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Abstract

We study set-disjointness in a generalized model of randomized two-party communication
where the probability of acceptance must be at least α(n) on yes-inputs and at most β(n) on
no-inputs, for some functions α(n) > β(n). Our main result is a complete characterization of
the private-coin communication complexity of set-disjointness for all functions α and β, and a
near-complete characterization for public-coin protocols. In particular, we obtain a simple proof
of a theorem of Braverman and Moitra (STOC 2013), who studied the case where α = 1/2+ε(n)
and β = 1/2− ε(n). The following contributions play a crucial role in our characterization and
are interesting in their own right.

(1) We introduce two communication analogues of the classical complexity class that captures
small bounded-error computations: we define a “restricted” class SBP (which lies between
MA and AM) and an “unrestricted” class USBP. The distinction between them is analogous
to the distinction between the well-known communication classes PP and UPP.

(2) We show that the SBP communication complexity is precisely captured by the classical
corruption lower bound method. This sharpens a theorem of Klauck (CCC 2003).

(3) We use information complexity arguments to prove a linear lower bound on the USBP
complexity of set-disjointness.

1 Introduction

In the set-disjointness problem, Alice is given an x ⊆ [n], Bob is given a y ⊆ [n], and their task is
to decide whether x ∩ y = ∅. Equivalently, viewing x and y as binary strings, we define

Disj(x, y) := ¬
∨
i∈[n]

(xi ∧ yi).

Set-disjointness is the preeminent coNP-complete problem in communication complexity [BFS86,
CP10]. A fundamental result of Kalyanasundaram and Schnitger [KS92] (with alternative proofs
given by [Raz92, BYJKS04]) states that every randomized protocol for set-disjointness requires
Ω(n) bits of communication to achieve a constant error probability that is bounded away from 1/2.
These lower bounds have been extremely useful in applications of communication complexity to
other areas of theoretical computer science, including circuit complexity, distributed computing,
streaming, data structures, combinatorial optimization, and more; see [KN97, Juk12, CP10].

In this work, we study set-disjointness in a generalized setting where the probability of ac-
ceptance must be at least α(n) on yes-inputs and at most β(n) on no-inputs, for any prescribed
functions α(n) > β(n).

A preliminary version of this work was published as [GW14].
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1.1 Main result

Our main result is a complete characterization of the private-coin communication complexity of
set-disjointness for all functions α and β, and a near-complete characterization for public-coin
protocols. Roughly speaking, we prove that the randomized complexity is

Θ(n · (1− β/α))

for typical functions α and β; see Section 1.4 for the statement of the exact bounds.
As a special case, we obtain a simple proof of a result of Braverman and Moitra [BM13]. They

showed that the communication complexity of set-disjointness is Θ(εn) in case α = 1/2 + ε(n) and
β = 1/2 − ε(n). While this special case might suggest that the complexity is determined by the
additive gap α− β, our characterization reveals that, in fact:

Central tenet: It is not the additive gap between α and β that determines the com-
plexity of set-disjointness; what matters is the multiplicative gap.

Our proof follows this ideology: we show that in order to understand the communication complex-
ity for all α and β it suffices to understand the small bounded-error case where α is tiny (e.g.,
exponentially small in n) and β = α/2. The basic reason is because a protocol’s multiplicative gap
between α and β can be efficiently amplified at the expense of decreasing α, and thus upper bounds
for the general case yield upper bounds for the small bounded-error case.

1.2 SBP: Small bounded-error probabilities

In classical time-bounded (i.e., poly-time Turing machine) complexity theory, small bounded-error
acceptance probabilities are captured by a counting class called SBP, which was introduced by
Böhler, Glaßer, and Meister [BGM06] and has also been studied in [Wat15]. In particular, [BGM06]
observed that SBP is sandwiched between the Arthur–Merlin classes MA and AM [BM88].

In this work, we introduce two communication complexity analogues of SBP: a restricted class
called SBP, and an unrestricted class called USBP. These classes are natural and interesting in
their own right. Most importantly, they serve to structure our argument.

Randomized communication complexity. In what follows, we assume familiarity with basic
definitions of communication complexity [KN97, Juk12]. Fix a two-party function f : {0, 1}n ×
{0, 1}n → {0, 1} where on input (x, y) Alice is given x and Bob is given y. We say (x, y) is a b-
input if (x, y) ∈ f−1(b). We let Rpub

α, β(f), respectively Rpriv
α, β(f), denote the minimum communication

complexity (as a function of n) of a public-coin, respectively private-coin, protocol for f such that
the probability of acceptance is at least α(n) on all 1-inputs and at most β(n) on all 0-inputs. As
is customary [BFS86], for any communication measure C(f) we often let C stand for the class of
functions f with C(f) = polylog(n).

PP and UPP. To motivate our upcoming definitions for SBP, we take a little detour and recall
the communication classes associated with the standard complexity class PP. There are in fact two
distinct measures—restricted and unrestricted—as introduced in [BFS86, PS86]:

PP(f) := min
ε(n)>0

Rpub
1/2 + ε, 1/2− ε(f) + log(1/ε),

UPP(f) := min
ε(n)>0

Rpriv
1/2 + ε, 1/2− ε(f).
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In the (restricted) public-coin model, one needs to charge the additional log(1/ε) term in order for
the measure to be well-behaved when ε is tiny. (For example, note that Rpub

1/2 + ε, 1/2− ε(f) ≤ 2 for
ε = 2−n−1 since public randomness can be used to guess Alice’s input.) The original definition
of PP(f) given in [BFS86] actually charged for the number of public coin flips instead of the
+ log(1/ε); however, by standard sparsification techniques (see [New91] and [KN97, Theorem 3.14])
the two versions are essentially equivalent—they are within a constant factor plus O(log n)—and
the definition we have stated is much more prevalent in recent literature. It also follows from
standard sparsification that we may convert any PP protocol into a UPP protocol of comparable
cost: UPP(f) ≤ O(PP(f) + log n). In the converse direction, an exponential separation between
UPP and PP is known [BVdW07, She08, She11a].

SBP and USBP. Analogously to the above, we define

SBP(f) := min
α(n)>0

Rpub
α, α/2(f) + log(1/α),

USBP(f) := min
α(n)>0

Rpriv
α, α/2(f).

