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Abstract

We show that if f(x1, . . . , xn) is a polynomial with s monomials and g(x1, . . . , xn) di-
vides f then g has at most max(sO(log s log log s), dO(log d)) monomials, where d is a bound
on the individual degrees of f . This answers a question of von zur Gathen and Kaltofen
(JCSS 1985) who asked whether a quasi-polynomial bound holds in this case. Two imme-
diate applications are a randomized quasi-polynomial time factoring algorithm for sparse
polynomials and a deterministic quasi-polynomial time algorithm for sparse divisibility.

1 Introduction

Let f ∈ F[x1, . . . , xn] be a multivariate polynomial over a field F. The sparsity of f , denoted
sf , is the number of monomials (with non zero coefficients) appearing in f . For example,
the sparsity of the polynomial x31 + x2x

5
1 + 5x1 + 6 is four. If we limit the degree of each

variable xi to be at most d, then the maximum number of monomials in such an f is at most
(d+ 1)n. Polynomials that contain much less monomials are considered ‘sparse’ polynomials.
The sparsity of f is a natural complexity measure one can use for polynomials and was studied
in various contexts [GK85, KS01, Zip79, SW05, SSS13]. From a practical perspective, one can
store a polynomial with s monomials on a computer using O(s) memory locations (assuming a
single field element fits in a single location) and then one would like to perform basic operations
on polynomials (evaluation, multiplication, composition, etc..) efficiently in the size of this
representation.

One of the most basic (and useful) operations on polynomials is factorization. Suppose
f(x) = g(x) · h(x) is a given factorization of a sparse polynomial f . If we are to factor f(x)
and store the factors g(x), h(x) in memory (also as a list of monomials) then we must first
have an upper bound on the sparsity of these factors. This problem was raised in the seminal
paper of von zur Gathen and Kaltofen [GK85] who studied the problem of efficient polynomial
factorization in the sparse representation and gave a factoring algorithm whose running time
is polynomial in the size of the input and in the size of the output (for which they had no a
priori bound). Unlike integer factorization, which is believed to be intractable, the problem of
factoring a multivariate polynomial into its irreducible factors is solvable in polynomial time
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[LLL82, Kal85, Kal03]. In fact, something stronger is known: if f(x) is given to us as an
arithmetic circuit of size s (see below for more details on arithmetic circuits) then one can
efficiently output a list of small circuits (of size poly(s)) for each of the irreducible factors of
f [Kal89]. This fundamental algorithmic tool has had many applications in computer science
including in coding theory [Sud97, GS06], derandomization [KI04] and cryptography [CR88].

The following simple example shows that there can be a super-polynomial blow-up in the
sparsity of a factor of f :

Example 1.1. Let

f(x) =
∏
i∈[n]

(xdi − 1),

g(x) =
∏
i∈[n]

(1 + xi + . . . ,+xd−1i ),

h(x) =
∏
i∈[n]

(xi − 1).

Then sf = 2n but sg = dn. If one takes n = d we get that sg is not polynomial in sf .

Abandoning polynomial blowup, we can ask weather one can prove a weaker, but still non
trivial bound on the blow up in sparsity. Specifically, it was asked in [GK85, Section 5] if
one can show a sub exponential bound of the form sg ≤ exp(sεf ) for some ε > 0 or even a
quasi-polynomial blow up sg ≤ exp(poly(log(sf ))). In this work we answer this question in the
affirmative and show a quasi polynomial bound on the sparsity of g in terms of the sparsity of
f .

Theorem 1. Let f ∈ F[x1, . . . , xn] with F being any field. Let d be an upper bound on the
individual degree of f . If f(x) = g(x) · h(x) then

sg ≤ max(s
O(log sf log log sf )
f , dO(log d)).

Notice that we can assume, without loss of generality, that the field F is algebraically closed,
since f(x) = g(x) · h(x) in F[x] implies that f(x) = g(x) · h(x) also holds in the ring F[x].

One could hope to improve this bound to a bound of the form sg ≤ s
O(log d)
f which would

match the parameters of Example 1.1. While our proof cannot currently give this bound, there
is a specific place in the proof where an improvement could lead to this optimal bound. We
elaborate more on this in the proof overview at the end of this introduction.

One immediate application of this result is a quasi-polynomial time randomized algorithm
for factoring sparse polynomials. This follows from the results of [GK85] and the fact that
the output size is quasi-polynomial. Another simple application, observed by Erich Kaltofen,
is to the sparse divisibility problem in which one is given two sparse polynomials f, g so that
g divides f and is asked to output a polynomial h so that h · g = f . Using our sparsity
bound, combined with deterministic sparse interpolation due to [KS01], we are able to give
a deterministic algorithm for this problem. We sketch the argument in Section 7. It is an
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interesting open problem whether our results can be used to give a deterministic factoring
algorithm for sparse polynomials.

Before giving a high level overview of the proof of Theorem 1, we briefly discuss related
work on bounded depth arithmetic circuits.

1.1 Related work: Bounded depth circuits

An arithmetic circuit is a computation DAG in which every gate performs either addition or
multiplication (an addition gate is usually allowed to perform an arbitrary linear combination).
Each input gate is a variable in some set {x1, . . . , xn} of formal variables and the output is
some polynomial in the ring F[x1, . . . , xn]. For a given multivariate polynomial f(x1, . . . , xn),
the size of the smallest arithmetic circuit computing f is an important complexity measure
and has been studied extensively (see, e.g., [SY10] for a recent survey). The famous P vs
NP problem has a seemingly more tractable algebraic variant in the form of the VP vs VNP
problem [Val79a, Val79b, SY10] which requires proving superpolynomial lower bounds on the
circuit size of some specific ‘complete’ polynomial in VNP.

The depth of a circuit is the length of the longest path from an input to an output. Since we
can assume w.l.o.g that addition and multiplication gates are alternating, a depth k circuit is a
layered computation graph in which each layer has either addition or multiplication gates. In
recent years, bounded depth arithmetic circuits have received a lot of attention [GK98, GR00,
SW01, RY09, AV08, FLMS13, GKKS12, KLSS14, KS13] (for a more complete list see [SY10]).
Much of the interest in recent years is due to a work of Agrawal and Vinay [AV08] showing
that sufficiently strong lower bounds for depth 4 circuits would imply super-polynomial lower
bounds for general circuits (which could potentially resolve the VP vs VNP problem). Even
more recently [GKKS13] showed that sufficiently strong lower bounds for (non homogeneous)
depth 3 circuits (which are simply sums of products of linear terms) would result in lower
bounds for general circuits. Sparse polynomials can be thought of as polynomials with small
depth 2 circuits (that is a sum of products of variables). As such, they present the ‘first line’
when studying small depth circuits. In addition, depth 4 circuits (which are as hard as general
circuits) are usually described as sums of products of sparse polynomials. In this light, we
see that understanding sparse polynomials better could help us gain insights into the depth 4
model.

The problem of factoring in bounded depth was studied previously in [DSY09] who showed
that if f has a small depth k circuits, then its factors of the form xn − φ(x1, . . . , xn−1) have
small depth k+ 3 circuits when the degree of xn in f is sufficiently small. This result was used
to extend the hardness-randomness tradeoffs of [KI04] to the bounded depth model. Our work
shows that factors of polynomials with small depth 2 circuits also have small depth 2 circuits
(with a quasi-polynomial blow-up). One can hope to extend this to circuits of any (constant)
depth.

Conjecture 1.2. If f has a depth k circuit of size s then any factor of f has a depth k circuit
of size sO(logc(s)), with c possibly depending on the depth k.
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1.2 Proof overview

The starting point is to view the problem in the reverse direction. Suppose sg is large. How
sparse can f be, when f = g · h? The operation of multiplying a given polynomial by h can
be described as follows: Let Eg ⊂ Nn0 be the set of ‘exponents’ of g: that is, the set of all

(j1, . . . , jn) so that the monomial
∏
xjii appears in g. Let Eh be the set of exponents of h.

Now, the exponents in f can only come from sums of points in Eg and in Eh. The problem is
that some of these sums can occur many times (i.e., come from many different pairs) and so
the resulting monomials might cancel each other. If we could, however, show that there are
many points in Ef that are obtained in only one way as a sum in Eg + Eh, then we would
get a lower bound on sf . The way to find such points is to consider the Newton polytope Pg
obtained as the convex hull of the points in Eg (over the real numbers) and to observe that
each vertex of this polytope must give one such unique sum (this is shown in [Sch00]). In
Example 1.1 for instance, the set Eg is the sub lattice {0, 1, . . . , d − 1}n and its polytope is
the ‘box’ Pg = [0, d− 1]n. This box has exactly 2n vertices, and it is easy to check that these
(when multiplied by h) give the 2n monomials of f .

The first idea in our proof is to ‘hash’ the polynomials f, g and h down to a space of lower
dimension (using a substitution of variables) in a way that will impose some structure on the
polytope Pg. More precisely, replacing each variable xi with a product yαi1

1 · . . . · yαi`
` gives us

new polynomials f ′, g′, h′ ∈ F[y1, . . . , y`] in a way that the new sets of exponents are mapped
linearly from Nn0 to N`0 using the n× ` matrix A with entries αij . If we treat A as a linear map
from Rn to R` then we have that Ef ′ ⊂ A(Ef ) and similarly for g and h. The reason we do not
have set equality is that some elements in Ef might map under A to the same element in N`0
and so the resulting monomials might cancel each other. Using a substitution trick (developed
in Section 4) we can bypass this difficulty and obtain equality Ef ′ = A(Ef ) and similarly for
g and h. We will elaborate on this substitution trick more at the end of this proof overview.
The hope is to carefully pick a matrix A so that the resulting polytope Pg′ of the ‘hashed’
polynomial g, has many vertices. Notice that we still have f ′ = g′ · h′ and that sf ′ ≤ sf . This
means that the number of vertices in Pg′ is a lower bound on the sparsity of f .

