in Equation (12) and Section 6.3.

7.2 The Second Abstraction: Label Cover with Matrix Labels

This section provides a further abstraction of Label-Cover-Intermediate instance given in Theorem 7.1. As
mentioned earlier, in this abstraction, the labels are matrices instead of vectors. Specifically, if yv ∈ F[2]m is
a label before, then the new label is the rank one symmetric matrix Mv = yv ⊗ yv. This is more convenient
in two respects: firstly, the homogeneous quadratic constraints on (the entries of) the vector yv can now be
viewed as homogeneous linear constraints on (the entries of) the matrix Mv. Secondly, in the NO Case,
an upper bound on the number of assignments used in a super-position can be stated more succinctly as an
upper bound on the rank of the matrix. This transformation from a Label-Cover-Intermediate instance leads
to a Label-Cover-Final instance summarized below. The proof of its correctness is a bit delicate.

Theorem 7.2. For any small enough constant ε > 0, there is a quasi-polynomial time reduction from an
instance of 3SAT to a bi-regular instance B of Label-Cover-Final such that

• Vertex sets U and V are bounded in size by N .

• Lengths of labels are r2 and m2 where r and m are bounded by (logN)5/4+ε. The labels are viewed
as r × r and m×m matrices respectively.

• For each edge e = (u, v), the map πe : F[2]m×m 7→ F[2]r×r is homogeneous linear. Moreover, every
r × r matrix A can be “lifted” to a m ×m matrix A ◦ πe such that for all m ×m matrices M , we
have 〈A ◦ πe,M〉 = 〈A, πe(M)〉.

• For each vertex v ∈ V , there is a constraint Cv that is a conjunction of homogenous linear equations
over F[2]m×m (i.e. in the entries of an m×m matrix).

• δ = 2−(logN)1/4−2ε
and k = (logN)1/8−2ε.

The reduction satisfies:
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1. YES Case. If the 3SAT instance is satisfiable then

• For each u ∈ U , there is a labeling xu ⊗ xu for some xu ∈ F[2]r.

• For each v ∈ V , there is a labeling yv ⊗ yv for some yv ∈ F[2]m such that the mth coordinate
of yv is 1.

• Each edge e = (u, v) is satisfied by the above labeling, i.e. πe(yv ⊗ yv) = xu ⊗ xu. Further,
for every v ∈ V , the matrix yv ⊗ yv satisfies the constraint Cv.

2. NO Case. ((k, δ) Soundness) If the 3SAT instance is not satisfiable then the following cannot hold:

• There is a symmetric matrix Mu ∈ F[2]r×r for each u ∈ U .

• There is a symmetric matrix Mv ∈ F[2]m×m for each v ∈ V such that rank(Mv) ≤ k, the
(m,m) entry of Mv is 1 and it satisfies the constraint Cv.

• For δ fraction of the edges e = (u, v), we have πe(Mv) = Mu.

3. Smoothness. For any v ∈ V and any symmetric non-zero matrix Mv with rank(Mv) ≤ k, over the
choice of a random edge e = (u, v) incident on v,

Pr
e=(v,u)

[πe(Mv) = 0] ≤ δ

2
. (24)

The rest of this section is devoted to proving the above theorem. We appropriately transform the Label-
Cover-Intermediate instance A given by Theorem 7.1. The vertex sets U and V as well as the edge set
remain unchanged. The parameters r,m remain unchanged whereas the parameter k, δ change slightly. As
mentioned before, the labels are now r × r and m × m matrices respectively. The construction of new
projection maps πe from the previous ones ρe is somewhat delicate.

Projections: Consider an edge e = (u, v). In A, there is a homogeneous linear map ρ = ρe : F[2]m 7→
F[2]r. We can write,

ρ(x) := Γx,

for some r ×m matrix Γ. Define the homogeneous linear mapping π = πe : F[2]m×m 7→ F[2]r×r as:

π(M) = ΓMΓT.

Note that, if M is symmetric, then π(M) is symmetric as well. For any x, y ∈ F[2]m, it is easily seen that

π(x⊗ y) = ρ(x)⊗ ρ(y). (25)

Defining for an r × r matrix A, a “lifted” matrix A ◦ π ∈ F[2]m×m as A ◦ π = ΓTAΓ, it is easily seen that
for any M ∈ F[2]m×m, we have 〈A ◦ π,M〉 = 〈A, π(M)〉.