Here the constant factor 1/2 = β/α can be replaced by any positive constant less than 1 while
affecting the complexity measures by only a constant factor: if we run a protocol ` times and
accept iff all iterations accept, then β/α gets raised to the power ` while the communication and
the log(1/α) term each get multiplied by `. We call this procedure and-amplification (in contrast
to the usual majority-amplification). We also note that by standard sparsification, USBP(f) ≤
O(SBP(f) + log n) holds for all f . In the converse direction, at the time of this writing we did not
know whether USBP is significantly more powerful than SBP (this question has subsequently been
resolved in the negative—see Section 6), though a small separation is witnessed by the greater-than
function, which has constant USBP complexity but Θ(log n) SBP and PP complexity [BW12].

Relationship to Arthur–Merlin classes. Klauck [Kla03, Kla11] and Aaronson and Wigder-
son [AW09] took up the study of communication complexity analogues of Arthur–Merlin games.
Their results have already found applications in data streaming [CCMT14, CCM+15, GR13]. We
do not define the communication models MA and AM here, but we note that the classical inclusions
continue to hold in the communication setting (for the same reasons):

MA ⊆ SBP ⊆ AM.

Indeed, if MA(f) = m then by majority-amplification and by absorbing Merlin’s nondetermin-
ism into the randomness we obtain Rpub

2−m−1, 2−m−2(f) ≤ O(m2). Thus SBP(f) ≤ O(MA(f)2)
(and the quadratic blow-up is necessary for “black-box” simulations [Die07]). On the other hand,
AM(f) ≤ O(SBP(f) + log n) holds by sparsifying the randomness and using the Goldwasser–Sipser
protocol [GS86].

1.3 Results for SBP and USBP

We prove that SBP communication complexity is exactly characterized by the well-known corruption
lower bound method (also known as the rectangle bound or one-sided discrepancy). The definition
of the corruption bound Corr(f) is given in Section 3, but for now, we note that Corr(f) essentially
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depends on the size of the largest approximately 1-monochromatic rectangle in the communication
matrix of f . (For an extensive discussion of the different lower bound methods in communication
complexity, see [JK10].) Previously, Klauck [Kla03] showed that Corr(f) lies somewhere between
the MA and AM communication complexities of f ; namely Ω(AM(f)) ≤ Corr(f) ≤ O(MA(f)2).
Klauck also gave a combinatorial near-characterization of Corr(f) (tight up to logarithmic factors)
using so-called one-sided uniform threshold covers. The following theorem (proved in Section 3)
sharpens these results by pinpointing precisely the class between MA and AM that is characterized
by corruption.

Theorem 1. SBP(f) = Θ(Corr(f)) for all f .

One way to frame Theorem 1 is as follows. A lot of effort (e.g., [Kla03, JK10, KLL+12, JLV14,
GKR15]) has been spent on comparing the relative strengths of different lower bound methods in
communication complexity with the goal of finding a natural method that captures the bounded-
error randomized communication complexity of every function. Theorem 1 can be viewed as achiev-
ing a diametrically opposite goal: we start with a historically important lower bound method
(i.e., corruption) and find a natural communication measure that it captures. Theorem 1 is also
somewhat analogous, in content and proof, to another result of Klauck [Kla07] showing that the
discrepancy bound captures PP.

Razborov [Raz92] famously proved that Corr(Disj) = Θ(n). (The first linear lower bound
for set-disjointness [KS92] did not use corruption.) By the results of [Kla03], this implies that
MA(Disj) ≥ Ω(

√
n). We immediately have a stronger corollary.

Corollary 2. SBP(Disj) = Θ(n).

To obtain lower bounds for USBP we show that the information complexity framework, as
formulated by Bar-Yossef, Jayram, Kumar, and Sivakumar [BYJKS04] (see also [CSWY01]), can
be adapted to suit our purposes. The main technical result of this work is the following, proved in
Section 4.

Theorem 3. USBP(Disj) = Θ(n).

We note that the statement of Theorem 3 is similar in spirit to Forster’s theorem [For02] stating
that the UPP complexity of the inner product function is Θ(n). Note also that Corollary 2 is of
course a corollary of Theorem 3, too, but the corruption-based proof via Theorem 1 is arguably
more elementary than the proof of Theorem 3. Finally, we note that the well-studied gap-Hamming-
distance promise problem [CR12, Vid12, She12] (where 1-inputs have distance ≥ n

2 +
√
n and 0-

inputs have distance ≤ n
2 −
√
n) has SBP and USBP complexities Θ(

√
n), where the lower bound

follows by Theorem 3 and a standard reduction from Disj, and the upper bound follows by and-
amplification of the trivial protocol that checks inequality at a random bit position.

1.4 Characterization for all α and β

Using our results for SBP and USBP in a black-box manner we derive the following (near) complete
characterization for the randomized communication complexity of set-disjointness in Section 2.

Theorem 4 (Private-coin). For all α(n) > β(n),

Rpriv
α, β(Disj) = Θ(n · (1− β/α) + log n).
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Theorem 5 (Public-coin). There is a universal constant C > 0 such that for all α(n) > β(n),

Rpub
α, β(Disj) =

{
Θ(n · (1− β/α)) when log(1/α) ≤ C · n · (1− β/α),

2 when log(1/α) ≥ dn · (1− β/α)e.

We stress that for the public-coin characterization (and in particular, the result of [BM13]
as a corollary), it suffices to rely only on Razborov’s corruption lemma (via Corollary 2), and
not on any information complexity techniques. Braverman and Moitra [BM13] observed that
Rpub

1/2 + ε, 1/2− ε(Disj) ≥ Ω(ε2n) follows from the standard bounded-error lower bound by majority-
amplification, and they obtained the tight Ω(εn) bound by developing information complexity
techniques tailored to this setting. Our idea is that and-amplification imposes only an ε factor loss
(rather than the ε2 factor loss imposed by majority-amplification) while still reducing to a case
where the corruption method applies.

We also note that for public-coin protocols there remains a small gap in the parameters around
the threshold log(1/α) = Θ(n · (1 − β/α)) that is not covered by our theorem. As we discuss in
Section 2, the power of the public coins kicks in at this threshold.

Finally, we mention that all the set-disjointness lower bounds in this paper continue to hold
under the unique-intersection promise where the inputs are either disjoint or intersect in exactly
one coordinate: for Corollary 2 this property is inherited from Razborov’s proof; for Theorem 3
this property is implicit in our proof.

