
Computing with a full memory: Catalytic space

Harry Buhrman∗1,2, Richard Cleve†3, Michal Koucký‡4,
Bruno Loff1, and Florian Speelman§1

1CWI, Amsterdam
2University of Amsterdam

3University of Waterloo
4Charles University, Prague

Abstract

We define the notion of a catalytic-space computation. This is a computation that has a
small amount of clean space available and is equipped with additional auxiliary space, with the
caveat that the additional space is initially in an arbitrary, possibly incompressible, state and
must be returned to this state when the computation is finished. We show that the extra space
can be used in a nontrivial way, to compute uniform TC1-circuits with just a logarithmic amount
of clean space. The extra space thus works analogously to a catalyst in a chemical reaction.
TC1-circuits can compute for example the determinant of a matrix, which is not known to be
computable in logspace.

In order to obtain our results we study an algebraic model of computation, a variant of
straight-line programs. We employ register machines with input registers x1, . . . ,xn and work
registers r1, . . . , rm. The instructions available are of the form ri ← ri±u×v, with u, v registers
(distinct from ri) or constants. We wish to compute a function f(x1, . . . ,xn) through a sequence
of such instructions. The working registers have some arbitrary initial value ri = τi, and they
may be altered throughout the computation, but by the end all registers must be returned to
their initial value τi, except for, say, r1 which must hold τ1 + f(x1, . . . ,xn). We show that all
of Valiant’s class VP, and more, can be computed in this model. This significantly extends the
framework and techniques of Ben-Or and Cleve [BC92].

Upper bounding the power of catalytic computation we show that catalytic logspace is
contained in ZPP. We further construct an oracle world where catalytic logpace is equal to
PSPACE, and show that under the exponential time hypothesis (ETH), SAT can not be computed
in catalytic sub-linear space.

∗Supported in part by EU project SIQS.
†Supported in part by Canada’s NSERC, CIFAR, and the U.S. ARO.
‡Supported in part by (FP7/2007-2013)/ERC Consolidator grant LBCAD no. 616787.
§Supported by the NWO DIAMANT project and EU project SIQS.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 53 (2014)



1 Introduction

Imagine the following scenario. You want to perform a computation that requires more memory
than you currently have available on your computer. One way of dealing with this problem is
by installing a new hard drive. As it turns out you have a hard drive but it is full with data,
pictures, movies, files, etc. You don’t need to access that data at the moment but you also don’t
want to erase it. Can you use the hard drive for your computation, possibly altering its contents
temporarily, guaranteeing that when the computation is completed, the hard drive is back in its
original state with all the data intact? One natural approach is to compress the data on the hard
disk as much as possible, use the freed-up space for your computation and finally uncompress the
data, restoring it to its original setting. But suppose that the data is not compressible. In other
words, your scheme has to always work no matter the contents of the hard drive. Can you still
make good use of this additional space?

In order to study this question we define the following model of computation, which we call
catalytic space1. We equip the standard Turing machine model — which has input, output, and
work tapes — with an additional auxiliary tape. We assume that the Turing machine halts on
every input and call it catalytic if at the end of every computation, the auxiliary tape is unaltered
for every possible initial setting of its content. As usual in space-bounded computation we limit
the amount of work space by a function s(n), usually logarithmic or polynomial. We define the
class CSPACE(s(n)) to be the class of sets that are computed by catalytic Turing machines whose
work-tape is bounded by s(n) tape cells, and whose auxiliary space is bounded by 2s(n) cells.

Intuition tells us that the auxiliary tape is not very useful since its contents must be present
in some way at every step of the computation and if these contents are incompressible, effectively
no extra space is available. Surprisingly it appears that that CSPACE(log n) is more powerful
than ordinary logspace (DSPACE(log n) or L), for we show that TC1 ⊆ CSPACE(log n). Note that
TC1 contains NL and even #L and other classes that are conjectured to be different from L. We
remark that, although the catalytic requirement of the auxiliary space suggest the computation
is reversible, it is not sufficient to have just reversibility, since reversible computation schemes
[Ben73, LMT97, BTV01] usually require the initial configuration of all the space cells to be set to
some fixed initial value, for example all blanks. However, a stronger version of reversibility, that we
call transparent computation, suffices. Our reversibility framework is related to the work of Ben-Or
and Cleve [BC92] but goes beyond it. We show that the techniques of Ben-Or and Cleve stop at
the class of problems that are reducible to iterated matrix product (GapL), whereas our model is
able to compute TC1.

We don’t know what the exact power of catalytic logspace is, but show that it is contained in
ZPP. It could be possible that every problem in P is computable in CSPACE(log n). This would
be remarkable. It could be of practical interest in situations when additional clean space is not
available, for example when the main memory of a computer is filled with data of an ongoing
background computation which may be temporarily stopped, but requires the memory to be unal-
tered when it continues. On the other hand, CSPACE(log n) might be a proper subset of P. There
remains the possibility that CSPACE(log n) = L. If this is the case then our result implies L = NL,
and the intuition that an additional full memory is useless could lead to an approach for proving
this collapse. Lastly, we present an oracle relative to which CSPACE(log n) = PSPACE, showing
the potential, at least in a relativized world, of the auxiliary tape. We also show that under the
exponential-time hypothesis [IP99], SAT 6∈ CSPACE(o(n)).

1Catalysis refers to the situation where the rate of a chemical reaction is increased by participation of a substance
which is not consumed and is available unaltered after the reaction has taken place.

2



2 Preliminaries

To put our results into a proper context we need to review several problems and related complexity
classes.

L, NL, LOGCFL. By L we denote the class of problems solvable in logspace, by NL the class
of problems solvable non-deterministically in logspace, and by LOGCFL the class of problems that
are logspace many-one reducible to context-free languages. Another equivalent characterization
of LOGCFL is as the class of languages accepted by non-deterministic logspace-bounded auxiliary
push-down automata (AuxPDAs) running in polynomial time [Sud78].

NCi, SACi, ACi, TCi. These are classes of boolean functions computed by polynomial-size
circuits of depth (log n)i. The different classes differ by the set of gates that are allowed in the
circuit. NCi-circuits consist of input gates, constant (0/1) gates, binary (fan-in-2) AND and OR
gates, and unary NOT gates. SACi-circuits additionally allow for the OR gates to have arbitrary
fan-in. ACi-circuits allow for both AND and OR gates to have arbitrary fan-in. TCi-circuits are
additionally allowed to have MAJ gates of arbitrary fan-in (a MAJ gate decides whether most of
its input bits are 1).

GapL, #LOGCFL. We also consider counting classes: GapL is the class of functions obtained by
counting the difference between the number of accepting and rejecting paths of a non-deterministic
logspace machine; #LOGCFL is the class of functions that count the number of accepting paths of
AuxPDAs running in logarithmic space and polynomial time.