Constraints: In the instance A, for a vertex v, there is a conjunction of homogeneous quadratic equations
Cv on the co-ordinates of F[2]m. Each of these equations is now thought of as a homogeneous linear
equation in the co-ordinates of F[2]m×m. In addition, homogeneous linear equations ensuring that the
matrix is symmetric are added as well. By a slight abuse of notation, let Cv also denote the conjunction of
homogeneous linear equations so defined on the co-ordinates of F[2]m×m.

The YES and NO cases of Theorem 7.2 are proved as follows.
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7.2.1 YES Case

There is a labeling xu ∈ F[2]r and yv ∈ F[2]m for vertices u ∈ U and V ∈ V given by the YES Case of
Theorem 7.1. DefineMu = xu⊗xu, andMv = yv⊗yv. From the reduction above, for any edge e = (u, v),

πe(yv ⊗ yv) = ρe(yv)⊗ ρe(yv) = xu ⊗ xu,

since ρe(yv) = xu for a satisfied edge e = (u, v) in A. Thus, the labeling satisfies all the edges in B.
Furthermore, we have that yv satisfies the conjunction Cv of homogeneous quadratic equations and the mth

coordinate of yv is 1. Therefore, yv ⊗ yv satisfies the corresponding conjunction Cv of homogeneous linear
equations. This completes the YES Case.

7.2.2 NO Case

Assume for the sake of contradiction that there are symmetric matrices Mu and Mv for each u ∈ U and
v ∈ V satisfying the conditions in the NO Case of Theorem 7.2. Let δ, k be as in the statement of the
theorem. These parameters are slightly different (and worse) from the corresponding parameters δ′, k′ in
Theorem 7.1 and related as k = b2k′

3 c and δ = 2k
′2+1δ′. We start by showing that the projection maps πe

are essentially rank-preserving (which implies in particular the smoothness property in Theorem 7.2).

Lemma 7.3. Fix any v ∈ V , a rank parameter ` ≤ k and a rank ` matrix M = Mv ∈ F[2]m×m. Then over
the choice of a random edge e = (u, v) incident on v and π = πe, we have rank(π(M)) = ` except with
probability δ

2 .

Proof. Using Lemma 2.1, M can be decomposed into the canonical form:

M =
s∑
j=1

zj ⊗ zj +
t∑

j=1

zs+2j−1 ⊗ zs+2j + zs+2j ⊗ zs+2j−1, (26)

where ` = s+ 2t is the rank of M . From Equation (25), we get that

π(M) =
s∑
j=1

ρ(zj)⊗ ρ(zj) +

t∑
j=1

ρ(zs+2j−1)⊗ ρ(zs+2j) + ρ(zs+2j)⊗ ρ(zs+2j−1), (27)

where ρ = ρe. Moreover, since the vectors {zj}`j=1 are linearly independent, except with probability
(2` − 1)δ′ over the choice of the edge e = (u, v), the vectors {ρ(zj)}`j=1 are also linearly independent.
The reason is that for every non-zero linear combination z of the vectors {zj}`j=1, the vector ρ(z) is the
corresponding linear combination of the vectors {ρ(zj)}`j=1 and is non-zero except with probability δ′ by
the smoothness guarantee of Theorem 7.1. A union bound over all 2` − 1 choices for z proves the claim.
Thus, except with probability (2` − 1)δ′ ≤ δ

2 , Equation (27) is a canonical decomposition of the matrix
π(M) and hence rank(π(M)) = ` as well.

By hypothesis, for δ fraction of the edges (u, v), we have π(Mv) = Mu and by Lemma 7.3, for δ
2

fraction of the edges (u, v), it holds in addition that rank(Mv) = rank(Mu) ≤ k. Call such edges “good”.
Using the alternate decomposition in Lemma 2.1, noting that 3k

2 ≤ k′ and adding dummy zero vectors as
summands if necessary, we can write Mv =

∑k′

j=1 y
j
v ⊗ yjv and Mu = π(Mv) =

∑k′

j=1 ρ(yjv) ⊗ ρ(yjv).
Consider the following labeling to the instance A. For each v, we assign the labels y1

v, . . . , y
k′
v . For each u,
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choose at random k′ uniformly random vectors x1
u, . . . , x

k′
u from the column space of Mu. For every good

edge, with probability at least 2−k·k
′
, we get ρ(yjv) = xju ∀j ∈ {1, . . . , k′}. Moreover since the (m,m)

entry of the matrix Mv equals 1, so is the sum of the mth co-ordinates of the vectors y1
v, . . . , y

k′
v . Finally,

since Mv satisfies the constraint Cv, so do the vectors y1
v, . . . , y

k′
v in super-position. Since δ

2 · 2
−k·k′ ≥ δ′,

this labeling contradicts the NO Case of Theorem 7.1 completing our analysis.