1.5 Extended formulations for maximum-clique

The authors of [BFPS12] proved that for every positive constant δ < 1/2, so-called n1/2−δ-
approximate extended formulations for a certain natural linear programming encoding of the
maximum-clique problem for graphs have complexity 2Ω(n2δ). Their proof involves developing a
generalization of the corruption lemma from [Raz92]. In [BM13], this result was improved using
information-theoretic methods to show a tight lower bound for maximum-clique: for every positive
constant δ < 1, such n1−δ-approximate extended formulations have complexity 2Ω(nδ). In [BP13],
a simplified proof of the latter result was given, also using information-theoretic methods.

The reason the proof due to [BFPS12] only works up to n1/2−δ-approximation (rather than n1−δ-
approximation) is similar to the reason why majority-amplification yields Rpub

1/2 + ε, 1/2− ε(Disj) ≥
Ω(ε2n) (rather than Ω(εn)) from the standard bounded-error lower bound for Disj. Although
communication complexity lower bounds do not seem to imply extended formulation lower bounds
in a black-box way, the tools for the former have generally been useful for the latter. This suggests
that perhaps an idea analogous to our and-amplification-based communication lower bound proof
could be used to “bootstrap” the result of [BFPS12] to get the tight lower bound for maximum-
clique. In Section 5 we confirm that this is indeed the case, thus obtaining a proof of the tight bound
that is simpler than the ones given in [BM13, BP13] and avoids their use of information-theoretic
methods (instead relying only on the corruption-based argument of [BFPS12]).

2 The Complexity of Set-Disjointness

We now prove Theorem 4 and Theorem 5 using Theorem 3 and Corollary 2.
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2.1 Upper bounds

Public-coin protocols. We start with a simple Rpub
1, β/α protocol for Disj of cost Θ(n·(1−β/α)).

Basic public-coin protocol Π.

1. Use public randomness to pick a uniformly random S ⊆ [n] of size dn · (1− β/α)e.
2. Alice sends the substring x|S to Bob.

3. Bob outputs Disj(x|S , y|S).

It is straightforward to check that Π is indeed an Rpub
1, β/α protocol. To obtain an Rpub

α, β protocol
for the first part of Theorem 5 (without needing any restriction on the parameters), we can reject
with probability 1 − α at the beginning and otherwise run Π. To obtain a protocol of cost 2 for
the second part of Theorem 5, we need to better exploit the power of public coins. If we modify
Π so that additional public coins are used to guess x|S , then Alice can just send one bit indicating
whether the guess is correct, and Bob can send the output bit (rejecting if the guess was wrong).
This yields an Rpub

1/2|S|, β/α2|S| protocol which, by the restriction that α ≤ 1/2|S|, can be adapted into

an Rpub
α, β protocol by automatically rejecting with probability 1− α2|S|.

In fact, the above protocols can be seen as special cases of the following general protocol, which
interpolates between them. For simplicity of presentation, let us assume that log(1/α) is an integer
and log(1/α) ≤ |S|. In step 2 of the basic protocol Π, Alice can expedite the sending of her message
to Bob as follows: Alice and Bob interpret additional public coins as guessing the first log(1/α) bits
of Alice’s message. Alice can use one bit of communication to indicate whether this guess is correct,
and if so she can send the other |S| − log(1/α) bits of her message normally. The probability that
the public guess is correct is 2− log(1/α) = α. Thus, this new protocol ends up working in a familiar
way: with probability 1 − α the public guess fails (in which case we reject), but otherwise we are
able to run Π successfully. This results in an Rpub

α, β protocol of cost |S| − log(1/α) + 2. Here the +2
comes from Alice indicating whether the public guess is correct and Bob sending the final answer.

Private-coin protocols. By sparsification, we may assume the basic protocol Π uses only
O(log n) bits of public randomness. Thus we have Rpriv

1, β/α(Disj) ≤ O(n · (1 − β/α) + logn) since

Alice can pick S privately and send it to Bob along with x|S . An Rpriv
α, β protocol for Theorem 4

can be obtained as previously: automatically reject with probability 1 − α and otherwise run the
Rpriv

1, β/α protocol.

2.2 Lower bounds

Private-coin lower bounds. Let Π be an Rpriv
α, β protocol for Disj. We prove that the cost of Π

is both Ω(n · (1− β/α)) and Ω(log n), as required for Theorem 4.
First, if we do and-amplification by iterating the protocol d1/(1−β/α)e times and accepting iff

all runs accept, we get an Rpriv
α′, α′/2 protocol for Disj with α′ := αd1/(1−β/α)e (since (β/α)d1/(1−β/α)e <

1/2). By Theorem 3 the amplified protocol must use Ω(n) communication and hence Π must have
used Ω(n · (1− β/α)) communication.

Second, Forster’s result [For02] that the UPP complexity of inner product is Ω(n) gives us the
Ω(log n) lower bound for Π. Indeed, the inner product function reduces to Disj with exponential
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blow-up (see [She11b, Proposition 6.5]) and we may convert Π into a UPP protocol by shifting the
acceptance threshold near 1/2.

Public-coin lower bounds. Let Π be an Rpub
α, β protocol for Disj. We consider the two parts of

Theorem 5 separately.
For the first part, suppose log(1/α) ≤ C · n · (1 − β/α) for a to-be-specified constant C. We

proceed exactly as above: We first and-amplify Π into an Rpriv
α′, α′/2 protocol. The parameters satisfy

log(1/α′) = log(1/α) · d1/(1 − β/α)e ≤ C · n · (1 − β/α) · d1/(1 − β/α)e ≤ 2C · n. Hence if C is a
sufficiently small universal constant then the Ω(n) lower bound for the amplified protocol (provided
now by Corollary 2) must be coming from the communication cost and not from the log(1/α′) term.
We conclude that the original protocol Π must have used Ω(n · (1− α/β)) communication.