VP(R), SkewVP(R). Finally, we will also work with algebraic circuits that operate over some
ring R. When R is the ring of integers Z, these are also called arithmetic circuits. Valiant’s class
VP(R) [Val79] is the class of (families of) multivariate polynomials over R, computed by algebraic
circuits using addition and multiplication gates over R, that have size and degree nO(1) (where
n is the number of variables). SkewVP(R) is the class of multivariate polynomials which can be
computed by VP(R)-circuits, with the further restriction that each multiplication gate is binary
and such that one of its inputs is either a constant or an input variable.

#NCi(R), #SACi(R), #ACi(R). These are classes of families of multivariate polynomials
over R that are computed by polynomial-size algebraic circuits of depth (log n)i. Again, these
classes differ only by the set of gates that are allowed. #NCi(R)-circuits consist of input gates,
constant gates (one such gate for each element in R), and binary addition and multiplication gates.
#SACi(R)-circuits further allow for the addition gates to have arbitrary fan-in. #ACi(R)-circuits
can have both addition and multiplication gates of arbitrary fan-in.

Beside circuit families over a ring R that is the same for all input lengths we also consider circuit
families where the circuit for inputs of length n computes over a ring Rn, e.g., #NC1(Mn2×n2(Z))
consists of families of multivariate polynomials over the ring of integer matrices, where the size of
the matrices is n2 for n being the number of matrix variables.

DETn,R, IMMn,m,R. By DETn,R we denote the problem of computing a determinant of an
n × n matrix over a ring R. By IMMn,m,R we denote the problem of computing the product of n
matrices, each over the ring R of dimension m × m. We can omit the subscripts when the ring
or dimensions are understood from the context. Typically we may think of R being the ring of
integers, and m = n.

Relationship among these concepts. We now present known relationships among these
classes; see Figure 1 for an overview.2 It is standard knowledge that TC0 ⊆ NC1 ⊆ SAC1 ⊆ AC1 ⊆

2Below and in Figure 1, inclusion is not meant in a set-theoretic sense, and should be interpreted with the usual
caveats that apply to complexity classes; for instance, NL ⊆ GapL in the sense that the characteristic function of any
NL decision problem is in GapL; or, to give another example, #AC0(Zp) ⊆ TC0 in the sense that any polynomial in
#AC0(Zp) can be computed in TC0 using the canonical encoding of Zp (see Section 4.1) But describing this with full

3



SAC1

TC0 // NC1 // L // NL
��

// LOGCFL
��

// AC1 // TC1

#AC0(Zpn) // GapL // #LOGCFL // #AC1(Zpn)

SkewVP(Z) VP(Z)

#AC0(Z2poly(n))

OO

#NC1(Mn×n(Z)) SAC1(Z) #AC1(Z2poly(n))

OO

Figure 1: Inclusion diagram for all the classes.

TC1, but none of these inclusions is known to be proper. TC0 is known to contain problems such as
computing the sum and the product of n-many n-bit integers, computing the division of two n-bit
integers, etc [BCH86, RT92, HAM02]. It is also (not-as-well) known that NC1 ⊆ L ⊆ NL ⊆ SAC1 =
LOGCFL [Ven91].

The complexity of computing the determinant characterizes GapL. More precisely, f is in GapL
if and only if it is logspace many-one reducible to DETn,Z [Tod91, Dam91, Vin91, Val92]. Cook
and others [Coo85, AO94] have shown that the class of problems logspace many-one reducible to
DET is the same as the class of problems logspace many-one reducible to IMM.3 Taken over the
integers, SkewVP(Z) equals GapL [Tod92], and also #NC1(MnO(1)×nO(1)(Z)), the class of log-depth
fan-in-2 circuits over integer matrices.4

#SAC1(R) is actually a characterization of VP(R) [VSBR83], a deep result of depth-reduction
for algebraic circuits. Taken over the integers VP(Z) equals #LOGCFL [Vin91].

The question posed by Valiant [Val79] about the relationship between the determinant and
VP(Z), namely, whether evaluating a VP(Z) circuit reduces to evaluating the determinant of a
matrix that is at most polynomially larger in size (or, equivalently, whether SkewVP(Z) = VP(Z)),
is no different to the question about the relationship between GapL and #LOGCFL.

[AAD00, BFS92, RT92] establish a relationship between the classes TCi and #ACi(R) over
various integral rings and finite fields. For instance, it is shown in [RT92] that TCi ⊆ #ACi(Zp(n)),

where p(n) is any prime number larger than the maximum fan-in of the TCi circuit to be simulated
(for inputs of length n), and that, conversely, #ACi(Zf(n)) ⊆ TCi holds for any function f(n) =

O(2poly(n)).
A remark on TC1 versus GapL. Immerman and Landau [IL95] conjecture that computing

determinant over the integers is hard for TC1. However, there is evidence suggesting that this
is not the case. Namely, it is known that TC1 circuits can evaluate #AC1 circuits over Zm, the
ring of integers mod m, for exponentially large m.5 If the Immerman-Landau conjecture were true
then #SAC1 circuits over the integers — which compute polynomials of degree polynomial in the
number of inputs — could simulate TC1, and hence #AC1. But the latter can have super-polynomial

precision would give a cluttered, poorer exposition.
3A function f is logspace many-one reducible to the determinant if there is a function g computable in logspace

such that f(x) (viewed as a number written in binary) is equal to the determinant of matrix g(x).
4This follows from [BC92, Cle89], see Theorem 2 below.
5This is because TC0 circuits can evaluate an iterated sum and iterated product of integers, as well as compute the

remainder mod m. TC1 circuits cannot evaluate #AC1 circuits over unbounded integers since #AC1 circuits represent
polynomials of degree up to nO(logn), and hence the encoding of their output may require super-polynomially many
bits.

4



degree! This conclusion can not be ruled out entirely, because while polynomials of nO(1) degree
over integer variables can not simulate polynomials of larger degree over integer variables, they
could still conceivably simulate polynomials of nlogn degree over integers modulo 2n (Z2n). But
this does seem unlikely.