Unfortunately, we have to abandon this direct approach since applying a linear map on
a polytope cannot increase the number of vertices it has. We overcome this problem by
introducing modular reductions in the exponents of the polynomials. This solves the linearity
problem (since the reduction mod p can create new vertices) but introduces another problem
as we now explain. For a polynomial f , let f (mod p) denote the polynomial obtained from f
by reducing all the exponents of f modulo p (and then summing monomials with the same
exponent). In algebraic terminology, we are reducing the polynomial f(x1, . . . , xn) modulo the
ideal generated by the set {xpi − 1 | i ∈ [n]}. Let f̃ = (f ′)(mod p) and similarly for g̃, h̃, where
f ′, g′, h′ are obtained using some substitution given by an integer matrix A as before (so they
are polynomials in y1, . . . , y`). Notice that now we are applying a linear map on the exponents
but then taking it mod p. The nice thing about this operation is that, if sg is sufficiently larger
than p`, we can pick A so that the set of exponents in g̃ is exactly {0, 1, . . . , p− 1}` (this will
happen for a random matrix A with high probability). This looks useful since now we know
that Pg̃ has at least 2` vertices. The problem is that the equality f̃ = g̃ · h̃ is false, since the
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multiplication of g̃ and h̃ might incur another reduction mod p. The correct equality would
be f̃ = (g̃ · h̃)(mod p). The crucial observation is that, since g̃ and h̃ are already reduced mod
p, the final reduction only reduces from {0, 1, . . . , 2p− 2} to {0, 1, . . . , p− 1}. This means that
every monomial in f̃ can come from at most 2` monomials in g̃ · h̃. Here as well, one needs to
be careful since some of the resulting monomials might occur several times and could cancel
each other (this is solved using the same substitution trick mentioned above).

At first glance, this loss of 2` seems to completely destroy our hopes since this was exactly
the number of vertices we had in Pg̃. The last ingredient in the proof is that, when working
mod p, we can actually, construct a structure in {0, 1, . . . , p− 1}` that has much more vertices
than 2` and so that we can still ‘force’ Eg̃ to be this structure. This structure turns out to be a
hyperplane mod p. That is, we can (using a slight variant of the above substitution) force the
set Eg̃ into any hyperplane mod p we wish. More precisely, let H ⊂ F`p be a hyperplane (that
is the set of solution to a single linear equation over the finite field Fp). Suppose we can ‘place’
the exponents of g̃ in the set H. If we could show that the number of vertices of the convex
hull of the points of H (which is now viewed also as a subset of R`) is much larger than 2` then
we could use the above argument (loosing a factor of 2` but remaining with ‘something’).

To see why we might hope for such a weird phenomena to happen, consider the case ` = 2.
The simplest hyperplane in F2

p is the line x = y which, when viewed in N2
0 gives the convex hull

{(x, x) | 0 ≤ x ≤ p− 1} which has only 2 vertices. However, if we take a different hyperplane,
say y = 2x in F2

p, we will get a set in N2
0 containing two ‘lines’ with (p − 1)/2 points in

each. The convex hull will now be a polytope with 4 vertices. More generally, we show that,
under certain conditions on p, there exists a hyperplane in F`p so that its convex hull has at

least (2.01)` vertices (for the exact parameters see Theorem 5.10), which allows us to handle
the loss of 2` in the modular reduction. The hyperplane we construct uses coefficients that
satisfy certain divisibility conditions (as integers). We then count the vertices of the polytope
by considering restrictions of the polytope to certain subsets of the vertices (fixing the other
variables to either 0 or p − 1). We show that many of these restrictions (which are also
polytopes) contain ‘interior’ vertices, which are vertices that have all of their coordinates in
the set {1, 2, . . . , p− 2}. These interior vertices are also vertices of the ‘big’ polytope, but they
can only occur in one of the restrictions (since vertices coming from other restrictions will have
at least one coordinate set to 0 or p− 1).

Putting things together, we choose p > d so that sg is roughly p`. We then hash the
polynomials f, g, h to f̃ , g̃, h̃ using a variable substitution and reduction modulo p so that
sf̃ = sf , Eg̃ is the hyperplane H we constructed above and so that f̃ = (g̃ · h̃)(mod p). Then, by

our lower bound on the number of vertices in Pg̃, we get that sf = sf̃ > (2.01)`/2` ≥ (1.005)`

and so sg is at most s
O(log(p))
f . Certain conditions on p (which are needed to construct the

special hyperplane H) prevent us from choosing p ≤ O(d) and obtaining a dependency of

sg ≤ s
O(log(d))
f , which would be optimal by Example 1.1. It is not unlikely that a more clever

hyperplane construction could result in an optimal bound using this approach.

The ‘substitution trick’: In the overview above we hinted at a problem that can occur when
reducing the exponents of a polynomial modulo a prime p. To be more precise, consider the
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polynomial f(x, y) = x2y2− x5y2 + 1. Using our notations we have Ef = {(2, 2), (5, 2), (0, 0)}.
Reducing the exponents modulo p = 3 we get that the two monomials x2y2 and x5y2 cancel

each other and so Efmod p 6= E
(mod p)
f . To solve this we can introduce new ‘randomness’ into f

as follows: For each (a, b) ∈ F2 consider the polynomial

fa,b(x, y) = f(ax, by) = a2b2x2y2 + a5b2x5y2 + 1.

Notice that Efa,b = Ef . Now, when we reduce fa,b modulo p = 3 we get the polynomial

fa,b(x, y)mod 3 = (a2b2 − a5b2)x2y2 + 1.

The main observation is that the coefficient of x2y2 in fa,b is a non zero polynomial in a, b and
so will not vanish for almost all a, b. Working over an infinite field allows us to choose a, b
so that there will be no cancellations at all (even if there are many monomials that we worry
about) in the reduction modulo p. The same idea is used to control other types of cancellations
that arise in the ‘hashing’ part of our argument.

1.3 Organization

We begin in Section 2 with some general preliminaries. In Section 3 we discuss some basic
(known) properties of the Newton polytope that will be used in the proof. The actual proof
is divided into three sections. Section 4 contains the ‘hashing’ part of the proof and shows
how to hash the polynomials f, g, h to new polynomials having a nice structure on their sets of
exponents. Section 5 contains the construction of the special hyperplane in F`p whose associated

polytope in R` contains many vertices. The proof of Theorem 1, which results from combining
these two parts, is given in Section 6. In Section 7 we outline the deterministic sparse divisibility
algorithm that follows from our main theorem.

2 Preliminaries

In this section, we establish the notation that will be used throughout the paper and some
technical background that we will need to develop the proof of our main theorem.

2.1 Notations

From this point on, we will use boldface for vectors, and regular font for scalars. Thus, we will
denote the vector (x1, . . . , xn) by x, and for a set T ⊆ {1, . . . , n} we denote by xT the vector
(xi)i∈T . If we want to multiply the vector x by a scalar z we will denote this product by zx.

The dot product between two vectors is defined as x · y =

n∑
i=1

xiyi, and, more generally, we

define xT · yT =
∑
i∈T

xiyi.
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Let N0 be the set of natural numbers including zero, that is, N0 = {0, 1, 2, 3, . . .}. In
addition, from now on we will take log x = log2 x, lnx = loge x, exp(x) = ex, where e is Euler’s
number, and we will define the expectation and the variance of a random variable X to be
E[X] and V[X], respectively.

From now on, we will always write an equality that happens in Fp with a “
p
=” sign and an

equation over R with an “=” sign. For example, the equation ax+b ≡ y mod p, which we will
write as ax+ b

p
= y, will be the equation of a line in F2

p (on the variables x, y) and the equation
ax + b = y will be the equation of a line over R2. Moreover, whenever we use the expression
(a mod p), we are referring to the only integer r such that a = pq + r and 0 ≤ r < p.

If e ∈ Nn0 is a vector of natural numbers and x = (x1, . . . , xn) is a vector of formal

variables, we define xe =

n∏
i=1

xeii . That is, xe is the monomial corresponding to the product of

the variables

n∏
i=1

xeii , where each variable is raised to the proper power. In addition, we define

(e mod p) ∈ Fnp to be the vector defined by ((e1 mod p), (e2 mod p), . . . , (en mod p)). That
is, we restrict each coordinate of e modulo p. Moreover, if S ⊂ Nn0 , we define

S(mod p) = {(e mod p) | e ∈ S}.

Notice that |S(mod p)| ≤ |S|, and this inequality can be strict, since some vectors of S can
map to the same vector in S(mod p).

2.2 Number theoretic estimates

We will need the following number theoretic estimate on the product of primes.

Lemma 2.1. Let t ∈ N0 be such that t ≥ 50. Let

Qt = 3 ·
t∏
i=1

pi,

where 2 < 3 < p1 < p2 < . . . < pt are the first t+ 2 prime numbers. Then,

t
4t
5 < Qt < t

11t
5 . (1)

The proof, which uses known estimates from the literature, is given for completeness in
appendix A.

2.3 Hashing

We will need the following lemma saying that we can always hash a set of Fnp of size roughly

p4` to all the points in F`p.
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Lemma 2.2. Let S ⊆ Fnp be a set of points such that |S| = s = pc`, for some real constant

c > 3. Then, there exists a surjective linear map L : Fnp → F`p such that L(S) = F`p.

The proof of this lemma, which uses a standard pairwise independence argument, is given
in Appendix B for completeness. The following is an immediate corollary.

Corollary 2.3. Let S ⊆ Fnp be a set of points such that |S| = s = pc`, for some constant c > 3.

Moreover, let H ⊂ Flp be a hyperplane of F`p passing through the origin. Then, there exists a
homogeneous linear map L : Fnp → H such that L(S) = H.