For the second part, we do not need any restriction on the parameters. We claim that since
Disj has a 2 × 2 identity submatrix, we cannot have Rpub

α, β(Disj) ≤ 1. Suppose for contradiction
there is a 1-bit protocol and yet Disj(x, y) = Disj(x′, y′) = 1 and Disj(x, y′) = Disj(x′, y) = 0.
Say r is the probability Alice declares the output and 1 − r is the probability Bob declares the
output. Conditioned on Alice declaring the output let px, px′ be the acceptance probability for the
x and x′ rows, and conditioned on Bob declaring the output let qy, qy′ be the acceptance probability
for the y and y′ columns. Letting πxy := rpx + (1 − r)qy be the overall acceptance probability on
input (x, y), we have α − β ≤ πxy − πx′y = r(px − px′) and α − β ≤ πx′y′ − πxy′ = r(px′ − px), a
contradiction.

3 SBP is Characterized by Corruption

In this section we prove Theorem 1, which states that SBP(f) = Θ(Corr(f)) for all f . We start
by defining the corruption bound. We say a distribution µ over inputs is balanced (with respect to
f) if µ(f−1(1)) = µ(f−1(0)) = 1/2. We say a rectangle R is 1-biased (with respect to f and µ) if
µ(R ∩ f−1(0)) ≤ µ(R)/8. The corruption bound is defined as

Corr(f) := max
balanced µ

min
1-biased R

log

(
1

µ(R)

)
.

If the corruption bound of f is high, then for some µ all 1-biased rectangles are small (and hence if
many inputs must be covered by such rectangles, then many such rectangles will be needed). It was
proved in [Kla03] that the constant factor of 1/8 (in the definition of 1-biased) can be replaced by
any positive constant at most 1/8 while affecting the corruption bound by only a constant factor.
It was also proved in [Kla03] that the bound is robust with respect to the balance condition on µ.

3.1 SBP is lower bounded by corruption

Here we show the lower bound SBP(f) ≥ Ω(Corr(f)). The intuition is as follows. The first step is
to fix the public randomness of an SBP protocol in such a way that the average-case behavior of the

For the public-coin version of UPP, an equivalence actually holds. For all f , we have UPPpub
(f) ≤ 2, and it is

not difficult to show that the following are equivalent: (i) UPPpub
(f) ≤ 1, (ii) there exist row and column values

px, qy ∈ [0, 1] and r ∈ [0, 1] such that
∣∣rpx + (1− r)qy − f(x, y)

∣∣ < 1/2, (iii) the rows and columns can be permuted
so each row and each column is monotonically nondecreasing (0’s then 1’s), (iv) f does not contain as a submatrix
the 2 × 2 identity (or its complement). To see that (iii)⇒(ii), take r = 1/2, and px = fraction of 1’s in the x row,
and qy = (y − 1/2)/(number of columns) where y is viewed as a positive integer.
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resulting deterministic protocol mimics the worst-case behavior of the original protocol. Typically,
this sort of thing is done by invoking the distributive law (linearity of expectation), but here we need
a more elaborate calculation due to the asymmetric nature of SBP. Then, the rest of the argument
follows along similar lines as the proof in [Kla03] (that Corr(f) ≤ O(MA(f)2)), showing that the
1-inputs are mostly covered by “small” transcript rectangles (of our deterministic protocol), hence
many such rectangles are needed.

We proceed with the formal proof. Let Π be an Rpub
α, α/32 protocol for f ; recall that by and-

amplification we may assume β = α/32 rather than β = α/2 in the definition of SBP. Assuming
log(1/α) < Corr(f)/2, we show that Π uses Ω(Corr(f)) bits of communication. To this end, fix a
balanced distribution µ such that for all 1-biased rectangles R, µ(R) ≤ 2−Corr(f).

Identify the possible outcomes of public randomness with {1, . . . ,m}, and let Πi denote Π
running with public randomness i. Let pi be the probability the public randomness is i (so pi = 1/m
if the public randomness is uniformly distributed). Let qi be the probability over µ that Πi accepts,
conditioned on the input being a 1-input. Let ri be the same but conditioned on a 0-input. Now∑

i

piqi = Pr
i,(x,y)∼µ

[
Πi(x, y) accepts

∣∣ f(x, y) = 1
]
≥ α, (1)∑

i

piri = Pr
i,(x,y)∼µ

[
Πi(x, y) accepts

∣∣ f(x, y) = 0
]
≤ α/32. (2)

Claim 6. There exists an i∗ such that qi∗ ≥ α/2 and ri∗ ≤ qi∗/16.

Proof of claim. Suppose for contradiction that for all i either qi < α/2 or ri > qi/16. Let S ⊆
{1, . . . ,m} be such that for all i ∈ S, qi < α/2, and for all i ∈ S, ri > qi/16. Then∑

i

piri ≥
∑
i∈S

piri ≥
∑
i∈S

piqi/16 =
1

16

(∑
i

piqi −
∑
i∈S

piqi

)
≥ 1

16

(
α−

(∑
i∈S

pi

)
α/2

)
≥ α/32.

Furthermore, at least one of the inequalities must be strict, contradicting (2).

Fix an i∗ guaranteed by Claim 6. Using i∗ as the public randomness in Π, we can now apply
the usual corruption argument. Consider the 1-rectangles that correspond to accepting transcripts
of Πi∗ . Call a 1-rectangle R large if µ(R) > 2−Corr(f) and small otherwise. Recall that by our
assumption on µ, no large 1-rectangle is 1-biased: for every large 1-rectangle R we have µ(R ∩
f−1(0)) > µ(R)/8. Under µ, the total measure of large 1-rectangles is at most half the total
measure of all 1-rectangles, since otherwise

ri∗ = 2 Pr(x,y)∼µ
[

Πi∗(x, y) accepts and f(x, y) = 0
]

= 2
∑

1-rectangles R µ(R ∩ f−1(0))

≥ 2
∑

large 1-rectangles R µ(R ∩ f−1(0))

> 1
4

∑
large 1-rectangles R µ(R)

> 1
4 ·

1
2

∑
1-rectangles R µ(R)

≥ 1
8

∑
1-rectangles R µ(R ∩ f−1(1))

= 1
8 Pr(x,y)∼µ

[
Πi∗(x, y) accepts and f(x, y) = 1

]
= 1

8 · qi∗/2
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= qi∗/16.

Therefore
∑

small 1-rectangles R µ(R) ≥ 1
2

∑
1-rectangles R µ(R) ≥ 1

2 · qi∗/2 ≥ α/8 > 2−Corr(f)/2−3.

