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Abstract

We introduce a new and very natural algebraic proof system, which has tight connections to
(algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on
any Boolean tautology in our proof system implies that the permanent does not have polynomial-
size algebraic circuits (VNP 6= VP). As a corollary to the proof, we also show that super-
polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the
usual measure of number of monomials) imply the Permanent versus Determinant Conjecture.
Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary
tautology implied any computational lower bound.

Our proof system helps clarify the relationships between previous algebraic proof systems,
and begins to shed light on why proof complexity lower bounds for various proof systems have
been so much harder than lower bounds on the corresponding circuit classes. In doing so, we
highlight the importance of polynomial identity testing (PIT) for understanding proof complex-
ity.

More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit
computing PIT. (The existence of efficient proofs for our PIT axioms appears to be somewhere
in between the major conjecture that PIT∈ P and the known result that PIT∈ P/poly.) We use
these PIT axioms to shed light on AC0[p]-Frege lower bounds, which have been open for nearly
30 years, with no satisfactory explanation as to their apparent difficulty. We show that either:

a. Proving super-polynomial lower bounds on AC0[p]-Frege implies VNPFp does not have
polynomial-size circuits of depth d—a notoriously open question for any d ≥ 4—thus
explaining the difficulty of lower bounds on AC0[p]-Frege, or

b. AC0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower
bound on AC0[p]-Frege.

We also prove many variants on this statement for other proof systems and other computational
lower bounds.

Finally, using the algebraic structure of our proof system, we propose a novel way to ex-
tend techniques from algebraic circuit complexity to prove lower bounds in proof complexity.
Although we have not yet succeeded in proving such lower bounds, this proposal should be
contrasted with the difficulty of extending AC0[p] circuit lower bounds to AC0[p]-Frege lower
bounds.

1 Extended abstract

1.1 Introduction

NP versus coNP is the very natural question of whether, for every graph that doesn’t have a
Hamiltonian path, there is a short proof of this fact. One of the arguments for the utility of
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proof complexity is that by proving lower bounds against stronger and stronger proof systems, we
“make progress” towards proving NP 6= coNP. However, until now this argument has been more
the expression of a philosophy or hope, as there is no known proof system for which lower bounds
imply computational complexity lower bounds of any kind, let alone NP 6= coNP.

We remedy this situation by introducing a very natural algebraic proof system, which has tight
connections to (algebraic) circuit complexity. We show that any super-polynomial lower bound on
any Boolean tautology in our proof system implies that the permanent does not have polynomial-
size algebraic circuits (VNP 6= VP). Note that, prior to our work, essentially all implications
went the opposite direction: a circuit complexity lower bound implying a proof complexity lower
bound. We use this result to begin to explain why several long-open lower bound questions in
proof complexity—lower bounds on Extended Frege, on AC0[p]-Frege, and on number-of-lines in
Polynomial Calculus-style proofs—have been so apparently difficult.

1.1.1 Background and Motivation

Algebraic Circuit Complexity. The most natural way to compute a polynomial function
f(x1, . . . , xn) is with a sequence of instructions g1, . . . , gm = f , starting from the inputs x1, . . . , xn,
and where each instruction gi is of the form gj ◦ gk for some j, k < i, where ◦ is either a linear
combination or multiplication. Such computations are called algebraic circuits or straight-line pro-
grams. The goal of algebraic complexity is to understand the optimal asymptotic complexity of
computing a given polynomial family (fn(x1, . . . , xpoly(n))

∞
n=1, typically in terms of size and depth.

In addition to the intrinsic interest in these questions, since Valiant’s work [Val79a, Val79b, Val82]
algebraic complexity has become more and more important for Boolean computational complexity.
Valiant argued that understanding algebraic complexity could give new intuitions that may lead
to better understanding of other models of computation (see also [vzG87]); several direct connec-
tions have been found between algebraic and Boolean complexity [KI04, Bür00b, JS12, Mul99]; and
the Geometric Complexity Theory Program (see, e. g., the survey [Mul12] and references therein)
suggests how algebraic techniques might be used to resolve major Boolean complexity conjectures.

Two central functions in this area are the determinant and permanent polynomials, which
are fundamental both because of their prominent role in many areas of mathematics and because
they are complete for various natural complexity classes. In particular, the permanent of {0, 1}-
matrices is #P-complete, and the permanent of arbitrary matrices is VNP-complete. Valiant’s
Permanent versus Determinant Conjecture [Val79a] states that the permanent of an n× n matrix,
as a polynomial in n2 variables, cannot be written as the determinant of any polynomially larger
matrix all of whose entries are variables or constants. In some ways this is an algebraic analog of
P 6= NP, although it is in fact much closer to FNC2 6= #P. In addition to this analogy, the Permanent
versus Determinant Conjecture is also known to be a formal consequence of the nonuniform lower
bound NP 6⊆ P/poly [Bür00b], and is thus thought to be an important step towards showing P 6= NP.

Unlike in Boolean circuit complexity, (slightly) non-trivial lower bounds for the size of algebraic
circuits are known [Str73, BS83]. Their methods, however, only give lower bounds up to Ω(n log n).
Moreover, their methods are based on a degree analysis of certain algebraic varieties and do not
give lower bounds for polynomials of constant degree. Recent exciting work [AV08, Koi12, Tav13]
has shown that polynomial-size algebraic circuits computing functions of polynomial degree can
in fact be computed by subexponential-size depth 4 algebraic circuits. Thus, strong enough lower
bounds for depth 4 algebraic circuits for the permanent would already prove VP 6= VNP.

Proof Complexity. Despite considerable progress obtaining super-polynomial lower bounds for
many weak proof systems (resolution, cutting planes, bounded-depth Frege systems), there has been
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essentially no progress in the last 25 years for stronger proof systems such as Extended Frege systems
or Frege systems. More surprisingly, no nontrivial lower bounds are known for the seemingly weak
AC0[p]-Frege system. Note that in contrast, the analogous result in circuit complexity—proving
super-polynomial AC0[p] lower bounds for an explicit function—was resolved by Smolensky over 25
years ago [Smo87]. To date, there has been no satisfactory explanation for this state of affairs.

In proof complexity, there are no known formal barriers such as relativization [BGS75], Razborov–
Rudich natural proofs [RR97], or algebrization [AW08] that exist in Boolean function complexity.
Moreover, there has not even been progress by way of conditional lower bounds. That is, trivially
NP 6= coNP implies superpolynomial lower bounds for AC0[p]-Frege, but we know of no weaker com-
plexity assumption that implies such lower bounds. The only formal implication in this direction
shows that certain circuit lower bounds imply lower bounds for proof systems that admit feasible
interpolation, but unfortunately only weak proof systems (not Frege nor even AC0-Frege) have this
property [BPR00, BDG+04]. In the converse direction, there are essentially no implications at all.
For example, we do not know if AC0[p]-Frege lower bounds—nor even Frege nor Extended Frege
lower bounds—imply any nontrivial circuit lower bounds.

1.1.2 Our Results

In this paper, we define a simple and natural proof system that we call the Ideal Proof System
(IPS) based on Hilbert’s Nullstellensatz. Our system is similar in spirit to related algebraic proof
systems that have been previously studied, but is different in a crucial way that we explain below.

Given a set of polynomials F1, . . . , Fm in n variables x1, . . . , xn over a field F without a common
zero over the algebraic closure of F, Hilbert’s Nullstellensatz says that there exist polynomials
G1, . . . , Gm ∈ F[x1, . . . , xn] such that

∑
FiGi = 1, i. e., that 1 is in the ideal generated by the Fi.

In the Ideal Proof System, we introduce new variables yi which serve as placeholders into which
the original polynomials Fi will eventually be substituted:

Definition 1.1 (Ideal Proof System). An IPS certificate that a system of F-polynomial equations
F1(~x) = F2(~x) = · · · = Fm(~x) = 0 is unsatisfiable over F is a polynomial C(~x, ~y) in the variables
x1, . . . , xn and y1, . . . , ym such that

1. C(x1, . . . , xn,~0) = 0, and

2. C(x1, . . . , xn, F1(~x), . . . , Fm(~x)) = 1.

The first condition is equivalent to C being in the ideal generated by y1, . . . , ym, and the two
conditions together therefore imply that 1 is in the ideal generated by the Fi, and hence that
F1(~x) = · · · = Fm(~x) = 0 is unsatisfiable.

An IPS proof of the unsatisfiability of the polynomials Fi is an F-algebraic circuit on inputs
x1, . . . , xn, y1, . . . , ym computing some IPS certificate of unsatisfiability.

For any class C of polynomial families, we may speak of C-IPS proofs of a family of systems
of equations (Fn) where Fn is Fn,1(~x) = · · · = Fn,poly(n)(~x) = 0. When we refer to IPS without
further qualification, we mean VP-IPS, that is, the family of IPS proofs should be computed by
circuits of polynomial size and polynomial degree, unless specified otherwise.

The Ideal Proof System (without any size bounds) is easily shown to be sound, and its com-
pleteness follows from the Nullstellensatz.

We typically consider IPS as a propositional proof system by translating a CNF tautology ϕ
into a system of equations as follows. We translate a clause κ of ϕ into a single algebraic equation
F (~x) as follows: x 7→ 1−x, x∨ y 7→ xy. This translation has the property that a {0, 1} assignment
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satisfies κ if and only if it satisfies the equation F = 0. Let κ1, . . . , κm denote all the clauses
of ϕ, and let Fi be the corresponding polynomials. Then the system of equations we consider is
F1(~x) = · · · = Fm(~x) = x2

1 − x1 = · · · = x2
n − xn = 0. The latter equations force any solution

to this system of equations to be {0, 1}-valued. Despite our indexing here, when we speak of the
system of equations corresponding to a tautology, we always assume that the x2

i − xi are among
the equations.

Like previously defined algebraic systems [BIK+96, CEI96, Pit96, Pit98], proofs in our system
can be checked in randomized polynomial time. The key difference between our system and pre-
viously studied ones is that those systems are axiomatic in the sense that they require that every
sub-computation (derived polynomial) be in the ideal generated by the original polynomial equa-
tions Fi, and thus be a sound consequence of the equations F1 = · · · = Fm = 0. In contrast our
system has no such requirement; an IPS proof can compute potentially unsound sub-computations
(whose vanishing does not follow from F1 = · · · = Fm = 0), as long as the final polynomial is in the
ideal generated by the equations. This key difference allows IPS proofs to be ordinary algebraic
circuits, and thus nearly all results in algebraic circuit complexity apply directly to the Ideal Proof
System. To quote the tagline of a common US food chain, the Ideal Proof System is a “No rules,
just right” proof system.

Our first main theorem shows one of the advantages of this close connection with algebraic
circuits. To the best of our knowledge, this is the first implication showing that a proof complexity
lower bound implies any sort of computational complexity lower bound.

Theorem 3.1. Super-polynomial lower bounds for the Ideal Proof System imply that the permanent
does not have polynomial-size algebraic circuits, that is, VNP 6= VP.

From the proof of this result, together with one of our simulation results (Proposition 2.2), we
also get:

Corollary 1.2. Super-polynomial lower bounds on the number of lines in Polynomial Calculus
proofs imply the Permanent versus Determinant Conjecture.1

Under a reasonable assumption on polynomial identity testing (PIT), which we discuss further
below, we are able to show that Extended Frege is equivalent to the Ideal Proof System. Extended
Frege (EF) is the strongest natural deduction-style propositional proof system that has been pro-
posed, and is the proof complexity analog of P/poly (that is, Extended Frege = P/poly-Frege).

Theorem 4.1. Let K be a family of polynomial-size Boolean circuits for PIT such that the PIT
axioms for K (see Definition 1.7) have polynomial-size EF proofs. Then EF polynomially simulates
IPS, and hence the EF and IPS are polynomially equivalent.

Under this assumption about PIT, Theorems 3.1 and 4.1 in combination suggest a precise
reason that proving lower bounds on Extended Frege is so difficult, namely, that doing so implies
VP 6= VNP. Theorem 4.1 also suggests that to make progress toward proving lower bounds in proof
complexity, it may be necessary to prove lower bounds for the Ideal Proof System, which we feel
is more natural, and creates the possibility of harnessing tools from algebra, representation theory,
and algebraic circuit complexity. We give a specific suggestion of how to apply these tools towards
proof complexity lower bounds in Section 1.6.

1Although Corollary 1.2 may seem to be saying that lower bounds on PC imply a circuit lower bound, this is not
precisely the case, because complexity in PC is emphatically not measured by the number of lines, but rather by
the total number of monomials appearing in a PC proof. This is true both definitionally and in practice, in that all
previous papers on PC use the number-of-monomials complexity measure.
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Remark 1.3. Given that PIT ∈ P is known to imply lower bounds, one may wonder if the
combination of the above two theorems really gives any explanation at all for the difficulty of
proving lower bounds on Extended Frege. There are at least two reasons that it does.

First, the best lower bound known to follow from PIT ∈ P is an algebraic circuit-size lower
bound on an integer polynomial that can be evaluated in NEXP ∩ coNEXP [JS12] (via personal
communication we have learned that Impagliazzo and Williams have also proved similar results),
whereas our conclusion is a lower bound on algebraic circuit-size for an integer polynomial com-
putable in #P ⊆ PSPACE.

Second, the hypothesis that our PIT axioms can be proven efficiently in Extended Frege seems
to be somewhat orthogonal to, and may be no stronger than, the widely-believed hypothesis that
PIT is in P. As Extended Frege is a nonuniform proof system, efficient Extended Frege proofs of our
PIT axioms are unlikely to have any implications about the uniform complexity of PIT (and given
that we already know unconditionally that PIT is in P/poly, uniformity is what the entire question
of derandomizing PIT is about). In the opposite direction, it’s a well-known observation in proof
complexity that nearly all natural uniform polynomial-time algorithms have feasible (Extended
Frege) correctness proofs. If this phenomenon doesn’t apply to PIT, it would be interesting for
both proof complexity and circuit complexity, as it indicates the difficulty of proving that PIT is
in P. �

Although PIT has long been a central problem of study in computational complexity—both
because of its importance in many algorithms, as well as its strong connection to circuit lower
bounds—our theorems highlight the importance of PIT in proof complexity. Next we prove that
Theorem 4.1 can be scaled down to obtain similar results for weaker Frege systems, and discuss
some of its more striking consequences.

Theorem 4.5. Let C be any of the standard circuit classes ACk,ACk[p],ACCk,TCk,NCk. Let K
be a family of polynomial-size Boolean circuits for PIT (not necessarily in C) such that the PIT
axioms for K have polynomial-size C-Frege proofs. Then C-Frege is polynomially equivalent to IPS,
and consequently to Extended Frege as well.

Theorem 4.5 also highlights the importance of our PIT axioms for getting AC0[p]-Frege lower
bounds, which has been an open question for nearly thirty years. (For even weaker systems,
Theorem 4.5 in combination with known results yields an unconditional lower bound on AC0-Frege
proofs of the PIT axioms.) In particular, we are in the following win-win scenario:

Corollary 1.8. For any d, either:

• There are polynomial-size AC0[p]-Frege proofs of the depth d PIT axioms, in which case any
superpolynomial lower bounds on AC0[p]-Frege imply VNPFp does not have polynomial-size
depth d algebraic circuits, thus explaining the difficulty of obtaining such lower bounds, or

• There are no polynomial-size AC0[p]-Frege proofs of the depth d PIT axioms, in which case
we’ve gotten AC0[p]-Frege lower bounds.

Finally, in Section 1.6 we suggest a new framework for proving lower bounds for the Ideal Proof
System which we feel has promise. Along the way, we make precise the difference in difficulty
between proof complexity lower bounds (on IPS, which may also apply to Extended Frege via
Theorem 4.1) and algebraic circuit lower bounds. In particular, the set of all IPS-certificates for
a given unsatisfiable system of equations is, in a certain precise sense, “finitely generated.” We
suggest how one might take advantage of this finite generation to transfer techniques from algebraic
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circuit complexity to prove lower bounds on IPS, and consequently on Extended Frege (since IPS
p-simulates Extended Frege unconditionally), giving hope for the long-sought length-of-proof lower
bounds on an algebraic proof system. We hope to pursue this approach in future work.

1.1.3 Related Work

We will see in Section 1.3.3 that many previously studied proof systems can be p-simulated by IPS,
and furthermore can be viewed simply as different complexity measures on IPS proofs, or as C-IPS
for certain classes C. In particular, the Nullstellensatz system [BIK+96], the Polynomial Calculus
(or Gröbner) proof system [CEI96], and Polynomial Calculus with Resolution [ABSRW02] are all
particular measures on IPS, and Pitassi’s previous algebraic systems [Pit96, Pit98] are subsystems
of IPS.

Raz and Tzameret [RT08] introduced various multilinear algebraic proof systems. Although
their systems are not so easily defined in terms of IPS, the Ideal Proof System nonetheless p-
simulates all of their systems. Amongst other results, they show that a super-polynomial sepa-
ration between two variants of their system—one representing lines by multilinear circuits, and
one representing lines by general algebraic circuits—would imply a super-polynomial separation
between general and multilinear circuits computing multilinear polynomials. However, they only
get implications to lower bounds on multilinear circuits rather than general circuits, and they do
not prove a statement analogous to our Theorem 3.1, that lower bounds on a single system imply
algebraic circuit lower bounds.

1.1.4 Outline

The remainder of Section 1 gives proofs of some foundational results, and summarizes the rest of
the paper, giving detailed versions of all statements and discussing their proofs and significance.
In Section 1 many proofs are only sketched or are delayed until later in the paper, but all proofs of
all results are present either in Section 1 or in Sections 2–4.

We start in Section 1.3, by proving several basic facts about IPS (some proofs are deferred to
Section 2). We discuss the relationship between IPS and previously studied proof systems. We
also highlight several consequences of results from algebraic complexity theory for the Ideal Proof
System, such as division elimination [Str73] and the chasms at depth 3 [GKKS13, Tav13] and 4
[AV08, Koi12, Tav13].

In Section 1.4, we outline the proof that lower bounds on IPS imply algebraic circuit lower
bounds (Theorem 3.1; full proof in Section 3). We also show how this result gives as a corollary
a new, simpler proof that NP 6⊆ coMA ⇒ VNP0 6= VP0. In Section 1.5 we introduce our PIT
axioms in detail and outline the proof of Theorems 4.1 and 4.5 (full proofs in Section 4.1). We
also discuss in detail many variants of Theorem 4.5 and their consequences, as briefly mentioned
above. In Section 1.6 we suggest a new framework for transferring techniques from algebraic circuit
complexity to (algebraic) proof complexity lower bounds. Finally, in Section 1.7 we gather a long
list of open questions raised by our work, many of which we believe may be quite approachable.

Appendix A contains more complete preliminaries. In Appendices B and C we introduce two
variants of the Ideal Proof System—one of which allows certificates to be rational functions and
not only polynomials, and one of which has a more geometric flavor—and discuss their relationship
to IPS. These systems further suggest that tools from geometry and algebra could potentially be
useful for understanding the complexity of various propositional tautologies and more generally the
complexity of individual instances of NP-complete problems.
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1.2 A few preliminaries

In this section we cover the bare bones preliminaries that we think may be less familiar to some
of our readers. Remaining background material on algebraic complexity, proof complexity, and
commutative algebra can be found in Appendix A. As general references, we refer the reader to
Bürgisser–Clausen–Shokrollahi [BCS97] and the surveys [SY09, CKW10] for algebraic complexity,
to Kraj́ıček [Kra95] for proof complexity, and to any of the standard books [Eis95, AM69, Mat80,
Rei95] for commutative algebra.

1.2.1 Algebraic Complexity

Over a ring R, VPR is the class of families f = (fn)∞n=1 of formal polynomials—that is, considered
as symbolic polynomials, rather than as functions—fn such that fn has poly(n) input variables,
is of poly(n) degree, and can be computed by algebraic circuits over R of poly(n) size. VNPR is
the class of families g of polynomials gn such that gn has poly(n) input variables and is of poly(n)
degree, and can be written as

gn(x1, . . . , xpoly(n)) =
∑

~e∈{0,1}poly(n)

fn(~e, ~x)

for some family (fn) ∈ VPR.
A family of algebraic circuits is said to be constant-free if the only constants used in the circuit

are {0, 1,−1}. Other constants can be used, but must be built up using algebraic operations, which
then count towards the size of the circuit. We note that over a fixed finite field Fq, VP0

Fq
= VPFq ,

since there are only finitely many possible constants. Consequently, VNP0
Fq

= VNPFq as well. Over

the integers, VP0
Z coincides with those families in VPZ that are computable by algebraic circuits

of polynomial total bit-size: note that any integer of polynomial bit-size can be constructed by a
constant-free circuit by using its binary expansion bn · · · b1 =

∑n−1
i=0 bi2

i, and computing the powers
of 2 by linearly many successive multiplications. A similar trick shows that over the algebraic
closure Fp of a finite field, VP0

Fp
coincides with those families in VPFp

that are computable by

algebraic circuits of polynomial total bit-size, or equivalently where the constants they use lie in
subfields of Fp of total size bounded by 2n

O(1)
. (Recall that Fpa is a subfield of Fpb whenever a|b,

and that the algebraic closure Fp is just the union of Fpa over all integers a.)