Proof. By Lemma 2.2, we have that there exists a surjective linear map P1 : Fnp → F`p such that

P1(S) = F`p. Thus, by projecting P1 onto the first ` − 1 coordinates, we obtain the surjective

linear map P : Fnp → F`−1p , where P (S) = F`−1p . Let ϕ : F`−1p → H be the bijective linear map

from F`−1p to H. Then, the map L : Fnp → H defined by L = ϕ ◦ P is a surjective linear map
and L(S) = H.

3 Polynomials and the Newton Polytopes

In this section we discuss properties of the Newton polytope that will play an important role
in our proof. The main result from this section we will need later on is Corollary 3.17, which
says that, if f = g · h are polynomials then the sparsity of f is at least max{|V (Pg)|, |V (Ph)|},
where Pg and Ph are the Newton polytopes of g and h respectively. Readers familiar with this
basic result can skip to the next section.

We begin with some basic properties of polytopes and then move on to discuss the Newton
polytope. All of the results below are taken from appendix K of [Sch00] and from the book
[Zie95].

3.1 General polytopes

We start by defining the convex span of points in Rn, polytopes in Rn and the convex hull of
a set S ⊂ Rn.

Definition 3.1 (Convex Span and Polytope). The convex span of points v1, . . . ,vk ∈ Rn,
denoted by CS(v1, . . . ,vk), is the set defined by

CS(v1, . . . ,vk) =

{
k∑
i=1

λivi | λi ∈ R+ and

k∑
i=1

λi = 1

}
.

That is, CS(v1, . . . ,vk) is the set of all convex combinations of the points vi, 1 ≤ i ≤ k. A
set P ⊂ Rn is a Polytope if there exists a finite set of points v1, . . . ,vk ∈ Rn such that

P = CS(v1, . . . ,vk).

With this definition, we can define convex sets, and the convex hull of a set.
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Definition 3.2. A convex set in Rn is a set C ⊂ Rn such that CS(x,y) ⊂ C for all x,y ∈ C.

Definition 3.3. The convex hull of a set S ⊂ Rn, denoted by conv(S), is the intersection of
all convex subsets of Rn containing S.

From these definitions, one can easily obtain the following corollary:

Corollary 3.4. For every finite set S, we have that conv(S) = CS(S).

Definition 3.5 (Supporting Hyperplane). A supporting hyperplane H of a convex set C in
Rn is a hyperplane defined by h · x = a, where h ∈ Rn \ {0} and a ∈ R such that H intersects
the closure of C in Rn and h · x ≤ a for all x ∈ C.

With this definition, we are now able to define a face of a polytope.

Definition 3.6 (Face of a Polytope). Let P be a polytope. A face of P is the intersection of
P with a supporting hyperplane. That is, if h · x = a is a supporting hyperplane of P , we have
that the set

F = P ∩ {x | h · x = a}

is a face of P .

Observation 3.7. Notice that by definition 3.6, a face F of polytope P is a convex set such
that if a,b ∈ P and if there exists λ ∈ (0, 1) such that λa + (1− λ)b ∈ F then a,b ∈ F .

Definition 3.8. Faces of a polytope P of dimension 0 are called vertices of P . For a polytope
P , let V (P ) be the set of vertices of P .

Observation 3.9. Notice that based on Observation 3.7 and definition 3.8, we have that a
vertex a ∈ V (P ) is a point that cannot be written as λu + (1−λ)v, for any u,v ∈ P \ {a} and
λ ∈ [0, 1].

The following lemma, from [Zie95, Propositions 2.2 and 2.3], captures some essential prop-
erties of vertices and faces of a polytope.

Lemma 3.10 (Properties of Vertices and Faces). Let P = CS(v1, . . . ,vk) ⊂ Rn be a polytope
and let F be a face of P .

(i) F is a polytope, with V (F ) = F ∩ V (P ).

(ii) Every intersection of faces of P is a face of P .

(iii) The faces of F are exactly the faces of P that are contained in F .

(iv) P = CS(V (P )).

(v) V (P ) ⊆ {v1, . . . ,vk}.

Now that we defined polytopes and some of its properties, we will define an important
operation on polytopes which is intrinsically related to polynomials, as we will see in section 3.

9



Definition 3.11 (Minkowski sum). Given two polytopes P1 and P2 in Rn, we define their
Minkowski sum P1 + P2 to be the set of points given by:

P1 + P2 = {v1 + v2 | v1 ∈ P1 and v2 ∈ P2}.

The following theorem tells us about some important properties of the Minkowski sum of
two polytopes. For a proof of the theorem, see theorem 3 in [Sch00, Appendix k].

Theorem 3.12 (Vertices in Minkowski Sum, [Sch00]). Let P1, P2 be polytopes in Rn and
P1 + P2 be their Minkowski sum. Then

(i) P1 + P2 is a polytope.

(ii) Every vertex v ∈ V (P1 + P2) can be expressed as a sum x1 + x2, xi ∈ Pi (i = 1, 2) in
only one way. Further, such xi ∈ V (Pi), that is, the xi are vertices of Pi.

(iii) For every vertex v1 ∈ V (P1), there exists a vertex v2 ∈ V (P2) such that v1 + v2 ∈
V (P1 + P2).

As a corollary of Theorem 3.12, we have that given two polytopes P1 and P2, the number
of vertices of the polytope defined by the Minkowski sum P1 + P2 is always no less than the
maximum number of vertices of the polytopes P1 and P2. More precisely, we have:

Corollary 3.13. Let P1, P2 be polytopes in Rn and P1 + P2 be their Minkowski sum. Then,

|V (P1 + P2)| ≥ max{|V (P1)|, |V (P2)|}.

Proof. Let Φ : V (P1 + P2) → V (P1) be a map defined as follows: if v ∈ V (P1 + P2) is such
that v = v1 + v2,vi ∈ V (Pi) (i = 1, 2), then Φ(v) = v1. By item (ii) of Theorem 3.12, the
map Φ is well defined. By item (iii) of Theorem 3.12, Φ is surjective, and hence we have
|V (P1 + P2)| ≥ |V (P1)|. By symmetry, we have that |V (P1 + P2)| ≥ |V (P2)|.

3.2 The Newton polytope

We will begin with the following definition, which will be used throughout the paper.

Definition 3.14. Let f(x) ∈ F[x] be a polynomial such that

f(x) =
s∑
i=1

aix
ei ,

where ai 6= 0, for 1 ≤ i ≤ s. For each monomial mi = xei of f , define the exponent vector of
mi as ei = (ei1, ei2, . . . , ein) ∈ Nn, for 1 ≤ i ≤ s. Then, the set of monomials of f and the set
of exponents of f , denoted by Mf and Ef , respectively, are defined as follows:

Mf = {mi | 1 ≤ i ≤ s} and Ef = {ei | 1 ≤ i ≤ s}.
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Notice from the definition above that the set of exponents Ef is a subset of Nn. From now
on, we will refer to the sparsity of a polynomial f as sf or as ‖f‖0. Hence, in the definition
above we have that

‖f‖0 = sf = s = |Mf | = |Ef |.

Notation ‖f‖0 will be used in sections 4 and 6, whereas notation sf is very suitable to state
our theorems and lemmas throughout the paper.

Definition 3.15 (Newton Polytope). The Newton Polytope associated to the polynomial f(x),
which we denote by Pf , is defined by:

Pf = CS(Ef ).

That is, Pf is the convex span of the exponent vectors e ∈ Ef .

Given polynomials f(x), g(x), h(x) ∈ F[x] such that f(x) = g(x)h(x), it is a classical fact
that Pf = Pg + Ph. For completeness, a proof of this fact is presented below:

Proposition 3.16 (Minkowski sum and polynomial multiplication). Let f(x), g(x), h(x) ∈
F[x] be polynomials such that f(x) = g(x)h(x). Then

Pf = Pg + Ph.

Proof. Since every monomial xe ∈Mf comes from a multiplication from a monomial xeg ∈Mg

by a monomial xeh ∈Mh, we have that Ef ⊆ Eg + Eh, which implies

Pf = CS(Ef ) ⊆ CS(Eg + Eh) ⊆ Pg + Ph.

Now, for the inclusion Pf ⊇ Pg + Ph, notice that by Theorem 3.12 we have that for each
e ∈ V (Pg+Ph), there exists only one eg ∈ Pg and one eh ∈ Ph such that e = eg+eh. Moreover,
since eg ∈ V (Pg) ⊆ Eg, eh ∈ V (Ph) ⊆ Eh, where we know that V (Pt) ⊆ Et, (t = g, h) by
Lemma 3.10, we have that the coefficient ce of the monomial xe ∈ Mf will be nonzero, since
ce = cegceh , where ceg ∈ Cg and ceh ∈ Ch are the coefficients of xeg and xeh , respectively.
Therefore, we have that e ∈ Pf , which implies that V (Pg + Ph) ⊂ Pf , which in turn implies
that

Pg + Ph = CS(V (Pg + Ph)) ⊆ Pf .

With this fact in mind and by Corollary 3.13 we obtain the following corollary:

Corollary 3.17. Let f(x), g(x), h(x) ∈ F[x] be such that f(x) = g(x)h(x). Then,

sf ≥ |V (Pf )| ≥ max{|V (Pg)|, |V (Ph)|}.

Proof. Notice that |V (Pf )| ≥ max{|V (Pg)|, |V (Ph)|} follows directly from Corollary 3.13 and
the fact that Pf = Pg + Ph. To see that sf ≥ |V (Pf )| holds, observe that V (Pf ) ⊆ Ef ⇒
|V (Pf )| ≤ |Ef | = sf .
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4 Polynomial Substitutions

The goal of this section is to prove Lemma 4.13 which comprises the heart of the ‘hashing’ step
of our proof. This lemma will be proved by combining two other lemmas stated after some
preliminaries.

Throughout this section, we will assume that the field F is algebraically closed. We will
need this assumption because we apply Corollary 4.4 repeatedly in the proof of the lemmas in
this section.