Thus there are at least 2−Corr(f)/2−3
/

2−Corr(f) = 2Corr(f)/2−3 small 1-rectangles, which implies that
Π uses at least Corr(f)/2− 3 bits of communication.

3.2 SBP is upper bounded by corruption

Here we show the upper bound SBP(f) ≤ O(Corr(f)). The intuition is as follows. If the corruption
bound is small, that means for every balanced distribution over inputs there exists a rectangle
(which can be viewed as a 2-bit protocol) that exhibits average-case SBP-like behavior—accepting
a random 1-input with not-too-small probability, and accepting a random 0-input with constant-
factor-smaller probability. We use the minimax theorem to convert this property into a distribution
over rectangles, with a worst-case SBP guarantee. Several technical issues arise with this argument.
One is the asymmetry between 1-inputs and 0-inputs, but this can be massaged away using a linear
transformation of probabilities before invoking minimax. Another is that the corruption bound
can yield an average-case SBP rectangle with a different “α” for different balanced distributions,
whereas the minimax application requires a single α to work uniformly for all balanced distributions.
This issue is fixed by passing to an appropriate subrectangle to decrease the α if necessary, for any
given balanced distribution.

We proceed with the formal proof. For notational convenience we let 0 and 1 stand for the
events f−1(0) and f−1(1), respectively. For example, µ(0 |R) = µ(R∩f−1(0))/µ(R) and µ(R |0) =
µ(R ∩ f−1(0))/µ(f−1(0)).

Define α := 2−Corr(f).

Claim 7. For every balanced µ there exists a rectangle R with µ(R |1) ≥ α and µ(R |0) ≤ α/2.

Proof of claim. Fix a balanced distribution µ. By definition of corruption, there exists a rectangle
S such that µ(S) ≥ α and µ(0 |S) ≤ 1/8. Decompose S as the disjoint union S1 ∪ S2 ∪ · · · ∪ Sm
where the Si’s are the individual rows of S, sorted in nondecreasing order of µ(0 |Si). Let S≤i :=
S1 ∪ S2 ∪ · · · ∪ Si. For every i we know that µ(0 |S≤i) ≤ µ(0 |S) ≤ 1/8. If there exists an i such
that α ≤ µ(S≤i |1) ≤ 2α then R := S≤i witnesses the claim since

µ(S≤i |0) =
µ(0 |S≤i) · µ(S≤i |1) · µ(1)

µ(0) · µ(1 |S≤i)
≤ (1/8) · 2α · (1/2)

(1/2) · (7/8)
= 2α/7 ≤ α/2.

Otherwise, since µ(S≤m |1) = µ(S |1) = µ(1 |S) ·µ(S)/µ(1) ≥ (7/8) ·α/(1/2) > α and µ(S≤0 |1) =
0 < α, there must exist an i such that µ(S≤i |1) > 2α and µ(S≤i−1 |1) < α and thus µ(Si |1) > 2α−
α = α. In this case, the rectangle R := Si ∩1 witnesses the claim since µ(Si ∩1 |1) = µ(Si |1) > α
and µ(Si ∩ 1 |0) = 0 ≤ α/2.

Let M be the matrix with rows indexed by inputs (x, y) ∈ {0, 1}n×{0, 1}n and columns indexed
by rectangles R ⊆ {0, 1}n × {0, 1}n such that

M(x,y),R :=


1 if f(x, y) = 1 and (x, y) ∈ R
0 if f(x, y) = 1 and (x, y) 6∈ R
0 if f(x, y) = 0 and (x, y) ∈ R
α

1−α/2 if f(x, y) = 0 and (x, y) 6∈ R

.
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We claim that for every distribution µ over inputs, there exists a rectangle R such that E(Mµ,R) ≥ α
(where E denotes expectation). If µ(0) = 0 then take R := {0, 1}n × {0, 1}n, and if µ(1) = 0 then
take R := ∅. Otherwise, let µ′ be the balanced version of µ and invoke Claim 7 to find an R such
that µ′(R |1) ≥ α and µ′(R |0) ≤ α/2. Then we have

E(Mµ,R) = µ(R |1) · µ(1) + α
1−α/2 · µ(R |0) · µ(0)

= µ′(R |1) · µ(1) + α
1−α/2 · µ

′(R |0) · µ(0)

≥ α · µ(1) + α
1−α/2 · (1− α/2) · µ(0)

= α.

Now by the minimax theorem (we can use the most basic version since the matrix M is finite),
there exists a distribution D over rectangles such that for every input (x, y), E(M(x,y),D) ≥ α. If
f(x, y) = 1 this means the probability a random rectangle from D contains (x, y) is at least α. If
f(x, y) = 0 this means α

1−α/2 times the probability a random rectangle from D does not contain

(x, y) is at least α, in other words the probability a random rectangle from D contains (x, y) is at
most α/2. Thus the protocol that picks a random rectangle from D and accepts iff the input is in
the rectangle shows that Rpub

α, α/2(f) ≤ 2 and hence SBP(f) ≤ 2 + log(1/α) = 2 + Corr(f).

4 USBP Lower Bound

In this section we prove Theorem 3, which states that USBP(Disj) = Θ(n). We first give an
informal overview.

Our proof uses the by-now standard information complexity approach [BYJKS04, CSWY01].
In this approach, one considers some suitably distributed random input (X,Y ) and measures the
amount of information that the protocol transcript Π(X,Y ) (i.e., the concatenation of all messages
sent) “leaks” about the input as quantified by the mutual information I(Π(X,Y ) ;X,Y ). Lower
bounding the mutual information has the side effect of lower bounding the entropy H(Π(X,Y )) of
the transcript, which in turn lower bounds the length of the transcript and thereby the communica-
tion complexity. It is often useful to involve the conditional versions of these information measures,
defined by H(Π |Z) := Ez∼ZH(Π |Z = z) and I(Π ;X,Y |Z) := Ez∼ZI(Π ;X,Y |Z = z) where Z
is some random variable (jointly distributed with X and Y ). We refer the reader to [CT06] for
discussions of these basic information theory concepts.

A key benefit of studying mutual information is that one automatically obtains for it a direct
sum property (as in [CSWY01, BYJKS04]), as long as the coordinates (Xi, Yi), i ∈ [n], are mutually
independent. This way, the task of proving an Ω(n) lower bound for the original problem reduces
to the task of proving an Ω(1) information lower bound for some constant-size “gadget”. For
set-disjointness Disj := Andn ◦Nandn this gadget is typically Nand.