1.2.2 Proof Complexity

In brief, a proof system for a language L ∈ coNP is a nondeterministic algorithm for L, or equiv-
alently a deterministic polynomial-time verifier P such that x ∈ L ⇔ (∃y)[P (x, y) = 1], and we
refer to any such y as a P -proof that x ∈ L.2 We say that P is polynomially bounded if for every
x ∈ L there is a P -proof of length polynomially bounded in |x|: |y| ≤ poly(|x|). We will generally
be considering proof systems for the coNP-complete language TAUT consisting of all propositional
tautologies; there is a polynomially bounded proof system for TAUT if and only if NP = coNP.

Given two proof systems P1 and P2 for the same language L ∈ coNP, we say that P1 polynomially
simulates or p-simulates P2 if there is a polynomial-time function f that transforms P1-proofs into
P2-proofs, that is, P1(x, y) = 1 ⇔ P2(x, f(y)) = 1. We say that P1 and P2 are polynomially
equivalent or p-equivalent if each p-simulates the other. (This is the proof complexity version of
Levin reductions between NP problems.)

2This notion is essentially due to Cook and Reckhow [CR79]; although their definition was formalized slightly
differently, it is essentially equivalent to the one we give here.
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For TAUT (or UNSAT), there are a variety of standard and well-studied proof systems. In this
paper we will be primarily concerned with Frege—a standard, school-style line-by-line deductive
system—and its variants such as Extended Frege (EF) and AC0-Frege. Bounded-depth Frege or
AC0-Frege are Frege proofs but with the additional restriction that each formula appearing in the
proof has bounded depth syntactically (the syntactic nature of this condition is crucial: since every
formula appearing in a proof is a tautology, semantically all such formulas are the constant-true
function and can be computed by trivial circuits). As with AC0 circuits, AC0-Frege has rules for
handling unbounded fan-in AND and OR connectives, in addition to negations.

For almost any syntactically-defined class of circuits C, one can similarly define C-Frege. For
example, NC1-Frege is p-equivalent to Frege. However, despite the seeming similarities, there are
some differences between a circuit class and its corresponding Frege system. Exponential lower
bounds are known for AC0-Frege [BIK+92], which use the Switching Lemma as for lower bounds
on AC0 circuits, but in a more complicated way. However, unlike the case of AC0[p] circuits for
which we have exponential lower bounds [Raz87, Smo87], essentially no nontrivial lower bounds
are known for AC0[p]-Frege.

Extended Frege systems generalize Frege systems by allowing, in addition to all of the Frege
rules, a new axiom schema of the form y ↔ A, where A can be any formula, and y is a new variable
not occurring in A. Whereas polynomial-size Frege proofs allow a polynomial number of lines,
each of which must be a polynomial-sized formula, using the new axiom, polynomial-size EF proofs
allow a polynomial number of lines, each of which can essentially be a polynomial-sized circuit
(you can think of the new variables introduced by this axiom schema as names for the gates of a
circuit, in that once a formula is named by a single variable, it can be reused without having to
create another copy of the whole formula). In particular, a natural definition of P/poly-Frege is
equivalent to Extended Frege. Extended Frege is the strongest natural system known for proving
propositional tautologies. One may also consider seemingly much stronger systems such as Peano
Arithmetic or ZFC, but it is unclear and unknown if these systems can prove Boolean tautologies
(with no quantifiers) any more efficiently than Extended Frege.

We define all of the algebraic systems we consider in Section 1.3.3 below.

1.3 Foundational results

1.3.1 Relation with coMA

Proposition 1.4. For any field F, if every propositional tautology has a polynomial-size constant-
free IPSF-proof, then NP ⊆ coMA, and hence the polynomial hierarchy collapses to its second level.

If we wish to drop the restriction of “constant-free” (which, recall, is no restriction at all over
a finite field), we may do so either by using the Blum–Shub–Smale analogs of NP and coMA using
essentially the same proof, or over fields of characteristic zero using the Generalized Riemann
Hypothesis (Proposition 2.4).

Proof. Merlin nondeterministically guesses the polynomial-size constant-free IPS proof, and then
Arthur must check conditions (1) and (2) of Definition 1.1. (We need constant-free so that the
algebraic proof has polynomial bit-size and thus can in fact be guessed by a Boolean Merlin.) Both
conditions of Definition 1.1 are instances of Polynomial Identity Testing (PIT), which can thus
be solved in randomized polynomial time by the standard Schwarz–Zippel–DeMillo–Lipton coRP
algorithm for PIT.
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1.3.2 Chasms, depth reduction, and other circuit transformations

Recently, many strong depth reduction theorems have been proved for circuit complexity [AV08,
Koi12, GKKS13, Tav13], which have been called “chasms” since Agrawal and Vinay [AV08]. In
particular, they imply that sufficiently strong lower bounds against depth 3 or 4 circuits imply
super-polynomial lower bounds against arbitrary circuits. Since an IPS proof is just a circuit, these
depth reduction chasms apply equally well to IPS proof size. Note that it was not clear to us how
to adapt the proofs of these chasms to the type of circuits used in the Polynomial Calculus or other
previous algebraic systems [Pit98], and indeed this was part of the motivation to move to our more
general notion of IPS proof.

Observation 1.5 (Chasms for IPS proof size). If a system of nO(1) polynomial equations in n
variables has an IPS proof of unsatisfiability of size s and (semantic) degree d, then it also has:

1. A O(log d(log s + log d))-depth IPS proof of size poly(ds) (follows from Valiant–Skyum–
Berkowitz–Rackoff [VSBR83]);

2. A depth 4 IPS formula proof of size nO(
√
d) (follows from Koiran [Koi12]) or a depth 4 IPS

proof of size 2O(
√
d log(ds) logn) (follows from Tavenas [Tav13]).

3. (Over fields of characteristic zero) A depth 3 IPS proof of size 2O(
√
d log d logn log s) (follows

from Gupta, Kayal, Kamath, and Saptharishi [GKKS13]) or even 2O(
√
d logn log s) (follows

from Tavenas [Tav13]). �

This observation helps explain why size lower bounds for algebraic proofs for the stronger
notion of size—namely number of lines, used here and in Pitassi [Pit96], rather than number of
monomials—have been difficult to obtain. This also suggests that size lower bounds for IPS proofs
in restricted circuit classes would be interesting, even for restricted kinds of depth 3 circuits.

Similarly, since IPS proofs are just circuits, any IPS certificate family of polynomially bounded
degree that is computed by a polynomial-size family of algebraic circuits with divisions can also be
computed by a polynomial-size family of algebraic circuits without divisions (follows from Strassen
[Str73]). We note, however, that one could in principle consider IPS certificates that were not
merely polynomials, but even rational functions, under suitable conditions; divisions for computing
these cannot always be eliminated. We discuss this “Rational Ideal Proof System,” the exact
conditions needed, and when such divisions can be effectively eliminated in Appendix B.

1.3.3 Simulations and definitions of other algebraic proof systems in terms of IPS

Previously studied algebraic proof systems can be viewed as particular complexity measures on the
Ideal Proof System, including the Polynomial Calculus (or Gröbner) proof system (PC) [CEI96],
Polynomial Calculus with Resolution (PCR) [ABSRW02], the Nullstellensatz proof system [BIK+96],
and Pitassi’s algebraic systems [Pit96, Pit98], as we explain below.

Before explaining these, we note that although the Nullstellensatz says that if F1(~x) = · · · =
Fm(~x) = 0 is unsatisfiable then there always exists a certificate that is linear in the yi—that is, of
the form

∑
yiGi(~x)—our definition of IPS certificate does not enforce ~y-linearity. The definition

of IPS certificate allows certificates with ~y-monomials of higher degree, and it is conceivable that
one could achieve a savings in size by considering such certificates rather than only considering
~y-linear ones. As the linear form is closer to the original way Hilbert expressed the Nullstellensatz
(see, e. g., the translation [Hil78]), we refer to certificates of the form

∑
yiGi(~x) as Hilbert-like IPS

certificates.
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All of the previous algebraic proof systems are rule-based systems, in that they syntactically
enforce the condition that every line of the proof is a polynomial in the ideal of the original
polynomials F1(~x), . . . , Fm(~x). Typically they do this by allowing two derivation rules: 1) from G
and H, derive αG + βH for α, β constants, and 2) from G, derive Gxi for any variable xi. By
“rule-based circuits” we mean circuits with inputs y1, . . . , ym having linear combination gates and,
for each i = 1, . . . , n, gates that multiply their input by xi. (Alternatively, one may view the xi as
inputs, require that the circuit by syntactically linear in the yi, and that each xi is only an input
to multiplication gates, each of which syntactically depends on at least one yi. Again alternatively,
one may view the xi as inputs, but with the requirement that the polynomial computed at each
gate is a polynomial of yi-degree one in the ideal 〈y1, . . . , ym〉 ⊆ F[~x, ~y].) In particular, rule-based
circuits necessarily produce Hilbert-like certificates.

Now we come to the definitions of previous algebraic proof systems in terms of complexity
measures on the Ideal Proof System:

• Complexity in the Nullstellensatz proof system, or “Nullstellensatz degree,” is simply the
minimal degree of any Hilbert-like certificate (for systems of equations of constant degree,
such as the algebraic translations of tautologies.)

• “Polynomial Calculus size” is the sum of the (semantic) number of monomials at each gate
in C(~x, ~F (~x)), where C ranges over rule-based circuits.

• “PC degree” is the minimum over rule-based circuits C(~x, ~y) of the maximum semantic degree
at any gate in C(~x, ~F (~x)).

• Pitassi’s 1997 algebraic proof system [Pit98] is essentially PC, except where size is measured
by number of lines of the proof (rather than total number of monomials appearing). This
corresponds exactly to the smallest size of any rule-based circuit C(~x, ~y) computing any
Hilbert-like IPS certificate.

• Polynomial Calculus with Resolution (PCR) [ABSRW02] also allows variables xi and adds
the equations xi = 1 − xi and xixi = 0. This is easily accommodated into the Ideal Proof
System: add the xi as new variables, with the same restrictions as are placed on the xi’s in
a rule-based circuit, and add the polynomials xi − 1 + xi and xixi to the list of equations Fi.
Note that while this may have an effect on the PC size as it can decrease the total number
of monomials needed, it has essentially no effect on the number of lines of the proof.

Proposition 2.2. Pitassi’s 1996 algebraic proof system [Pit96] is p-equivalent to Hilbert-like IPS.
Pitassi’s 1997 algebraic proof system [Pit98]—equivalent to the number-of-lines measure on PC

proofs—is p-equivalent to Hilbert-like det-IPS or VPws-IPS.

Combining Proposition 2.2 with the techniques used in Theorem 3.1 shows that super-polynomial
lower bounds on the number of lines in PC proofs would positively resolve the Permanent Versus
Determinant Conjecture, explaining the difficulty of such proof complexity lower bounds.

In light of this proposition (which we prove in Section 2.2), we henceforth refer to the systems
from [Pit96] and [Pit98] as Hilbert-like IPS and Hilbert-like det-IPS, respectively. Pitassi [Pit96,
Theorem 1] showed that Hilbert-like IPS p-simulates Polynomial Calculus and Frege. Essentially
the same proof shows that Hilbert-like IPS p-simulates Extended Frege as well.

Unfortunately, the proof of the simulation in [Pit96] does not seem to generalize to give a
depth-preserving simulation. Nonetheless, our next proposition shows that there is indeed a depth-
preserving simulation.
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Theorem 2.3. For any d(n), depth-(d+ 2) IPSFp p-simulates depth-d Frege proofs with unbounded
fan-in ∨,∧,MODp connectives (for d = O(1), this is AC0

d[p]-Frege).

1.4 Lower bounds on IPS imply circuit lower bounds

Theorem 3.1. A super-polynomial lower bound on [constant-free] Hilbert-like IPSR proofs of any
family of tautologies implies VNPR 6= VPR [respectively, VNP0

R 6= VP0
R], for any ring R.

A super-polynomial lower bound on the number of lines in Polynomial Calculus proofs implies
the Permanent versus Determinant Conjecture (VNP 6= VPws).

Together with Proposition 1.4, this immediately gives an alternative, and we believe simpler,
proof of the following result:

Corollary 1.6. If NP 6⊆ coMA, then VNP0
R 6= VP0

R, for any ring R.

For comparison, here is a brief sketch of the only previous proof of this result that we are
aware of, which only seems to work when R is a finite field or, assuming the Generalized Riemann
Hypothesis, a field of characteristic zero, and uses several other significant results. The previous
proof combines: 1) Bürgisser’s results [Bür00b] relating VP and VNP over various fields to stan-
dard Boolean complexity classes such as NC/poly, #P/poly (uses GRH), and ModpP/poly, and
2) the implication NP 6⊆ coMA ⇒ NC/poly 6= #P/poly (and similarly with #P/poly replaced by
ModpP/poly), which uses the downward self-reducibility of complete functions for #P/poly (the
permanent [Val79a]) and ModpP/poly [FF93], as well as Valiant–Vazirani [VV86].

The following lemma is the key to Theorem 3.1.

Lemma 3.2. Every family of CNF tautologies (ϕn) has a Hilbert-like family of IPS certificates
(Cn) in VNP0

R.

Here we show how Theorem 3.1 follows from Lemma 3.2. Lemma 3.2 is proved in Section 3.

Proof of Theorem 3.1, assuming Lemma 3.2. For a given set F of unsatisfiable polynomial equa-
tions F1 = · · · = Fm = 0, a lower bound on IPS refutations of F is equivalent to giving the
same circuit lower bound on all IPS certificates for F . A super-polynomial lower bound on
Hilbert-like IPS implies that some function in VNP—namely, the VNP-IPS certificate guaranteed by
Lemma 3.2—cannot be computed by polynomial-size algebraic circuits, and hence that VNP 6= VP.
Since Lemma 3.2 even guarantees a constant-free certificate, we get the analogous consequence for
constant-free lower bounds.

The second part of Theorem 3.1 follows from the fact that number of lines in a PC proof is
p-equivalent to Hilbert-like det-IPS (Proposition 2.2). As in the first part, a super-polynomial lower
bound on Hilbert-like det-IPS implies that some function family in VNP is not a p-projection of
the determinant. Since the permanent is VNP-complete under p-projections, the result follows.

1.5 PIT as a bridge between circuit complexity and proof complexity

In this section we state our PIT axioms and give an outline of the proof of Theorems 4.1 and 4.5,
which say that Extended Frege (EF) (respectively, AC0- or AC0[p]-Frege) is polynomially equivalent
to the Ideal Proof System if there are polynomial-size circuits for PIT whose correctness—suitably
formulated—can be efficiently proved in EF (respectively, AC0- or AC0[p]-Frege). More precisely,
we identify a small set of natural axioms for PIT and show that if these axioms can be proven
efficiently in EF, then EF is p-equivalent to IPS. Theorem 4.5 begins to explain why AC0[p]-Frege
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lower bounds have been so difficult to obtain, and highlights the importance of our PIT axioms for
AC0[p]-Frege lower bounds. We begin by describing and discussing these axioms.

Fix some standard Boolean encoding of constant-free algebraic circuits, so that the encoding of
any size-m constant-free algebraic circuit has size poly(m). We use “[C]” to denote the encoding of
the algebraic circuit C. Let K = {Km,n} denote a family of Boolean circuits for solving polynomial
identity testing. That is, Km,n is a Boolean function that takes as input the encoding of a size m
constant-free algebraic circuit, C, over variables x1, . . . , xn, and if C has polynomial degree, then
K outputs 1 if and only if the polynomial computed by C is the 0 polynomial.

Notational convention: We underline parts of a statement that involve propositional variables.
For example, if in a propositional statement we write “[C]”, this refers to a fixed Boolean string
that is encoding the (fixed) algebraic circuit C. In contrast, if we write [C], this denotes a Boolean
string of propositional variables, which is to be interpreted as a description of an as-yet-unspecified
algebraic circuit C; any setting of the propositional variables corresponds to a particular algebraic
circuit C. Throughout, we use ~p and ~q to denote propositional variables (which we do not bother
underlining except when needed for emphasis), and ~x, ~y, ~z, . . . to denote the algebraic variables that
are the inputs to algebraic circuits. Thus, C(~x) is an algebraic circuit with inputs ~x, [C(~x)] is a
fixed Boolean string encoding some particular algebraic circuit C, [C(~x)] is a string of propositional
variables encoding an unspecified algebraic circuit C, and [C(~p)] denotes a Boolean string together
with propositional variables ~p that describes a fixed algebraic circuit C whose inputs have been set
to the propositional variables ~p.

Definition 1.7. Our PIT axioms for a Boolean circuit K are as follows. (This definition makes
sense even if K does not correctly compute PIT, but that case isn’t particularly interesting or
useful.)

1. Intuitively, the first axiom states that if C is a circuit computing the identically 0 polynomial,
then the polynomial evaluates to 0 on all Boolean inputs.

K([C(~x)])→ K([C(~p)])

Note that the only variables on the left-hand side of the implication are Boolean propositional
variables, ~q, that encode an algebraic circuit of size m over n algebraic variables ~x (these latter
are not propositional variables of the above formula). The variables on the right-hand side
are ~q plus Boolean variables ~p, where some of the variables in ~q—those encoding the xi—have
been replaced by constants or ~p in such a way that [C(~p)] encodes a circuit that plugs in the
{0, 1}-valued pi for its algebraic inputs xi. In other words, when we say [C(~p)] we mean the
encoding of the circuit C where Boolean constants are plugged in for the original algebraic ~x
variables, as specified by the variables ~p.

2. Intuitively, the second axiom states that if C is a circuit computing the zero polynomial, then
the circuit 1− C does not compute the zero polynomial.

K([C(~x)])→ ¬K([1− C(~x)])

Here, if ~q are the propositional variables describing C, these are the only variables that appear
in the above statement. We abuse syntax slightly in writing [1 − C]: it is meant to denote
a Boolean formula ϕ(~q) such that if ~q = [C] describes a circuit C, then ϕ(~q) describes the
circuit 1− C (with one subtraction gate more than C).
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3. Intuitively, the third axiom states that PIT circuits respect certain substitutions. More
specifically, if the polynomial computed by circuit G is 0, then G can be substituted for the
constant 0.

K([G(~x)]) ∧K([C(~x, 0)])→ K([C(~x,G(~x))])

Here the notations [C(~x, 0)] and [C(~x,G(~x))] are similar abuses of notation to above; we use
these and similar shorthands without further mention.

4. Intuitively, the last axiom states that PIT is closed under permutations of the (algebraic)
variables. More specifically if C(~x) is identically 0, then so is C(π(~x)) for all permutations π.

K([C(~x)])→ K([C(π(~x))])

We can now state and discuss two of our main theorems precisely.

Theorem 4.1. If there is a family K of polynomial-size Boolean circuits that correctly compute
PIT, such that the PIT axioms for K have polynomial-size EF proofs, then EF is polynomially
equivalent to IPS.

Note that the issue is not the existence of small circuits for PIT since we would be happy with
nonuniform polynomial-size PIT circuits, which do exist. Unfortunately the known constructions
are highly nonuniform—they involve picking uniformly random points—and we do not see how to
prove the above axioms for these constructions. Nonetheless, it seems very plausible to us that
there exists a polynomial-size family of PIT circuits where the above axioms are efficiently provable
in EF, especially in light of Remark 1.3.

To prove the theorem (which we do in Section 4.1), we first show that EF is p-equivalent to
IPS if a family of propositional formulas expressing soundness of IPS are efficiently EF provable.
Then we show that efficient EF proofs of SoundnessIPS follows from efficient EF proofs for the PIT
axioms.

Our next main result shows that the previous result can be scaled down to much weaker proof
systems than EF.