3 Transparent computation

The model for transparent computation is a variant of straight-line programs. The computational
device is a register machine equipped with read-write working registers ~r = r1, r2, . . . , rm and read-
only input registers ~x = x1, . . . ,xn. Each register xi or ri holds a value from some designated ring
R. The standard set of instructions — called standard basis — consists of instructions of the form
ri ← ri ± u × v, where u and v are either elements of R (“constants”), or registers different from
ri, and the +,− and × are the operations of R. These instructions are said to be reversible, and
for an instruction I, its inverse I−1 is I with the + or − interchanged.6 Moreover when at least
one of the u and v is an input register or constant we call the instruction skew, and the skew basis
is the standard basis restricted to skew instructions

A program for this register machine is a sequence of reversible instructions, and we also call these
programs reversible. Thus for a reversible program P = I1, I2, . . . , I` we let the inverse program
P−1 be I−1

` , I−1
`−1, . . . , I−1

1 . It is easy to verify that P ,P−1 computes the identity.
We say that a program P uses register r if one of its instructions involves this register, e.g.,

r1 ← r1 + r4 · r7 uses registers r1, r4 and r7.
We say that f(~x) can be computed transparently into a register ri if there is a reversible program

P that when executed on registers r1, r2, . . . , rm with initial values τ1, τ2, . . . , τm ends with value
τi+f(~x) in register ri; the other registers may contain arbitrary values at the end of the computation.
(We will always use τi to denote the initial value held in register ri before executing a program.)
Clearly, if we have a program that transparently computes f into a register r we can modify it by
relabeling registers to compute f transparently into a different register. We may also want P to
transparently compute a vector of functions (f1(~x), f2(~x), . . . , fk(~x)) into registers ri1 , ri2 , . . . , rik ,
meaning that the execution of P ends with the value τij + fj(~x) in each register rij .

Transparent computation is a very special type of reversible computation as it has the addi-
tional property that the computation is meaningful regardless of the initial setting of the working
registers.7 Hence the choice of name: the computation is “transparent,” in the sense that it some-
how sees through the contents of the working registers. This property is not universally shared by
reversible models of computation. Our model is a variant of the model considered by Coppersmith
and Grossman [CG75], and by Ben-Or and Cleve [BC92].

6Generally speaking, the reversibility property would hold for any instruction of the form ri ← σ~x,~r6=i
(ri), where

σ~x,~r 6=i
is a permutation of R which may arbitrarily depend on the input registers and on the work registers other

than ri. Also, in principle, different registers could work over different domains. In this paper we do not make use of
these possibilities, but they may appear in future work.

7Furthermore, and quite remarkably, the following can be shown: let R(t) be the contents of the working registers
after executing t instructions of some transparent program, and let X = X1, . . . ,Xn be the input; then for any t,
I(R(t) : X) = I(R(0) : X), where I denotes the common information, either in the Shannon or Kolmogorov sense
(input and registers must be suitably specified, respectively as a distribution or as a binary string, in order to fit in
either framework; details are left to the reader).

In particular, if the initial contents of the registers are independent of the input (I(R(0) : X) = 0), then at any
point in the computation, the register machine knows nothing about the input, other than whichever specific register
Xi it might be accessing directly (as when executing the instruction r ← r +Xi, for instance).

It should be noted, however, that if one is to look at two distinct time-steps t1 and t2, some information about X
could be derived, i.e., it could hold that I(R(t1),R(t2) : X) > I(R(0) : X).

5



Definition 1. TP(R, s,m) is the class of functions transparently computed by reversible programs
over the standard basis over ring R, having at most s instructions and using at most m registers.
TP(R) is the class of (families of) functions in TP(R, poly, poly). SkewTP(R, s,m) and SkewTP(R)
are analogously defined for the skew basis.

Coppersmith and Grossman [CG75] have shown that the class TP(Z2, 2O(n),O(1)) contains all
boolean functions (cf. [Cle89]). The reason why we are interested in transparent computation is
because it allows us to restore the work registers to their initial values. For suppose that we have
a reversible program P that transparently computes f(~x) into register r1, while freely modifying
the contents of other registers. Then we can take the program P ′: r ← r − r1,P , r ← r + r1,P−1,
where r is a register not used by P . While this new program still transparently computes f(~x) into
r, all of the remaining registers are returned to their initial value. We then say that P ′ cleanly (as
well as transparently) computes f(~x) into register r.

Uniformity. Our class TP(R) is a non-uniform class. Naturally, we may consider also its uniform
variant. All our results in which we simulate circuits by transparent programs essentially preserve
the uniformity, so a uniform family of circuits is simulated by a uniform family of transparent pro-
grams. There is only a slight loss in our Powering Lemma where we hardwire binomial coefficients
into the transparent program. Since the necessary binomial coefficients can easily be computed in
logarithmic space the resulting transparent program is still at least logspace uniform if the circuit
family is. This also affects all our results that use the Powering Lemma, including our main result
on simulation of TC1. A possible way to avoid this loss in uniformity is to construct very uniform
transparent programs that would compute the binomial coefficients.

3.1 Previous results on this model

It is a natural question to ask: what functions can be transparently computed by small programs
over the standard basis, or over other bases? We do not have a precise answer to this question but
we will be able to show that all functions in the circuit class TC1 can be computed transparently
by polynomial size programs over the standard basis. This greatly extends the result of Ben-Or
and Cleve [BC92] who in essence show that any function in NC1 can be computed transparently
by a polynomial size program using three registers. Cleve in his thesis [Cle89] shows a result
slightly stronger than [BC92], namely that iterated matrix product can be computed transparently
by polynomial size programs over the standard basis. Indeed, an inspection of the proof, together
with the technique of Ben-Or and Cleve, shows that the iterated matrix product can be computed
transparently by polynomial size programs over the skew basis. In particular, iterated matrix
product of n matrices can be represented by a formula over Rm×m of depth log n. Using the same
techniques, we can prove a tight characterization of SkewTP(R).

Theorem 2. Let f(x1, . . . ,xn) be a polynomial over a ring R.

(a) If f can be represented as an entry of a d-depth formula over the ring Mm×m(R), where each
entry in each matrix input to this formula is either an element of R, or ± xi for some i, and
m = poly(n), then f is in SkewTP(R,O(m34d),O(m2)).

(b) If f is in SkewTP(R, s,m), then f can be represented as an entry in the product of s-many
(m+ 1)× (m+ 1) such matrices.

Proof. The first part is a restatement of Theorem 3.3.1 of [Cle89]. For the given parameters, it
follows that f ∈ SkewTP(R,O(m34d),O(m2)). The only minor difference is that Theorem 3.3.1

6



of [Cle89] uses standard basis instructions and not our skew basis. However, the inspection of the
proof together with the technique of Ben-Or and Cleve [BC92] shows that the theorem is true also
for the skew basis.

Now suppose that f ∈ SkewTP(R,S,m). Consider the (m + 1)-dimensional vector R0 =
(0, . . . , 0, 1), where the first m entries represent the values of registers r1, . . . , rn used by the pro-
gram, and the last entry represents a constant one. The skew instruction ri ← ri ± rj · v, where
v is either an element of R or a variable xi, can be represented by the (m + 1) × (m + 1) matrix
having 1 on the diagonal, ±v in the (j, i) position, and 0 elsewhere. The instruction ri ← ri + v
can be represented by an identity matrix with the entry (m + 1, i) set to v. These matrices will
act on the vector R0 in the same way as their corresponding instructions. If the program trans-
parently computes f into r1 then the (1,m+ 1) entry of the product of the matrices corresponding
to the program gives f . For each instantiation of ~x, this product can be computed by a balanced
(O(log n)-depth) tree of product gates over the ring Mm×m(R). � From the GapL-completeness of

IMM over Z, we get:

Corollary 3. SkewTP(Z) = GapL = SkewVP(Z) = #NC1(MnO(1)×nO(1)(Z)).