4.1 Preliminaries

Definition 4.1 (Restrictions). Let f(x), g(x) ∈ F[x] be polynomials such that

f(x) =

s∑
i=1

aeix
ei , g(x) =

s′∑
j=1

bejx
ej

where aei , bej 6= 0, for 1 ≤ i ≤ s, 1 ≤ j ≤ s′. If S ⊆ Ef , we define f |S(x) as the following
polynomial:

f |S(x) =
∑
e∈S

aex
e.

If U ⊆ Ef × Eg, we define (f · g)|U (x) as the following polynomial:

(f · g)|U (x) =
∑

(e,e′)∈U

aebe′x
e+e′ .

Observation 4.2 (Properties of Restrictions). The following are some properties of the re-
striction operation:

(i) If ∅ 6= S ⊆ Ef , then f |S(x) is a nonzero polynomial.

(ii) If S, T ⊆ Ef are such that S ∩ T = ∅, then

f |S(x) + f |T (x) = f |S∪T (x)

(iii) Let b ∈ Ef ·g, where (f · g)(x) =

r∑
i=1

ceix
ei. If U ⊆ Ef × Eg is such that

U = {(e, e′) ∈ Ef × Eg | e + e′ = b}

then (f · g)|U (x) = cbxb.

Lemma 4.3 (Schwartz-Zippel-DeMillo-Lipton, [Sch80, Zip79, DL78]). Let f ∈ F[x] be a
nonzero polynomial such that deg(f) ≤ d. If |F| > d, there exists a point a ∈ Fn such that
f(a) 6= 0.
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A very useful corollary of Lemma 4.3 is obtained below.

Corollary 4.4. Let F be an algebraically closed field and f1, . . . , fr ∈ F[x] be nonzero polyno-
mials such that deg fk ≤ d, 1 ≤ k ≤ r. Then, there exists a point a ∈ Fn such that fk(a) 6= 0
for all 1 ≤ k ≤ r.

Proof. Let f(x) =
r∏

k=1

fk(x). This polynomial is clearly nonzero, since all fk’s are nonzero.

Notice that deg(fk) ≤ d implies deg(f) =
∑r

k=1 deg(fk) ≤ rd. Hence, by Lemma 4.3 and the
fact that F is algebraically closed (and thus has infinitely many elements), there exists a point
a ∈ Fn such that

0 6= f(a) =
r∏

k=1

fk(a)⇒ fk(a) 6= 0, ∀1 ≤ k ≤ r.

Definition 4.5. Let D ∈ Nm×n0 be a matrix of natural numbers and let E ⊂ Zn be any set of
integer vectors. We define the set D(E) as

D(E) = {De | e ∈ E}.

Observation 4.6. Since D(E) is the image of E under a linear map, we have |E| ≥ |D(E)|.

Definition 4.7. Let x = (x1, . . . , xn) be a vector of formal variables, R be any commutative
ring and let f ∈ R[x] be a polynomial given by

f(x) =
s∑

k=1

ckx
ek .

Let p ∈ N be a prime number and define f (mod p) ∈ R[x] as the following polynomial

f (mod p)(x) =

s∑
k=1

ckx
(ek mod p).

Remark 4.8. Notice that Ef (mod p) ⊆ E
(mod p)
f and sometimes the inclusion is strict, since

there may be some cancellations in the transformation from f 7→ f (mod p). For instance, for
the polynomial f(x) = x3 − 1 and p = 3, we have that f (mod 3)(x) = 1 − 1 = 0 and thus

Ef (mod 3) = ∅ ⊂ {0, 3} = E
(mod 3)
f .

Observation 4.9. Let I = (xp1−1, xp2−1, . . . , xpn−1) be the ideal generated by polynomials xpi−1
and R[x] be the quotient ring F[x]/I. Notice that f(x) ≡ f (mod p)(x) and g(x) ≡ g(mod p)(x) in
the ring R[x]. Hence, we have that

f(x) · g(x) ≡ (f(x) · g(x))(mod p) ≡
(
f (mod p)(x) · g(mod p)(x)

)(mod p)
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in R[x]. Since (f(x) · g(x))(mod p) and
(
f (mod p)(x) · g(mod p)(x)

)(mod p)
are both polynomials of

individual degree at most p− 1 in each variable that are equivalent in R[x], we must have that

(f(x) · g(x))(mod p) =
(
f (mod p)(x) · g(mod p)(x)

)(mod p)

as polynomials in F[x].

4.2 Lemmas on polynomial substitutions

Our first lemma shows that there exists a polynomial homomorphism whose action on the set
of exponents of a given polynomial is the same as applying a given linear map (with integer
coordinates) on those exponents.

Lemma 4.10. Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be formal variables, D ∈ Nm×n0

be a matrix with column vectors dk, for 1 ≤ k ≤ n. Let g ∈ F[x]. Then, there exists a
homomorphism µD : F[x]→ F[y] such that

EµD(g) = D(Eg).

Proof. Let v = (v1, . . . , vn) be formal variables and ψD : F[x]→ F[v][y] be the ring homomor-
phism defined by

ψD(xk) = vk ·
m∏
i=1

ydiki = vky
dk , (1 ≤ k ≤ n).

In addition, for each a ∈ Fn, let ψDa : F[x]→ F[y] be the homomorphism defined by

ψDa (xk) = aky
dk , (1 ≤ k ≤ n).

For each b ∈ D(Eg), let Sb = {e ∈ Eg | De = b}. Because
⋃

b∈D(Eg)

Sb = Eg and

Sb ∩ Sb′ = ∅ for every b,b′ ∈ D(Eg) such that b 6= b′, we have that

g(x) =
∑

b∈D(Eg)

∑
e∈Sb

aex
e.

For e ∈ Sb notice that

ψD(aex
e) = ae

n∏
k=1

ψD(xk)
ek = ae

n∏
k=1

(
vekk ydkek

)
= aev

eyDe = aev
eyb.

Therefore:

ψD(g) =
∑

b∈D(Eg)

∑
e∈Sb

ψD(aex
e) =

∑
b∈D(Eg)

∑
e∈Sb

aev
eyb
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=
∑

b∈D(Eg)

∑
e∈Sb

aev
e

yb =
∑

b∈D(Eg)

g|Sb
(v) yb.

Thus, for each b ∈ D(Eg), the coefficient of monomial yb in ψD(g) is the nonzero polyno-
mial g|Sb

(v) ∈ F[v]. Let
G = {g|Sb

(v) | b ∈ D(Eg)}.

Since each polynomial in G is nonzero, Corollary 4.4 implies that there exists an assignment
a ∈ Fn such that g|Sb

(a) 6= 0 for all g|Sb
(v) ∈ G. This implies

EψD
a (g) = D(Eg).

Since ψDa is a homomorphism, if we set µD = ψDa we are done.

The following lemma handles the (mod p) reduction and gives a bound on the number of
monomials in the product after the reduction.

Lemma 4.11. Let x = (x1, . . . , xm) be formal variables, and let f, g, h ∈ F[x] be such that
f = g · h. Then, there exists a homomorphism γ : F[x]→ F[x] such that:

Eγ(g)(mod p) = E(mod p)
g , and (2)

‖γ(f)(mod p)‖0 ≥
‖γ(g)(mod p) · γ(h)(mod p)‖0

2m
. (3)

Proof. Let ν : F[x]→ F[z][x] be the homomorphism defined by

ν(xi) = zixi, (1 ≤ i ≤ m)

and let νI : F[x]→ F[z] be the homomorphism defined by

ν(xi) = zi, (1 ≤ i ≤ m).

In addition, for a ∈ Fn, define νa : F[x]→ F[x] as the homomorphism defined by

νa(xi) = aixi, (1 ≤ i ≤ m).

Notice that for any polynomial q(x) ∈ F[x], we are regarding ν(q) ∈ F[z][x] as a polynomial
in the variables x and coefficients in the ring F[z]. For instance, if q(x) = 2x41 + x21 + x1, we
have that ν(q) = 2z41x

4
1 + z21x

2
1 + z1x1 has monomials x41, x

2
1 and x1, with coefficients 2z41 , z

2
1

and z1, respectively. Hence, we have that

ν(q)(mod 3) = 2z41x
(4 mod 3)
1 + z21x

(2 mod 3)
1 + z1x

(1 mod 3)
1 = z21x

2
1 + (2z41 + z1)x1.

Notice that we can use the homomorphism νI to extract the coefficients of ν(q)(mod p), since
for instance νI(q)|{1,4} = 2z41 + z1 is the coefficient of x1 in ν(q)(mod p).
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For each b ∈ E
(mod p)
g , let Sb = {e ∈ Eg | e

p
= b}. Because

⋃
b∈E(mod p)

g

Sb = Eg and

Sb ∩ Sb′ = ∅ for every b,b′ ∈ E(mod p)
g such that b 6= b′, we have

g(x) =
∑

b∈E(mod p)
g

∑
e∈Sb

aex
e.

For e ∈ Sb notice that

ν(aex
e) = ae

m∏
k=1

ν(xk)
ek = ae

m∏
k=1

(
zekk x

ek
k

)
= aez

exe

⇒ ν(aex
e)(mod p) = aez

ex(e mod p) = aez
exb,

where the last implication follows from the fact that ν(aex
e) is a polynomial in F[z][x].

Therefore:

ν(g)(mod p) =
∑

b∈E(mod p)
g

∑
e∈Sb

ν(aex
e)(mod p) =

∑
b∈E(mod p)

g

∑
e∈Sb

aez
exb

=
∑

b∈E(mod p)
g

∑
e∈Sb

aez
e

xb =
∑

b∈E(mod p)
g

g|Sb
(z) xb.

Thus, for each b ∈ E(mod p)
g , the coefficient of the monomial xb in ν(g)(mod p) is the nonzero

polynomial g|Sb
(z) ∈ F[z]. Let

G1 = {g|Sb
(z) | b ∈ E(mod p)

g }.