Theorem 4.5. Let C be any class of circuits closed under AC0 circuit reductions. If there is a
family K of polynomial-size Boolean circuits computing PIT such that the PIT axioms for K have
polynomial-size C-Frege proofs, then C-Frege is polynomially equivalent to IPS, and consequently
polynomially equivalent to Extended Frege.

Note that here we do not need to restrict the circuit family K to be in the class C. This requires
one more (standard) technical device compared to the proof of Theorem 4.1, namely the use of
auxiliary variables for the gates of K. Here we prove and discuss some corollaries of Theorem 4.5;
the proof of Theorem 4.5 is given in Section 4.2.

As AC0 is known unconditionally to be strictly weaker than Extended Frege [Ajt94], we imme-
diately get that AC0-Frege cannot efficiently prove the PIT axioms for any Boolean circuit family
K correctly computing PIT.

Using essentially the same proof as Theorem 4.5, we also get the following result. By “depth d
PIT axioms” we mean a variant where the algebraic circuits C (encoded as [C] in the statement of
the axioms) have depth at most d. Note that, even over finite fields, for any d ≥ 4 super-polynomial
lower bounds on depth d algebraic circuits are a notoriously open problem. (The chasm at depth
4 says that depth 4 lower bounds of size 2ω(

√
n logn) imply super-polynomial size lower bounds on

general algebraic circuits, but this does not give any indication of why merely super-polynomial
lower bounds on depth 4 circuits should be difficult.)
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Corollary 1.8. For any d, if there is a family of tautologies with no polynomial-size AC0[p]-Frege
proof, and AC0[p]-Frege has polynomial-size proofs of the [depth d] PIT axioms for some K, then
VNPFp does not have polynomial-size [depth d] algebraic circuits.

This corollary makes the following question of central importance in getting lower bounds on
AC0[p]-Frege:

Open Question 1.9. For some d ≥ 4, is there some K computing depth d PIT, for which the
depth d PIT axioms have AC0[p]-Frege proofs of polynomial size?

This question has the virtue that answering it either way is highly interesting:

• If AC0[p]-Frege does not have polynomial-size proofs of the [depth d] PIT axioms for any K,
then we have super-polynomial size lower bounds on AC0[p]-Frege, answering a question that
has been open for nearly thirty years.

• Otherwise, super-polynomial size lower bounds on AC0[p]-Frege imply that the permanent
does not have polynomial-size algebraic circuits [of depth d] over any finite field of character-
istic p. This would then explain why getting superpolynomial lower bounds on AC0[p]-Frege
has been so difficult.

This dichotomy is in some sense like a “completeness result for AC0[p]-Frege, modulo proving
strong algebraic circuit lower bounds on VNP”: if one hopes to prove AC0[p]-Frege lower bounds
without proving strong lower bounds on VNP, then one must prove AC0[p]-Frege lower bounds on
the PIT axioms. For example, if you believe that proving VP 6= VNP [or that proving VNP does not
have bounded-depth polynomial-size circuits] is very difficult, and that proving AC0[p]-Frege lower
bounds is comparatively easy, then to be consistent you must also believe that proving AC0[p]-Frege
lower bounds on the [bounded-depth] PIT axioms is easy.

Similarly, along with Theorem 2.3, we get the following corollary.

Corollary 1.10. If for every constant d, there is a constant d′ such that the depth d PIT axioms
have polynomial-size depth d′ AC0

d′ [p]-Frege proofs , then AC0[p]-Frege is polynomially equivalent to
constant-depth IPSFp.

Using the chasms at depth 3 and 4 for algebraic circuits [AV08, Koi12, Tav13] (see Obser-
vation 1.5 above), we can also help explain why sufficiently strong exponential lower bounds for
AC0-Frege—that is, lower bounds that don’t depend on the depth, or don’t depend so badly on the
depth, which have also been open for nearly thirty years—have been difficult to obtain:

Corollary 1.11. Let F be any field, and let c be a sufficiently large constant. If there is a family
of tautologies (ϕn) such that any AC0-Frege proof of ϕn has size at least 2c

√
n logn, and AC0-Frege

has polynomial-size proofs of the depth 4 PITF axioms for some K, then VP0
F 6= VNP0

F.
If F has characteristic zero, we may replace “depth 4” above with “depth 3.”

Proof. Suppose that AC0-Frege can efficiently prove the depth 4 PITF axioms for some Boolean
circuit K. Let (ϕn) be a family of tautologies. If VNP0

F = VP0
F, then there is a polynomial-size IPS

proof of ϕn. By Observation 1.5, the same certificate is computed by a depth 4 F-algebraic circuit
of size 2O(

√
n logn). By assumption, AC0-Frege can efficiently prove the depth 4 PITF axioms for K,

and therefore AC0-Frege p-simulates depth 4 IPS. Thus there are AC0-Frege proofs of ϕn of size
2O(
√
n logn).

If F has characteristic zero, we may instead use the best-known chasm at depth 3, for which we
only need depth 3 PIT and depth 3 IPS, and yields the same bounds.
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As with Corollary 1.8, we conclude a similar dichotomy: either AC0-Frege can efficiently prove
the depth 4 PIT axioms (depth 3 in characteristic zero), or proving 2ω(

√
n logn) lower bounds on

AC0-Frege implies VP0 6= VNP0.

1.6 Towards lower bounds

Theorem 3.1 shows that proving lower bounds on (even Hilbert-like) IPS, or on the number of
lines in Polynomial Calculus proofs (equivalent to Hilbert-like det-IPS), is at least as hard as
proving algebraic circuit lower bounds. In this section we begin to make the difference between
proving proof complexity lower bounds and proving circuit lower bounds more precise, and use this
precision to suggest a direction for proving new proof complexity lower bounds, aimed at proving
the long-sought-for length-of-proof lower bounds on an algebraic proof system.

The key fact we use is embodied in Lemma 1.12, which says that the set of (Hilbert-like)
certificates for a given unsatisfiable system of equations is, in a precise sense, “finitely generated.”
The basic idea is then to leverage this finite generation to extend lower bound techniques from
individual polynomials to entire “finitely generated” sets of polynomials.

Because Hilbert-like certificates are somewhat simpler to deal with, we begin with those and
then proceed to general certificates. But keep in mind that all our key conclusions about Hilbert-
like certificates will also apply to general certificates. For this section we will need the notion of a
module over a ring (the ring-analogue of a vector space over a field) and a few basic results about
such modules; these are reviewed in Appendix A.3.

Recall that a Hilbert-like IPS-certificate C(~x, ~y) is one that is linear in the y-variables, that is,
it has the form

∑m
i=1Gi(~x)yi. Each function of the form

∑
iGi(~x)yi is completely determined by

the tuple (G1(~x), · · · , Gm(~x)), and the set of all such tuples is exactly the R[~x]-module R[~x]m.
The algebraic circuit size of a Hilbert-like certificate C =

∑
iGi(~x)yi is equivalent (up to a small

constant factor and an additive O(n)) to the algebraic circuit size of computing the entire tuple
(G1(~x), . . . , Gm(~x)). A circuit computing the tuple can easily be converted to a circuit computing
C by adding m times gates and a single plus gate. Conversely, for each i we can recover Gi(~x) from
C(~x, ~y) by plugging in 0 for all yj with j 6= i and 1 for yi. So from the point of view of lower bounds,
we may consider Hilbert-like certificates, and their representation as tuples, essentially without loss
of generality. This holds even in the setting of Hilbert-like depth 3 IPS-proofs.

Using the representation of Hilbert-like certificates as tuples, we find that Hilbert-like IPS-
certificates are in bijective correspondence with R[~x] solutions (in the new variables gi) to the
following R[~x]-linear equation:

(
F1(~x) · · · Fm(~x)

) g1
...
gm

 = 1

Just as in linear algebra over a field, the set of such solutions can be described by taking one
solution and adding to it all solutions to the associated homogeneous equation:

(
F1(~x) · · · Fm(~x)

) g1
...
gm

 = 0 (1)

(To see why this is so, mimic the usual linear algebra proof: given two solutions of the inhomo-
geneous equation, consider their difference.) Solutions to the latter equation are commonly called
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“syzygies” amongst the Fi. Syzygies and their properties are well-studied—though not always
well-understood—in commutative algebra and algebraic geometry, so lower and upper bounds on
Hilbert-like IPS-proofs may benefit from known results in algebra and geometry.

We now come to the key lemma for Hilbert-like certificates.

Lemma 1.12. For a given set of unsatisfiable polynomial equations F1(~x) = · · · = Fm(~x) = 0 over
a Noetherian ring R (such as a field or Z), the set of Hilbert-like IPS-certificates is a coset of a
finitely generated submodule of R[~x]m.

Proof. The discussion above shows that the set of Hilbert-like certificates is a coset of a R[~x]-
submodule of R[~x]m, namely the solutions to (1). As R is a Noetherian ring, so is R[~x] (by
Hilbert’s Basis Theorem). Thus R[~x]m is a Noetherian R[~x]-module, and hence every submodule
of it is finitely generated.

Lemma 1.12 seems so conceptually important that it is worth re-stating:

The set of all Hilbert-like IPS-certificates for a given system of equations can
be described by giving a single Hilbert-like IPS-certificate, together with a
finite generating set for the syzygies.

Its importance may be underscored by contrasting the preceding statement with the structure (if
any?) of the set of all proofs in other proof systems, particularly non-algebraic ones.

Note that a finite generating set for the syzygies (indeed, even a Gröbner basis) can be found
in the process of computing a Gröbner basis for the R[~x]-ideal 〈F1(~x), . . . , Fm(~x)〉. This process
is to Buchberger’s Gröbner basis algorithm as the extended Euclidean algorithm is to the usual
Euclidean algorithm; an excellent exposition can be found in the book by Ene and Herzog [EH12]
(see also [Eis95, Section 15.5]).

Lemma 1.12 suggests that one might be able to prove size lower bounds on Hilbert-like-
IPS along the following lines: 1) find a single family of Hilbert-like IPS-certificates (Gn)∞n=1,

Gn =
∑poly(n)

i=1 yiGi(~x) (one for each input size n), 2) use your favorite algebraic circuit lower
bound technique to prove a lower bound on the polynomial family G, 3) find a (hopefully nice)
generating set for the syzygies, and 4) show that when adding to G any R[~x]-linear combinations
of the generators of the syzygies, whatever useful property was used in the lower bound on G still
holds. Although this indeed seems significantly more difficult than proving a single algebraic circuit
complexity lower bound, it at least suggests a recipe for proving lower bounds on Hilbert-like IPS
(and its subsystems such as homogeneous depth 3, depth 4, multilinear, etc.), which should be con-
trasted with the difficulty of transferring lower bounds for a circuit class to lower bounds on previous
related proof systems, e. g. transferring AC0[p] lower bounds [Raz87, Smo87] to AC0[p]-Frege.

This entire discussion also applies to general IPS-certificates, with the following modifications.
We leave a certificate C(~x, ~y) as is, and instead of a module of syzygies we get an ideal (still finitely
generated) of what we call zero-certificates. The difference between any two IPS-certificates is a
zero-certificate; equivalently, a zero-certificate is a polynomial C(~x, ~y) such that C(~x,~0) = 0 and
C(~x, ~F (~x)) = 0 as well (contrast with the definition of IPS certificate, which has C(~x, ~F (~x)) = 1).
The set of IPS-certificates is then the coset intersection

〈y1, . . . , ym〉 ∩ (1 + 〈y1 − F1(~x), . . . , ym − Fm(~x)〉)

which is either empty or a coset of the ideal of zero-certificates: 〈y1, . . . , ym〉∩〈y1−F1(~x), . . . , ym−
Fm(~x)〉. The intersection ideal 〈y1, . . . , ym〉 ∩ 〈y1 −F1(~x), . . . , ym −Fm(~x)〉 plays the role here that



Circuit Complexity, Proof Complexity, and PIT - J. A. Grochow and T. Pitassi 17

the set of syzygies played for Hilbert-like IPS-certificates.3

A finite generating set for the ideal of zero-certificates can be computed using Gröbner bases
(see, e. g., [EH12, Section 3.2.1]).

Just as for Hilbert-like certificates, we get:

The set of all IPS-certificates for a given system of equations can be de-
scribed by giving a single IPS-certificate, together with a finite generating
set for the ideal of zero-certificates.

Our suggestions above for lower bounds on Hilbert-like IPS apply mutatis mutandis to general IPS-
certificates, suggesting a route to proving true size lower bounds on IPS using known techniques
from algebraic complexity theory.

The discussion here raises many basic and interesting questions about the complexity of sets of
(families of) functions in an ideal or module, which we propose in Section 1.7.

1.7 Summary and open questions

We introduced the Ideal Proof System IPS (Definition 1.1) and showed that it is a very close alge-
braic analog of Extended Frege—the most powerful, natural system currently studied for proving
propositional tautologies. We showed that lower bounds on IPS imply (algebraic) circuit lower
bounds, which to our knowledge is the first time that lower bounds on a proof system have been
shown to imply any sort of computational lower bounds. Using the same techniques, we were also
able to show that lower bounds on the number of lines (rather than the usual measure of num-
ber of monomials) in Polynomial Calculus proofs also imply strong algebraic circuit lower bounds.
Because proofs in IPS are just algebraic circuits satisfying certain polynomial identity tests, many
results from algebraic circuit complexity apply immediately to IPS. In particular, the chasms at
depth 3 and 4 in algebraic circuit complexity imply that lower bounds on even depth 3 or 4 IPS
proofs would be very interesting. We introduced natural propositional axioms for polynomial iden-
tity testing (PIT), and showed that these axioms play a key role in understanding the thirty-year
open question of AC0[p]-Frege lower bounds: either there are AC0[p]-Frege lower bounds on the PIT
axioms, or any AC0[p]-Frege lower bounds are as hard as showing VP 6= VNP over a field of charac-
teristic p. In appendices, we discuss a variant of the Ideal Proof System that allows divisions, and
its utility and limitations, as well as a geometric variant of the Ideal Proof System which suggests
further geometric properties that might be of interest for computational and proof complexity. And
finally, through an analysis of the set of all IPS proofs of a given unsatisfiable system of equations,
we suggest how one might transfer techniques from algebraic circuit complexity to prove lower
bounds on IPS (and thus on Extended Frege).

The Ideal Proof System raises many new questions, not only about itself, but also about PIT,
new examples of VNP functions coming from propositional tautologies, and the complexity of ideals
or modules of polynomials.

In Proposition 2.1 we show that if a general IPS-certificate C has only polynomially many ~y-
monomials (with coefficients in F[~x]), and the maximum degree of each yi is polynomially bounded,
then C can be converted to a polynomial-size Hilbert-like certificate. However, without this sparsity
assumption general IPS appears to be stronger than Hilbert-like IPS.

3Note that the ideal of zero-certificates is not merely the set of all functions in the ideal 〈y1−F1(~x), . . . , ym−Fm(~x)〉
that only involve the yi, since the ideal 〈y1, . . . , ym〉 ⊆ R[~x, ~y] consists of all polynomials in the yi with coefficients in
R[~x]. Certificates only involving the yi do have a potentially useful geometric meaning, however, which we consider
in Appendix C.
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Open Question 1.13. What, if any, is the difference in size between the smallest Hilbert-like and
general IPS certificates for a given unsatisfiable system of equations? What about for systems of
equations coming from propositional tautologies?

Open Question 1.14 (Degree versus size). Is there a super-polynomial size separation—or indeed
any nontrivial size separation—between IPS certificates of degree ≤ dsmall(n) and IPS certificates
of degree ≥ dlarge(n) for some bounds dsmall < dlarge?

This question is particularly interesting in the following cases: a) certificates for systems of
equations coming from propositional tautologies, where dsmall(n) = n and dlarge(n) ≥ ω(n), since
we know that every such system of equations has some (not necessarily small) certificate of degree
≤ n, and b) certificates for unsatisfiable systems of equations taking dsmall to be the bound given
by the best-known effective Nullstellensätze, which are all exponential [Bro87, Kol88, Som99].

Open Question 1.15. Are there tautologies for which the certificate family constructed in Theo-
rem 3.1 is the one of minimum complexity (under p-projections or c-reductions, see Appendix A.1)?

If there is any family ϕ = (ϕn) of tautologies for which Question 1.15 has a positive answer
and for which the certificates constructed in Theorem 3.1 are VNP-complete (Question 1.19 below),
then super-polynomial size lower bounds on IPS-proofs of ϕ would be equivalent to VP 6= VNP.
This highlights the potential importance of understanding the structure of the set of certificates
under computational reducibilities.

Since the set of all [Hilbert-like] IPS-certificates is a coset of a finitely generated ideal [respec-
tively, module], the preceding question is a special case of considering, for a given family of cosets

of ideals or modules (f
(0)
n +In) (In ⊆ R[x1, . . . , xpoly(n)]), the relationships under various reductions

between all families of functions (fn) with fn ∈ f (0)
n + In for each n. This next question is of a

more general nature than the others we ask; we think it deserves further study.

General Question 1.16. Given a family of cosets of ideals f
(0)
n +In (or more generally modules) of

polynomials, with In ⊆ R[x1, . . . , xpoly(n)], consider the function families (fn) ∈ (f
(0)
n +In) (meaning

that fn ∈ f (0)
n +In for all n) under any computational reducibility≤ such as p-projections. What can

the ≤ structure look like? When, if ever, is there such a unique ≤-minimum (even a single nontrivial
example would be interesting, as in Question 1.15)? Can there be infinitely many incomparable
≤-minima?

Say a ≤-degree d is “saturated” in (f
(0)
n + In) if every ≤-degree d′ ≥ d has some representative

in f (0) + I. Must saturated degrees always exist? We suspect yes, given that one may multiply any
element of I by arbitrarily complex polynomials. What can the set of saturated degrees look like

for a given (f
(0)
n + In)? Must every ≤-degree in f (0) + I be below some saturated degree? What

can the ≤-structure of f (0) + I look like below a saturated degree?

Question 1.16 is of interest even when f (0) = 0, that is, for ideals and modules of functions
rather than their nontrivial cosets.

Open Question 1.17. Can we leverage the fact that the set of IPS certificates is not only a finitely
generated coset intersection, but also closed under multiplication?

We note that it is not difficult to show that a coset c+I of an ideal is closed under multiplication
if and only if c2− c ∈ I. Equivalently, this means that c is idempotent (c2 = c) in the quotient ring
R/I. For example, if I is a prime ideal, then R/I has no zero-divisors, and thus the only choices
for c+ I are I and 1 + I. We note that the ideal generated by the n2 equations XY − I = 0 in the
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setting of the Hard Matrix Identities is prime (see Appendix B). It seems unlikely that all ideals
coming from propositional tautologies are prime, however.

The complexity of Gröbner basis computations obviously depends on the degrees and the
number of polynomials that one starts with. From this point of view, Mayr and Meyer [MM82]
showed that the doubly-exponential upper bound on the degree of a Gröbner basis [Her26] (see also
[Sei74, MW83]) could not be improved in general. However, in practice many Gröbner basis compu-
tations seem to work much more efficiently, and even theoretically many classes of instances—such
as proving that 1 is in a given ideal—can be shown to have only a singly-exponential degree upper
bound [Bro87, Kol88, Som99]. These points of view are reconciled by the more refined measure of
the (Castelnuovo–Mumford) regularity of an ideal or module. For the definition of regularity and a
discussion of its close connection with the complexity of Gröbner basis and syzygy computations,
we refer the reader to the original papers [BS87a, BS87b, BS88] or the survey [BM93].

Given that the syzygy module or ideal of zero-certificates are so crucial to the complexity of
IPS-certificates, and the tight connection between these modules/ideals and the computation of
the Gröbner basis of the ideal one started with, we ask:

General Question 1.18. Is there a formal connection between the proof complexity of individual
instances of TAUT (in, say, the Ideal Proof System), and the Castelnuovo–Mumford regularity of
the corresponding syzygy module or ideal of zero-certificates?

The certificates constructed in the proof of Theorem 3.1 provide many new examples of poly-
nomial families in VNP. There are many natural questions one can ask about these polynomials.
For example, the construction itself depends on the order of the clauses; does the complexity of
the resulting polynomial family depend on this order? As another example, we suspect that, for
any ≡p or ≡c-degree within VNP (see Appendix A.1), there is some family of tautologies for which
the above polynomials are of that degree. However, we have not yet proved this for even a single
degree.

Open Question 1.19. Are there tautologies for which the certificates constructed in Theorem 3.1
are VNP-complete? More generally, for any given ≡p or ≡c-degree within VNP, are there tautologies
for which this certificate is of that degree?