3.2 Getting more

The previous characterization tells us that, to go beyond GapL, we can not restrict ourselves to
skew instructions. We will now show how to use reversible programs to transparently compute
#SAC1(R). We must then be able to transparently compute binary product and unbounded sum.

Lemma 4 (Binary product). Let r0, r1, r2, r3, r4 be registers over some ring R. There are re-
versible programs I1, I2, I3 over the standard basis using registers over R such that for any reversible
program P that does not use r0, r3 and r4 and that transparently computes r1 ← τ1 + f1(~x) and
r2 ← τ2 + f2(~x), the program I1,P , I2,P−1, I3 computes r0 ← τ0 + f1(~x) × f2(~x). The total length
of I1, I2, I3 is eight instructions.

Proof. The following program computes the required product. The right-hand side indicates the
result of applying the instructions on the left-hand side.

1. r0 ← r0 + r1r2 + r1r4 + r3r2 // r0 = τ0 + τ1τ2 + τ1τ4 + τ3τ2

2. P // ri = τi + fi(~x), for i = 1, 2

3. r3 ← r3 + r1 // r3 = τ3 + τ1 + f1(~x)
r4 ← r4 + r2 // r4 = τ4 + τ2 + f2(~x)
r0 ← r0 + r1r2 // r0 = τ0 + f1(~x)f2(~x) + τ1(τ4 + τ2 + f2(~x)) + (τ3 + τ1 + f1(~x))τ2

4. P−1 // ri = τi, for i = 1, 2

5. r0 ← r0 − r1r4 − r3r2 // r0 = τ0 + f1(~x)f2(~x)

The first statement, which can be implemented using three standard basis instructions, forms
I1; the statements from line 3 form I2; and the two instructions corresponding to line 5 form I3. �

Lemma 5 (Unbounded sum). Let r0, r1, r2, . . . , rk be registers over some ring R. There are re-
versible programs I1 and I2 over the standard basis using registers over R such that for any reversible
program P that does not use r0 and that for each i = 1, . . . , k transparently computes ri ← τi+fi(~x),
the program I1,P , I2 computes r0 ← τ0 +

∑k
i=1 fi(~x). The total length of I1, I2 is 2k.

7



Proof. The following program computes the sum.

1. For each i = 1, . . . , k do r0 ← r0 − ri.

2. P

3. For each i = 1, . . . , k do r0 ← r0 + ri.

The first statement which corresponds to k standard basis instructions forms I1, and the k instruc-
tions from line 3 form I2. �

Corollary 6. If R is a ring and f is computed by a depth-d arithmetic circuit with w wires and
s gates for binary product and unbounded fan-in addition, then

f ∈ TP(R,O(dw2d+1),O(s)) .

Proof. Let C be the depth-d circuit for f of given properties. Let us assume that C is layered, that
is, each gate at level ` takes as its inputs gates at level ` − 1. For every gate gi of C we will have
an auxiliary register ri into which we will transparently compute the value of gi. We will compute
the values of gates inductively level by level.

If gi is an input gate then it corresponds either to a constant c ∈ R or to an input variable xj .
In the former case the instruction ri ← ri + c transparently computes the value of gi, and in the
latter case ri ← ri + xj does the job. A concatenation of such instructions in arbitrary order for
all the input gates gives a program that simultaneously and transparently computes the values of
input gates into their associated registers.

Assume that we already have a program P`−1 that simultaneously and transparently computes
the values of gates at the level ` − 1 into appropriate registers. If gi is a gate at level ` then
it is either the sum of the values of gates at the level ` − 1 or their binary product. By the
Unbounded Sum Lemma or by the Binary Product Lemma, there are programs Ii1, Ii2, Ii3 such that
Ii1,P`−1, Ii2,P−1

`−1, Ii3 transparently computes gi into ri. (We can and will assume that Ii1, Ii2, Ii3 use
different auxiliary registers for different i.) If gi1 , gi2 , . . . , gik are the gates at level ` then

P` = Ii11 , . . . , Iik1 ,P`−1, Ii12 , . . . , Iik2 ,P−1
`−1, Ii13 , . . . , Iik3

computes simultaneously and transparently the values of the gates at level ` into appropriate
registers. In this way we obtain a program Pd for transparently computing the value of C.

If the size of the program P` is S` then S` ≤ 2S`−1+4w`, where w` is the number of wires leading
into the gates at the level `. The number of input gates can be bounded by w, so S1 ≤ w. Thus
S` ≤ 6w2`−2 ≤ w2`+1. Each gate uses at most three registers, and hence our final program will
use O(s) registers. This is under the assumption that C is layered. Any circuit can be transformed
into a layered one while increasing its number of wires by a factor of at most d. �

We thus get a potentially larger class of functions than that of Ben-Or and Cleve:

Corollary 7. For any ring R, #SAC1(R) ⊆ TP(R). In particular,

#LOGCFL = #SAC1(Z) = VP(Z) ⊆ TP(Z).

8



3.3 Getting TC1

To go even further and obtain TC1 we will need the ability to compute the n-th power of a gate.
We will show how to do this over commutative rings, but we do not know how to proceed in the
non-commutative case.

The following lemma gives a small-length program for computing the iterated product of regis-
ters.

Lemma 8 (Iterated product). There is a program P with 2k + 1 instructions from the standard
basis over R that transparently computes, for every i ≤ k,

ri ← τi +m1 × . . .×mi,

where m1, . . . ,mk are either input registers, work registers (different from the ri), or constants.

Proof. The following program computes the product.

1. For i = k, . . . , 2 do ri ← ri − ri−1 ×mi.

2. r1 ← r1 +m1

3. For i = 2, . . . , k do ri ← ri + ri−1 ×mi. �

Notice that this lemma is different from the binary product or unbounded sum lemmas, in that
we do not prove how to inductively compute the iterated product of the outputs of some given
program. In fact, we currently do not know how to prove this.

To compute the n-th power over commutative rings, we will need the following variant of the
usual binomial expansion.