Let us now look at the products ν(g)(mod p)·ν(h)(mod p) and
(
ν(g)(mod p) · ν(h)(mod p)

)(mod p)
.

By Observation 4.9,

ν(f)(mod p) = ν(g · h)(mod p) =
(
ν(g)(mod p) · ν(h)(mod p)

)(mod p)
. (4)

We will now need to prove the following claim, which states that there are no monomial
cancellations when we apply the (mod p) transformation on ν(g)(mod p) · ν(h)(mod p) to get the
polynomial ν(g · h)(mod p):

Claim 4.12. The following equality holds:

Eν(g·h)(mod p) = E
(mod p)

ν(g)(mod p)·ν(h)(mod p) . (5)

Proof. For each b ∈ E
(mod p)
g , let Sb = {e ∈ Eg | e

p
= b}. For each b′ ∈ E

(mod p)
h let

Tb′ = {e′ ∈ Eh | e′
p
= b′}. In addition, let

M = {b + b′ | b ∈ E(mod p)
g and b′ ∈ E(mod p)

h }.
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For each c ∈M , let

Uc = {(b,b′) ∈ E(mod p)
g × E(mod p)

h | b′ + b = c},

Uc =
⋃

(b,b′)∈Uc

Sb × Tb′ and S(Uc) = {e + e′ | (e, e′) ∈ Uc}

and for d ∈M (mod p), let

Wd = {(b,b′) ∈ E(mod p)
g × E(mod p)

h | b + b′
p
= d}

Wd =
⋃

(b,b′)∈Wd

Sb × Tb′ =
⋃

c∈M,c
p
=d

Uc and S(Wd) = {e + e′ | (e, e′) ∈ Wd} =
⋃

c∈F,c p
=d

S(Uc).

Then, by Observation 4.2, and since Eν(g) = Eg and Eν(h) = Eh, we have that

ν(g)(mod p) · ν(h)(mod p) =
∑
c∈M

(
νI(g) · νI(h)

)
|Uc xc

=
∑
c∈M

νI(g · h)|S(Uc) xc =
∑
c∈M

νI(f)|S(Uc) xc

and that

ν(g · h)(mod p) =
(
ν(g)(mod p) · ν(h)(mod p)

)(mod p)
=

(∑
c∈M

νI(f)|S(Uc) xc

)(mod p)

=
∑

d∈M(mod p)

 ∑
c∈M,c

p
=d

νI(f)|S(Uc)

xd

=
∑

d∈M(mod p)

νI(f)|S(Wd) xd.

Notice that for c ∈ M such that c
p
= d and the polynomial νI(f)|S(Uc) is a nonzero

polynomial, then we must have that νI(f)|S(Wd) is also nonzero, since

νI(f)|S(Wd) =
∑

c∈M,c
p
=d

νI(f)|S(Uc) (6)

and S(Uc) ∩ S(Uc′) = ∅ for c 6= c′ implies that each polynomial νI(f)|S(Uc) on the right hand

side of equation (6) has a different set of monomials from the other polynomials νI(f)|S(Uc′ ).
Therefore, each nonzero coefficient of ν(g)(mod p) · ν(h)(mod p) corresponds to a nonzero coeffi-
cient of ν(g ·h)(mod p) when we apply the (mod p) map. Equivalently, this proves that for each
vector c ∈ Eν(g)(mod p)·ν(h)(mod p) , there exists a vector d ∈ Eν(g·h)(mod p) such that (c mod p) = d.
This implies that equation (5) holds.
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Since E
(mod p)
g , E

(mod p)
h ⊆ {0, . . . , p− 1}m, we have

Eν(g)(mod p)·ν(h)(mod p) ⊆ {0, 1, . . . , 2p− 2}m, (7)

whereas we know that
Eν(g·h)(mod p) ⊆ {0, 1, . . . , p− 1}m.

Let e be an element of Eν(g·h)(mod p) . There can be at most 2m elements e′ ∈ Eν(g)(mod p)·ν(h)(mod p)

such that e′
p
= e, because of (7). That is, these will be the elements of the form e′ = e + pv,

where v ∈ {0, 1}n. Therefore, we have that the coefficient of xe in ν(g · h)(mod p) is the sum of
at most 2m coefficients of ν(g)(mod p) ·ν(h)(mod p). This fact, together with equality (5), implies
that

|Eν(g)(mod p)·ν(h)(mod p) | ≤ 2m · |Eν(g·h)(mod p) |. (8)

Let

G2 = {ν(f)|S(We)(z) | e ∈ Eν(g·h)(mod p)} ∪ {ν(f)|S(Wc)(z) | c ∈ Eν(g)(mod p)·ν(h)(mod p)}

Since G1 ∪ G2 is a set of non-zero polynomials in z, by Corollary 4.4 we can find a ∈ Fn no
polynomial in G1 ∪ G2 will evaluate to zero, and hence we obtain that

g|Sb
(a) 6= 0 for all g|Sb

(z) ∈ G1 ⇒ Eνa(g)(mod p) = E(mod p)
g

ν(f)|S(We)(a) 6= 0 ∀e ∈ Eν(g·h)(mod p) ⇒ ‖νa(g · h)(mod p)‖0 = |Eν(g·h)(mod p) |

ν(f)|S(Wc)(a) 6= 0 ∀c ∈ Eν(g)(mod p)·ν(h)(mod p) ⇒ |Eν(g)(mod p)·ν(h)(mod p) | = ‖νa(g)(mod p) · νa(h)(mod p)‖0

Hence,

‖νa(g · h)(mod p)‖0 = |Eν(g·h)(mod p) |

≥
|Eν(g)(mod p)·ν(h)(mod p) |

2m
(by equation (8))

=

∥∥νa(g)(mod p) · νa(h)(mod p)
∥∥
0

2m
.

Since νa is a homomorphism, by setting γ = νa we are done.

Combining Lemma 4.10 and 4.11 we obtain our final lemma which combines an application
of a linear map on the exponents together with the modular reduction.

Lemma 4.13. Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be formal variables and f, g, h ∈ F[x]
be such that f(x) = g(x) · h(x). Let D ∈ Nm×n0 be a matrix with column vectors dk, for
1 ≤ k ≤ n. Then, there exists a transformation ϕD : F[x]→ F[y] such that

(i) EϕD(g) = D(Eg)
(mod p),
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(ii) ‖ϕD(f)‖0 ≥
‖ϕD(g) · ϕD(h)‖0

2m

(iii) ‖f‖0 ≥ ‖ϕD(f)‖0.

Proof. Let ϕD : F[x]→ F[y] be defined as

ϕD = (mod p) ◦ γ ◦ µD,

where µD : F[x] → F[y] is the homomorphism from Lemma 4.10 and γ : F[y] → F[y] is the
homomorphism from Lemma 4.11. That is, if f ∈ F[x] then ϕD(f) = γ(µD(f))(mod p).

Part (i) holds because

Eγ(µD(g))(mod p) = E
(mod p)

µD(g)
(by Lemma 4.11)

= D(Eg)
(mod p) (by Lemma 4.10, since EµD(g) = D(Eg))

To prove part (ii) notice that

ϕD(f) = γ(µD(f))(mod p) = γ(µD(g · h))(mod p)

= γ(µD(g) · µD(h))(mod p) (because µD is a homomorphism)

and therefore by Lemma 4.11 applied on polynomials µD(f), µD(g) and µD(h), we have

‖ϕD(f)‖0 = ‖γ(µD(f))(mod p)‖0

≥ ‖γ(µD(g))(mod p) · γ(µD(h))(mod p)‖0
2m

=
‖ϕD(g) · ϕD(h)‖0

2m

Notice that part (iii) follows from

‖f‖0 = |Ef | ≥ |D(Ef )| (by Observation 4.6)

≥ |D(Ef )(mod p)| ≥ |EϕD(f)| (by remark 4.8)

= ‖ϕD(f)‖0.

5 Polytopes Defined by a Hyperplane of F`p

In this section, we will introduce a polytope in R` defined by the points of a hyperplane of F`p
embedded in N`0 and we will give a lower bound on the number of vertices of some polytopes
defined by certain special hyperplanes in F`p, for a prime p > `. These special polytopes are the
key ingredients of the proof of the sparsity bounds that we obtain in section 6. More intuition
on our motivation to study these polytopes will be given after the basic definitions.
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Throughout this section, we identify Fp with the set {0, . . . , p − 1} ⊂ N0. Based on this
convention, we define the natural embedding of F`p into N`0 as the map φ : F`p → N`0 defined by

φ(x) = x (notice that here we use that x ∈ {0, . . . , p− 1}`). We extend the definition of φ to
sets S ⊂ N0 by applying φ element wise, that is, φ(S) = {φ(x) | x ∈ S}.

We begin with the following basic definitions:

Definition 5.1. Let A ⊂ F`p be any set. The polytope PA associated to set A is defined by

PA = CS(φ(A)).

Observation 5.2. Notice that, by this definition, we have that V (PA) ⊂ φ(A) ⊂ N`0, and
therefore all vertices of PA have integer coordinates.

Definition 5.3 (Border points and Proper points). A point v ∈ F`p is called a border point if
∃j ∈ {1, . . . , `} s.t. vj ∈ {0, p− 1}. If no vj ∈ {0, p− 1}, then we say that v is a proper point.

We start with an initial polytope construction that we will later use as a building block in
our final polytope.

Theorem 5.4. Let t ∈ N, p1, p2, . . . , pt be primes such that 3 < p1 < . . . < pt and Q =

3 ·
t∏
i=1

pi. In addition, let p be a prime such that 2tQ < p, qi = Q/pi, for 1 ≤ i ≤ t and

h = (−q1,−q2, . . . ,−qt, 1) ∈ Ft+1
p . Let B ⊂ Fp be the set of values of b ∈ Fp for which the

hyperplane
H = {x ∈ Ft+1

p | h · x p
= b}

is such that V (PH) has at least one proper point. Then, |B| ≥ Q

3(5/4)t
.