Our proof follows this outline. The reduction to the single-gadget case will be packaged into
Lemma 8 and is standard. By contrast, in proving the Ω(1) information lower bound for the single
gadget, we need to overcome the following two new technical issues.

(1) Small acceptance probabilities. Since the protocol is only required to succeed with a
tiny probability α(n) on 1-inputs, the transcript of Π may be useless most of the time: Imagine
a protocol that rejects with probability 1 − α at the start (and otherwise does something useful).
The entropy of the transcript of such protocols can be as low as O(α).
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Protocol Π∗. On input (x, y) ∈ {0, 1}2:

1. If x = 0 Alice sends a “1”. If x = 1 Alice sends
a “1” with probability α and rejects otherwise (by
sending a “0”).

2. Suppose Alice sent a “1”. Then if y = 0 Bob accepts
(by sending a “1”). If y = 1 then Bob accepts with
probability α and rejects otherwise.

11

11 11

11

10

10

0 0

0

1

0 1

Figure 1: Protocol Π∗ for Nand. In the illustration on the right, each of the input blocks is
further subdivided into rectangles according to the outcomes of the private coins. The rectangles
are labeled with the associated transcripts.

To address this issue, we do not work with the transcript distribution of Π directly, but rather
with the conditional distribution given that the protocol accepts. That is, for 1-inputs (x, y), we
consider the random variable

T (x, y) := Π(x, y) |Π(x, y) is an accepting transcript

and proceed to lower bound I(T (X,Y ) ;X,Y ) instead. One subtlety is that conditioning on ac-
ceptance does not “commute” with the reduction to the single-gadget case. We must consider the
distribution of T that arises from first conditioning on acceptance and then doing the reduction,
which is generally not the same distribution as if we did the reduction and then conditioned on
acceptance. However, this is not a significant technical obstacle.

(2) Large acceptance probabilities. The acceptance probability of a protocol Π can vary
between α and 1 when run on different 1-inputs. This, together with our conditioning idea above,
introduces a new problem: there are USBP protocols for Nand such that the associated T leaks no
information about the input!

Indeed, consider the protocol Π∗ for Nand given in Figure 1. This protocol accepts the 1-input
(0, 0) with probability 1, the 1-inputs (0, 1) and (1, 0) with probability α, and the 0-input (1, 1)
with probability α2. Choosing α such that α2 ≤ α/2 we obtain a USBP protocol for Nand where
the associated conditioned-on-acceptance variable T ∗ is constant (the protocol Π∗ has only one
accepting transcript, namely “11”).

To avoid this problem, we use a more complicated gadget than Nand; see Figure 2a. The new
gadget G contains two instances of Nand: in Figure 2b one instance of Nand corresponds to the
pair of edges ab and another one to ac. We show that the bad situation described above—i.e.,
the 1-input (0, 0) of Nand having much higher acceptance probability than the other two 1-inputs
(0, 1) and (1, 0) of Nand—cannot happen simultaneously for both instances. One subtlety (arising
from the conditioning not “commuting” with the reduction, as described above) is that the bad
situation actually depends on the transcript, with some transcripts being bad for ab and some
being bad for ac, but none being bad for both. We prove an information lower bound (conditioned
on acceptance) for whichever instance of Nand behaves better for “most” transcripts.
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(a)

1 1

0 1

1 0

0

1

2

1 2

(b)

a

b
c

Figure 2: (a) Truth table of the gadget G. (b) Distributions Qa, Qb, and Qc are uniform over the
endpoints of the edges a, b, and c, respectively.

We note that a similar technical issue arose in the proof of Braverman and Moitra [BM13]
when analyzing the case α = 1/2 + ε, β = 1/2 − ε. Their solution involved applying a certain
type of random-self-reduction (they called it smoothing) to the inputs before invoking the protocol.
This approach is highly tailored to their setting and does not seem to be directly helpful to us.
Nevertheless, our gadget G was inspired by their analysis.

4.1 Proof of Theorem 3

Define the gadget G : {0, 1, 2} × {1, 2} → {0, 1} as the indicator for non-equality; see Figure 2a.
Define the function F : {0, 1, 2}n × {1, 2}n → {0, 1} by F := Andn ◦ Gn, i.e., F (x, y) = 1 iff
G(xi, yi) = 1 for all i ∈ [n]. Since G reduces to Disj on 2 bits by the map (0 7→ 00, 1 7→ 01, 2 7→ 10),
we find that F reduces to Disj on 2n bits. Hence it suffices to prove that USBP(F ) ≥ Ω(n).

Input distribution. Define Qa, Qb, Qc to be the following three distributions over {0, 1, 2} ×
{1, 2}: Qa is uniform over {(0, 1), (0, 2)}, Qb is uniform over {(0, 1), (2, 1)}, and Qc is uniform
over {(0, 2), (1, 2)}; see Figure 2b. For i ∈ [n], u ∈ {0, 1, 2}, v ∈ {1, 2}, and z a length-(n − 1)
string over the alphabet {a,b,c} indexed by [n]\{i}, define Di,u,v,z to be the distribution over pairs
(x, y) ∈ {0, 1, 2}n × {1, 2}n obtained by setting xi = u, yi = v, and for each j 6= i (independently)
sampling (xj , yj) from Qzj . Note that support(Di,u,v,z) ⊆ F−1(G(u, v)) and that x and y are
independent when sampled from Di,u,v,z.

Reduction to the single-gadget case. Let Π be an Rpriv
α, α/4 protocol for F (recall that by and-

amplification we may assume β = α/4 in the definition of USBP). Let Π(x, y) denote the transcript
of Π on input (x, y). Thus Π(x, y) is a random variable whose outcome depends on the private
coins of the protocol. For (x, y) ∈ F−1(1) define T (x, y) as the random variable whose distribution
is that of Π(x, y) conditioned on Π(x, y) being an accepting transcript.