Lemma 9. For any elements a,x of a commutative ring, and any integer k ≥ 1, the following
holds:

(a+ x)k = xk +
k∑
i=1

(−1)i−1

(
k

i

)
ai(a+ x)k−i

Proof. Let us consider the binomial expansion of (a+ x− a)k.

xk = (a+ x− a)k =
k∑
i=0

(
k

i

)
(−a)i(a+ x)k−i

= (a+ x)k +

k∑
i=1

(−1)i
(
k

i

)
ai(a+ x)k−i

Now the lemma immediately follows. �

Lemma 10 (Powering). Let k be a positive integer. Let r0 and r be registers over some commutative
ring R. There are programs I1, I2 and I3 over the standard basis registers over R such that for any
program P that does not use any registers used by I1, I2, I3 other than r and that transparently
computes

r ← τ + f(~x),

the program I1,P , I2,P−1, I3 computes

r0 ← τ0 + [f(~x)]k.

The total length of I1, I2, I3 is O(k), and O(k) registers are used.

9



Proof. Assume we have auxiliary registers r1, r2, . . . , rk. Then for the constants ci = (−1)i−1
(
k
i

)
,

i = 1, . . . , k, the following program computes the power of f(~x).

1. For i = 1, . . . , k do r0 ← r0 + ci · ri · rk−i.

2. P

3. For i = 1, . . . , k do ri ← ri + ri.
r0 ← r0 + rk.

4. P−1

5. For i = 1, . . . , k do r0 ← r0 − ci · ri · rk−i.

This can be seen as before by carefully tracking the contents of the registers, and eventually
by applying Lemma 9. By the Iterated Product Lemma the first line can be implemented using a
program over the standard basis of size O(k). This will be I1. Similarly, line 3 and line 5 can each
be implemented by a similar-size program I2 and I3, respectively. This would give programs of size
O(k) using O(k) registers. �

Lemma 11 (Exact value). Let p be a prime, R be the field Zp, and s ∈ R. Let r0, r1, r2, . . . , rk
be registers over R. There are programs I1, I2 and I3 over the standard basis using registers over
R such that for any program P that does not use r0 and that transparently computes for each
i = 1, . . . , k

ri ← τi + fi(~x),

the program I1,P , I2,P−1, I3 computes

r0 ← τ0 + [[
k∑
i=1

fi(~x) 6= s]],

where [[
∑k

i=1 fi(~x) 6= s]] equals 1 if
∑k

i=1 fi(~x) 6= s and equals 0 otherwise. The total length of
I1, I2, I3 is O(p+ k), and O(p) registers are used.

Proof. By the Unbounded Sum Lemma we have programs I ′1 and I ′2 such that for any program
P that simultaneously and transparently computes ri ← ri + fi(~x), the program P ′ = I ′1,P , I ′2
transparently computes

∑k
i=1 fi(~x) − s into an auxiliary register r. The total length of I ′1, I ′2 is

2k + 1. Notice,
∑k

i=1 fi(~x) − s is non-zero iff
∑k

i=1 fi(~x) 6= s. Since R is a field of size p, by

Fermat’s little theorem, (
∑k

i=1 fi(~x) − s)p−1 is one iff
∑k

i=1 fi(~x) − s is non-zero. Hence, by the
Powering Lemma, we have programs I ′′1 , I ′′2 , I ′′3 such that I ′′1 ,P ′, I ′′2 ,P ′−1, I ′′3 transparently computes
(
∑k

i=1 fi(~x) − s)p−1, i.e., [[
∑k

i=1 fi(~x) 6= s]]. Setting I1 = I ′′1 , I ′1, setting I2 = I ′2, I ′′2 , (I ′2)−1 and
setting I3 = (I ′1)−1, I ′′3 gives the required programs. Their total length is 2(2k + 1) +O(p). �

Corollary 12. Let a function f be computed by a depth-d boolean circuit consisting of at most s
MAJ-gates, each of fan-in at most k. Let p > k be a prime. Then f ∈ TP(Zp,O(dpks4d),O(dksp)).

Proof. First, notice that MAJ gates can be simulated using the Exact Value gates. Indeed, let
b1, b2, . . . , bk be bits where k is even. Then

[[

k/2∑
j=1

[[
k∑
i=1

bi 6= j]] 6= k/2]]

10



if and only if
k∑
i=1

bi > k/2.

Similarly for odd k. Hence, the depth-d circuit C for f consisting of MAJ gates has an equivalent
depth-2d circuit C ′ consisting of the Exact Value gates. The number of gates in C ′ is at most
O(ks). Making C ′ layered may increase the number of gates by a factor of 2d. Using the same
technique as in the proof of Corollary 6 we can transparently simulate the computation of C ′ by
a reversible program. Each gate of C ′ will require additional computation of size O(k + p), and
uses O(p) registers. Since, there are O(dks) gates this will contribute by O(dks(k+p)) instructions
using O(dksp) registers. However, as we proceed layer by layer in constructing the program for C ′,
the number of instructions gets multiplied by a factor of at most 22d as the instructions for each
gate get copied twice at each sub-sequent layer. Hence, in total we obtain a program of length
O(22d(dk2s+ dkps)) = O(4ddkps). �

Allender and Koucký [AK10] show that for any ε > 0, one can simulate MAJ-gate of fan-in n by
a uniform constant depth circuit of polynomial size consisting of MAJ-gates of fan-in at most nε.
Hence, in the previous lemma we could use polynomially smaller primes for the cost of increasing
the size of the resulting program by a polynomial factor. We can state our main technical result.

Theorem 13. For any sequence of primes (pn)n∈N of size polynomial in n, TC1 ⊆ TP(Zpn).

Note, we can find polynomially large primes in logspace so if f is computable by a logspace
uniform family of TC1 circuits then f is transparently computable by a logspace uniform family of
polynomial size transparent programs.

Because of the relationship between TC1 and #AC1 the previous theorem allows us to simulate
the computation of #AC1 circuits over Zm, the ring of integers modulo m, where m can be expo-
nentially large. Because the degree of the polynomials computed by #AC1(Zm) circuits can be as
high as nlogn, this seems to give a significant improvement over GapL and #LOGCFL.

4 Catalytic computation

A catalytic Turing machine is a Turing machine equipped with a read-only input tape, a work
tape8, and an extra tape — the auxiliary tape. For every possible initial setting of the auxiliary
tape, at the end of the computation the catalytic Turing machine must have returned the tape to
its initial contents.

We say a language L is decided by a catalytic Turing machine M if for any string x, and for
any string a representing the initial contents of the auxiliary tape, M(x, a) halts with contents of
the auxiliary tape being exactly a and M(x, a) accepts if and only if x ∈ L.

Definition 14. Let S,Sa : N → N. We define the class CSPACE(S(n),Sa(n)) to be the set of all
languages that can be decided by a catalytic machine using O(S(n)) space of the work tape and
O(Sa(n)) auxiliary space of the auxiliary tape, for an input of length n.