Proof. Let b ∈ {0, 1 . . . , p− 1} be such that

b = p− 2−
t∑
i=1

aiqi,

where ai ∈ N0, pi 6 | ai and ai <
p

2qit
, for 1 ≤ i ≤ t. Notice that 0 ≤ b < p− 1, because

t∑
i=1

aiqi <

t∑
i=1

p

2t
= t · p

2t
=
p

2
< p− 1.

Given our choice for the vector h, the equation for the hyperplane H is

xt+1
p
= b+

t∑
i=1

qixi. (9)

Claim 5.5. Let F = {x ∈ PH | xt+1 = b+

t∑
i=1

qixi} be a hyperplane in Rt+1. Then, F defines

a face of PH.
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Proof. By definition 3.6, to show that F is a face of PH we need to show that the hyperplane
defined by (now equation is taken over R)

xt+1 = b+

t∑
i=1

qixi (10)

is a supporting hyperplane of PH. This is indeed the case because

x ∈ φ(H)⇒ xt+1 − b−
t∑
i=1

qixi
p
= 0⇒ p | (xt+1 − b−

t∑
i=1

qixi)

and

x ∈ φ(H)⇒ xt+1 − b−
t∑
i=1

qixi < p,

where the last inequality follows since xt+1 < p and the terms b, qi, xi ≥ 0, for i ≤ i ≤ t.
Therefore, we have that

xt+1 − b−
t∑
i=1

qixi ≤ 0

for all x ∈ φ(H), which implies that this inequality holds for all points x ∈ PH. In addition,
notice that the point (a1, a2, . . . , at, p − 2) satisfies equation (10) and it also belongs to PH.
Therefore the hyperplane defined by equation (10) intersects PH.

Hence, equation (10) indeed defines a supporting hyperplane, as defined in definition 3.5.

To finish the proof, we will prove that the proper point v = (a1, a2, . . . , at, p− 2) ∈ V (F ),
and therefore by Lemma 3.10 must belong to V (PH). First of all, notice that v ∈ H and
v ∈ F , since

0 < ai <
p

2t
< p, ∀i ∈ {1, . . . , t}

t∑
i=1

qivi =

t∑
i=1

aiqi <

t∑
i=1

p

2t
<
p

2
and

p− 2 = vt+1 = b+

t∑
i=1

qivi = p− 2−
t∑
i=1

aiqi +

t∑
i=1

aiqi = p− 2.

In order to prove that v ∈ V (PH), we will need the following claim:

Claim 5.6. Let x ∈ F \ {v}. Then, xt+1 ≤ p− 3.

Proof. Notice that to prove this claim, it is enough to prove it for the points x ∈ V (F ) \ {v},
since points of F are convex combinations of V (F ) ∪ {v}. Since V (F ) ⊆ V (PH) ⊂ Nt+1

0 , we
know that all points in V (F ) are integer points.
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Suppose, for the sake of contradiction, that there was a point x ∈ V (F ) \ {v} such that
xt+1 ∈ {p− 2, p− 1}. Then, we have two cases to analyze:

Case 1: xt+1 = p− 1.

In this case, by equation (10) we have that

p− 1 = xt+1 = b+
t∑
i=1

qixi = p− 2−
t∑
i=1

qiai +
t∑
i=1

qixi ⇒

⇒ 1 =
t∑
i=1

qi(xi − ai) (11)

Notice that 3 divides the right hand side of equation (11) (since 3 | qi, ∀i), but it does not
divide the left hand side. Hence we reached a contradiction.

Case 2: xt+1 = p− 2.

Again, by equation (10) we have

p− 2 = xt+1 = b+
t∑
i=1

qixi = p− 2 +
t∑
i=1

qi(xi − ai)⇒

⇒
∑
i∈S−

(ai − xi)qi =
∑
i∈S+

qi(xi − ai), (12)

where S− = {i | xi < ai, 1 ≤ i ≤ t} and S+ = {i | xi > ai, 1 ≤ i ≤ t}. Notice that x ∈ F \{v}
implies that x must have an index i ∈ {1, . . . t} such that xi < ai, otherwise we will have
xi ≥ ai, 1 ≤ i ≤ t and ∃k ∈ {1, . . . t} such that xk > ak (because x 6= v). This implies that

p− 2 = xt+1 = p− 2 +
t∑
i=1

qi(xi − ai) ≥ p− 2 + qk ≥ p− 2 + 3 > p, which is a contradiction.

Hence, we have that S− 6= ∅. In addition, notice that S+ 6= ∅, otherwise we would have that
xi ≤ ai for all 1 ≤ i ≤ t and ∃k ∈ {1, . . . t} such that xk < ak (because x 6= v), which implies

that p − 2 = xt+1 = p − 2 +
t∑
i=1

qi(xi − ai) < p − 2 − qk < p − 2, which is a contradiction.

Therefore, if we let i ∈ S+, we have that pi does not divide the right hand side of equation (12),
whereas pi must divide the left hand side of equation (12) (because i 6∈ S− and S− 6= ∅), since
pi | qj for all j 6= i and pi 6 | qi.

Since we reached a contradiction in both cases, we have proved Claim 5.6.

Now, the proof that v ∈ V (F ) follows from Claim 5.6 and from Observation 3.9 because v
is the only point of F such that vt+1 = p− 2 and therefore it cannot be written as the convex
combination of any point of the set F \ {v} (because by Claim 5.6 their last coordinate is
< p− 2).

Since we have proved that v ∈ V (F ) and we showed that it is a proper point, by Lemma 3.10
we have that v ∈ V (PH).
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To obtain the bound on the size of the set B of good values of b, notice that 2Qt < p ⇒
pi <

p
2qit

and therefore for any choice of (a1, . . . , at) such that 0 < ai < pi in the proof above
shows that v will be a proper vertex of PH. This is true because

0 < ai < pi ⇒ pi 6 | ai and 0 < ai < pi <
p

2qit
.

Hence, we have that

|B| ≥
t∏
i=1

(pi − 1) =
Q

3
·
t∏
i=1

pi − 1

pi
≥ Q

3
·
t∏
i=1

4

5
=
Q

3
· (4/5)t

Our final construction will use the polytope from Theorem 5.4 to construct a polytope in
slightly higher dimension with many more vertices. The idea is to construct a polytope in
which many restrictions ‘look like’ the polytope of Theorem 5.4 and so that the proper vertices
of these restricted polytopes do not overlap. Before describing the construction we state some
useful facts on restrictions.

Definition 5.7 (Variable Fixings). Let F be a field and H ⊆ Fm. Let T ⊆ {1, . . . ,m} be a set

of indices, T = {1, . . . ,m} \ T and c ∈ FT . Define the fixing (T, c) as the set

H|(T,c) = {x ∈ H | xT = c}.

That is, H|(T,c) is the set of all points of H with coordinates T fixed to c.

Observation 5.8. Notice that for H = {x ∈ Fmp | h · x p
= b}, where h has more than one

nonzero coordinate, the hyperplane

Zi = {x ∈ Rm | xi = 0}

is a supporting hyperplane of PH, since x ∈ PH ⇒ 0 ≤ xi ≤ p− 1 ∀i, and there exists x ∈ PH
such that x ∈ PH ∩ Zi. Similarly, the hyperplane {x ∈ Rm | xi = p − 1} is also a supporting
hyperplane of PH.

The following simple Corollary shows that restricting some of the coordinates to 0 or to
p− 1 gives a supporting hyperplane for the polytope PH.

Corollary 5.9. Let H = {x ∈ Fmp | h · x
p
= b} be a hyperplane of Fmp , T ⊆ {1, 2, . . . ,m} and

c ∈ FTp be a vector such that c ∈ {0, p− 1}T . Then, PH|(T,c)
is a face of PH.

Proof. For i ∈ {1, 2, . . . ,m}, let Li = Rm|{i},ci = {x ∈ Rm | xi = ci}. Notice that

φ(H|(T,c)) = φ(H) ∩

⋂
i∈T

Li

 .
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Therefore, we have that

PH|(T,c)
= PH ∩

⋂
i∈T

Li

 =
⋂
i∈T

(PH ∩ Li). (13)

Notice that c ∈ {0, p − 1}T and Observation 5.8 imply that Li is a supporting hyperplane
of PH for each i ∈ T , which implies that Li ∩ PH is a face of PH. Hence, Lemma 3.10 and
equation (13) imply that PH|(T,c)

is the intersection of faces of PH, and therefore PH|(T,c)
must

be a face of PH as well.

We now state and prove our main construction.

Theorem 5.10. Let `, t ∈ N be such that t divides `. Let p1, p2, . . . , pt be primes such that

3 < p1 < . . . < pt, Q = 3 ·
t∏
i=1

pi and p be a prime such that 2tQ < p. Then, there exists a

hyperplane H = {x ∈ F`+2
p | h · x p

= 0}, passing through the origin, such that

|V (PH)| ≥ 2` · (2`)t

(5t)t
· Q

3p
.

Proof. Let r =
`

t
, qi = Q/pi, for 1 ≤ i ≤ t. For each b ∈ Fp, let Hb be the hyperplane defined

by

Hb = {x ∈ F`+2
p | bx`+2 + x`+1 −

t∑
i=1

qi

r∑
j=1

x(i−1)r+j
p
= 0} (14)

Notice that to finish the proof of this theorem, it suffices to prove the following lower bound:∑
b∈Fp

|V (PHb
)| ≥ 2` · (2`)t

(5t)t
· Q

3
.

This will imply that one of the hyperplanes Hb is such that PHb
has the desired number of

vertices.

Let Si = {k | k = (i− 1)r + j, 1 ≤ j ≤ r}, for 1 ≤ i ≤ t. That is, Si is the set of indices of
all variables that have coefficient −qi in Hb. Notice that |Si| = r, for every i.