Prior to our work, much work was done on bounds for the Ideal Membership Problem—
EXPSPACE-complete [MM82, May89]—the so-called Effective Nullstellensatz—where exponential
degree bounds are known, and known to be tight [Bro87, Kol88, Som99, EL99]—and the arith-
metic Nullstellensatz over Z, where one wishes to bound not only the degree of the polynomials but
the sizes of the integer coefficients appearing [KPS01]. The viewpoint afforded by the Ideal Proof
Systems raises new questions about potential strengthening of these results.

In particular, the following is a natural extension of Definition 1.1.

Definition 1.20. An IPS certificate that a polynomial G(~x) ∈ F[~x] is in the ideal [respectively,
radical of the ideal] generated by F1(~x), . . . , Fm(~x) is a polynomial C(~x, ~y) such that

1. C(~x,~0) = 0, and

2. C(~x, F1(~x), . . . , Fm(~x)) = G(~x) [respectively, G(~x)k for any k > 0].

An IPS derivation of G from F1, . . . , Fm is a circuit computing some IPS certificate that G ∈
〈F1, . . . , Fm〉.
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For the Ideal Membership Problem, the EXPSPACE lower bound [MM82, May89] implies an
subexponential-size lower bound on constant-free circuits computing IPS-certificates of ideal mem-
bership (or non-constant-free circuits in characteristic zero, assuming GRH, see Proposition 2.4).
Here by “sub-exponential” we mean a function f(n) ∈

⋂
ε>0O(2n

ε
). Indeed, if for every G(~x) ∈

〈F1(~x), . . . , Fm(~x)〉 there were a constant-free circuit of subexponential size computing some IPS
certificate for the membership of G in 〈F1, . . . , Fm〉, then guessing that circuit and verifying its
correctness using PIT gives a MAsubexp ⊆ SUBEXPSPACE algorithm for the Ideal Membership
Problem. The EXPSPACE-completeness of Ideal Membership would then imply that EXPSPACE ⊆
SUBEXPSPACE, contradicting the Space Hierarchy Theorem [HS65]. Under special circumstances,
of course, one may be able to achieve better upper bounds.

However, for the effective Nullstellensatz and its arithmetic variant, we leave the following open:

Open Question 1.21. For any G,F1, . . . , Fm on x1, . . . , xn, as in Definition 1.20, is there always
an IPS-certificate of subexponential size that G is in the radical of 〈F1, . . . , Fm〉? Similarly, if
G,F1, . . . , Fm ∈ Z[x1, . . . , xn] is there a constant-free IPSZ-certificate of subexponential size that
aG(~x) is in the radical of the ideal 〈F1, . . . , Fm〉 for some integer a?

2 Simulations

In this section we start with a result we haven’t yet mentioned relating general IPS to Hilbert-like
IPS, and then complete the proofs of any remaining simulation results that we’ve stated previously.
Namely, we relate Pitassi’s previous algebraic systems [Pit96, Pit98] and number-of-lines in Poly-
nomial Calculus proofs with subsystems of IPS; we show that IPSFp p-simulates AC0[p]-Frege in
a depth-preserving way; and we show that over fields of characteristic zero, IPS-proofs of polyno-
mial size with arbitrary constants can be simulated in coAM, assuming the Generalized Riemann
Hypothesis.

2.1 General versus Hilbert-like IPS

Proposition 2.1. Let F1 = · · · = Fm = 0 be a polynomial system of equations in n variables
x1, . . . , xn and let C(~x, ~y) be an IPS-certificate of the unsatisfiability of this system. Let D =
maxi degyi C and let t be the number of terms of C, when viewed as a polynomial in the yi with
coefficients in F[~x]. Suppose C and each Fi can be computed by a circuit of size ≤ s.

Then a Hilbert-like IPS-certificate for this system can be computed by a circuit of size poly(D, t, n, s).4

The proof uses known sparse multivariate polynomial interpolation algorithms. The threshold
T is essentially the number of points at which the polynomial must be evaluated in the course
of the interpolation algorithm. Here we use one of the early, elegant interpolation algorithms
due to Zippel [Zip79]. Although Zippel’s algorithm chooses random points at which to evaluate
polynomials for the interpolation, in our nonuniform setting it suffices merely for points with the
required properties to exist (which they do as long as |F| ≥ T ). Better bounds may be achievable
using more recent interpolation algorithms such as those of Ben-Or and Tiwari [BOT88] or Kaltofen
and Yagati [KY89]. We note that all of these interpolation algorithms only give us limited control
on the depth of the resulting Hilbert-like IPS-certificate (as a function of the depth of the original
IPS-certificate f), because they all involve solving linear systems of equations, which is not known
to be computable efficiently in constant depth.

4If the base field F has size less than T = Dt
(
n
2

)
, and the original circuit had multiplication gates of fan-in bounded

by k, then the size of the resulting Hilbert-like certificate should be multiplied by (log T )k.
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Proof. Using a sparse multivariate interpolation algorithm such as Zippel’s [Zip79], for each mono-
mial in the placeholder variables ~y that appears in C, there is a polynomial-size algebraic circuit
for its coefficient, which is an element of F[~x]. For each such monomial ~y~e = ye11 · · · yemm , with
coefficient c~e(~x), there is a small circuit C ′ computing c~e(~x)~y~e. Since every ~y-monomial appearing
in C is non-constant, at least one of the exponents ei > 0. Let i0 be the least index of such an
exponent. Then we get a small circuit computing c(~e)(~x)yi0Fi0(~x)ei0−1Fi0+1(~x)ei0+1 · · ·Fm(~x)em as
follows. Divide C ′ by yi0 , and then eliminate this division using Strassen [Str73] (or alternatively
consider 1

ei0

∂C′

∂yi0
using Baur–Strassen [BS83]). In the resulting circuit, replace each input yi by a

small circuit computing Fi(~x). Then multiply the resulting circuit by yi0 . Repeat this procedure
for each monomial appearing (the list of monomials appearing in C is one of the outputs of the
sparse multivariate interpolation algorithm), and then add them all together.

2.2 Number of lines in Polynomial Calculus is equivalent to determinantal IPS

We begin by recalling Pitassi’s 1996 and 1997 algebraic proof systems [Pit96, Pit98]. In the 1996
system, a proof of the unsatisfiability of F1(~x) = · · · = Fm(~x) = 0 is a circuit computing a vector
(G1(~x), . . . , Gm(~x)) such that

∑
i Fi(~x)Gi(~x) = 1. Size is measured by the size of the corresponding

circuit.
In the 1997 system, a proof is a rule-based derivation of 1 starting from the Fi. Recall that

rule-based algebraic derivations have the following two rules: 1) from G and H, derive αG + βH
for any fields elements α, β ∈ F, and 2) from G, derive Gxi for any variable xi. This is essentially
the same as the Polynomial Calculus, but with size measured by the number of lines, rather than
by the total number of monomials appearing.

Proposition 2.2. Pitassi’s 1996 algebraic proof system [Pit96] is p-equivalent to Hilbert-like IPS.
Pitassi’s 1997 algebraic proof system [Pit98]—equivalent to the number-of-lines measure on PC

proofs—is p-equivalent to Hilbert-like det-IPS or VPws-IPS.

Proof. Let C be a proof in the 1996 system [Pit96], namely a circuit computing (G1(~x), . . . , Gm(~x)).
Then with m product gates and a single fan-in-m addition gate, we get a circuit C ′ computing the
Hilbert-like IPS certificate

∑m
i=1 yiGi(~x).

Conversely, if C ′ is a Hilbert-like IPS-proof computing the certificate
∑

i yiG
′
i(~x), then by Baur–

Strassen [BS83] there is a circuit C of size at most O(|C ′|) computing the vector (∂C
′

y1
, . . . , C

′

ym
) =

(G′1(~x), . . . , G′m(~x)), which is exactly a proof in the 1996 system. (Alternatively, more simply, but
at slightly more cost, we may create m copies of C ′, and in the i-th copy of C ′ plug in 1 for one of
the yi and 0 for all of the others.

The proof of the second statement takes a bit more work. At this point the reader may wish to
recall the definition of weakly skew circuit from Appendix A.1.

Suppose we have a derivation of 1 from F1(~x), . . . , Fm(~x) in the 1997 system [Pit98]. First,
replace each Fi(~x) at the beginning of the derivation with the corresponding placeholder variable
yi. Since size in the 1997 system is measured by number of lines in the proof, this has not changed
the size. Furthermore, the final step no longer derives 1, but rather derives an IPS certificate.
By structural induction on the two possible rules, one easily sees that this is in fact a Hilbert-like
IPS-certificate. Convert each linear combination step into a linear combination gate, and each
“multiply by xi” step into a product gate one of whose inputs is a new leaf with the variable xi.
As we create a new leaf for every application of the product rule, these new leaves are clearly cut
off from the rest of the circuit by removing their connection to their product gate. As these are
the only product gates introduced, we have a weakly-skew circuit computing a Hilbert-like IPS
certificate.
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The converse takes a bit more work, so we first show that a Hilbert-like formula-IPS proof can
be converted at polynomial cost into a proof in the 1997 system [Pit98], and then explain why
the same proof works for VPws-IPS. This proof is based on a folklore result (see the remark after
Definition 2.6 in Raz–Tzameret [RT08]); we thank Iddo Tzameret for a conversation clarifying it,
which led us to realize that the result also applies to weakly skew circuits.

Let C be a formula computing a Hilbert-like IPS-certificate
∑m

i=1 yiGi(~x). Using the trick above
of substituting in {0, 1}-values for the yi (one 1 at a time), we find that each Gi(~x) can be computed
by a formula Γi no larger than |C|. For each i we show how to derive Fi(~x)Gi(~x) in the 1997 system.
These can then be combined using the linear combination rule. Thus for simplicity we drop the
subscript i and refer to y, F (~x), G(~x), and the formula Γ computing G. Without loss of generality
(with a polynomial blow-up if needed) we can assume that all of Γ’s gates have fan-in at most 2.

We proceed by induction on the size of the formula Γ. Our inductive hypothesis is: for all
formulas Γ′ of size |Γ′| < |Γ|, for all polynomials P (~x), in the 1997 system one can derive P (~x)Γ′(~x)
starting from P (~x), using at most |Γ′| lines. The base case is |Γ| = 1, in which case G(~x) is a single
variable xi, and from P (~x) we can compute P (~x)xi in a single step using the variable-product rule.

If Γ has a linear combination gate at the top, say Γ = αΓ1 + βΓ2. By induction, from P (~x)
we can derive P (~x)Γi(~x) in |Γi| steps for i = 1, 2. Do those two derivations, then apply the linear
combination rule to derive αP (~x)Γ1(~x)+βP (~x)Γ2(~x) = P (~x)Γ(~x) in one additional step. The total
length of this derivation is then |Γ1|+ |Γ2|+ 1 = |Γ|.

If Γ has a product gate at the top, say Γ = Γ1 × Γ2. Unlike the case of linear combinations
where we proceeded in parallel, here we proceed sequentially and use more of the strength of our
inductive assumption. Starting from P (~x), we derive P (~x)Γ1(~x) in |Γ1| steps. Now, starting from
P ′(~x) = P (~x)Γ1(~x), we derive P ′(~x)Γ2(~x) in |Γ2| steps. But P ′Γ2 = PΓ1Γ2 = PΓ, which we derived
in |Γ1|+ |Γ2| ≤ |Γ| steps. This completes the proof of this direction for Hilbert-like formula-IPS.

For Hilbert-like weakly-skew IPS the proof is similar. However, because gates can now be
reused, we must also allow lines in our constructed proof to be reused (otherwise we’d be effectively
unrolling our weakly skew circuit into a formula, for which the best known upper bound is only
quasi-polynomial). We still induct on the size of the weakly-skew circuit, but now we allow circuits
with multiple outputs. We change the induction hypothesis to: for all weakly skew circuits Γ′ of
size |Γ′| < |Γ|, possibly with multiple outputs that we denote Γ′out,1, . . . ,Γ

′
out,s, from any P (~x) one

can derive the tuple PΓ′out,1, . . . , PΓ′out,s in the 1997 system using at most |Γ′| lines.
To simplify matters, we assume that every multiplication gate in a weakly skew circuit has a

label indicating which one of its children is separated from the rest of the circuit by this gate.
The base case is the same as before, since a circuit of size one can only have one output, a single

variable.
Linear combinations are similar to before, except now we have a multi-output weakly skew

circuit of some size, say s, that outputs Γ1 and Γ2. By the induction hypothesis, there is a derivation
of size ≤ s that derives both PΓ1 and PΓ2. Then we apply one additional linear combination rule,
as before.

For a product gate Γ = Γ1 × Γ2, suppose without loss of generality that Γ2 is the child that
is isolated from the larger circuit by this product gate (recall that we’ve assumed Γ comes with
an indicator of which child this is). Then we proceed as before, first computing PΓ1 from P , and
then (PΓ1)Γ2 from (PΓ1). Because we apply “multiplication by Γ1” and “multiplication by Γ2” in
sequence, it is crucial that the gates computing Γ2 don’t depend on those computing Γ1, for the
gates g in Γ1 get translated into lines computing Pg, and if we reused that in computing Γ2, rather
than getting g as needed, we would be getting Pg.

It is interesting to note that the condition of being weakly skew is precisely the condition we
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needed to make this proof go through.

2.3 Depth-preserving simulation of Frege systems by the Ideal Proof System

Theorem 2.3. For any d(n), depth-(d+ 2) IPSFp p-simulates depth-d Frege proofs with unbounded
fan-in ∨,¬,MODp connectives.

Proof. For simplicity we will present the proof for p = 2. The generalization to other values of p
is straightforward. We will use a small modification of the formalization of AC0[2]-Frege as given
by Maciel and Pitassi [MP98]. The underlying connectives are: negation, unbounded fanin OR,
unbounded fanin AND, and unbounded fanin XOR gates. We will work in a sequent calculus style
proof system, where lines are cedents of the form Γ→ ∆, where both Γ and ∆ are {∨,¬,MODp}-
formulas, where each of ¬Γi (for Γi ∈ Γ) and ∆i ∈ ∆ has depth at most d(n); the intended meaning
is that the conjunction of the formulas in Γ implies the disjunction of the formulas in ∆. For
notational convenience, we state the rest of the proof only for AC0[2]-Frege, but it will be clear that
nothing in the proof depends on the depth being constant. The axioms are as follows.

1. A→ A

2. (false implies nothing) ∨()→

3. → ¬⊕ ()

The rules of inference are as follows:

Weakening
Γ→ ∆

Γ→ ∆, A

Γ→ ∆

A,Γ→ ∆

Cut
→ A,Γ → ¬A,Γ

→ Γ
Negation

Γ, A→ ∆

Γ→ ¬A,∆
Γ→ A,∆

Γ,¬A→ ∆

Or-Left
A1,Γ→ ∆ ∨ (A2, . . . , An),Γ→ ∆

∨(A1, . . . , An),Γ→ ∆

Or-Right
Γ→ A1,∨(A2, . . . , An),∆

Γ→ ∨(A1, . . . , An),∆

Parity-Left
A1,¬ ⊕ (A2, . . . , An),Γ→ ∆ ⊕ (A2, . . . , An),Γ→ A1,∆

⊕(A1, . . . , An),Γ→ ∆

Parity-Right
A1,Γ→ ¬⊕ (A2, . . . , An),∆ Γ→ A1,⊕(A2, . . . , An),∆

Γ→ ⊕(A1, . . . , An),∆

A refutation of a 3CNF formula ϕ = κ1 ∧κ2 ∧ · · · ∧κm in AC0[2]-Frege is a sequence of cedents,
where each cedent is either one of the κi’s, or an instance of an axiom scheme, or follows from two
earlier cedents by one of the above inference rules, and the final cedent is the empty cedent. It is
well known that any Frege refutation can be efficiently converted into a tree-like proof.5

We define a translation t(A) from Boolean formulas to algebraic circuits (over F2) such that for
any assignment α, A(α) = 1 if and only if t(A)(α) = 0. The translation is defined inductively as
follows.

5By tree-like, we mean that the underlying directed acyclic graph structure of the proof is a tree, and therefore
every cedent, other than the final empty cedent, in the refutation is used exactly once.
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1. t(x) = 1− x for x atomic (a Boolean variable).

2. t(¬A) = 1− t(A)

3. t(∨(A1, . . . , An)) = t(A1)t(A2) · · · t(An)

4. t(⊕(A1, . . . , An)) = n− t(A1)− t(A2) · · · − t(An) (recall n will be interpreted mod 2).

Note that the depth of t(A) as an algebraic formula is at most the depth of A as a Boolean
formula.

For a cedent Γ → ∆, we will translate the cedent by moving everything to the right of the
arrow. That is, the cedent L = A1, . . . , An → B1, . . . , Bm will be translated to t(L) = t(¬A1∨ · · · ∨
¬An ∨B1 ∨ · · · ∨Bm) = (1− t(A1))(1− t(A2)) · · · (1− t(An))t(B1) · · · t(Bn).

Let R be a tree-like AC0[2]-Frege refutation of ϕ. We will prove by induction on the number
of cedents of R that for each cedent L in the refutation, we can derive t(L) via a Hilbert-like IPS
proof (see Definition 1.20) of the form

∑
iGiyi, where the yi’s are the placeholder variables for the

initial polynomials (the sum may contain each yi more than once), each Gi is a depth d formula,
and the overall size is polynomial in the size of the original AC0[2]-Frege refutation. (NB: as will
become clear below, in order to preserve the depth, we wait to gather like terms in the sum until
the end of the proof.) The placeholder variables y1, . . . , ym correspond to t(κ1), . . . , t(κm), and
ym+1, . . . , ym+n correspond to the Boolean axioms x2

1 − x1, . . . , x
2
n − xn.

For the base case, each initial cedent of the form → κi translates to yi, and thus has the right
form.

The axiom A→ A translates to t(A)(1− t(A)). A simple induction on the structure of A shows
that t(A)(1− t(A)) can be derived from the x2

i −xi by an IPS derivation of depth at most the depth
of A. The other axioms translate to the identically zero polynomial, so again have the right form.

For the inductive step, it is a matter of going through all of the rules. We assume inductively
that we have a list L of circuits each of the form Giyi, such that each Gi has a product gate at its
output, and

∑
LGiyi is a derivation of the antecedents of the rule (note that, as L is a list, each yi

may appear more than once in this sum).

1. (Weakening) Assume
∑
Giyi is a derivation of t(Γ→ ∆). We want to obtain a derivation of

t(Γ→ ∆, A). Since we move everything to the right when we translate, this is equivalent to
showing that if

∑
Giyi is a derivation of t(→ A1, . . . , An) = t(A1)t(A2) · · · t(An), that we can

obtain a derivation of t(→ A1, . . . , An, B) = t(A1)t(A2) · · · t(An)t(B). Multiplying each Giyi
by t(B) achieves this. The resulting derivation is equivalent to

∑
G′iyi, where the depth of G′i

is max{depth(Gi), depth(B)} (we do not need to add 1 to the depth because we’ve assumed
that Gi has a product gate at the top).

2. (Cut) We want to show that if
∑
Giyi is a derivation of t(→ ¬A,B1, . . . , Bn) = (1 −

t(A))t(B1) · · · t(Bn) and
∑
G′iyi is a derivation of t(→ A,B1, . . . Bn) = t(A)t(B1) · · · t(Bn),

that we can derive t(→ B1 . . . Bn) = t(B1) · · · t(Bn). Semantically, adding these two deriva-
tions gives what we want. In order to preserve the inductive assumption, we do not gather
terms, but rather concatenate the two lists (Giyi) and (G′iyi), so that each term still has a
product gate at the top without increasing the depth.

3. (Negation) Because our translation moves everything to the right, the translated versions
become syntactically identical, and there is nothing to do for the negation rules.
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4. (Or-Left) We want to show that if
∑
Giyi is a derivation of t(→ ¬A1,∆), and

∑
G′iyi is a

derivation of t(→ ¬∨ (A2, . . . , An),∆), then we can derive t(→ ¬∨ (A1, . . . , An),∆). We have∑
GiFi = t(→ ¬A1,∆) = (1− t(A1))t(∆),∑

G′iFi = t(→ ¬∨ (A2, . . . , An),∆) = (1− t(A2)t(A3) · · · t(An))t(∆).

Multiplying the second by t(A1) and “adding” to the first gives the desired derivation. Again,
when we “add” we do not gather terms, but rather just concatenate lists, so that each Gi has
a product gate at the top.

5. (Or-Right) The translation of the derived formula is syntactically identical to the original
formula, so there is nothing to do.