As a notational shorthand we define CSPACE(S(n)) = CSPACE(S(n), 2O(S(n))) as the set of
languages that can be decided by a catalytic machine with a work tape of size S(n). We take the
auxiliary space exponential in S(n), the largest amount of auxiliary space which can be addressed
when using the machine’s work tape.

8For simplicity, the Turing machine’s alphabet is assumed to be {0, 1}, but the model naturally extends to larger
alphabets.

11



We will pay the most attention to the setting where the machine has work tape of logarithmic
size, which we call catalytic logspace or CSPACE(log n).

4.1 Simulation of transparent computation by catalytic computation

Our goal is to present now several surprising containments in the catalytic logspace. To achieve
that, we will show how to simulate transparent programs in catalytic logspace, how to extract the
value of a function from the transparent computation, and how to deal with uniformity issues.

Let us first observe that, in the same way in which one can compose logspace reductions, we
can compose constantly many reductions running in catalytic logspace into a single reduction that
will also run in catalytic logspace. In this case the total work space will be roughly the sum of the
work space used by each of the reductions, but the same auxiliary space can be reused by each of
the reductions, since it is returned to its original content after each use. We will heavily use such
compositions in this section.

Before proceeding further let us specify what we mean by a uniform sequence of rings.9 We say
that a map h : R→ {0, 1}∗ is a compact encoding of the ring R if h is a bijection between R and the
lexicographically first |R| strings of length ` = dlog2 |R|e.10 We say that a family of rings (Rn)∞n=1

is logspace uniform, if there are logspace-bounded Turing machines M ,M+,Mc,Ms and a family
(hn)∞n=1 of compact encodings of (Rn)∞n=1, such that (1) on input (1n,hn(u) ◦ hn(v)), M outputs
hn(u ◦ v), where u, v ∈ R and ◦ ∈ {+,−,×}; (2) with (1n,hn(v)) written on a read-only tape and
hn(u) written on a read-write tape, M+ transforms hn(u) in-place into hn(u+ v) for any u, v ∈ Rn
(possibly using O(log n) of extra space); (3) on input 1n, Mc outputs hn(−1),hn(0),hn(1) and Ms

outputs |Rn|.
Examples of logspace uniform families are (Z2)∞n=1 and (Z2n)∞n=1. More generally, if a sequence

of numbers m1,m2, . . . is itself logspace uniform in the usual sense then (Zmn)∞n=1 is logspace
uniform. (This follows since addition, multiplication and taking remainder are all computable in
logspace, and adding and subtracting two integers can be done in-place.) In the case of Zm, we will
make use of the canonical compact encoding mapping n ∈ Zm to the n-th dlogme-bit string in the
lexicographical order. In this case, the encoding of the binomial coefficients

(
n
k

)
can be computed

in O(logm) space, which will be important for the TC1 simulation in Section 3.3.
The following is our key simulation lemma.

Lemma 15 (Catalytic simulation). For any logspace uniform family of rings (Rn)n, there is a
logspace catalytic machine M that on input (P ,x) outputs f(x), where P is a transparent program
using registers r1, r2, . . . , rm over R|x| that transparently computes f(x) into r1. Furthermore, M
uses (m · dlog2 |R|x||e)2 bits of auxiliary space, and logarithmic (in terms of length of P and x)
amount of work-space.

Proof. The machine M will compute f(x) by simulating P in the auxiliary space. Let n = |x|. To
simulate registers r1, . . . , rm of P the machine will view its auxiliary space as consisting of blocks
each having b = dlog2 |Rn|e bits. Each of the blocks may be used as a register.

Consider first the case when |Rn| is a power of two. Then the first m blocks of the auxiliary space
can be used to represent the values of registers r1, . . . , rm. As the sequence of rings is uniform, in

9The well-endowed rings defined by Borodin, Cook and Pippenger [BCP83] are similar, but have different require-
ments.

10The encoding is called compact because in some cases using the lexicographically first |R| strings forces the
encoding to be unnatural. This happens in the case of prime fields Fpn for p > 2 and n > 1, where the most natural
encoding would be n blocks of dlog2 pe bits, each holding a Zp coefficient; but such a natural encoding does not map
into the lexicographically first strings of ndlog2 pe bits, so it is not a compact encoding! We will need the encoding
to be compact in order to simulate register machines using a full memory.

12



logspace we can simulate any instruction in the standard basis. Hence, in logspace we can simulate
P . To compute the value f(x), we can design a reduction that first outputs the content of r1, that
is the initial content τ1 of the first block of the auxiliary space, then simulates P and again outputs
the content of r1, this time holding the value τ1 + f(x), and finally runs P−1 which restores the
original content of the auxiliary space. Clearly, this is a reduction running in catalytic logspace. By
composing this reduction with one which subtracts the two output values obtained by the previous
reduction, we get a program computing f(x).

When |Rn| is not a power of two, we will proceed similarly but we have to represent registers
differently. We split our auxiliary space into m groups of mb blocks (each block having b bits
as before). Two possibilities may happen: either there is a group in which none of the blocks
represents a value from Rn, or each group has a block that represents a value from Rn.

In the first case, if b bits do not represent a value from Rn, then — because our encoding of Rn
is compact — they have their first bit set to one. Thus in this case there is a group of mb blocks
where the first bit of each block is set to one. These mb bits can be used to simulate m registers of
P . We will first erase them, then simulate P , output the content of the first register, which holds
f(x), and in the end reset the mb bits back to one.

In the second case, we will use the first block representing a value from Rn in the i-th group
to represent the register ri. Since during the simulation of P , register ri always contains a value
from Rn, it is uniquely determined during the whole computation and we can locate it in logspace.
Using the same strategy as in the case of Rn having size of power of two we can compute f(x)
while restoring the auxiliary space to its original contents. �

We remark that we could save on the auxiliary space, and instead of using (m · dlog2 |R|x||e)2

bits of auxiliary space, we could use only O(m · dlog2 |R|x||e) bits if we were to use some stronger
compression of the high order bits in the case when there are insufficiently many blocks representing
values from Rn.

It is clear that if a sequence of programs (Pn)n is logspace constructible — where the programs
are over some logspace constructible sequence of rings and Pn transparently computes fn into a
register r1 — then we can compute the function family (fn)n in catalytic logspace.

Corollary 16. Let (Pn)n be a logspace uniform sequence of programs over some logspace con-
structible sequence of rings. Let Pn transparently compute fn into a register r1. Then the function
family (fn)n is in catalytic logspace.

We remark that our constructions of transparent programs in Section 3 are all logspace-uniform.
Thus, from the results in Section 3 we conclude, quite surprisingly, that a computer which has plenty
of occupied memory is (to the extent we believe that TC1 6⊆ L) more powerful than one that does
not.

Theorem 17. TC1 ⊆ CSPACE(log n), for logspace uniform TC1.