Suppose for contradiction that the transcripts have length less than n/2400. Using the direct
sum methodology we will next find a coordinate i (and a string z) such that the protocol leaks
very little information about the i-th input (conditioned on the data z). This is formalized in the
following lemma whose proof we defer to Section 4.2 as it is essentially identical to the corresponding
argument in [BYJKS04]. Below, ‖X−Y ‖ denotes the statistical distance between the distributions
of the random variables X and Y .
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Lemma 8. If γ > 0 is such that for all i and z either ‖T (Di,0,1,z)−T (Di,0,2,z)‖ ≥ γ or ‖T (Di,0,1,z)−
T (Di,2,1,z)‖ ≥ γ or ‖T (Di,0,2,z)− T (Di,1,2,z)‖ ≥ γ, then some transcript has length at least nγ2/6.

Contrapositively, letting γ = 1/20, Lemma 8 implies that there exists an i and z (which we
fix henceforth) such that ‖T (Di,0,1,z) − T (Di,0,2,z)‖, ‖T (Di,0,1,z) − T (Di,2,1,z)‖, and ‖T (Di,0,2,z) −
T (Di,1,2,z)‖ are all less than γ.

The single-gadget case. Let (u, v) be an input to G and let τ be a transcript. We define

πuv(τ) := Pr
[
Π(Di,u,v,z) = τ

]
for any (u, v),

tuv(τ) := Pr
[
T (Di,u,v,z) = τ

]
for (u, v) ∈ G−1(1).

Note that πuv(τ)
tuv(τ) is generally not (as might appear at a glance) the acceptance probability of Π on

a random input from Di,u,v,z (this is related to the conditioning on acceptance not “commuting”
with the reduction to the single-gadget case, as mentioned in the intuition).

We henceforth adopt the convention that 0/0 := 0. Let

S :=

{
accepting τ :

π01(τ)

t01(τ)
≤ π02(τ)

t02(τ)

}
and let S := {accepting τ}\S. Connecting to the intuition, S consists of transcripts that are bad
for ac, and S consists of transcripts that are bad for ab. Since ‖T (Di,0,1,z)− T (Di,0,2,z)‖ < γ, we
have either Pr

[
T (Di,0,1,z) ∈ S

]
≥ 1−γ

2 or Pr
[
T (Di,0,2,z) ∈ S

]
≥ 1−γ

2 . Henceforth assume the former
case; a completely analogous argument handles the latter case. We now only need to consider
(u, v) ∈

{
(0, 1), (2, 1), (0, 2), (2, 2)

}
, forming the ab instance of Nand in G. (In the latter case, we

would only need to consider (u, v) ∈
{

(0, 1), (1, 1), (0, 2), (1, 2)
}

, forming the ac instance of Nand
in G.)

Note that π22(τ) · π01(τ) = π21(τ) · π02(τ) by the basic rectangular structure of τ . Also note
that if G(u, v) = 1 and τ is accepting, then the following both hold.

− We have πuv(τ) = 0 iff tuv(τ) = 0, and hence πuv(τ) = πuv(τ)
tuv(τ) · tuv(τ).

− Assuming πuv(τ) and tuv(τ) are nonzero, we have πuv(τ)
tuv(τ) ≥ α. This is because

πuv(τ) = E(x,y)∼Di,u,v,z

(
Pr[Π(x, y) accepts] · Pr

[
Π(x, y) = τ

∣∣ Π(x, y) accepts
])

≥ α · E(x,y)∼Di,u,v,z Pr
[
Π(x, y) = τ

∣∣ Π(x, y) accepts
]

= α · tuv(τ)

since support(Di,u,v,z) ⊆ F−1(1) and Π is correct.

For (u, v) ∈ {(2, 1), (0, 2)} define γuv(τ) := |tuv(τ)− t01(τ)| and note that∑
accepting τ γuv(τ) = 2‖T (Di,u,v,z)− T (Di,0,1,z)‖ < 2γ. (3)

Claim 9. For all accepting τ ,

t21(τ) · t02(τ)

t01(τ)
≥ t01(τ)− γ21(τ)− γ02(τ). (4)
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Proof of Claim 9. It suffices to show that

t21(τ) · t02(τ) ≥ t01(τ)2 − t01(τ)
(
γ21(τ) + γ02(τ)

)
. (5)

(If t01(τ) 6= 0 then (4) follows by dividing (5) by t01(τ), and if t01(τ) = 0 then (4) follows since its
right side is nonpositive and its left side is 0; recall our convention that 0/0 := 0.) For some signs
σuv(τ) ∈ {1,−1}, the left side of (5) equals

(
t01(τ) + σ21(τ)γ21(τ)

)
·
(
t01(τ) + σ02(τ)γ02(τ)

)
, which

expands to

t01(τ)2 + σ21(τ)t01(τ)γ21(τ) + σ02(τ)t01(τ)γ02(τ) + σ21(τ)σ02(τ)γ21(τ)γ02(τ). (6)

If σ21(τ) = σ02(τ) then (6) is at least the right side of (5) since the last term of (6) is nonnegative.
If σ21(τ) 6= σ02(τ), say σ21(τ) = −1 and σ02(τ) = 1, then (6) is at least the right side of (5) since
the sum of the last two terms in (6) is t01(τ)γ02(τ)− γ21(τ)γ02(τ) = t21(τ)γ02(τ) ≥ 0.

We have

Pr
[
Π(Di,2,2,z) accepts

]
=

∑
accepting τ

π22(τ)

≥
∑
τ∈S

π22(τ)

≥
∑
τ∈S

π21(τ) · π02(τ)

π01(τ)

=
∑
τ∈S

π21(τ)
t21(τ) ·

π02(τ)
t02(τ)

π01(τ)
t01(τ)

· t21(τ) · t02(τ)

t01(τ)

≥
∑
τ∈S

α ·
(
t01(τ)− γ21(τ)− γ02(τ)

)
> α ·

(1−γ
2 − 2γ − 2γ

)
> α/4.

To see that the fifth line follows from the fourth, consider each τ ∈ S: If t21(τ) 6= 0 and t02(τ) 6= 0

then it follows by π21(τ)
t21(τ) ≥ α and π02(τ)

t02(τ)

/π01(τ)
t01(τ) ≥ 1 (since τ ∈ S) and Claim 9. On the other hand,

if t21(τ) = 0 or t02(τ) = 0, say, t21(τ) = 0, then it follows since the summand on the fourth line is
0, and t01(τ) − γ21(τ) = 0 so the summand on the fifth line is nonpositive. The sixth line follows
from the fifth by

∑
τ∈S t01(τ) = Pr

[
T (Di,0,1,z) ∈ S

]
≥ 1−γ

2 and
∑

τ∈S γ21(τ) ≤
∑

accepting τ γ21(τ)
and (3), and similarly for γ02.