6. (Parity-Left) We want to show that if
∑
Giyi is a derivation of t(→ ¬A1,⊕(A2, . . . , An),∆)

and
∑
G′iyi is a derivation of t(→ A1,¬ ⊕ (A2, . . . , An),∆), then we can derive t(→ ¬ ⊕

(A1, . . . , An),∆). We have

t(→ ¬A1,⊕(A2, . . . , An),∆) = (1− t(A1))(n− 1− t(A2)− t(A3)− · · · − t(An))t(∆),

t(→ A1,¬ ⊕ (A2, . . . , An),∆) = t(A1)(1− (n− 1− t(A2)− t(A3)− · · · − t(An)))t(∆).

It is easily verified that subtracting the latter from the former yields t(→ ¬⊕(A1, . . . , An),∆).
To perform “subtraction” while maintaining a product gate at the top, we multiply the latter
by −1 and then concatenate the two lists.

7. (Parity-Right) This case is similar to Parity-left.

In all cases, we can derive the bottom cedent as
∑

iGiyi, where each Gi has constant depth
(in fact, depth at most one greater than the depth of the original proof), and the overall size is
polynomial in the original proof size. Since we’ve actually just been maintaing a list of terms Giyi
in which the yi may appear multiple times, the final step is to add these all together and gather
terms, leading to our final derivation of polynomial size, and depth at most d+ 2, where d was the
original depth.

2.4 Simulating IPS-proofs with arbitrary constants in coAM

The following proposition shows how we may conclude that NP ⊆ coAM from the assumption of
polynomial-size IPS proofs for all tautologies, without assuming the IPS proofs are constant-free
(but using the Generalized Riemann Hypothesis). We thank Pascal Koiran for the second half of
the proof.

Proposition 2.4. Assuming the Generalized Riemann Hypothesis, over any field F of characteristic
zero, if every propositional tautology has a polynomial-size IPSF-proof of polynomial degree, then
NP ⊆ coAM.

We do not know how to improve this result from coAM to coMA (as in Proposition 1.4).

Proof (with P. Koiran). We reduce to the fact that deciding Hilbert’s Nullstellensatz—that is,
given a system of integer polynomials over Z, deciding if they have a solution over C—is in AM
[Koi96]. Rather than looking at solvability of the original set of equations F1(~x) = · · · = Fm(~x) = 0,
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we consider solvability of a set of equations whose solutions describe all of the polynomial-size IPS-
certficiates for F . Namely, consider a generic polynomial-size circuit, meaning a layered circuit
of poly(n) depth and poly(n) width, with n inputs x1, . . . , xn, y1, . . . , ym, and alternating layers of
linear combination and product gates, where every edge e terminating at any linear combination
gate gets its own independent variable ze. The output gate of this generic circuit computes a
polynomial C(~x, ~y, ~z), and for any setting of the ze variables to constants ζe, we get a particular
polynomial-size circuit computing a polynomial C~ζ(~x, ~y) := C(~x, ~y, ~ζ). Furthermore, any function

computed by a polynomial-size circuit is equal to C~ζ(~x, ~y) for some setting of ~ζ. In particular, if

there is a polynomial size IPS proof C ′ for F , then there is some ~ζ ∈ Fn such that C ′ = C~ζ(~x, ~y).
We will translate the conditions that a circuit be an IPS certificate into equations on the new

z variables. Pick sufficiently many random values ~ξ(1), ~ξ(2), . . . , ~ξ(h) to be substituted into ~x; think
of the ~ξ(i) as a hitting set for the x-variables. Then we consider the solvability of the following set
of 2h equations in ~z:

(For i = 1, . . . , h) C(~ξ(i),~0, ~z) = 0

(For i = 1, . . . , h) C(~ξ(i), ~F (~ξ(i)), ~z) = 1

Determining whether a system of polynomial equations, given by circuits over a field F of charac-
teristic zero, has a solution in the algebraic closure F can be done in AM [Koi96]. If ~ζ is such that
C~ζ(~x, ~y) = C(~x, ~y, ~ζ) is in fact an IPS certificate, then the preceding equalities will be satisfied re-

gardless of the choices of the ~ξ(i). Otherwise, at least one monomial in C(~x, 0, ~ζ) or C(~x, ~F (~x), ~ζ)−1
will be nonzero. Since all the monomials have polynomial degree, the usual DeMillo–Lipton–
Schwarz–Zippel lemma implies that with high probability, a random point ~ξ will make any such
nonzero monomial evaluate to a nonzero value. Choosing polynomially many points thus suffices.
Composing Koiran’s AM algorithm for the Nullstellensatz with the random guesses for the ~ξ(i),
and assuming that every family of propositional tautologies has VP-IPS certificates, we get an AM
algorithm for TAUT.

3 Lower bounds on IPS imply circuit lower bounds

Here we complete the proof of the following theorem:

Theorem 3.1. A super-polynomial lower bound on [constant-free] Hilbert-like IPSR proofs of any
family of tautologies implies VNPR 6= VPR [respectively, VNP0

R 6= VP0
R], for any ring R.

A super-polynomial lower bound on the number of lines in Polynomial Calculus proofs implies
the Permanent versus Determinant Conjecture (VNP 6= VPws).

In Section 1.4 we proved this theorem assuming the following key lemma, which we now prove
in full.

Lemma 3.2. Every family of CNF tautologies (ϕn) has a Hilbert-like family of IPS certificates
(Cn) in VNP0

R.

Proof. We mimic one of the proofs of completeness for Hilbert-like IPS [Pit96, Theorem 1] (recall
Proposition 2.2), and then show that this proof can in fact be carried out in VNP0. We omit any
mention of the ground ring, as it will not be relevant.

Let ϕn(~x) = κ1(~x) ∧ · · · ∧ κm(~x) be an unsatisfiable CNF, where each κi is a disjunction of
literals. Let Ci(~x) denote the (negated) polynomial translation of κi via ¬x 7→ x, x 7→ 1 − x
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and f ∨ g 7→ fg; in particular, Ci(~x) = 0 if and only if κi(~x) = 1, and thus ϕn is unsatisfiable
if and only if the system of equations C1(~x) = · · · = Cm(~x) = x2

1 − x1 = · · · = x2
n − xn = 0

is unsatisfiable. In fact, as we’ll see in the course of the proof, we won’t need the equations
x2
i − xi = 0. It will be convenient to introduce the function b(e, x) = ex + (1 − e)(1 − x), i. e.,
b(1, x) = x and b(0, x) = 1 − x. For example, the clause κi(~x) = (x1 ∨ ¬x17 ∨ x42) gets translated
into Ci(~x) = (1 − x1)x17(1 − x42) = b(0, x1)b(1, x17)b(0, x42), and therefore an assignment falsifies
κi if and only if (x1, x17, x42) 7→ (0, 1, 0).

Just as 1 = x1x2 + x1(1− x2) + (1− x2)x1 + (1− x2)(1− x1), an easy induction shows that

1 =
∑

~e∈{0,1}n

n∏
i=1

b(ei, xi). (2)

We will show how to turn this expression—which is already syntactically in VNP0 form—into a
VNP certificate refuting ϕn. Let ci be the placeholder variable corresponding to Ci(~x).

The idea is to partition the assignments {0, 1}n into m parts A1, . . . , Am, where all assignments
in the i-th part Ai falsify clause i. This will then allow us to rewrite equation (2) as

1 =
m∑
i=1

Ci(~x)

∑
~e∈Ai

∏
j:xj /∈κi

b(ej , xj)

 , (3)

where “xj /∈ κi” means that neither xj nor its negation appears in κi. Equation (3) then becomes

the IPS-certificate
∑m

i=1 ci ·
(∑

~e∈Ai

∏
j:xj /∈κi b(ej , xj)

)
. What remains is to show that the sum can

indeed be rewritten this way, and that there is some partition (A1, . . . , Am) as above such that the
resulting certificate is in fact in VNP.

First, let us see why such a partition allows us to rewrite (2) as (3). The key fact here is that
the clause polynomial Ci(~x) divides the term t~e(~x) :=

∏n
i=1 b(ei, xi) if and only if Ci(~e) = 1, if and

only if ~e falsifies κi. Let Ci(~x) =
∏
i∈I b(fi, xi), where I ⊆ [n] is the set of indices of the variables

appearing in clause i. By the properties of b discussed above, 1 = Ci(~e) =
∏
i∈I b(fi, ei) if and

only if b(fi, ei) = 1 for all i ∈ I, if and only if fi = ei for all i ∈ I. In other words, if 1 = Ci(~e)
then Ci =

∏
i∈I b(ei, xi), which clearly divides t~e. Conversely, suppose Ci(~x) divides t~e(~x). Since

t~e(~e) = 1 and every factor of t~e only takes on Boolean values on Boolean inputs, it follows that
every factor of t~e evaluates to 1 at ~e, in particular Ci(~e) = 1.

Let A1, . . . , Am be a partition of {0, 1}n such that every assignment in Ai falsifies κi. Since Ci
divides every term t~e such that ~e falsifies clause i, Ci divides every term t~e with ~e ∈ Ai, and thus
we can indeed rewrite (2) as (3).

Next, we show how to construct a partition A1, . . . , Am as above so that the resulting certificate
is in VNP. The partition we’ll use is a greedy one. A1 will consist of all assignments that falsify κ1.
A2 will consist of all remaining assignments that falsify κ2. And so on. In particular, Ai consists
of all assignments that falsify κi and satisfy all Aj with j < i. (If at some clause κi before we
reach the end, we have used up all the assignments—which happens if and only if the first i clauses
on their own are unsatisfiable—that’s okay: nothing we’ve done so far nor anything we do below
assumes that all Ai are nonempty.)

Equivalently, Ai = {~e ∈ {0, 1}n|Ci(~e) = 1 and Cj(~e) = 0 for all j < i}. For any property Π, we
write JΠ(~e)K for the indicator function of Π: JΠ(~e)K = 1 if and only if Π(~e) holds, and 0 otherwise.
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We thus get the certificate:

m∑
i=1

ci ·

 ∑
~e∈{0,1}n

J~e falsifies κi and satisfies κj for all j < iK
∏

j:xj /∈κi

b(ej , xj)


=

m∑
i=1

ci ·

 ∑
~e∈{0,1}n

JCi(~e) = 1 and Cj(~e) = 0 for all j < iK
∏

j:xj /∈κi

b(ej , xj)


=

m∑
i=1

ci ·

 ∑
~e∈{0,1}n

Ci(~e)∏
j<i

(1− Cj(~e))

 ∏
j:xj /∈κi

b(ej , xj)


=

∑
e∈{0,1}n

m∑
i=1

ciCi(~e)

∏
j<i

(1− Cj(~e))

 ∏
j:xj /∈κi

b(ej , xj)


Finally, it is readily visible that the polynomial function of ~c, ~e, and ~x that is the summand of the
outermost sum

∑
~e∈{0,1}n is computed by a polynomial-size circuit of polynomial degree, and thus

the entire certificate is in VNP. Indeed, the expression as written exhibits it as a small formula of
constant depth with unbounded fan-in gates. By inspection, this circuit only uses the constants
0, 1,−1, hence the certificate is in VNP0.

4 PIT as a bridge between circuit complexity and proof complex-
ity

Having already introduced and discussed our PIT axioms in Section 1.5, here we complete the
proofs of Theorems 4.1 and 4.5. We maintain the notations and conventions of Section 1.5.

4.1 Extended Frege is p-equivalent to IPS if PIT is EF-provably easy

Theorem 4.1. If there is a family K of polynomial-size Boolean circuits computing PIT, such that
the PIT axioms for K have polynomial-size EF proofs, then EF is polynomially equivalent to IPS.

To prove the theorem, we will first show that EF is p-equivalent to IPS if a family of propositional
formulas expressing soundness of IPS are efficiently EF provable. Then we will show that efficient
EF proofs of SoundnessIPS follows from efficient EF proofs for our PIT axioms.

Soundness of IPS

It is well-known that for standard Cook–Reckhow proof systems, a proof system P can p-
simulate another proof system P ′ if and only if P can prove soundness of P ′. Our proof system is
not standard because verifying a proof requires probabilistic, rather than deterministic, polynomial-
time. Still we will show how to formalize soundness of IPS propositionally, and we will show that
if EF can efficiently prove soundness of IPS then EF is p-equivalent to IPS.

Let ϕ = κ1 ∧ . . .∧ κm be an unsatisfiable propositional 3CNF formula over variables p1, . . . , pn,
and let Qϕ1 , . . . , Q

ϕ
m be the corresponding polynomial equations (each of degree at most 3) such

that κi(α) = 1 if and only if Qϕi (α) = 0 for α ∈ {0, 1}n. An IPS-refutation of ϕ is an algebraic

circuit, C, which demonstrates that 1 is in the ideal generated by the polynomial equations ~Qϕ.
(This demonstrates that the polynomial equations ~Qϕ = 0 are unsolvable, which is equivalent to
proving that ϕ is unsatisfiable.) In particular, recall that C has two types of inputs: x1, . . . , xn
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(corresponding to the propositional variables p1, . . . , pn) and the placeholder variables y1, . . . , ym
(corresponding to the equation Qϕ1 , . . . , Q

ϕ
m), and satisfies the following two properties:

1. C(~x,~0) = 0. This property essentially states that the polynomial computed by C(~x, ~Q(~x)) is
in the ideal generated by Qϕ1 , . . . , Q

ϕ
m.

2. C(~x, ~Qϕ(~x)) = 1. This property states that the polynomial computed by C, when we substi-
tute the Qϕi ’s for the yi’s, is the identically 1 polynomial.

Encoding IPS Proofs

Let K be a family of polynomial-size circuits for PIT. Using Km,n, we can create a polynomial-
size Boolean circuit, ProofIPS([C], [ϕ]) that is true if and only if C is an IPS-proof of the unsatisfia-
bility of ~Qϕ = 0. The polynomial-sized Boolean circuit ProofIPS([C], [ϕ]) first takes the encoding of
the algebraic circuit C (which has x-variables and placeholder variables), and creates the encoding
of a new algebraic circuit, [C ′], where C ′ is like C but with each yi variable replaced by 0. Secondly,
it takes the encoding of C and [ϕ] and creates the encoding of a new circuit C ′′, where C ′′ is like C
but now with each yi variable replaced by Qϕi . (Note that whereas C has n+m underlying algebraic
variables, both C ′ and C ′′ have only n underlying variables.) ProofIPS([C], [ϕ]) is true if and only
if K([C ′])—that is, C ′(~x) = C(~x,~0) computes the 0 polynomial—and K([1 − C ′′]) = 0—that is,
C ′′(~x) = C(~x, ~Qϕ(~x)) computes the 1 polynomial.

Definition 4.2. Let formula Truthbool(~p, ~q) state that the truth assignment ~q satisfies the Boolean
formula coded by ~p. The soundness of IPS says that if ϕ has a refutation in IPS, then ϕ is
unsatisfiable. That is, SoundnessIPS,m,n([C], [ϕ], ~p) has variables that encode a size m IPS-proof
C, variables that encode a 3CNF formula ϕ over n variables, and n additional Boolean variables,
~p. SoundnessIPS,m,n([C], [ϕ], ~p) states:

ProofIPS([C], [ϕ])→ ¬Truthbool([ϕ], ~p).

Lemma 4.3. If EF can efficiently prove SoundnessIPS for some polynomial-size Boolean circuit
family K computing PIT, then EF is p-equivalent to IPS.

Proof. Because IPS can p-simulate EF, it suffices to show that if EF can prove Soundness of IPS,
then EF can p-simulate IPS. Assume that we have a polynomial-size EF proof of SoundnessIPS.
Now suppose that C is an IPS-refutation of an unsatisfiable 3CNF formula ϕ on variables ~p. We
will show that EF can also prove ¬ϕ with a proof of size polynomial in |C|.

First, we claim that it follows from a natural encoding (see Section 4.3) that EF can efficiently
prove:

ϕ→ Truthbool([ϕ], ~p).

(Variables of this statement just the p variables, because ϕ is a fixed 3CNF formula, so the encoding
[ϕ] is a variable-free Boolean string.)

Second, if C is an IPS-refutation of ϕ, then EF can prove ProofIPS([C], [ϕ]).6 This holds
because both C and ϕ are fixed, so this formula is variable-free. Thus, EF can just verify that it is
true.

6The fact that ProofIPS([C], [ϕ]) is even true, given that C is an IPS-refutation of ϕ, follows from the completeness
of the circuit K computing PIT—that is, if C ≡ 0, then K([C]) accepts. This is one of only two places in the proof
of Theorem 4.1 that we actually need the assumption that K correctly computes PIT, rather than merely assuming
that K satisfies our PIT axioms. However, it is clear that this usage of this assumption is crucial. The other usage
is in Step 1 of Lemma 4.4.
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Third, by soundness of IPS, which we are assuming is EF-provable, and the fact that EF can
prove ProofIPS([C], [ϕ]) (step 2), it follows by modus ponens that EF can prove ¬Truthbool([ϕ], ~p).
(The statement SoundnessIPS([C], [ϕ], ~p) for this instance will only involve variables ~p: the other
two sets of inputs to the SoundnessIPS statement, [C] and [ϕ], are constants here since both C and
ϕ are fixed.)

Finally, by modus ponens and the contrapositive of ϕ → Truthbool([ϕ], ~p), we conclude in EF
¬ϕ, as desired.

Theorem 4.1 follows from the preceding lemma and the next one.

Lemma 4.4. If EF can efficiently prove the PIT axioms for some polynomial-size Boolean circuit
family K computing PIT, then EF can efficiently prove SoundnessIPS (for that same K).

Proof. Starting with Truthbool([ϕ], ~p), K([C(~x,~0)]), K([1− C(~x, ~Q(~x))]), we will derive a contra-
diction.

1. First show for every i ∈ [m], Truthbool([ϕ], ~p) → K([Qϕi (~p)]), where Qϕi is the low degree
polynomial corresponding to the clause, κi, of ϕ. Note that, as ϕ is not a fixed formula but
is determined by the propositional variables encoding [ϕ], the encoding [Qϕi ] depends on a
subset of these variables.

Truthbool([ϕ], ~p) states that each clause κi in ϕ evaluates to true under ~p. It is a tautology

that if κi evaluates to true under ~p, then Qϕi evaluates to 0 at ~p. Since K correctly computes
PIT,

Truthbool([κi], ~p)→ K([Qϕi (~p)]) (*)

is a tautology. Furthermore, although both the encoding [κi] and [Qϕi ] depend on the propo-

sitional variables encoding [ϕ], since we assume that ϕ is a 3CNF, these only depend on
constantly many of the variables encoding [ϕ]. Thus the tautology (*) can be proven in

EF by brute force. Putting these together we can derive Truthbool([ϕ], ~p) → K([Qϕi (~p)]), as
desired.

2. Using the assumption Truthbool([ϕ], ~p) together with (1) we derive K([Qϕi (~p)]) for all i ∈ [m].

3. Using Axiom 1 we can prove K([C(~x,~0)]) → K([C(~p,~0)]). Using modus ponens with the

assumption K([C(~x,~0)]), we derive K([C(~p,~0)]).

4. Repeatedly using Axiom 3 and Axiom 4 we can prove

K([Qϕ1 (~p)]),K([Qϕ2 (~p)]), . . . ,K([Qϕm(~p)]),K([C(~p,~0)])→ K([C(~p, ~Q(~p))]).

5. Applying modus ponens repeatedly with (4), (2) and (3) we can prove K([C(~p, ~Q(~p))]).

6. Applying Axiom 2 to (5) we get ¬K([1− C(~p, ~Q(~p))]).

7. Using Axiom 1 we can prove K([1− C(~x, ~Q(~x))])→ K([1− C(~p, ~Q(~p))]). Using our assump-

tion K([1− C(~x, ~Q(~x))]) and modus ponens, we conclude K([1− C(~p, ~Q(~p))]).

Finally, (6) and (7) give a contradiction.
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4.2 Proofs relating AC0[p]-Frege lower bounds, PIT, and circuit lower bounds

Having already discussed the corollaries and consequences of Theorem 4.5, here we merely complete
its proof.

Theorem 4.5. Let C be any class of circuits closed under AC0 circuit reductions. If there is a family
K of polynomial-size Boolean circuits for PIT such that the PIT axioms for K have polynomial-
size C-Frege proofs, then C-Frege is polynomially equivalent to IPS, and consequently polynomially
equivalent to Extended Frege.