The Ben-Or & Cleve construction of Theorem 2(a) is also uniform. From this (using Chinese
remaindering computable in logspace) we obtain a result incomparable to the above:

Theorem 18. Iterated matrix product of n matrices over Z, each of dimension m(n)×m(n), can be
computed in logspace with O(m(n)2 · log n) bits of auxiliary space. In particular, the iterated matrix
product of n matrices over Z, each of dimension 2

√
logn× 2

√
logn, can be computed in logspace with

sub-polynomial (2O(
√

logn)) auxiliary space.

Thus even if the auxiliary space is of less than polynomial size, in catalytic logspace we can still
compute functions that are not known to be in the ordinary logspace.

13



4.2 Upper bounds

Let ZTIME(T (n)) be the set of languages decidable by a zero-error probabilistic Turing machine
that runs in expected time O(T (n)) for any input of length n.

Theorem 19. CSPACE(S(n)) ⊆ ZTIME(2O(S(n))).

Proof. Consider an input x of length n, and let s = O(S(n)) be the available space on the work
tape and sa be the size of the auxiliary tape of the machine M . Since the total space available to
the catalytic machine equals s+ sa, it has at most O(2s+sa) possible configurations. We take sa to
be at most 2O(s).

When running M with input x and auxiliary start a, the machine can visit any configuration
only once, since otherwise it would never halt. Similarly, a catalytic Turing machine can also not
have any configuration in common between a computation starting with a or one with a′ 6= a, for a
certain input x; from that point on they would run the same computation, so the restored auxiliary
part at halting would be incorrect for at least one of them.

Because of this uniqueness property, we can bound the expected runtime of a catalytic com-
putation by simple counting. Note that the total number of different configurations that a Turing
machine of memory s+sa can have is bounded by O(2sa+s+log sa+log s), where we need the logarith-
mic terms to account for the location of the tape heads. Let timeM(x, a) denote the computation
time of M on input x with the auxiliary tape initialized to a. Then it holds that

2sa−1∑
a=0

timeM(x, a) ≤ O(2sa+s+log sa+log s) .

Dividing by 2sa gives
E

a∈R{0,1}sa
[timeM(x, a)] ≤ 2O(s),

where we use that log sa = O(s). Now the inclusion in ZTIME(2O(S(n))) directly follows: a simulat-
ing zero-error probabilistic machine can just run the same computation as M , randomly generating
bits of a as needed, and halt in expected time 2O(s). �

In particular, for catalytic logspace, CSPACE(log n) ⊆ ZPP.
A natural question to ask is: can a catalytic machine directly simulate deterministic Turing

machines that use strictly more space, by having a translation for every instruction? From the
previous theorem it follows that the answer is no. (Lack of this type of simulation of course does
not rule out the possibility that the catalytic machine could decide languages that need more space,
it only hints that such a construction can not use another Turing machine as a black box.)

Corollary 20. No step-by-step simulation of deterministic space ω(S(n)) is possible in catalytic
space S(n).

Proof. There is some computation M on space ω(S(n)) that uses time t = 2ω(S(n)) for all inputs of
length n. Let x be an input of length n. Suppose that M has a step-by-step catalytic simulation
M ′, which runs in space s = S(n) with auxiliary space sa.

By the definition of a step-by-step simulation, we have that

∀a ∈ {0, 1}sa timeM ′(x, a) ≥ timeM(x) ≥ 2ω(s).

From the proof of Theorem 19 we know that on expectation over a, M ′ must have timeM ′(x, a) ≤
O(2s), a contradiction. �

14



Corollary 21.
If ZPP = L then CSPACE(S(n)) = DSPACE(S(n)).

Proof. The Corollary follows from Theorem 19. Using padding, we have that ZPP = L implies
ZTIME(2S(n)) ⊆ DSPACE(S(n)), giving CSPACE(S(n)) ⊆ ZTIME(2S(n)) ⊆ DSPACE(S(n)). �

Corollary 22. The exponential-time hypothesis [IP99] implies that SAT 6∈ CSPACE(o(n)).

Proof. The exponential-time hypothesis says that SAT 6∈ BPTIME(2o(n)). From this it directly
follows that SAT 6∈ ZTIME(2o(n)) and by Theorem 19 this implies SAT 6∈ CSPACE(o(n)). �

4.3 Oracle results for catalytic computation

We can show an oracle relative to which CSPACE(log n) = PSPACE.

Theorem 23. There exists an oracle A such that

DSPACEA(2Ω(S(n))) = CSPACEA(S(n))

The intuition behind the proof is as follows. Any auxiliary string is either compressible, in
which case we can replace it by a compressed version and use the now-available free space, or hard
to compress, in which case we can make some non-trivial use of it — in this case as a ‘password’
for the oracle that can not be found by a small-space computation.

Some care has to be taken when interpreting oracle results for space-bounded computation.
For example, there are oracles relative to which classic results like Savitch’s theorem and the
Immerman-Szelepcsènyi theorem do not hold.

Proof. Kolmogorov complexity will give us the notion of compressibility:

Definition 24. Fix some choice U for a universal Turing machine, and let x, y be two binary
strings. The Kolmogorov complexity of a x relative to y, denoted C(x|y) is the size of the smallest
program p for machine U that outputs x on input y (i.e., U(p, y) = x). The Kolmogorov complexity
of x, denoted C(x), is C(x|ε).

Fact 25 (Chain Rule [ZL70]). C(x, y) ≥ C(x) + C(y|x)− 4 logC(x, y)−O(1).

We will construct an oracle A such that, relative to this oracle, a catalytic computation with
work-tape space s = S(n) can simulate a deterministic computation that uses space 2s/16. As a
minor technical restriction, consider S(n) such that 2S(n)/8 = ω(n), i.e., S(n) is at least c log(n) for
c > 8.

Let a be a bit-string of length 2s, the arbitrary initial contents of the auxiliary tape.
The oracle A will be given by four distinct parts, which we first describe informally. The first

part checks if the (relative) Kolmogorov complexity of a given string is low. The second and third
part can be respectively used to compress or decompress a given string. The fourth part, for
which the definition is slightly more involved, gives access to a complete set for the large space
computation when given a string with high complexity.

A1 =
{
〈1, s, a, a′〉

∣∣ |a| = 2s/8 and C(a|a′) < 3

4
s
}

A2 =
{
〈2, a, a′, i, b〉

∣∣b is the i-th bit of the smallest p such that U(p, a′) = a
}

A3 =
{
〈3, a, p, i, b〉

∣∣b is the i-th bit of U(p, a)
}

A′ = A1 ∪A2 ∪A3

15



Now let KO
f(n) be a complete language for space f(n) relative to oracle O. We define A4 in

stages, where the complete set is given relative to only the previous stages.