8 Inner Verifier and the Proof of Theorem 1.1

This section gives the final hardness reduction proving the following theorem which implies Theorem 1.1.

Theorem 8.1. For every constant ε > 0, there is a quasi-polynomial time reduction from 3SAT to a 12-
uniform hypergraph G on n vertices such that,

YES Case. If the 3SAT instance is satisfiable then G is 2-colorable.

NO Case. If the 3SAT instance is unsatisfiable then G does not contain an independent set of relative size

2(logn)
1
20−ε .

As is standard, our reduction amounts to constructing a PCP over the alphabet F[2]. The proof locations
correspond to vertices of a hypergraph and the tests correspond to the hyperedges. Our test queries 12
locations from the proof and hence the resulting hypergraph is 12-uniform. In the YES case, a correct proof
(i.e. assignment of F[2] values to the proof locations) corresponds to a valid 2-coloring of the hypergraph.
In the NO case, we show that there is no independent set of relative size s for an appropriate setting of the
parameter s. In fact, our analysis (as is common) shows that every set of relative size s contains a fraction
(1−o(1))s12 fraction of hyperedges completely inside it. The PCP is obtained by composing an Outer PCP,
i.e. the Label-Cover-Final instance in Theorem 7.2, with an appropriate Inner PCP. The composed PCP is
described below after defining the Hadamard Code and the notion of folding over the Hadamard Code.

Definition 8.2. The Hadamard Code of a matrix α ∈ F[2]m×m is indexed by all matrices X ∈ F[2]m×m

and its value at the index X is 〈α,X〉 ∈ F[2]. Let the {−1, 1} valued function χα : F[2]m×m 7→ {−1, 1}
be defined as:

χα(X) := (−1)〈α,X〉.

It is well-known that the set {χα | α ∈ F[2]m×m} forms an orthonormal basis for the space of real valued
function over F[2]m×m.

Let A be the instance of Label-Cover-Final given by Theorem 7.2 with parameters N and ε. The PCP
proof consists of, for every vertex v ∈ V , the supposed Hadamard Code of the label/matrix Mv ∈ F[2]m×m.
Note that Mv is supposed to be a symmetric matrix of rank at most k and is supposed to satisfy a constraint
Cv which is a conjunction of homogeneous linear equations. It is easily seen that there is a subspace Hv
of F[2]m×m such that a matrix Mv is symmetric and satisfies Cv if and only if the Hadamard Code of Mv

is constant over the cosets of Hv. We therefore identify all the proof locations that correspond to the same
coset of Hv. This technique, known as “folding over constraint Cv”, has the following consequence: let
A : F[2]m×m 7→ {0, 1} be an indicator function of a (supposed independent) set that is constant on the
cosets ofHv. Then for every non-zero Fourier coefficient Â(α), it must be the case that α is symmetric and
satisfies the constraint Cv. We now describe the PCP.
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Test of Verifier

1. Choose u ∈ U uniformly at random and v, w ∈ V uniformly and independently at random from
the set of neighbors of u. Let π be the projection corresponding to the edge (u, v) and let π′ be
the projection corresponding to the edge (u,w). Uniformly and independently at random choose
X,Y, Z,X ′, Y ′, Z ′ ∈ F[2]m×m and x, y, x′, y′ ∈ F[2]m and F ∈ F[2]r×r.

2. Let K ∈ F[2]m×m be the matrix with its (m,m) entry set to 1 and the rest of the entries set to 0. Let
Diag(x) ∈ F[2]m×m be the diagonal matrix with x as the diagonal.

3. Let Av and Aw be the supposed Hadamard Codes of the labels to v and w respectively. These are
assumed to be folded over the constraints Cv and Cw respectively.

4. Accept if and only if the following 12 values are not all equal:

Av(X) Av(X + Diag(x))

Av(Y ) Av(Y + Diag(y))

Av(Z) Av(Z + (F ◦ π) + x⊗ y)

Aw(X ′) Aw(X ′ + Diag(x′))

Aw(Y ′) Aw(Y ′ + Diag(y′))

Aw(Z ′) Aw(Z ′ + (F ◦ π′) + x′ ⊗ y′ +K),

The rest of this section proves the YES and the NO Cases of Theorem 8.1 viewing the PCP construction as
a hypergraph G.