The following claim shows that many restrictions of PHb
have a proper vertex.

Claim 5.11. Let T ⊂ {1, 2, . . . , `+ 2} be a set of size t+ 1 so that {`+ 1} ⊂ T , {`+ 2} 6⊂ T

and |T ∩ Si| = 1, for all 1 ≤ i ≤ t. Let c ∈ {0, p− 1}T be such that c`+2 = p− 1. Then, there

are at least
Q

3(5/4)t
values of b ∈ Fp for which PHb|T,c

has a vertex of the form (xT , c), where

1 ≤ xi ≤ p− 2 for all i ∈ T .
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Proof. To simplify notations we will treat the elements of a vector x ∈ Fmp as though they are

ordered with the indices in T first, followed by the indices in T . That is, a vector x = (xT ,xT ).
For each 1 ≤ i ≤ t, let {ki} = T ∩ Si. Let α = hT · c. Then,

Hb|(T,c) = {(xT , c) ∈ F`+2
p | x`+1 − b−

t∑
i=1

qixki
p
= α}.

That is, Hb|(T,c) is the set of all points x ∈ Hb such that xT = c. This definition implies
that all points x ∈ PHb|(T,c)

are such that xT = c, since the points of PHb|(T,c)
are all convex

combinations of points in φ(Hb|(T,c)). Hence, polytope PHb|(T,c)
is isomorphic to the polytope

PF defined by hyperplane

F = {xT ∈ F`+2
p | x`+1 − b−

t∑
i=1

qixki
p
= α}.

Hence, a proper vertex of PF corresponds to a vertex of PHb|(T,c)
of the form (xT , c), where

1 ≤ xi ≤ p− 2 for all i ∈ T .

By Theorem 5.4, there are at least
Q

3(5/4)t
values of b + α for which PF has at least one

proper vertex. Since α is fixed, this implies that there are at least
Q

3(5/4)t
values for b. By the

isomorphism described above, this concludes the claim.

By Corollary 5.9, PHb|(T,c)
is a face of PHb

. Hence, Lemma 3.10 implies that any vertex of
PHb|(T,c)

is a vertex of PHb
. Let x(T,c) be any such vertex of PHb|(T,c)

as described by Claim 5.11.
We will need the following claim:

Claim 5.12. x(T,c) 6= x(T ′,c′), for any two distinct fixings (T, c) 6= (T ′, c′).

Proof. Let y = x(T,c) and z = x(T ′,c′). Thus we need to show that y 6= z.

Notice that (T, c) 6= (T ′, c′) implies that T 6= T ′ or that T = T ′ and c 6= c′. Hence, we
have two cases to analyze:

Case 1: T 6= T ′.

By symmetry, we can assume w.l.o.g. that T 6⊂ T ′.

T 6⊂ T ′ ⇒ ∃i ∈ T \ T ′ ⇒ yi 6∈ {0, p− 1} and zi ∈ {0, p− 1} ⇒

⇒ yi 6= zi ⇒ y 6= z.

Case 2: T = T ′ and c 6= c′.

In this case, there exists i ∈ T such that ci 6= c′i, which implies that y 6= z.

Claims 5.11 and 5.12 imply that each pair (T, c) gives us a distinct vertex of PHb
, for at

least
Q

3(5/4)t
polytopes PHb

. Hence, the total number of vertices in the polytopes PHb
, where

b ∈ Fp, is lower bounded by the number of pairs (T, c) multiplied by
Q

3(5/4)t
.
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Notice that we can choose the set T in rt ways, because there are r ways of choosing an
index ki ∈ Si for which Si ∩ T = {ki}. In addition, |T | = t implies that |T | = l − t + 1, and

therefore are 2l−t possible fixings of the variables in c ∈ {0, 1}T for which c`+2 = p− 1. Hence,
the number of pairs (T, c) is 2`−trt.

Hence, we have the following inequality:∑
b∈Fp

|V (PHb
)| ≥ 2`−trt · Q

3(5/4)t
= 2` · (2`)t

(5t)t
· Q

3
.

This proves the theorem.

6 Proof of Sparsity Bound

We now restate our main theorem (Theorem 1) and prove it. We did not make an effort to
optimize the constants hidden in the big ‘O’ and it is very possible that the constant resulting
from our proof can be substantially improved.

Theorem 6.1. Let f, g ∈ F[x1, . . . , xn] be polynomials such that g(x) divides f(x) and let
d ≥ 64 be an upper bound on the degree of each variable of f , that is, degi(f) ≤ d for all
1 ≤ i ≤ n. If sf and sg are the sparsities of f and g, respectively, then

sg ≤ max(s
O(log sf log log sf )
f , dO(log d)).

Proof. Notice that we can assume, without loss of generality, that the field F is algebraically
closed, since g(x) | f(x) in F[x] implies that g(x) | f(x) in F[x].

We start by setting the parameters involved in the proof and calculating the relationships
between them.

Setting the parameters: We can assume that sg > d18000 log d, else we are done. Thus, we
need to show that

sg ≤ s
O(log sf log log sf )
f .

Let f = g · h, t ∈ N0 be the integer such that

t24t
2 ≤ sg < (t+ 1)24(t+1)2 .

Notice that d18000 log d < sg < (t+ 1)24(t+1)2 and d ≥ 64 implies

236·18000 < sg < (t+ 1)24(t+1)2 ⇒ 27000 < (t+ 1)2 log(t+ 1)⇒ t ≥ 60.

Let

Q = 3 ·
t∏
i=1

pi,
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where 2 < 3 < p1 < p2 . . . < pt are the first t + 2 primes. By the bounds on the primorial
function given by Lemma 2.1, we know that

t4t/5 < Q < t(11t/5).

Let p be a prime such that 2tQ < p < 4tQ. Hence, we have that

t4t/5 < Q < p < t3/2Q < t(11t/5+3/2). (15)

which implies

p10t < t10t(11t/5+3/2) = t22t
2+15t

< t23t
2

(because t ≥ 50)

< t24t
2 ≤ sg

and

p35t > t35t
4t
5 = t28t

2
> (16)

> (t+ 1)26t
2
> (t+ 1)24(t+1)2 > sg (because t ≥ 50). (17)

Therefore, we have that
p10t < sg < p35t. (18)

Therefore, if we set ` = 3t, we have that

pc(`+2) < sg < p12`, for c = 3 + 1/9.

Claim 6.2. For this choice of parameters we have p > d.

Proof. Notice that

sg < p35t < t35t(
11t
5

+3/2) < t77t
2+53t < t80t

2
for t ≥ 50.

On the other hand, we have d125 log d < sg. Putting the two inequalities together, we get

d125 log d < sg < t80t
2 ⇒ 125 log2 d < 80t2 log t < 80t2 log2 t⇒

⇒ log d <
4

5
t log t⇒ d < t

4t
5 < p

where the last inequality is true by equation (15).
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Hashing the polynomials: Let Pg be the Newton polytope of the polynomial g and Eg be
the set of exponents of g, as they are defined in section 3. Then, we have that |Eg| = sg >
pc(`+2).

Given the parameters above, Theorem 5.10 implies that there exists h ∈ F`+2
p for which

the hyperplane

H = {x ∈ F`+2
p | h · x ≡ 0 mod p}, is such that |V (PH)| ≥ 2` · (2`)t

(5t)t
· Q

3p
. (19)

Notice that d < p implies that Eg = E
(mod p)
g and therefore we can identify Eg with its

image in Fnp . Since Eg ⊂ Fnp and pc(`+2) < sg = |Eg|, for some constant c > 3, Corollary 2.3

tells us that there exists a linear transformation A : Fnp → F`+2
p such that A(Eg) = H.

Let y = (y1, . . . , y`+2) be new variables, and let D ∈ N(`+2)×n
0 be the `× n integer matrix

such that A(b)
p
= Db, for all b ∈ Fnp . Notice that

D(Eg)
(mod p) = A(Eg) = H.

Let ϕD : F[x]→ F[y] be the transformation given by Lemma 4.13. Hence, by Lemma 4.13 we
have that

EϕD(g) = D(Eg)
(mod p) = H and

‖ϕD(f)‖0 ≥
‖ϕ(g) · ϕ(h)‖0

2`+2
.

Therefore, we have that Pϕ(g) = PH, which implies that

|V (Pϕ(g))| = |V (PH)| ≥ 2` · (2`)t

(5t)t
· Q

3p
. (20)

Finishing up: We now have that

sf = ‖f(x)‖0 ≥ ‖ϕD(f)‖0 (by Lemma 4.13)

≥ ‖ϕ
D(g) · ϕD(h)‖0

2`+2
(by Lemma 4.13)

≥
|V (Pϕ(g))|

2`+2
(by Corollary 3.17)

≥ (2`)t

(5t)t
· Q

12p
(by equation (20))

≥ (2`)t

48t(5t)t

=
(6t)t

48t(5t)t
=

(6/5)t

48t
>

(
24

23

)t
(for t ≥ 60).
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Therefore, by using the bound t28t
2
> sg from equation (16), we have

t28t
2
> sg ⇒ 28t2 log t > log sg ⇒ t >

√
log sg

15 log log sg
,

otherwise

t ≤

√
log sg

15 log log sg
⇒ 28t2 log t ≤ 28

log sg
15 log log sg

· 1

2
· log

(
log sg

15 log log sg

)
<

log sg
log log sg

· log

(
log sg

log log sg

)
<

log sg
log log sg

· log log sg = log sg.

Hence, we obtain the following bound on sg, in terms of sf :

log sf
log(24/23)

> t >

√
log sg

15 log log sg

⇒ sg < 2γ log
2 sf log log sf ,

where γ can be any constant such that γ >
900

log2(24/23)
.