Note that here we do not need to restrict the circuit K to be in the class C. This requires one
more technical device compared to the proofs in the previous section. The proof of Theorem 4.5
follows the proof of Theorem 4.1 very closely. The main new ingredient is a folklore technical device
that allows even very weak systems such as AC0-Frege to make statements about arbitrary circuits
K, together with a careful analysis of what was needed in the proof of Theorem 4.1.

Encoding K into weak proof systems

Extended Frege can easily reason about arbitrary circuits K: for each gate g of K (or even
each gate of each instance of K in a statement, if so desired), with children g`, gr, EF can in-
troduce a new variable kg together with the requirement that kg ↔ kg` opg kgr , where opg is the
corresponding operation g = g` opg gr (e. g., ∧, ∨, etc.). But weaker proof systems such as Frege
(=NC1-Frege), AC0[p]-Frege, or AC0-Frege do not have this capability. We thus need to help them
out by introducing these new variables and formulae ahead of time.

For each gate g, the statement kg ↔ kg` opg kgr only involves 3 variables, and thus can be
converted into a 3CNF of constant size. We refer to these clauses as the “K-clauses.” Note that
the K-clauses do not set the inputs of K to any particular values nor require its output to be any
particular value. We denote the variables corresponding to K’s inputs as kin,i and the variable
corresponding to K’s output as kout.

The modified statement ProofIPS([C], [ϕ]) now takes the following form. Recall that ProofIPS

involves two uses of K: K([C(~x,~0)]) and K([1− C(~x, ~Qϕ(~x))]). Each of these instances of K needs

to get its own set of variables, which we denote k
(1)
g for gate g in the first instance, and k

(2)
g for

gate g in the second instance, together with their own copies of the K-clauses. For an encoding
[C] or [ϕ], let [C]i denote it’s i-th bit, which may be a constant, a propositional variable, or even
a propositional formula. Then ProofIPS([C], [ϕ]) is∧

g

(
k(1)
g ↔ k(1)

g`
opg k

(1)
gr

)
∧
∧
i

(
k

(1)
in,i ↔ [C(~x,~0)]

i

)
∧
∧
g

(
k(2)
g ↔ k(2)

g`
opg k

(2)
gr

)
∧
∧
i

(
k

(2)
in,i ↔ [1− C(~x, ~Qϕ(~x))]

i

)
→k(1)

out ∧ k
(2)
out

Throughout, we use the same notation ProofIPS([C], [ϕ]) as before to mean this modified state-
ment (we will no longer be referring to the original, EF-style statement). The modified statement
SoundnessIPS([C], [ϕ], ~p) will now take the form(

(dummy statements) ∧ ProofIPS([C], [ϕ])
)
→ ¬Truthbool([ϕ], ~p),

using the new version of ProofIPS. Here “dummy statements” refers to certain statements that
we will explain in Lemma 4.7. These dummy statements will only involve variables that do not
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appear in the rest of SoundnessIPS, and therefore will be immediately seen not to affect its truth
or provability.

The proofs

Lemmata 4.7 and 4.8 are the AC0-analogs of Lemmata 4.3 and 4.4, respectively. The proof of
Lemma 4.7 will cause no trouble, and the proof of Lemma 4.8 will need one additional technical
device (the “dummy statements” above).

Before getting to their proofs, we state the main additional lemma that we use to handle the

new K variables. We say that a variable k
(i)
in,j corresponding to an input gate of K is set to ψ by a

propositional statement if k
(i)
in,j ↔ ψ occurs in the statement.

Lemma 4.6. Let (ϕn) be a sequence of tautologies on poly(n) variables, including any number
of copies of the K variables, of the form ϕ = ((

∧
i αi)→ ω). Let ~p denote the other (non-K)

variables. Suppose that 1) there are at most O(log n) non-K variables in ϕ, 2) for each copy of K,
the corresponding K-clauses appear amongst the αi, 3) the only K variables that appear in ω are

output variables k
(i)
out, and 4) if k

(i)
out appears in ω, then all the inputs to K(i) are set to formulas

that syntactically depend on at most ~p.
Then there is a poly(n)-size AC0-Frege proof of ϕ.

Proof sketch. The basic idea is that AC0-Frege can brute force over all poly(n)-many assignments
to the O(log n) non-K variables, and for each such assignment can then just evaluate each copy of
K gate by gate to verify the tautology. Any copy K(i) of K all of whose input variables are unset
must not affect the truth of ϕ, since none of the k(i) variables can appear in the consequent ω of
ϕ. In fact, for such copies of K, the K-clauses merely appear as disjuncts of ϕ, since it then takes

the form ϕ =
∨
i(¬αi) ∨ ω =

(∨
g ¬(k

(i)
g ↔ k

(i)
g` opg k

(i)
gr )
)
∨
(∨

remaining clauses i ¬αi
)
∨ ω. Thus, if

AC0-Frege can prove that the rest of ϕ, namely
(∨

remaining clauses i ¬αi
)
∨ ω is a tautology, then it

can prove that ϕ is a tautology.

Now we state the analogs of Lemmata 4.3 and 4.4 for C-Frege. Because of the similarity of the
proofs to the previous case, we merely indicate how their proofs differ from the Extended Frege
case.

Lemma 4.7 (AC0 analog of Lemma 4.3). Let C be a class of circuits closed under AC0 circuit
reductions. If there is a family K of polynomial-size Boolean circuits computing PIT, such that the
PIT axioms for K have polynomial-size C-Frege proofs, then C-Frege is polynomially equivalent to
IPS.

Proof. Mimic the proof of Lemma 4.3. The third and fourth steps of that proof are just modus
ponens, so we need only check the first two steps.

The first step is to show that C-Frege can prove ϕ → Truthbool([ϕ], ~p). This follows directly
from the details of the encoding of [ϕ] and the full definition of Truthbool; see Lemma 4.9.

The second step is to show that C-Frege can prove ProofIPS([C], [ϕ]) for a fixed C,ϕ. In
Lemma 4.3, this followed because this statement was variable-free. Now this statement is no longer
variable-free, since it involve two copies of K and the corresponding variables and K-clauses.
However, ProofIPS([C], [ϕ]) satisfies the requirements of Lemma 4.6, and applying that lemma we
are done.

Lemma 4.8 (AC0 analog of Lemma 4.4). Let C be a class of circuits closed under AC0 circuit
reductions. If C-Frege can efficiently prove the PIT axioms for some polynomial-sized family of
circuits K computing PIT, then C-Frege can efficiently prove SoundnessIPS (for that same K).



Circuit Complexity, Proof Complexity, and PIT - J. A. Grochow and T. Pitassi 33

Proof. We mimic the proof of Lemma 4.4. In steps (1), (2), and (4) of that proof we used m
additional copies of K, where m is the number of clauses in the CNF ϕ encoded by [ϕ], and thus
m ≤ poly(n). In order to talk about these copies of K in C-Frege, however, the K variables must
already be present in the statement we wish to prove in C-Frege. The “dummy statements” in
the new version of soundness are the K-clauses—with inputs and outputs not set to anything—for
each of m new copies of K, which we denote K(3), . . . ,K(m+2) (recall that the first two copies K(1)

and K(2) are already used in the statement of ProofIPS). We won’t actually need these clauses
anywhere in the proof, we just need their variables to be present from the beginning.

Starting with Truthbool([ϕ], ~p), K(1)([C(~x,~0)]), K(2)([1− C(~x, ~Q(~x))]) we’ll derive a contradic-
tion. The only step of the proof of Lemma 4.4 that was not either the use of an axiom or modus
ponens was step (1), so it suffices to verify that this can be carried out in AC0-Frege with the
K-clauses.

Step (1) was to show for every i ∈ [m], Truthbool([ϕ], ~p) → K([Qϕi (~p)]), where Qϕi is the low
degree polynomial corresponding to the clause, κi, of ϕ. Note that, as ϕ is not a fixed formula but
is determined by the propositional variables encoding [ϕ], the encoding [Qϕi ] depends on a subset
of these variables.

Truthbool([ϕ], ~p) states that each clause κi in ϕ evaluates to true under ~p. It is a tautology that

if κi evaluates to true under ~p, then Qϕi evaluates to 0 at ~p. Since K correctly computes PIT,

Truthbool([κi], ~p)→ K(i+2)([Qϕi (~p)]) (**)

is a tautology. Furthermore, although both the encoding [κi] and [Qϕi ] depend on the propositional

variables encoding [ϕ], since we assume that ϕ is a 3CNF, these only depend on constantly many
of the variables encoding [ϕ]. Writing out (**) it has the form

Truthbool →
(
K(i+2)-clauses ∧ ( setting inputs of K(i+2) to [Qϕi (~p)])→ k

(i+2)
out

)
,

which is equivalent to

Truthbool ∧ (K(i+2)-clauses) ∧ ( setting inputs of K(i+2) to [Qϕi (~p)])→ k
(i+2)
out .

Thus (**) satisfies the conditions of Lemma 4.6 and has a short AC0-Frege proof. Since Truthbool([ϕ], ~p)
is defined as

∧
i Truthbool([κi], ~p) (see Section 4.3), we can then derive

Truthbool([ϕ], ~p)→ K(i+2)([Qϕi (~p)]),

as desired.

4.3 Some details of the encodings

For an ≤ m-clause, ≤ n-variable 3CNF ϕ = κ1∧ · · · ∧κm, its encoding is a Boolean string of length
3m(dlog2(n)e + 1). Each literal xi or ¬xi is encoded as the binary encoding of i (dlog2(n)e bits)
plus a single other bit indicating whether the literal is positive (1) or negative (0). The encoding
of a single clause is just the concatenation of the encodings of the three literals, and the encoding
of ϕ is the concatenation of these encodings.

We define

Truthbool,n,m([ϕ], ~p)
def
=

m∧
i=1

Truthbool,n([κi], ~p).
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For a single 3-literal clause κ, we define Truthbool,n([κ], ~p) as follows. For an integer i, let [i]

denote the standard binary encoding of i− 1 (so that the numbers 1, . . . , 2k are put into bijective
correspondence with {0, 1}k). Let [κ] = ~q1s1 ~q2s2 ~q3s3 where each si is the sign bit (positive/negative)
and each ~qi is a length-dlog2 ne string of variables corresponding to the encoding of the index of

a variable. We write ~q = [k] as shorthand for
∧dlog2 ne
i=1 (qi ↔ [k]i), where x ↔ y is shorthand for

(x ∧ y) ∨ (¬x ∧ ¬y). Finally, we define:

Truthbool,n([κ], ~p)
def
=

3∨
j=1

n∨
i=1

(~qj = [i] ∧ (pi ↔ sj)).

(Hereafter we drop the subscripts n,m; they should be clear from context.)

Lemma 4.9. For any 3CNF ϕ on n variables, there are poly(n)-size AC0-Frege proofs of ϕ(~p)→
Truthbool([ϕ], ~p).

Proof. In fact, we will see that for a fixed clause κ, after simplifying constants—that is, ϕ ∧ 1 and
ϕ ∨ 0 both simplify to ϕ, ϕ ∧ 0 simplifies to 0, and ϕ ∨ 1 simplifies to 1—that Truthbool([κ], ~p) in
fact becomes syntactically identical to κ(~p). By the definition of Truthbool([ϕ], ~p), we get the same
conclusion for any fixed CNF ϕ. Simplifying constants can easily be carried out in AC0-Frege.

For a fixed κ, ~qj and sj become fixed to constants for j = 1, 2, 3. Denote the indices of the three
variables in κ by i1, i2, i3. The only variables left in the statement Truthbool([κ], ~p) are ~p. Since
the ~qj and [i] are all fixed, every term in

∨
i(~qj = [i] ∧ (pi ↔ sj)) except for the ij term simplifies

to 0, so this entire disjunction simplifies to (pij ↔ sj). Since the sj are also fixed, if sj = 1 then
(pij ↔ sj) simplifies to pij , and if sj = 0 then it simplifies to ¬pij . With this understanding, we
write ±pij for the corresponding literal. Then Truthbool([κ], ~p) simplifies to (±pi1 ∨ ±pi2 ∨ ±pi3)
(with signs as described previously). This is exactly κ(~p).
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A Additional Background

A.1 Algebraic Complexity

A polynomial f(~x) is a projection of a polynomial g(~y) if f(~x) = g(L(~x)) identically as polynomials
in ~x, for some map L that assigns to each yi either a variable or a constant. A family of polynomials
(fn) is a polynomial projection or p-projection of another family (gn), denoted (fn) ≤p (gn), if there
is a function t(n) = nΘ(1) such that fn is a projection of gt(n) for all (sufficiently large) n. The
primary value of projections is that they are very simple, and thus preserve bounds on nearly all
natural complexity measures. Valiant [Val79a, Val82] was the first to point out not only their value
but their ubiquity in computational complexity—nearly all problems that are known to be complete
for some natural class, even in the Boolean setting, are complete under p-projections. We say that
two families f = (fn) and g = (gn) are of the same p-degree if each is a p-projection of the other,
which we denote f ≡p g.

By analogy with Turing reductions or circuit reductions, Bürgisser [Bür00a] introduced the
more general, but somewhat messier, notion of c-reduction (“c” for “computation”). An oracle



Circuit Complexity, Proof Complexity, and PIT - J. A. Grochow and T. Pitassi 40

computation of f from g is an algebraic circuit C with “oracle gates” such that when g is plugged
in for each oracle gate, the resulting circuit computes f . We say that a family (fn) is a c-reduction
of (gn) if there is a function t(n) = nΘ(1) such that there is a polynomial-size oracle reduction from
fn to gt(n) for all sufficiently large n. We define c-degrees by analogy with p-degrees, and denote
them by ≡c.

Despite its central role in computation, and the fact that VP = VNC2 [VSBR83], the determinant
is not known to be VP-complete. The determinant is VQP-complete (VQP is defined just like VP
but with a quasi-polynomial bound on the size and degree of the circuits) under qp-projections
(like p-projections, but with a quasi-polynomial bound). Weakly skew circuits help clarify the
complexity of the determinant (see Malod and Portier [MP08] for some history of weakly skew
circuits and for highlights of their utility). A circuit of fan-in at most 2 is weakly skew if for every
multiplication gate g receiving inputs from gates g1 and g2, at least one of the subcircuits Ci rooted
at gi is only connected to the rest of the circuit through g. In other words, for every multiplication
gate, one of its two incoming factors was computed entirely and solely for the purpose of being
used in that multiplication gate. Toda [Tod92] (see also Malod and Portier [MP08] showed that a
polynomial family f = (fn) is a p-projection of the determinant family (detn) if and only if f is
computed by polynomial-size weakly skew circuits.

A.2 Proof Complexity

Here we give formal definitions of proof systems and probabilistic proof systems for coNP languages,
and discuss several important and standard proof systems for TAUT.

Definition A.1. Let L ⊆ {0, 1}∗ be a coNP language. A proof system P for L is a polynomial-time
function of two inputs x, y ∈ {0, 1}∗ with the following properties:

1. (Perfect Soundness) If x is not in L, then for every y, P (x, y) = 0.

2. (Completeness) If x is in L, then there exists a y such that P (x, y) = 1.

P is polynomially bounded if for every x ∈ L, there exists a y such that |y| ≤ poly(|x|) and
P (x, y) = 1.

As this is just the definition of an NP procedure for L, it follows that for any coNP-complete
language L, L has a polynomially bounded proof system if and only if coNP ⊆ NP.

Cook and Reckhow [CR79] formalized proof systems for the language TAUT (all Boolean tau-
tologies) in a slightly different way, although their definition is essentialy equivalent to the one
above. We prefer the above definition as it is consistent with definitions of interactive proofs.

Definition A.2. A Cook–Reckhow proof system is a polynomial-time function P ′ of just one input
y, and whose range is the set of all yes instances of L. If x ∈ L, then any y such that P ′(y) = x is
called a P ′ proof of x. P ′ must satisfy the following properties:

1. (Soundness) For every x, y ∈ {0, 1}∗, if P ′(y) = x, then x ∈ L.

2. (Completeness) For every x ∈ L, there exists an y such that P ′(y) = x.

P ′ is polynomially bounded if for every x ∈ L, there exists a y such that |y| ≤ poly(|x|) and
P (y) = x.
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Intuitively, we think of P ′ as a procedure for verifying that y is a proof that some x ∈ L and
if so, it outputs x. (For all strings x that do not encode valid proofs, P ′(x) may just output some
canonical x0 ∈ L.) It is a simple exercise to see that for every language L, any propositional proof
system P according to our definition can be converted to a Cook-R-eckow proof system P ′, and
vice versa, and furthermore the runtime properties of P and P ′ will be the same. In the forward
direction, say P is a proof system for L according to our definition. Define Merlin’s string y as
encoding a pair (x, y′), and on input y = (x, y′), P ′ runs P on the pair (x, y′). If P accepts,
then P ′(y) outputs x, and if P rejects, then P ′(y) outputs (the encoding of) a canonical x0 in L.
Conversely, say that P ′ is a Cook-Reckhow proof system for L. P (x, y) runs P ′ on y and accepts
if and only if P ′(y) = x.

Definition A.3. Let P1 and P2 be two proof systems for a language L in coNP. P1 p-simulates P2

if for every x ∈ L and for every y such that P2(x, y) = 1, there exists y′ such that |y′| ≤ poly(|y|),
and P1(x, y′) = 1.

Informally, P1 p-simulates P2 if proofs in P1 are no longer than proofs in P2 (up to polynomial
factors) .

Definition A.4. Let P1 and P2 be two proof systems for a language L in coNP. P1 and P2 are
p-equivalent if P1 p-simulates P2 and P2 p-simulates P1.

Standard Propositional Proof Systems For TAUT (or UNSAT), there are a variety of standard
and well-studied proof systems, the most important ones including Extended Frege (EF), Frege,
Bounded-depth Frege, and Resolution. A Frege rule is an inference rule of the form: B1, . . . , Bn =⇒
B, where B1, . . . , Bn, B are propositional formulas. If n = 0 then the rule is an axiom. For example,
A ∨ ¬A is a typical Frege axiom, and A,¬A ∨B =⇒ B is a typical Frege rule. A Frege system is
specified by a finite set, R of rules. Given a collection R of rules, a derivation of 3DNF formula f
is a sequence of formulas f1, . . . , fm such that each fi is either an instance of an axiom scheme, or
follows from two previous formulas by one of the rules in R, and such that the final formula fm is
f . In order for a Frege system to be a proof system in the Cook-Reckhow sense, its corresponding
set of rules must be sound and complete. Work by Cook and Reckhow in the 70’s (REF) showed
that Frege systems are very robust in the sense that all Frege systems are polynomially-equivalent.

Bounded-depth Frege proofs (AC0-Frege) are proofs that are Frege proofs but with the addi-
tional restriction that each formula in the proof has bounded depth. (Because our connectives
are binary AND, OR and negation, by depth we assume the formula has all negations at the
leaves, and we count the maximum number of alternations of AND/OR connectives in the for-
mula.) Polynomial-sized AC0-Frege proofs correspond to the complexity class AC0 because such
proofs allow a polynomial number of lines, each of which must be in AC0.

Extended Frege systems generalize Frege systems by allowing, in addition to all of the Frege
rules, a new axiom of the form y ↔ A, where A is a formula, and y is a new variable not occurring in
A. Whereas polynomially-size Frege proofs allow a polynomial number of lines, each of which must
be a polynomial-sized formula, using the new axiom, polynomial-size EF proofs allow a polynomial
number of lines, each of which can be a polynomial-sized circuit. See [Kra95] for precise definitions
of Frege, AC0-Frege, and EF proof systems.

Probabilistic Proof Systems The concept of a proof system for a language in coNP can be
generalized in the natural way, to obtain Merlin–Arthur style proof systems.

Definition A.5. Let L be a language in coNP, and let V be a probabilistic polynomial-time
algorithm with two inputs x, y ∈ {0, 1}∗. (We think of V as the verifier.) V is a probabilistic proof
system for L if:
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1. (Perfect Soundness) For every x that is not in L, and for every y,

Prr[P (x, y) = 1] = 0,

where the probability is over the random coin tosses, r of P .

2. (Completeness) For every x in L, there exists a y such that

Prr[P (x, y) = 1] ≥ 3/4.

P is polynomially bounded if for every x ∈ L, there exists y such that |y| = poly(|x|) and
Prr[P (x, y) = 1] ≥ 3/4.

It is clear that for any coNP-complete language L, there is a polynomially bounded probabilistic
proof system for L if and only if coNP ⊆ MA.