We conclude that Pr
[
Π(x, y) accepts

]
> α/4 for some (x, y) ∈ support(Di,2,2,z) ⊆ F−1(0),

contradicting the correctness of Π. This finishes the proof of Theorem 3.

4.2 Proof of Lemma 8

Define jointly distributed random variables X = X1 · · ·Xn ∈ {0, 1, 2}n, Y = Y1 · · ·Yn ∈ {1, 2}n,
and Z = Z1 · · ·Zn ∈ {a,b,c}n as follows: Z is uniform, and given a particular choice of Z, for each
i ∈ [n] (independently) (Xi, Yi) is sampled from QZi . Thus the marginal distribution of (X,Y ) is
that for each i (independently), (Xi, Yi) has probability 1/3 for each of (0, 1), (0, 2), and probability
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1/6 for each of (2, 1), (1, 2). Since the support of (X,Y ) is in F−1(1), we may also view T as a
random variable distributed jointly with (X,Y, Z). Let Z−i denote Z1 · · ·Zi−1Zi+1 · · ·Zn.

For any i ∈ [n], zi ∈ {a,b,c}, and z−i ∈ {a,b,c}n−1 indexed by [n]\{i}, we can view(
T (Di,Qzi ,z−i

), Qzi
)

as a pair of jointly distributed random variables that is distributed identi-

cally to
(
T, (Xi, Yi)

∣∣ Zi = zi, Z−i = z−i
)
. For all i and z−i, by a standard lemma (see [BYJKS04,

Lemma 6.2 and Proposition 6.10]) we have I
(
T (Di,Qa,z−i) ;Qa

)
≥ ‖T (Di,0,1,z−i)− T (Di,0,2,z−i)‖2/2

and similarly for b and c. Therefore

Maximum length of transcript ≥ H(T |Z)

≥ I(T ;X,Y |Z)

≥
∑

i I(T ;Xi, Yi |Z)

=
∑

i Ez−i
1
3

∑
zi
I
(
T ;Xi, Yi

∣∣ Zi = zi, Z−i = z−i
)

=
∑

i Ez−i
1
3

∑
zi
I
(
T (Di,Qzi ,z−i

) ;Qzi
)

≥
∑

i Ez−i
1
3 ·

1
2

(
‖T (Di,0,1,z−i)− T (Di,0,2,z−i)‖2
+‖T (Di,0,1,z−i)− T (Di,2,1,z−i)‖2

+‖T (Di,0,2,z−i)− T (Di,1,2,z−i)‖2
)

≥
∑

i Ez−i(γ2/6)

= nγ2/6.

where the third line follows by a standard direct sum property for conditional information cost
[BYJKS04].

5 Extended Formulations for Maximum-Clique

Recall that the nonnegative rank of a nonnegative `×m matrix M , denoted rank+(M), is the least
r such that M = UV for some nonnegative matrices U and V of dimensions ` × r and r × m,
respectively. We say M is an ε-UDisj matrix (where ε is to be thought of as a function of n, and
UDisj stands for unique-set-disjointness) iff it is 2n×2n with rows and columns indexed by subsets
x, y ⊆ [n], each entry with |x∩ y| = 0 is 1, each entry with |x∩ y| = 1 is 1− ε, and all other entries
are nonnegative. The authors of [BFPS12] proved the following two things.

(i) For every ε-UDisj matrix M , rank+(M) ≥ 2Ω(ε2n).
(ii) For some ε-UDisj matrix M , rank+(M) lower bounds the complexity of 1/ε-approximate

extended formulations for a certain natural linear programming encoding of the maximum-
clique problem for graphs.

The lower bound in (i) was improved to 2Ω(εn) in [BM13], and a simpler alternative proof of
this stronger bound was given in [BP13]. Combining such nonnegative rank lower bounds with (ii)
yields lower bounds on the approximate extended formulation complexity for maximum-clique. It
is not known how to exploit the additional structure of the matrix M from the proof of (ii) when
lower bounding the nonnegative rank.

The paper [BFPS12] proved (i) by developing a generalization of the corruption lemma from
[Raz92]. Both of the subsequent papers [BM13, BP13] employed information-theoretic methods.
We now show that an idea analogous to our and-amplification-based communication lower bound
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proof (Theorem 4 and Theorem 5) can be used to “bootstrap” (i) to get the stronger 2Ω(εn) lower
bound, thus bypassing the information-theoretic methods of [BM13, BP13].

Given a nonnegative matrix M , let Mk denote the entrywise k-th power of M . It is an elemen-
tary fact that rank+(Mk) ≤ rank+(M)k. If M is an ε-UDisj matrix, then choosing k = Θ(1/ε),
we find that Mk is a c-UDisj matrix for some c ≥ 1/2. Then by (i) we have rank+(Mk) ≥ 2Ω(n)

and thus rank+(M) ≥ rank+(Mk)1/k ≥
(
2Ω(n)

)1/k ≥ 2Ω(εn).

6 Subsequent Developments

It has been proven in [GLM+15] that SBP(f) ≤ O(USBP(f)+log n) for all f (even partial f) using a
new and elementary “Truncation Lemma” which enables rectangle-based techniques to be applied
to low nonnegative rank matrices in certain situations. Combining this result with Corollary 2
yields an alternative proof of Theorem 3 and shows the class equality SBP = USBP.

Furthermore, this result implies that the tight extended formulation lower bound for maximum-
clique (discussed in Section 1.5 and Section 5) can be derived from Razborov’s corruption lemma
[Raz92] in a black-box way, without needing any of the machinery in [BFPS12, BM13, BP13]:
Specifically, any ε-UDisj matrix having nonnegative rank r can be interpreted as witnessing
Rpriv
α, (1− ε)α(UDisj) ≤ log r +O(1) (for some α > 0). This protocol can be and-amplified to witness

USBP(UDisj) ≤ O((log r)/ε), and thus SBP(UDisj) ≤ O((log r)/ε + log n). Finally, Corollary 2,
which is an elementary consequence of Razborov’s corruption lemma, implies that log r ≥ Ω(εn).

It has also been proven in [GLM+15] that MA 6= SBP, solving another open problem posed in
the original version of this paper [GW14].
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