A
(n)
4 =

{
〈4, a,x〉

∣∣|x| = n and C(a) ≥ 2S(n)/8 and x ∈ KA′∪A<n
4

2S(n)/16

}
A4 =

⋃
n

A
(n)
4

Here A<n4 =
⋃n−1
i=1 A

(i)
4 . Now the oracle A is the union of these parts, A = A′ ∪A4.

Let us give an algorithm to decide any given language L ∈ DSPACEA(2S(n)/16). We divide the
first 2s/4 bits of a into 2s/8 parts each of size 2s/8 and name the parts a1, . . . , a2s/8 . Let a<i be the
concatenation of a1 up to ai−1.

Starting with i = 1, ask part 1 of the oracle if C(ai|a<i) < 3
4s. If that is not the case, increment

i and repeat. If that is the case, then use the second part of the oracle to find the compressed
version of ai (given a<i). Then store the compressed string version in our ordinary memory of size
s, and erase the ai part in the auxiliary tape. This frees up 2s/8 bits of memory, which we can
use to decide if x ∈ L. When we are done with that, we can use the third part of the oracle to
decompress ai back into the auxiliary tape.

If none of the ai for i ∈ {1, . . . , 2s/8} are compressible given a<i, we can show a lower bound
for the Kolmogorov complexity of a using the chain rule:

C(a1, a2, . . . , a2s/8) ≥
2s/8∑
i=1

(C(ai|a<i)− 4 logC(a)−O(1))

≥ 2s/8
(

3

4
s− 4

8
s−O(1)

)
≥ 2s/8

(for s sufficiently large). Now we can use a as a high complexity ‘password’ for the fourth part of
the oracle.

No machine in space o(2s/8) can make a query of complexity as large as a. To see this, consider
the configuration of the machine (including the input tape) before it starts writing the first character
of any query q to the oracle tape. This configuration can be stored using O(2S(n)/16)+n = o(2S(n)/8)
bits, but it contains all the information needed to produce q — a contradiction if q has Kolmogorov
complexity at least 2s/8.

This implies that machines with space 2S(n)/16, on an input of length n, cannot distinguish

A′ ∪A<n4 from A, because they cannot query any string in A
(i)
4 , for i ≥ n. For any n it then holds

that K
A′∪A<n

4

2S(n)/16 = KA
2S(n)/16 , for the accessible strings of length n, and hence, having access to the

string a and the oracle A, our catalytic machine can decide KA
2S(n)/16 (and therefore whether x ∈ L)

by using the part 4 of the oracle. �

Theorem 26. There is an oracle B such that NLB 6⊆ CSPACEB(log n).

Proof. A Baker-Gill-Solovay [BGS75] construction works: from the proof of Theorem 19 we know
that a Turing machine M deciding a language in CSPACE(log n) has to run in average polynomial
time, averaged over all possible auxiliary starting contents a. Therefore for any input x there is
always an a for which M makes only polynomially many queries, and we apply the construction
for that starting state — we diagonalize against the machine M at a string in the oracle that is

16



not queried by M(x, a). Because the outcome of the catalytic computation should be correct for
all possible starting values, the existence of a value a such that the machine fails implies that the
machine does not correctly decide the language. �

Acknowledgments

The third author acknowledges stimulating discussions with Steve Cook on L versus P which mo-
tivated this research. He also thanks Pierre McKenzie for helpful conversations.

References

[AAD00] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. Journal
of Computer and System Sciences, 60(2):395–421, 2000.

[AK10] E. Allender and M. Koucký. Amplifying lower bounds by means of self-reducibility.
Journal of the ACM, 57(3), 2010.

[AO94] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. In
Proceedings of the Ninth Annual Structure in Complexity Theory Conference, pages 267–
278, 1994.

[BC92] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of
registers. SIAM Journal on Computing, 21(1):54–58, 1992.

[BCH86] P. Beame, S. Cook, and H. Hoover. Log depth circuits for division and related problems.
SIAM Journal on Computing, 15(4):994–1003, 1986.

[BCP83] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings
and space-bounded probabilistic machines. Information and Control, 58(1–3):113–136,
1983.

[Ben73] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 1973.

[BFS92] J. Boyar, G. Frandsen, and C. Sturtivant. An arithmetic model of computation equiva-
lent to threshold circuits. Theoretical Computer Science, 93(2):303–319, 1992.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[BTV01] H. Buhrman, J. Tromp, and P. Vitányi. Time and space bounds for reversible simulation.
In Proceedings of the 28th ICALP, 2001.

[CG75] D. Coppersmith and E. Grossman. Generators for certain alternating groups with appli-
cations to cryptography. SIAM Journal on Applied Mathematics, 29(4):624–627, 1975.

[Cle89] R. Cleve. Methodologies for Designing Block Ciphers and Cryptographic Protocols. PhD
thesis, University of Toronto, 1989.

[Coo85] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64:2–22, 1985.

17



[Dam91] C. Damm. DET=L(#L). Technical Report Informatik-Preprint 8, Fachbereich Informatik
der Humboldt–Universität zu Berlin, 1991.

[HAM02] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth thresh-
old circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65(4):695–716, 2002.

[IL95] N. Immerman and S. Landau. The complexity of iterated multiplication. Information
and Computation, 116(1):103–116, 1995.

[IP99] R. Impagliazzo and R. Paturi. The complexity of k-sat. In Proceedings of the 14th CCC,
pages 237–240, 1999.

[LMT97] K. J. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic space. In
Proceedings of the 12th CCC, 1997.

[RT92] J. Reif and S. Tate. On threshold circuits and polynomial computation. SIAM Journal
on Computing, 21(5):896–908, 1992.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-free languages.
Journal of the ACM, 25(3):405–414, July 1978.

[Tod91] S. Toda. Counting problems computationally equivalent to computing the determinant.
Technical Report CSIM, 91-07, 1991.

[Tod92] S. Toda. Classes of arithmetic circuits capturing the complexity of computing the de-
terminant. IEICE Transactions on Information and Systems, E75-D:116–124, 1992.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual
ACM symposium on Theory of computing, STOC ’79, pages 249–261, New York, NY,
USA, 1979. ACM.

[Val92] L. G. Valiant. Why is Boolean complexity theory difficult? In Poceedings of the London
Mathematical Society symposium on Boolean function complexity, pages 84–94. Cam-
bridge University Press, 1992.

[Ven91] H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and
System Sciences, 43(2):380–404, 1991.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic cir-
cuits. In Proceedings of the Sixth Annual Structure in Complexity Theory Conference,
pages 270–284, 1991.

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of
polynomials using few processors. SIAM Journal on Computing, 12(4):641–644, 1983.

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematics Surveys, 256:83–124, 1970.

18

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