8.1 YES Case

Suppose A is a YES instance as given in Theorem 7.2. There are vectors xu for each u ∈ U and yv for
each v ∈ V satisfying the conditions of the YES Case in Theorem 7.2. For each v ∈ V , let Av be the
Hadamard Code of the matrix yv ⊗ yv. Since yv ⊗ yv is symmetric and satisfies the set of homogeneous
linear constraints Cv, this Hadamard Code is folded as required. Also, note that the (m,m) entry of yv⊗ yv
is 1.

We show that test of the verifier accepts with probability 1. Observe first that for any edge e = (u, v)
and F ∈ F[2]r×r,

〈yv ⊗ yv, F ◦ πe〉 = 〈πe(yv ⊗ yv), F 〉 = 〈xu ⊗ xu, F 〉.

Further,
〈yv ⊗ yv,Diag(x)〉 = 〈yv, x〉,

〈yv ⊗ yv, x⊗ y〉 = 〈yv, x〉〈yv, y〉.

and,
〈yv ⊗ yv,K〉 = 1.

Fix any choice made by the verifier in Step (1). Let

x = 〈X, yv ⊗ yv〉, y = 〈Y, yv ⊗ yv〉, z = 〈Z, yv ⊗ yv〉
x′ = 〈X ′, yw ⊗ yw〉, y′ = 〈Y ′, yw ⊗ yw〉, z′ = 〈Z ′, yw ⊗ yw〉,
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and f = 〈F, xu ⊗ xu〉. Using this, the assignment to the 12 query locations in the proof are:

x x + 〈yv, x〉
y y + 〈yv, y〉
z z + 〈yv, x〉〈yv, y〉+ f

x′ x′ + 〈yw, x′〉
y′ y′ + 〈yw, y′〉
z′ z′ + 〈yw, x′〉〈yw, y′〉+ f + 1

Clearly, if any of the four values 〈yv, x〉, 〈yv, y〉, 〈yw, x′〉, 〈yw, y′〉 equals 1 then the pair of values in the
corresponding row are unequal. So assume that all of these four values are 0. Then, if f = 1 the pair of
values in the third row are unequal and if f = 0, the pair of values in the last row are unequal. Therefore,
in the YES Case, there is a proof that is accepted with probability 1. The assignment to the proof locations
gives the two color classes of the hypergraph G.

8.2 NO Case

Suppose A is a NO instance as given in Theorem 7.2 with parameters k and δ therein. We show that for
an appropriate setting of the parameter s (chosen towards the end), any subset of vertices I of relative size
s in the hypergraph G contains essentially s12 fraction of the hyperedges completely inside it and hence
cannot be an independent set. Let I be any such subset. For any v ∈ V , let Av : F[2]m×m 7→ {0, 1} be the
real-valued indicator function of the subset I for the locations in the supposed Hadamard Code of v. Thus,

Ev∈V, X∈F[2]m×m [Av(X)] ≥ s.

For convenience we write A = Av and B = Aw. The fraction of the hyperedges completely inside I is:

Θ = E
[
A(X)A(X + Diag(x))A(Y )A(Y + Diag(y))A(Z)A(Z + F ◦ π + x⊗ y)

B(X ′)B(X ′ + Diag(x′))B(Y ′)B(Y ′ + Diag(y′))B(Z ′)B(Z ′ + F ◦ π′ + x′ ⊗ y′ +K)

]
, (28)

where the expectation is taken over the random choice of u, v, w,X, Y, Z,X ′, Y ′, Z ′, x, y, x′, y′ and F .
Expanding into the Fourier representation and using standard analysis we obtain,

Θ =
∑

α,β,γ, α′,β′,γ′

η(α, β, γ, α′, β′, γ′), (29)

where we define,

η(α, β, γ, α′, β′, γ′) := E
[
Â(α)2 χα(Diag(x)) Â(β)2 χβ(Diag(y)) Â(γ)2 χγ(F ◦ π)

χγ(x⊗ y) B̂(α′)2 χα′(Diag(x′)) B̂(β′)2 χβ′(Diag(y′))

B̂(γ′)2 χγ′(F ◦ π′)χγ′(x′ ⊗ y′)χγ′(K)