Again we have chosen to define our probabilitic proof systems to match the definition of MA. The
probabilistic proof system that would be analogous to the standard Cook–Reckhow proof system
would be somewhat different, as defined below. Again, a simple argument like the one above shows
that our probablistic proof systems are essentially equivalent to a probabilistic Cook–Reckhow proof
systems.

Definition A.6. A probabilistic Cook–Reckhow proof system is a probabilistic polynomial-time
algorithm A (whose run time is independent of its random choices) such that

1. There is a surjective function f : Σ∗ → TAUT such that A(x) = f(x) with probability at
least 2/3 (over A’s random choices), and

2. Regardless of A’s random choices, its output is always a tautology.

Such a proof system is polynomially bounded or p-bounded if for every tautology ϕ, there is
some π (for “proof”) such that f(π) = ϕ and |π| ≤ poly(|ϕ|).

We note that both Pitassi’s algebraic proof system [Pit96] and the Ideal Proof System are
probabilistic Cook–Reckhow systems. The algorithm P takes as input a description of a (constant-
free) algebraic circuit C together with a tautology ϕ, and then verifies that the circuit is indeed
an IPS-certificate for ϕ by using the standard coRP algorithm for polynomial identity testing. The
proof that Pitassi’s algebraic proof system is a probabilistic Cook–Reckhow system is essentially
the same.

A.3 Commutative algebra

The following preliminaries from commutative algebra are needed only in Section 1.6 and Ap-
pendix B.

A module over a ring R is defined just like a vector space, except over a ring instead of a field.
That is, a module M over R is a set with two operations: addition (making M an abelian group),
and multiplication by elements of R (“scalars”), satisfying the expected axioms (see any textbook
on commutative algebra, e. g., [AM69, Eis95]). A module over a field R = F is exactly a vector
space over F. Every ring R is naturally an R-module (using the ring multiplication for the scalar
multiplication), as is Rn, the set of n-tuples of elements of R. Every ideal I ⊆ R is an R-module—
indeed, an ideal could be defined, if one desired, as an R-submodule of R—and every quotient ring
R/I is also an R-module, by r · (r0 + I) = rr0 + I.
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Unlike vector spaces, however, there is not so nice a notion of “dimension” for modules over
arbitrary rings. Two differences will be particularly relevant in our setting. First, although every
vector subspace of Fn is finite-dimensional, hence finitely generated, this need not be true of every
submodule of Rn for an arbitrary ring R. Second, every (finite-dimensional) vector space V has a
basis, and every element of V can be written as a unique F-linear combination of basis elements,
but this need not be true of every R-module, even if the R-module is finitely generated, as in the
following example.

Example A.7. Let R = C[x, y] and consider the ideal I = 〈x, y〉 as an R-module. For clarity, let
us call the generators of this R-module g1 = x and g2 = y. First, I cannot be generated as an
R-module by fewer than two elements: if I were generated by a single element, say, f , then we
would necessarily have x = r1f and y = r2f for some r1, r2 ∈ R, and thus f would be a common
divisor of x and y in R (here we are using the fact that I is both a module and a subset of R).
But the GCD of x and y is 1, and the only submodule of R containing 1 is R 6= I. So {g1, g2} is a
minimum generating set of I. But not every element of I has a unique representation in terms of
this (or, indeed, any) generating set: for example, xy ∈ I can be written either as r1g1 with r1 = y
or r2g2 with r2 = x.

A ring R is Noetherian if there is no strictly increasing, infinite chain of ideals I1 ( I2 ( I3 ( · · · .
Fields are Noetherian (every field has only two ideals: the zero ideal and the whole field), as are the
integers Z. Hilbert’s Basis Theorem says that every ideal in a Noetherian ring is finitely generated.
Hilbert’s (other) Basis Theorem says that if R is finitely generated, then so is the polynomial ring
R[x] (and hence any polynomial ring R[~x]. Quotient rings of Noetherian rings are Noetherian, so
every ring that is finitely generated over a field (or more generally, over a Noetherian ring R) is
Noetherian.

Similarly, an R-module M is Noetherian if there is no strictly increasing, infinite chain of
submodules M1 ( M2 ( M3 ( · · · . If R is Noetherian as a ring, then it is Noetherian as an
R-module. It is easily verified that direct sums of Noetherian modules are Noetherian, so if R is a
Noetherian ring, then it is a Noetherian R-module, and consequently Rn is a Noetherian R-module
for any finite n. Just as for ideals, every submodule of a Noetherian module is finitely generated.

The remaining preliminaries from commutative algebra are only needed in Appendix B.
The radical of an ideal I ⊆ R is the ideal

√
I consisting of all r ∈ R such that rk ∈ I for some

k > 0. An ideal I is prime if whenever rs ∈ P , at least one of r or s is in P . For any ideal I, its
radical is equal to the intersection of the prime ideals containing I:

√
I =

⋂
prime P⊇I P . We refer

to prime ideals that are minimal under inclusion, subject to containing I, as “minimal over I;”
there are only finitely many such prime ideals. The radical

√
I is thus also equal to the intersection

of the primes minimal over I.
An algebraic set in Fn is any set of the form {~x ∈ Fn : F1(~x) = · · · = Fm(~x) = 0}, which

we denote V (F1, . . . , Fm) (“V ” for “variety”). The algebraic set V (F1, . . . , Fm) depends only on
the ideal 〈F1, . . . , Fm〉, and even its radical, in the sense that V (F1, . . . , Fm) = V (

√
〈F1, . . . , Fm〉).

Conversely, the set of all polynomials vanishing on a given algebraic set V is a radical ideal,
denoted I(V ). An algebraic set is irreducible if it cannot be written as a union of two algebraic
proper subsets. V is irreducible if and only if I(V ) is prime. The irreducible components of an
algebraic set V = V (I) are the maximal irreducible algebraic subsets of V , which are exactly the
algebraic sets corresponding to the prime ideals minimal over I.

If U is any subset of a ring R that is closed under multiplication—a, b ∈ U implies ab ∈ U—we
may define the localization of R at U to be the ring in which we formally adjoin multiplicative
inverses to the elements of U . Equivalently, we may think of the localization of R at U as the ring
of fractions over R where the denominators are all in U . If P is a prime ideal, its complement is
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a multiplicatively closed subset (this is an easy and instructive exercise in the definition of prime
ideal). In this case, rather than speak of the localization of R at R\P , it is common usage to refer
to the localization of R and P , denoted RP . Similar statements hold for the union of finitely many
prime ideals. We will use the fact that the localization of a Noetherian ring is again Noetherian
(however, even if R is finitely generated its localizations need not be, e. g. the localization of Z
at P = 〈2〉 consists of all rationals with odd denominators; this is one of the ways in which the
condition of being Noetherian is nicer than that of being merely finitely generated).

B Divisions: the Rational Ideal Proof System

We begin with an example where it is advantageous to include divisions in an IPS-certificate. Note
that this is different than merely computing a polynomial IPS-certificate using divisions. In the
latter case, divisions can be eliminated [Str73]. In the case we discuss here, the certificate itself is
no longer a polynomial but is a rational function.

Example B.1. The inversion principle, one of the so-called “Hard Matrix Identities” [SC04], states
that

XY = I ⇒ Y X = I.

They are called “Hard” because they were proposed as possible examples—over F2 or Z—of propo-
sitional tautologies separating Extended Frege from Frege. Indeed, it was only in the last 10 years
that they were shown to have efficient Extended Frege proofs [SC04], and it was quite nontrivial to
show that they have efficient NC2-Frege proofs [HT12], despite the fact that the determinant can
be computed in NC2. It is still open whether the Hard Matrix Identities have (NC1)-Frege proofs,
and believed not to be the case.

In terms of ideals, the inversion principle says that the n2 polynomials (Y X − I)i,j (the entries
of the matrix Y X − I) are in the ideal generated by the n2 polynomials (XY − I)i,j . The simplest
rational proof of the inversion principle that we are aware of is as follows:

X−1(XY − I)X = Y X − I

Note that X−1 here involves dividing by the determinant. When converted into a certificate, if we
write Q for a matrix of placeholder variables qi,j corresponding to the entries of the matrix XY −I,
we get n2 certificates from the entries of X−1QX. Note that each of these certificates is a rational
function that has det(X) in its denominator. Turning this into a proof that does not use divisions
is the main focus of the paper [HT12]; thus, if we had a proof system that allowed divisions in
this manner, it would potentially allow for significantly simpler proofs. In this particular case, we
assure ourselves that this is a valid proof because if XY −I = 0, then X is invertible, so X−1 exists
(or equivalently, det(X) 6= 0).

In order to introduce an IPS-like proof system that allows rational certificates, we generalize the
preceding reasoning. We must be careful what we allow ourselves to divide by. If we are allowed to
divide by arbitrary polynomials, this would yield an unsound proof system, because then from any
polynomials F1(~x), . . . , Fm(~x) we could derive any other polynomial G(~x) via the false “certificate”
G(x)
F (x)y1. The following definition is justified by Proposition B.3.

Unfortunately, although we try to eschew as many definitions as possible, the results here are
made much cleaner by using some additional (standard) terminology from commutative algebra
which is covered in Appendix A.3 such as prime ideals, irreducible components of algebraic sets,
and localization of rings.
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Definition B.2 (Rational Ideal Proof System). A rational IPS certificate or RIPS-certificate that
a polynomial G(~x) ∈ F[~x] is in the radical of the F[~x]-ideal generated by F1(~x), . . . , Fm(~x) is a
rational function C(~x, ~y) such that

0. Write C = C ′/D with C ′, D relatively prime polynomials. Then 1/D(~x, ~F (~x)) must be in the
localization of F[~x] at the union of the prime ideals that are minimal subject to containing the
ideal 〈F1(~x), . . . , Fm(~x)〉 (We give a more elementary explanation of this condition below),

1. C(x1, . . . , xn,~0) = 0, and

2. C(x1, . . . , xn, F1(~x), . . . , Fm(~x)) = G(~x).

A RIPS proof that G(~x) is in the radical of the ideal 〈F1(~x), . . . , Fm(~x)〉 is an F-algebraic circuit
with divisions on inputs x1, . . . , xn, y1, . . . , ym computing some RIPS certificate.

Condition (0) is equivalent to: if G(~x) is an invertible constant, then D(~x, ~y) is also an invert-
ible constant and thus C is a polynomial; otherwise, after substituting the Fi(~x) for the yi, the
denominator D(~x, ~F (~x)) does not vanish identically on any of the irreducible components (over the
algebraic closure F) of the algebraic set V (〈F1(~x), . . . , Fm(~x)〉) ⊆ Fn. In particular, for proofs of
unsatisfiability of systems of equations, the Rational Ideal Proof System reduces by definition to
the Ideal Proof System. For derivations of one polynomial from a set of polynomials, this need not
be the case, however; indeed, there are examples for which every RIPS-certificate has a nonconstant
denominator, that is, there is a RIPS-certifiate but there are no IPS-certificates (see Example B.4).

The following proposition establishes that Definition B.2 indeed defines a sound proof system.

Proposition B.3. If there is a RIPS-certificate that G(~x) is in the radical of 〈F1(~x), . . . , Fm(~x)〉,
then G(~x) is in fact in the radical of 〈F1(~x), . . . , Fm(~x)〉.

Proof. Let C(~x, ~y) = 1
D(~x,~y)C

′(~x, ~y) be a RIPS certificate that G is in
√
〈F1, . . . , Fm〉, where D and

C ′ are relatively prime polynomials. Then C ′(~x, ~y) is an IPS-certificate that G(~x)D(~x, ~F (~x)) is in
the ideal 〈F1(~x), . . . , Fm(~x)〉 (recall Definition 1.20). Let DF (~x) = D(~x, ~F (~x)).

Geometric proof: since G(~x)DF (~x) ∈ 〈F1(~x), . . . , Fm(~x)〉, GDF must vanish identically on every
irreducible component of the algebraic set V (F1, . . . , Fm). On each irreducible component Vi, since
DF (~x) does not vanish identically on Vi, G(~x) must vanish everywhere except for the proper subset
V (DF (~x)) ∩ Vi. Since DF does not vanish identically on Vi, we have dimV (DF ) ∩ Vi ≤ dimVi − 1
(in fact this is an equality). In particular, this means that G must vanish on a dense subset of
Vi. Since G is a polynomial, by (Zariski-)continuity, G must vanish on all of Vi. Finally, since G
vanishes on every irreducible component of V (F1, . . . , Fm), it vanishes on V (F1, . . . , Fm) itself, and
by the Nullstellensatz, G ∈

√
〈F1, . . . , Fm〉.

Algebraic proof: for each prime ideal Pi ⊆ F[~x] that is minimal subject to containing 〈F1, . . . , Fm〉,
DF is not in Pi, by the definition of RIPS-certificate. Since GDF ∈ 〈F1, . . . , Fm〉 ⊆ Pi, by the def-
inition of prime ideal G must be in Pi. Hence G is in the intersection

⋂
i Pi over all minimal prime

ideals Pi ⊇ 〈F1, . . . , Fm〉. This intersection is exactly the radical
√
〈F1, . . . , Fm〉.

Any derivation of a polynomial G that is in the radical of an ideal I but not in I itself will
require divisions. Although it is not a priori clear that RIPS could derive even one such G, the
next example shows that this is the case. In other words, the next example shows that certain
derivations require rational functions.

Example B.4. Let G(x1, x2) = x1, F1(~x) = x2
1, F2(~x) = x1x2. Then C(~x, ~y) = 1

x1−x2 (y1 − y2)

is a RIPS-certificate that G ∈
√
〈F1, F2〉: by plugging in one can verify that C(~x, ~F (~x)) = G(~x).
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For Condition (0), we see that V (F1, F2) is the entire x2-axis, on which x1 − x2 only vanishes
at the origin. However, there is no IPS-certificate that G ∈ 〈F1, F2〉, since G is not in 〈F1, F2〉:
〈F1, F2〉 = {x(H1(~x)x1 + H2(~x)x2)} where H1, H2 may be arbitrary polynomials. Since the only
constant of the form H1(~x)x1 +H2(~x)x2 is zero, G(x) = x /∈ 〈F1, F2〉.

In the following circumstances a RIPS-certificate can be converted into an IPS-certificate.

Notational convention. Throughout, we continue to use the notation that if D is a function of
the placeholder variables yi (and possibly other variables), then DF denotes D after substituting
in Fi(~x) for the placeholder variable yi.

Proposition B.5. If C = C ′/D is a RIPS proof that G(~x) ∈
√
〈F1(~x), . . . , Fm(~x)〉, such that

DF (~x) does not vanish anywhere on the algebraic set V (F1(~x), . . . , Fm(~x)), then G(~x) is in fact in
the ideal 〈F1(~x), . . . , Fm(~x)〉. Furthermore, there is an IPS proof that G(~x) ∈ 〈F1(~x), . . . , Fm(~x)〉 of
size poly(|C|, |E|) where E is an IPS proof of the unsolvability of DF (~x) = F1(~x) = · · · = Fm(~x) =
0.

Proof. Since DF (~x) does not vanish anywhere on V (F1, . . . , Fm), the system of equations DF (~x) =
F1(~x) = · · · = Fm(~x) = 0 is unsovlable.

Geometric proof idea: The preceding means that when restricted to the algebraic set V (F1, . . . , Fm),
DF has a multiplicative inverse ∆. Rather than dividing by D, we then multiply by ∆, which, for
points on V (F1, . . . , Fm), amounts to the same thing.

Algebraic proof: Let E(~x, ~y, d) be an IPS-certificate for the unsolvability of this system, where
d is a new placeholder variable corresponding to the polynomial DF (~x) = D(~x, ~F (~x)). By sep-
arating out all of the terms involving d, we may write E(~x, ~y, d) as d∆(~x, ~y, d) + E′(~x, ~y). As
E(~x, ~F (~x), DF (~x)) = 1 (by the definition of IPS), we get:

DF (~x)∆(~x, ~F (~x), DF (~x)) = 1− E′(~x, ~F (~x)).

Since E′(~x, ~y) ∈ 〈y1, . . . , ym〉, this tells us that ∆(~x, ~F (~x), DF (~x)) is a multiplicative inverse of
DF (~x) modulo the ideal 〈F1, . . . , Fm〉. The idea is then to multiply by ∆ instead of dividing by D.
More precisely, the following is an IPS-proof that G ∈ 〈F1, . . . , Fm〉:

C∆(~x, ~y)
def
= C ′(~x, ~y)∆(~x, ~y,D(~x, ~y)) +G(~x)E′(~x, ~y). (4)

Since C ′ and E′ must individually be in 〈y1, . . . , ym〉, the entirety of C∆ is as well. To see that we
get G(~x) after plugging in the Fi(~x) for the yi, we compute:

C∆(~x, ~F (~x)) = C ′(~x, ~F (~x))∆(~x, ~F (~x), D(~x, ~F (~x))) +G(~x)E′(~x, ~F (~x))

= C ′(~x, ~F (~x))

(
1− E′(~x, ~F (~x))

DF (~x)

)
+G(~x)E′(~x, ~F (~x))

= G(~x)
(

1− E′(~x, ~F (~x))
)

+G(~x)E′(~x, ~F (~x))

= G(~x).

Finally, we give an upper bound on the size of a circuit for C∆. The numerator and denominator
of a rational function computed by a circuit of size s can be computed individually by circuits of
size O(s). The basic idea, going back to Strassen [Str73], is to replace each wire by a pair of wires
explicitly encoding the numerator and denominator, to replace a multiplication gate by a pair of
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multiplication gates—since (A/B)×(C/D) = (A×C)/(B×D)—and to replace an addition gate by
the appropriate gadget encoding the expression (A/B) + (C/D) = (AD+BC)/BD. In particular,
we may assume that a circuit computing C ′/D has the following form: it first computes C ′ and D
separately, and then has a single division gate computing C ′/D. Thus from a circuit for C we can
get circuits of essentially the same size for both C ′ and D. Given a circuit for E = d′∆+E′, we get
a circuit for E′ by setting d′ = 0. We can then get a circuit for d′∆ as E − E′. From a circuit for
d′∆ we can get a circuit for ∆ alone by first dividing d′∆ by d′, and then eliminating that division
using Strassen [Str73]. Combining these, we then easily construct a circuit for the IPS-certificate
C∆ of size poly(|C|, |E|).

Example B.6. Returning to the inversion principle, we find that the certificate from Example B.1
only divided by det(X), which we’ve already remarked does not vanish anywhere that XY − I
vanishes. By the preceding proposition, there is thus an IPS-certificate for the inversion principle
of polynomial size, if there is an IPS-certificate for the unsatisfiability of det(X) = 0∧XY − I = 0
of polynomial size. In this case we can guess at the multiplicative inverse of det(X) modulo XY −I,
namely det(Y ), since we know that det(X) det(Y ) = 1 if XY = I. Hence, we can try to find a
certificate for the unsatisfiability of det(X) = 0 ∧XY − I = 0 of the form

det(X) det(Y ) + (something in the ideal of 〈(XY − I)i,j∈[n]〉) = 1.

In other words, we want a refutation-style IPS-proof of the implication XY = I ⇒ det(X) det(Y ) =
1, which is another one of the Hard Matrix Identities. Such a refutation is exactly what Hrubes
and Tzameret provide [HT12].

In fact, for this particular example we could have anticipated that a rational certificate was
unnecessary, because the ideal generated by XY − I is prime and hence radical. (Indeed, the ring
F[X,Y ]/〈XY − I〉 is the coordinate ring of the algebraic group GLn(F), which is an irreducible
variety.)

Unfortunately, the Rational Ideal Proof System is not complete, as the next example shows.

Example B.7. Let F1(x) = x2 and G(x) = x. Then G(x) ∈
√
〈F1(~x)〉, but any RIPS certificate

would show G(x)D(x) = F1(x)H(x) for some D,H. Plugging in, we get xD(x) = x2H(x), and
by unique factorization we must have that D(x) = xD′(x) for some D′. But then D vanishes
identically on V (F1), contrary to the definition of RIPS-certificate.

To get a more complete proof system, we could generalize the definition of RIPS to allow dividing
by any polynomial that does not vanish to appropriate multiplicity on each irreducible component
(see, e. g., [Eis95, Section 3.6] for the definition of multiplicity). For example, this would allow
dividing by x to show that x ∈

√
〈x2〉, but would disallow dividing by x2 or any higher power of

x. However, the proof of soundness of this generalized system is more involved, and the results of
the next section seem not to hold for such a proof system. As of this writing we do not know of
any better characterization of when RIPS certificates exist other than the definition itself.