7 Deterministic sparse divisibility

Suppose we are given two polynomials f(x) and g(x), both given as a list of sf (resp. sg)
monomials, and are asked whether or not there exists h(x) so that f(x) = g(x) · h(x) and, if
it exists, output it (also as a list of monomials). Using our main theorem we know that sh is
at most quasi-polynomial in sf and d (the individual degree of f). We now sketch a way to
find h in deterministic poly(sf , sg, sh) time (which is quasi-poly(sf , d) by our theorem). We can
assume that h exists (that is, g divides f) since, if it does not, the final step in the algorithm
will discard it (we will check the sparse identity f = g · h).

We will use ideas from [KS01] who gave polynomial time identity testing and interpolation
algorithms for sparse polynomials. The main tool is the following simple claim.

Claim 7.1. Let d, n, s be integers and let p > d be a prime. Then, there exists an explicit
set A ⊂ {0, 1, . . . , p − 1}n of size |A| ≤ poly(p, n, s) so that the following holds: For any set
E ⊂ {0, 1, . . . , d}n of size at most s there exists some a ∈ A so that the mapping e 7→ e · a
(inner product over the integers) is one-to-one on the set E. By explicit we mean that there
is a deterministic algorithm that, given d, s, n and p outputs the set A in polynomial time in
d, s, n and p.

Therefore, for a polynomial h with at most s monomials and individual degrees ≤ d, there
will be some a ∈ A so that the univariate polynomial ĥ(T ) = h(T a1 , . . . , T an) has the same
coefficients of h. More formally, if

h(x) =
∑
e∈Eh

ce · xe,
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Then,

ĥ(T ) =
∑
e∈Eh

ce · T e·a,

where the last sum contains no cancellations (each power of T appears only once). This already
gives a deterministic identity testing algorithm for sparse polynomials (compute ĥ for all a ∈ A
and check that all are zero, using a prime p ≤ O(d)). But it also gives a way to deterministically
interpolate a sparse polynomial h, given only black box access. The interpolation algorithm will
try all a’s in A and will succeed only for one of them. This is OK since we can discard a wrong
answer by performing identity testing on the equality h = h′ for our candidate h′ (since both
are sparse, the identity can be tested in polynomial time deterministically). Hence, suppose
we are given a ‘good’ a ∈ A so that the map e 7→ e · a is one-to-one on Eh. We can thus
interpolate the univariate polynomial ĥ(T ) to obtain the set

S0 = {(ce, e · a) | e ∈ Eh}.

That is, we already have the coefficients of h, alas without the matching exponents. To discover
the exponents we do the following. Take γ to be some field element of order greater than d
and consider the restricted polynomial H1(T ) = h(γT a1 , T a2 , . . . , T an). Each coefficient of H1

will be of the form ceγ
e1T e·a. Hence, we can interpolate H1 and obtain, using our previous

knowledge of S0, the new set

S1 = {(ce, e · a, e1) | e ∈ Eh}.

Continuing in this fashion we can recover the rest of the exponents.

This interpolation algorithm can be used to recover h(x) = f(x)/g(x) given the polynomials
f and g in a similar way. To begin, we can compute ĥ(T ) by computing f̂(T ) and dividing it
by ĝ(T ). However, we should be careful to apply Claim 7.1 on the union E = Eh ∪Eg (which
is also quasi-polynomial) so that ĝ does not vanish for the ‘good’ a ∈ A. Similarly, we can
calculate H1 etc. and recover h from them.
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A Proof of Lemma 2.1:

We begin with some definitions.

Definition A.1 (Primorial Function). The primorial function ϑ : R→ N0 is defined as follows:

ϑ(x) =
∏
p≤x

p is prime

p

That is, ϑ(x) is the product of all prime numbers that are less than or equal to x.

Definition A.2 (Prime Function). The prime function π : R→ N0 is defined as follows:

π(x) =
∑
p≤x

p is prime

1

That is, π(x) is the number of primes that are less than or equal to x.

In [RS62, Eq. (3.4), (3.5), (3.15) and (3.16)], Rosser and Schoenfeld gave the following
bounds on the primorial and the prime functions:

Lemma A.3 (Bounds on ϑ and π, [RS62]). The following bounds on ϑ(x) and π(x) hold, when
x ≥ 41:

exp

(
x

(
1− 1

lnx

))
< ϑ(x) < exp

(
x

(
1 +

1

2 lnx

))
x

lnx
< π(x) <

x

lnx− 3
2

.

Proof of Lemma 2.1. Notice that the following inequalities hold, when t ≥ 50:

t ln t

ln t+ ln ln t− 3
2

< t+ 2 <
2t ln t

ln(2t ln t)
(21)

Hence, by (21) and the bounds on π given in Lemma A.3, for t ≥ 50, we have

π(t ln t) <
t ln t

ln t+ ln ln t− 3
2

< t+ 2

and

π(2t ln t) >
2t ln t

ln(2t ln t)
> t+ 2.

Thus, by the above inequalities and the bounds on ϑ in Lemma A.3, we obtain

exp

(
t ln t

(
1− 1

ln(t ln t)

))
< ϑ(t ln t) < Qt < ϑ(2t ln t) < exp

(
2t ln t

(
1 +

1

2 ln(2t ln t)

))
.
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Because ln(t ln t) > 5, for t ≥ 50, we have

t
4t
5 = exp

(
4t ln t

5

)
= exp (t ln t(1− 1/5)) < exp

(
t ln t

(
1− 1

ln(t ln t)

))
and

exp

(
2t ln t

(
1 +

1

2 ln(2t ln t)

))
< exp

(
2t ln t

(
1 +

1

10

))
= exp

(
11t ln t

5

)
< t

11t
5 .

B Proof of Lemma 2.2

Before proving the lemma we prove an auxiliary claim. Recall that a family F of maps from D
to T is pairwise independent if, for any pair (a, b) ∈ D×D with a 6= b, we have that (f(a), f(b))
is distributed uniformly over T × T when f is chosen uniformly in F .

Claim B.1. For every prime p and every n ∈ N0 such that n > 0, there exists a family of
pairwise independent affine maps

F = {ψ : Fnp → Fnp}

such that |F| = p2n.

Proof. Let q = pn. It is well known (see e.g. [Vad12, Proposition 3.24]) that the family of
functions

F ′ = {ϕa,b : Fq → Fq | ϕa,b(x) = ax+ b}a,b∈Fq ,

is pairwise independent over any finite field Fq. Through the natural isomorphism between Fq
and Fnp , we have that each affine map ϕa,b ∈ F ′ corresponds to an affine map ψa,b : Fnp → Fnp .
Thus, the family of affine maps given by

F = {ψa,b : Fnp → Fnp | ψa,b(x) corresponds to ϕa,b(x) ∈ F ′}

is pairwise independent. Moreover, notice that the size of F is |F| = |F ′| = q2 = p2n.

Proof of Lemma 2.2. Let A : Fnp → Fnp be a random affine map from the pairwise independent

family F given by Claim B.1 and let π : Fnp → F`p be the projection operator, where we project

onto the first ` coordinates of the input. Notice that |F| = p2n. Let a1,a2, . . . ,ak ∈ F`p be

distinct points of F`p. For each j ∈ {1, . . . , k}, let Mj(A) = |{x ∈ S | π(A(x)) = aj}|. Then,
we have that

EA[Mj(A)] =
∑
x∈S

PrA[π(A(x)) = aj ]

=
∑
x∈S

1

p`
=
|S|
p`

=
s

p`
= p(c−1)`
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Now, let us bound the variance of each Mj(A). Notice that we can write

Mj(A) =
∑
x∈S

1{π(A(x))=aj}, where 1{π(A(x))=aj} =

{
1, if π(A(x)) = aj

0, otherwise.

By pairwise independence of the indicator variables 1{π(A(x))=aj}, since the family of maps F
is pairwise independent, we have that

VA[Mj(A)] =
∑
x∈S

VA[1{π(A(x))=aj}].

Since 1{π(A(x))=aj} =

{
1, with probability 1/p`

0, with probability 1− 1/p`,
we have that

VA[1{π(A(x))=aj}] =
1

p`
(1− 1

p`
) <

1

p`
.

Hence, we conclude that

VA[Mj(A)] <
|S|
p`

=
s

p`
.

Thus, by Chebyshev’s inequality, we obtain:

PrA[|Mj(A)− EA[Mj(A)]| ≥ t] ≤ VA[Mj(A)]

t2
<

s

t2p`
=
p(c−1)`

t2
. (22)

Setting t = p(c−3/2)`, we have that PrA[|Mj(A) − EA[Mj(A)]| ≥ t] < 1
p(c−2)` . Therefore, we

have that the probability that Mj(A) > 0 for all j ∈ [k] can be lower bounded by:

PrA[Mj(A) > 0,∀j ∈ [k]] = 1−PrA[∃j ∈ [k] s.t. Mj(A) = 0]

≥ 1−
k∑
i=1

PrA[Mj(A) = 0] (by the union bound)

≥ 1−
k∑
i=1

PrA[|Mj(A)− EA[Mj(A)]| ≥ p(c−3/2)`] (since EA[Mj(A)] = p(c−1)`)

> 1−
k∑
i=1

1

p(c−2)`
= 1− k

p(c−2)`
.

Hence, if we set k = p` (and therefore the points aj will correspond to all points of F`p) we have

that PrA[Mj(A) > 0, ∀j ∈ [k]] > 1 − p`

p(c−2)` = 1 − 1
p(c−3)` > 0, since c > 3. This shows that

there exists a map L′ : Fnp → F`p defined by L′(x) = π(A(x)) that is surjective. Since maps

A and π are affine, we have that L′ is also affine. Hence, there exist a matrix Q ∈ F`×np and

a vector b ∈ F`p such that L′(x) = Qx + b, for all x ∈ F`p. Now, notice that L′ is surjective

implies that the map L : Fnp → F`p defined by L(x) = Qx = L′(x)− b is also surjective. Since
the map L is clearly linear, this proves the lemma.
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