]
. (30)
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Due to folding, the only terms that are possibly non-zero in Equation (29) are those where α, β, γ are
symmetric and satisfy the homogeneous linear constraint Cv and similarly α′, β′, γ′ are symmetric and
satisfy the constraint Cw. Further, since F ∈ F[2]r×r is uniformly random,

EF
[
χγ(F ◦ π)χγ′(F ◦ π′)

]
= EF

[
(−1)〈γ,(F◦π)〉+〈γ′,(F◦π′)〉

]
= EF

[
(−1)〈π(γ),F 〉+〈π′(γ′),F 〉

]
,

which vanishes unless π(γ) = π′(γ′). Thus, the terms that are possibly non-zero in Equation (29) satisfy
π(γ) = π′(γ′) and then we can drop the factor χγ(F ◦ π)χγ′(F ◦ π′) from further consideration. Hereafter,
the analysis shall only consider these possibly non-zero terms and we omit explicitly stating these conditions.
We split the expectation into three parts and analyze them separately. For an m ×m matrix α, let ν(α) ∈
{0, 1} denote its (m,m) entry. Define:

Θ0 =
∑

rank(γ), rank(γ′)≤k
ν(γ)=ν(γ′)=0

η(α, β, γ, α′, β′, γ′), (31)

Θ1 =
∑

rank(γ), rank(γ′)≤k
(ν(γ)=1)∨(ν(γ′)=1)

η(α, β, γ, α′, β′, γ′), (32)

Θ2 =
∑

max{rank(γ), rank(γ′)}>k

η(α, β, γ, α′, β′, γ′). (33)

Note that Θ = Θ0 + Θ1 + Θ2. We upper bound |Θ2| and |Θ1| and lower bound Θ0, yielding the desired
lower bound Θ ≥ Θ0 − |Θ1| − |Θ2|.

8.2.1 Upper bound on |Θ2|

Lemma 8.3. For any symmetric matrix γ such that rank(γ) > k,

Ex |Ey [χα(Diag(x))χβ(Diag(y))χγ(x⊗ y)]| ≤ 2−(k+1).

Proof. Let α and β be the vectors given by the diagonals of α and β respectively. Using this,

χα(Diag(x))χβ(Diag(y))χγ(x⊗ y) = (−1)ψ,

where ψ := ψ(x, y) = 〈α, x〉 + 〈β, y〉 + 〈γx, y〉. For any given x, we have Ey
[
(−1)ψ

]
= 0, whenever

β 6= γx. If β is not in the column space of γ then this is always true. On the other hand, if β is in the column
space of γ, then over a random choice of x, γx is a uniformly random vector from the column space of γ,
and β 6= γx with probability at least 1− 2−(k+1), since rank(γ) > k. This completes the proof.

Applying the above lemma to both γ and γ′ and since x, y, x′ and y′ are independent, we obtain that for
any fixed choice of u, v and w, the absolute value of the sum of terms on the RHS in (33) is at most,

2 · 2−(k+1)

(∑
α

Â(α)2

)3
∑

β

B̂(β)2

3

≤ 2−k,

using the fact that A and B are {0, 1}-valued functions and hence the sum of their squared coefficients is
upper bounded by 1 (i.e. Parseval’s inequality). Thus |Θ2| ≤ 2−k.
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8.2.2 Upper bound on |Θ1|

For a fixed choice of u, v and w, the absolute value of the RHS in Equation (32) can be bounded by∑
rank(γ),rank(γ′)≤k, π(γ)=π′(γ′),

(ν(γ)=1)∨(ν(γ′)=1)

Â(γ)2B̂(γ′)2 (34)

where we again used Parseval. Under the random choice of v and w, the terms in the above sum satisfying
(ν(γ) = 1) ∧ (ν(γ′) = 0) have the same expectation as those satisfying (ν(γ) = 0) ∧ (ν(γ′) = 1). Thus,

|Θ1| ≤ 2 · Eu,v,w

 ∑
rank(γ),rank(γ′)≤k,

π(γ)=π′(γ′), (ν(γ)=1)

Â(γ)2B̂(γ′)2

 . (35)

Consider the following strategy for labeling vertices u ∈ U and v ∈ V . For u ∈ U , pick a random neighbor
w and choose a matrix γ′ with probability Âw(γ′)2 and assign to u the labelMu = π′(γ′) where π′ = π(u,w).
For v ∈ V , choose a matrix γ with probability Âv(γ)2 and assign it Mv = γ. The above equation implies
that for |Θ1|/2 fraction of edges e = (u, v), Mv is of rank at most k, its (m,m) entry is 1, Mv satisfies the
constraint Cv, and πe(Mv) = Mu. The NO Case of Theorem 7.2 implies that |Θ1| ≤ 2δ where δ is the
soundness parameter therein.