Definition B.8. A RIPS certificate is Hilbert-like if the denominator doesn’t involve the place-
holder variables yi and the numerator is ~y-linear. In other words, a Hilbert-like RIPS certificate
has the form 1

D(~x)

∑
i yiGi(~x).

Lemma B.9. If there is a RIPS certificate that G ∈
√
〈F1, . . . , Fm〉, then there is a Hilbert-like

RIPS certificate proving the same.
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Proof. Let C = C ′(~x, ~y)/D(~x, ~y) be a RIPS certificate. First, we replace the denominator by
DF (~x) = D(~x, ~F (~x)). Next, for each monomial appearing in C ′, we replace all but one of the yi in
that monomial with the corresponding Fi(~x), reducing the monomial to one that is ~y-linear.

As in the case of IPS, we only know how to guarantee a size-efficient reduction under a sparsity
condition. The following is the RIPS-analogue of Proposition 2.1.

Corollary B.10. If C = C ′/D is a RIPS proof that G ∈
√
〈F1, . . . , Fm〉, where the numerator C ′

satisfies the same sparsity condition as in Proposition 2.1, then there is a Hilbert-like RIPS proof
that G ∈

√
〈F1, . . . , Fm〉, of size poly(|C|).

Proof. We follow the proof of Lemma B.9, making each step effective. As in the last paragraph
of the proof of Proposition B.5, any circuit with divisions computing a rational function C ′/D,
where C ′, D are relatively prime polynomials can be converted into a circuit without divisions
computing the pair (C ′, D). By at most doubling the size of the circuit, we can assume that the
subcircuits computing C ′ and D are disjoint. Now replace each yi input to the subcircuit computing
D with a small circuit computing Fi(~x). Next, we apply sparse multivariate interpolation to the
numerator C ′ exactly as in Proposition 2.1. The resulting circuit now computes a Hilbert-like RIPS
certificate.

B.1 Towards lower bounds

We begin by noting that, since the numerator and denominator can be computed separately (orig-
inally due to Strassen [Str73], see the proof of Proposition B.5 above for the idea), it suffices to
prove a lower bound on, for each RIPS-certificate, either the denominator or the numerator.

As in the case of Hilbert-like IPS and general IPS (recall Section 1.6), the set of RIPS certificates
showing that G ∈

√
〈F1, . . . , Fm〉 is a coset of a finitely generated ideal.

Lemma B.11. The set of RIPS-certificates showing that G ∈
√
〈F1, . . . , Fm〉 is a coset of a finitely

generated ideal in R, where R is the localization of F[~x, ~y] at
⋃
i Pi, where the union is over the

prime ideals minimal over 〈F1, . . . , Fm〉.
Similarly, the set of Hilbert-like RIPS certificates is a coset of a finitely generated submodule of

R′m, where R′ = R ∩ F[~x] is the localization of F[~x] at
⋃
i(Pi ∩ F[~x]).

Proof. The proof is essentially the same as that of Lemma 1.12, but with one more ingredient.
Namely, we need to know that the rings R and R′ are Noetherian. This follows from the fact that
polynomial rings over fields are Noetherian, together with the general fact that any localization of
a Noetherian ring is again Noetherian.

Exactly analogous to the the case of IPS certificates, we define general and Hilbert-like RIPS
zero-certificates to be those for which, after plugging in the Fi for yi, the resulting function is
identically zero. In the case of Hilbert-like RIPS, these are again syzygies of the Fi, but now
syzygies with coefficients in the localization R′ = F[~x]P1∪···∪Pk

.
However, somewhat surprisingly, we seem to be able to go further in the case of RIPS than IPS,

as follows. In general, the ring F[~x, ~y]P1∪···∪Pk
is a Noetherian semi-local ring, that is, in addition

to being Noetherian, it has finitely many maximal ideals, namely P1, . . . , Pk. Ideals in and modules
over semi-local rings enjoy properties not shared by ideals and modules over arbitrary rings.

In the special case when there is just a single prime ideal P1, the localization is a local ring
(just one maximal ideal). We note that this is the case in the setting of the Inversion Principle,
as the ideal generated by the n2 polynomials XY − I is prime. Local rings are in some ways very
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close to fields—if R is a local ring with unique maximal ideal P , then R/P is a field—and modules
over local rings are much closer to vector spaces than are modules over more general rings. This
follows from the fact that M/P is then in fact a vector space over the field R/P , together with
Nakayama’s Lemma (see, e. g., [Eis95, Corollary 4.8] or [Rei95, Section 2.8]). Once nice feature is
that, if M is a module over a local ring, then every minimal generating set has the same size, which
is the dimension of M/P as an R/P -vector space. We also get that for every minimal generating
set b1, . . . , bk of M (“b” for “basis”, even though the word basis is reserved for free modules), for
each m ∈M , any two representations m =

∑k
i=1 ribi with ri ∈ R differ by an element in PM . This

near-uniqueness could be very helpful in proving lower bounds, as normal forms have proved useful
in proving many circuit lower bounds.

Open Question B.12. Does every RIPS proof of the n×n Inversion Principle XY = I ⇒ Y X = I
require computing a determinant? That is, is it the case that for every RIPS certificate C = C ′/D,
some determinant of size nΩ(1) reduces to one of C,C ′, D by a O(log n)-depth circuit reduction?

A positive answer to this question would imply that the Hard Matrix Identities do not have
O(log n)-depth RIPS proofs unless the determinant can be computed by a polynomial-size algebraic
formula. Since IPS (and hence RIPS) simulates Frege-style systems in a depth-preserving way
(Theorem 2.3), a positive answer would also imply that there are not (NC1-)Frege proofs of the
Boolean Hard Matrix Identities unless the determinant has polynomial-size algebraic formulas.
Although answering this question may be difficult, the fact that we can even state such a precise
question on this matter should be contrasted with the preceding state of affairs regarding Frege
proofs of the Boolean Hard Matrix Identities (which was essentially just a strong intuition that
they should not exist unless the determinant is in NC1).

C Geometric IPS-certificates

We may consider F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn) as a polynomial map F = (F1, . . . , Fm) : Fn →
Fm. Then this system of polynomials has a common zero if and only if 0 is the image of F . In fact,
we show that for any Boolean system of equations, which are those that include x2

1 − x1 = · · · =
x2
n−xn = 0, or multiplicative Boolean equations—those that include x2

1−1 = · · · = x2
n−1 = 0—the

system of polynomials has a common zero if and only if 0 is in the closure of the image of F .
The preceding is the geometric picture we pursue in this section; next we describe the corre-

sponding algebra. The set of IPS certificates is the intersection of the ideal 〈y1, . . . , ym〉 with the
coset 1+〈y1−F1(~x), . . . , ym−Fm(~x)〉. The map a 7→ 1−a is a bijection between this coset intersec-
tion and the coset intersection (1 + 〈y1, . . . , ym〉)∩ 〈y1−F1(~x), . . . , ym−Fm(~x)〉. In particular, the
system of equations F1 = · · · = Fm = 0 is unsatisfiable if and only if the latter coset intersection is
nonempty.

We show below that if the latter coset intersection contains a polynomial involving only the
yi’s—that is, its intersection with the subring F[~y] (rather than the much larger ideal 〈~y〉 ⊆ F[~x, ~y])
is nonempty—then 0 is not even in the closure of the image of F . Hence we call such polynomials
“geometric certificates:”

Definition C.1 (The Geometric Ideal Proof System). A geometric IPS certificate that a system
of F-polynomial equations F1(~x) = · · · = Fm(~x) = 0 is unsatisfiable over F is a polynomial C ∈
F[y1, . . . , ym] such that

1. C(0, 0, . . . , 0) = 1, and

2. C(F1(~x), . . . , Fm(~x)) = 0. In other words, C is a polynomial relation amongst the Fi.
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A geometric IPS proof of the unsatisfiability of F1 = · · · = Fm = 0, or a geometric IPS refutation
of F1 = · · · = Fm = 0, is an F-algebraic circuit on inputs y1, . . . , ym computing some geometric
certificate of unsatisfiability.

If C is a geometric certificate, then 1−C is an IPS certificate that involves only the yi’s, some-
what the “opposite” of a Hilbert-like certificate. Hence the smallest circuit size of any geometric
certificate is at most the smallest circuit size of any algebraic certificate. We do not know, however,
if these complexity measures are polynomially related:

Open Question C.2. For Boolean systems of equations, Geometric IPS polynomially equivalent
to IPS? That is, is there always a geometric certificate whose circuit size is at most a polynomial
in the circuit size of the smallest algebraic certificate?

Although the Nullstellensatz doesn’t guarantee the existence of geometric certificates for arbi-
trary unsatisfiable systems of equations—and indeed, geometric certificates need not always exist—
for Boolean systems of equations (usual or multiplicative) geometric certificates always exist. In
fact, this holds for any system of equations which contains at least one polynomial containing only
the variable xi, for each variable xi:

Proposition C.3. Let F be either a (topologically) dense subfield of C or any algebraically closed
field. A Boolean system of equations over F—or more generally any system of equations containing,
for each variable xi, at least one non-constant equation involving only xi

7 —has a common root if
and only if it does not have a geometric certificate.

The condition of this proposition is almost surely more stringent than necessary, but the next
example shows that at least some condition is necessary.

Example C.4. Let F1(x, y) = xy − 1 and F2(x, y) = x2y. There is no solution to F1 = F2 = 0,
as F1 = 0 implies that both x and y are nonzero, but if this is the case then x2y = F2(x, y) is
also nonzero. Yet 0 is in the closure of the image of the map F = (F1, F2) : F2 → F2. There are
(at least) two ways to see this. First, we exhibit 0 as an explicit limit of points in the image. Let
χ1(ε) = ε and χ2(ε) = 1/ε. Then F1(χ1(ε), χ2(ε)) = 0 identically in ε, and F2(χ1(ε), χ2(ε)) = ε.
Thus, if we take the limit as ε→ 0, we find that 0 is in the closure of the image of F .8

Alternatively, in this case we can determine the entire image exactly (usually a very daunting
task): it is {(a, b) ∈ F2 : a 6= −1 and b 6= 0} ∪ {(−1, 0)}. This can be determined by solving the
equations by the elementary method of substitution, and careful but not complicated case analysis.
It is then clear (geometrically in the case of subfields of C, and by a dimension argument over
an arbitrary algebraically closed field) that the closure of the image is the entirety of F2, and in
particular contains 0.

The next example rules out another natural attempt at generalizing Proposition C.3, and also
shows that the existence of geometric certificates for a given set of equations can depend on the
equations themselves, and not just on the ideal they generate.

7We believe that the “correct” generalization here is to systems of equations F1 = · · · = Fm = 0 such that the
corresponding map F : Fn → Im(F ) is flat (see, e. g., [Eis95, Chapter 6]) and has zero-dimensional fibers, that is, the
inverse image of any point is a finite set. Systems satisfying the hypothesis of Proposition C.3 satisfy these hypotheses
as well, but we have not checked carefully if the result extends in this generality.

8If F is a dense subfield of C, this limit may be taken in the usual sense of the Euclidean topology. For arbitrary
algebraically closed fields F, the same construction works, but must now be interpreted in the context of Lemma C.7.
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Example C.5. Let F1(x, y) = xy − 1 and F2(x, y) = x2y as before, and now also add F3(x, y) =
x2(1− y). We already saw that F1 = F2 = 0 is unsatisfiable, so F1 = F2 = F3 = 0 is unsatisfiable
as well. However, F1 = F3 = 0 has one, and only one, solution, namely x = y = 1. Let F =
(F1, F2, F3) : F2 → F3. To see that ~0 is in the closure of the image of F , we again consider
limε→0 F (ε, 1/ε). As before F1(ε, 1/ε) = 0 and F2(ε, 1/ε) = ε, whose limit is zero as ε → 0.
Similarly, we get F3(ε, 1/ε) = ε2(1− 1/ε) = ε(ε− 1), which again goes to 0 as ε→ 0.

Note that if we replace equations F1 and F3 by another set of equations with the same set of
solutions (in this case, a singleton set), but satisfying the conditions of Proposition C.3, such as
F ′1 = (x− 1)k and F ′3 = (y − 1)` for some k, ` > 0, then ~0 is no longer in the closure of the image.
For if (F ′1, F2, F

′
3) approaches (0, 0, 0), then x and y must both approach 1, but then F2 = x2y also

approaches 1. Furthermore, by the Nullstellensatz, for some k, ` > 0, the polynomials (x − 1)k

and (y − 1)` both in the ideal 〈F1, F3〉. Thus, although the solvability of a system of equations is
determined entirely by (the radical of) the ideal they generate, the geometry of the corresponding
map—and even the existence of geometric certificates—can change depending on which elements
of the ideal are used in defining the map.

The following lemma is the key to Proposition C.3.

Lemma C.6. Let F be (1) a dense subfield of C (in the Euclidean topology), or (2) any algebraically
closed field. Let F1(~x), . . . , Fm(~x) be a system of equations over F, and let F = (F1, . . . , Fm) : Fn →
Fm be the associated polynomial map, as above. If, for i = 1, . . . , n, Fi(~x) is a nonzero function
of xi alone, then the set of equations F1 = · · · = Fm = 0 has a solution if and only if 0 is in the
closure Im(F ).

Proof. If the system F has a common solutions, then 0 is in the image of F and hence in its closure.
Conversely, suppose 0 is in the closure of the image of F . We first prove case (1) (the charac-

teristic zero case) as it is somewhat simpler and gives the main idea, and then we prove case (2),
the case of an arbitrary algebraically closed field.

(1) Dense subfields of C. First, we note that the closure of the image of F in the Zariski topology
agrees with its closure in the standard Euclidean topology on Fn, induced by the Euclidean topology
on Cn. For F = C, see, e. g., [Mum76, Theorem 2.33]. For other dense F ( C, suppose ~y is in
the F-Zariski-closure of F (Fn), that is, every F-polynomial that vanishes everywhere on F (Fn) also
vanishes at ~y. By the aforementioned result for C, there is a sequence of points ~x1, ~x2, . . . ∈ Cn such
that ~y = limk→∞ F (~xk). As F is dense in C in the Euclidean topology, there is similarly a sequence
of points ~x′1, ~x

′
2, . . . ∈ Fn such that |~xk − ~x′k| ≤ 1/k for all k. Hence limk→∞ ~xk = limk→∞ ~x

′
k. Each

F (~x′k) ∈ Fm, so we get a sequence of points F (~x′1), F (~x′2), . . . ∈ Fm whose limit is ~y.
In particular, 0 is in the (Zariski-)closure of the image of F if and only if there is a sequence

of points v(1), v(2), v(3), . . . ∈ Im(F ) such that limk→∞ v
(k) = 0. As each v(k) is in the image of

F , there is some point ν(k) ∈ Fn such that v(k) = F (ν(k)). As the v(k) approach the origin, each

Fi(ν
(k)) approaches 0, since it is the i-th coordinate of v(k): v

(k)
i = Fi(ν

(k)).
In particular, since F1(~x) depends only on x1 and is nonzero (by assumption), the first co-

ordinates ν
(k)
1 must accumulate around the finitely many zeroes of F1(x1). Similarly for each

coordinate i = 1, . . . , n of ν(k). Thus there is an infinite subsequence of the ν(k) that approaches
one single solution ~z to F = 0. By choosing such a subsequence and re-indexing, we may assume
that limk→∞ ν

(k) = ~z.
Finally, by assumption and continuity, we have

0 = lim
k→∞

v(k) = lim
k→∞

F (ν(k)) = F ( lim
k→∞

ν(k)) = F (~z),
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so ~z is a common root of the original system F1 = · · · = Fm = 0. Hence, if 0 is in the closure of
the image of F , then 0 is in the image.

(2) F any algebraically closed field. Here we cannot use an argument based on the Euclidean
topology, but there is a suitable, purely algebraic analogue, encapsulated in the following lemma:

Lemma C.7 (See, e. g., [BCS97, Lemma 20.28]). If p is a point in the closure of the image of a
polynomial map F : Fn → Fm, then there are formal Laurent series9 χ1(ε), . . . , χn(ε) in a new vari-
able ε such that Fi(χ1(ε), . . . , χn(ε)) is in fact a power series—that is, involves no negative powers
of ε—for each i = 1, . . . ,m, and such that evaluating the power series (F1(~χ(ε)), . . . , Fm(~χ(ε)) at
ε = 0 yields the point p.

Note that the evaluation at ε = 0 must occur after applying Fi, since each individual χi may
involve negative powers of ε.

As F1 involves only x1, in order for F1(~χ(ε)) = F1(χ1(ε)) to be a power series in ε, it must be
the case that χ1(ε) itself is a power series (contains no negative powers of ε). For if the highest
degree term of F1 is some constant times xd1, and the lowest degree term of χ1(ε) is of degree −D,
then F1(χ1(ε)) contains the monomial ε−dD with nonzero coefficient. A similar argument applies
to χi for i = 1, . . . , n. Thus each χi is in fact a power series, involving no negative terms of ε, and
hence can be evaluated at 0. Since evaluating at ε = 0 now makes sense even before applying the
Fi, and is a ring homomorphism (we might say, “is continuous with respect to the ring operations”),
we get that

0 = Fi(~χ(ε))|ε=0 = Fi(~χ(ε)|ε=0) = Fi(~χ(0))

for each i = 1, . . . ,m, and hence ~χ(0) is a solution to F1(~x) = · · · = Fm(~x) = 0.

Proof of Proposition C.3. Let F1, . . . , Fm be an unsatisfiable system of equations over F satisfying
the conditions of Lemma C.6, and let F = (F1, . . . , Fm) : Fn → Fm be the corresponding polynomial
map.

First, suppose that F1 = · · · = Fm = 0 has a solution. Then 0 ∈ Im(F ), so any C(y1, . . . , ym)
that vanishes everywhere on Im(F ), as required by condition (2) of Definition C.1, must vanish at ~0.
In other words, C(0, . . . , 0) = 0, contradicting condition (1). So there are no geometric certificates.

Conversely, suppose C(y1, . . . , ym) is a geometric certificate. Then C vanishes at every point
of the image Im(F ) and hence at every point of its closure Im(F ), by (Zariski-)continuity. By
condition (1) of Definition C.1, C(0, . . . , 0) = 1. Since C does not vanish at the origin, ~0 /∈ Im(F ).
Then by Lemma C.6, ~0 is not in the image of F and hence F1 = · · · = Fm = 0 has no solution.

Finally, as with IPS certificates and Hilbert-like IPS certificates (see Section 1.6), a geomet-
ric zero-certificate for a system of equations F1(~x), . . . , Fm(~x) is a polynomial C(y1, . . . , ym) ∈
〈y1, . . . , ym〉—that is, such that C(0, . . . , 0) = 0—and such that C(F1(~x), . . . , Fm(~x)) = 0 identi-
cally as a polynomial in ~x. The same arguments as in the case of algebraic certificates show that
any two geometric certificates differ by a geometric zero-certificate, and that the geometric cer-
tificates are closed under multiplication. Furthermore, the set of geometric zero-certificates is the
intersection of the ideal of (algebraic) zero-certificates 〈y1, . . . , ym〉 ∩ 〈y1 − F1(~x), . . . , ym − Fm(~x)〉
with the subring F[~y] ⊂ F[~x, ~y]. As such, it is an ideal of F[~y] and so is finitely generated. Thus,
as in the case of IPS certificates, the set of all geometric certificates can be specified by giving a
single geometric certificate and a finite generating set for the ideal of geometric zero-certificates,
suggesting an approach to lower bounds on the Geometric Ideal Proof System.

9A formal Laurent series is a formal sum of the form
∑∞

k=−k0
akε

k. By “formal” we mean that we are paying no
attention to issues of convergence (which need not even make sense over various fields), but are just using the degree
of ε as an indexing scheme.
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We note that geometric zero-certificates are also called syzygies amongst the Fi—sometimes
“geometric syzygies” or “polynomial syzygies” to distinguish them from the “module-type syzygies”
we discussed above in relation to Hilbert-like IPS. As in all the other cases we’ve discussed, a
generating set of the geometric syzygies can be computed using Gröbner bases, this time using
elimination theory: compute a Gröbner basis for the ideal 〈y1 − F1(~x), . . . , ym − Fm(~x)〉 using an
order that eliminates the x-variables, and then take the subset of the Gröbner basis that consists of
polynomials only involving the y-variables. The ideal of geometric syzygies is exactly the ideal of
the closure of the image of the map F , and for this reason this kind of syzygy is also well-studied.
This suggests that geometric properties of the image of the map F (or its closure) may be useful
in understanding the complexity of individual instances of coNP-complete problems.
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