8.2.3 Lower bound on Θ0

For any vertex v ∈ V , define

τ(v, α, β, γ) := Ex,y
[
Â(α)2χα(Diag(x))Â(β)2χβ(Diag(y))Â(γ)2χγ(x⊗ y)

]
, (36)

where A = Av. Note that, for all terms in the RHS of Equation (31), χγ′(K) = 1. Thus, we can rewrite Θ0

as (considering the possibilities for the common projection π(γ) = π′(γ′) = G separately),

Θ0 =
∑

G∈F[2]r×r

Eu,v,w

 ∑
rank(γ),rank(γ′)≤k

π(γ)=π′(γ′)=G, ν(γ)=ν(γ′)=0

τ(v, α, β, γ)τ(w,α′, β′, γ′)

 . (37)

Fix a fixed vertex u, the choice of its neighbors v and w is independent and identical. Thus the expectation
above (for a fixed G and u) is seen to beEv

 ∑
rank(γ)≤k

π(γ)=G, ν(γ)=0

τ(v, α, β, γ)




2

(38)

which is always non-negative. For the purpose of lower bounding Θ0, we may thus consider only the term
G = 0 and conclude

Θ0 ≥ Eu,v,w

 ∑
rank(γ),rank(γ′)≤k

π(γ)=π′(γ′)=0, ν(γ)=ν(γ′)=0

τ(v, α, β, γ)τ(w,α′, β′, γ′)

 (39)
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We now observe that the contribution of terms with γ 6= 0 and γ′ 6= 0 to the LHS in the equation above is
negligible. Indeed, the expectation of terms involving γ 6= 0 is upper bounded by (and the same holds for
terms involving γ′ 6= 0),

Eu,v

 ∑
γ 6=0,π(γ)=0
rank(γ)≤k

Â(γ)2

 . (40)

Using the smoothness property of Theorem 7.2 with smoothness parameter δ
2 , the expectation above is at

most

Ev

 ∑
γ 6=0,rank(γ)≤k

Â(γ)2 Pr
u∼v

[π(γ) = 0]

 ≤ δ

2
. (41)

Thus we conclude that the expectation on the LHS of Equation (39) is essentially due to terms with γ =
γ′ = 0 and

Θ0 ≥ Eu,v,w

 ∑
α,β,α′,β′

τ(v, α, β, 0)τ(w,α′, β′, 0)

− δ. (42)

The following simple lemma allows us to complete the analysis.

Lemma 8.4. For any α, β, τ(v, α, β, 0) ≥ 0. In particular, τ(v, 0, 0, 0) = Â(0)6.

Proof. The second part of the lemma follows by the definition of τ(v, 0, 0, 0). For the first part, let α and β
be the diagonals of α and β respectively. Observe that,

Ex,y [χα(Diag(x))χβ(Diag(y))] = Ex,y
[
(−1)〈α,x〉+〈β,y〉

]
= 1{(α=0)∧(β=0)} ≥ 0.

Using the above lemma and the analogous property for τ(w,α′, β′, 0) in Equation (42), we obtain,

Θ0 ≥ Eu,v,w
[
Â(0)6B̂(0)6

]
− δ

= Eu
[(

Ev
[
Â(0)6

])2
]
− δ

≥
(
Eu,v

[
Â(0)

])12
− δ

≥ s12 − δ. (43)

Combining the lower bound on Θ0 with upper bounds for |Θ1| and |Θ2|, we get

Θ ≥ Θ0 − |Θ1| − |Θ2| ≥ s12 − δ − 2δ − 2−k. (44)

Since k = (logN)1/8−2ε and δ = 2−(logN)1/4−2ε
, we may choose s = 2−(logN)1/8−3ε

and conclude that the
fraction of hyperedges inside the subset I of vertices is essentially s12 as desired. The number of vertices
in G is n which is at most |V | · 2m2

which, in turn, is at most N · 2(logN)10/4+2ε
. Thus, in terms of n, the

hypergraph has no independent set of relative size 2−(logn)1/20−4ε
, completing the proof of Theorem 8.1.
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