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Abstract

In this paper, we propose a quantification of distributions on a set of strings, in terms of
how close to pseudorandom the distribution is. The quantification is an adaptation of the
theory of dimension of sets of infinite sequences first introduced by Lutz [13]. We show that
this definition is robust, by considering an alternate, equivalent quantification. It is known that
pseudorandomness can be characterized in terms of predictors [20]. Adapting Hitchcock [10],
we show that the log-loss function incurred by a predictor on a distribution is quantitatively
equivalent to the notion of dimension we define. We show that every distribution on a set of
strings of length n has a dimension s ∈ [0, 1], and for every s ∈ [0, 1] there is a distribution with
dimension s. We study some natural properties of our notion of dimension.

Further, we propose an application of our quantification to the following problem. If we
know that the dimension of a distribution on the set of n-length strings is s ∈ [0, 1], can we
deterministically extract out sn pseudorandom bits out of the distribution? We show that this
is possible in a special case - a notion analogous to the bit-fixing sources introduced by Chor
et. al. [5], which we term a nonpseudorandom bit-fixing source. We adapt the techniques of
Kamp and Zuckerman [12] and Gabizon, Raz and Shaltiel [7] to establish that in the case of
a non-pseudorandom bit-fixing source, we can deterministically extract the pseudorandom part
of the source. Further, we show that the existence of optimal nonpseudorandom generator is
enough to show P = BPP.
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1 Introduction

Randomness is a powerful tool in algorithm design. When an algorithm uses randomness, the source
of randomness is considered as an ideal process that outputs independent and unbiased random
bits. A fundamental question in Computer Science is to fill the gap between the realistic source of
randomness and the ideal one. One way of doing this is to construct an efficient algorithm that
converts a realistic source to an almost ideal source of randomness. Such algorithms are known as
randomness extractors and were first proposed by Nisan and Zuckerman [16]. It was shown in [17],
that there is no such deterministic algorithm. However, if we allow a few (O(log n)) random bits
as inputs to such an extractor, then we know the construction due to [19].

Fortunately, many randomized algorithms do not require pure random bits. What we need is a
source that looks random to those algorithms. Thus leads us to the notion of pseudorandomness.
Pseudorandom generators have been investigated extensively [1]. We know that if we have an opti-
mal pseudorandom generator, then P=BPP. Under reasonable assumptions, we can construct such
optimal pseudorandom generators [15], but still we do not know any unconditional construction.
Analogously, we could ask for the design of algorithms that convert sources emitting almost pseu-
dorandom bits to sources that give pseudorandom bits. The first hindrance in this process is the
lack of a quantification that measures the amount of pseudorandomness present in a distribution.

In this paper, we first propose a measure that can quantify the amount of pseudorandomness
present in a particular distribution. This measure is motivated by the idea of dimension [14] and
unpredictability [10]. Lutz used the betting function known as gales to characterize the Hausdroff
dimension of sets of infinite sequences over a finite alphabet. The definitions given by Lutz cannot
be carried over directly as instead of sets containing infinite length strings, we consider distributions
over finite length strings. Thus we we allow our gale to access some amount of pure random bits
and introduce a new probabilistic notion of success of a gale over a distribution. We use this to
define the dimension of a pseudorandom distribution. We also show that the definition is robust by
showing an equivalent definition in terms of unpredictability, which Yao [20] used to characterize
pseudorandomness. In [10], Hitchcock showed that the dimension definition given by Lutz is same
as log-loss unpredictability. In this paper, we show that this result can be adapted to show that
a notion of log-loss unpredictability of a distribution is quantitatively equivalent to our notion of
dimension.

Once we have a quantification of the pseudorandomness of a distribution, we consider extrac-
tionof its pseudorandom part. Our main objective is to construct a deterministic pseudorandom
extractor. As a first step in doing so, we consider a special kind of source defined by nonpseudo-
random bit-fixing source (see Section 5), which is similar to well studied bit-fixing random source
introduced by Chor et. al. [5]. From [12] and [7], we know the construction of deterministic
randomness extractor for bit-fixing random source. In this paper, we show that similar construc-
tion yields a deterministic pseudorandom extractor for a nonpseudorandom bit-fixing source with
polynomial support.

The rest of the paper is organized as follows. In the next section, we define a characterization
over nonpseudorandom distributions using the notion of dimension and then in section 3, we estab-
lish a relationship between dimension and unpredictability of the nonpseudorandom distribution.
In section 4, we discuss some useful properties of dimension. Further sections deal with the extrac-
tor. In section 5, we introduce the notion of pseudorandom extractor and define a special kind of
nonpseudorandom source, named Nonpseudorandom Bit-Fixing Source. We give an explicit con-
struction of deterministic pseudorandom extractor for such a source in section 6. We conclude by
showing that the existence of a certain nonpseudorandom generator suffices to conclude P=BPP.
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2 Quantification of Nonpseudorandomness

In this paper, we consider the binary alphabet Σ = {0, 1}. We denote Prx∈RD[E] as D[E], where
E is an event and x is drawn randomly according to the distribution D. In this section, we propose
a quantification of pseudorandomness. We adapt the notion introduced by Lutz [14] of an s-gale
to define a variant notion of success of an s-gale against a distribution D on Σn. First, we consider
the definition of pseudorandomness.

2.1 Pseudorandomness

Definition 2.1 (Pseudorandomness). A distribution D over Σn is (S, ε)-pseudorandom (for S ∈
N, ε > 0) if for every circuit C of size at most S, |D[C(x) = 1]− Un[C(x) = 1]| ≤ ε.

Definition 2.2 (Unpredictability implies Pseudorandomness [20]). A distribution D over Σn is
(S, ε)-pseudorandom (for some S > 10n, ε > 0) if D[C(x1, · · · , xi−1) = xi] ≤ 1

2 + ε
n for all circuits

C of size at most 2S and for all i ∈ [n].

In this paper, we consider only (S, ε)-pseudorandom distributions where S is a polynomial and
ε is an inverse polynomial in in the length of the input strings. In the rest of the paper, where
unambiguous, we refer to (S, ε)-pseudorandom distributions as ε-pseudorandom distributions, or
simply as pseudorandom distributions. This assumption is meaningful because of the definition of
pseudorandomness given by Blum-Micali in [4].

2.2 Martingales, s-gales and predictors

Martingales are “fair” betting games which are used extensively in probability theory (see for
example, [3]). Lutz introduced a generalized notion, that of an s-gale, to characterize Hausdorff
dimension [13] and Athreya et al. used a similar notion to characterize packing dimension[2]. We
now introduce these notions, adapt them to the quantification of distributions, and establish some
of their properties.

Definition 2.3. [13] Let s ∈ [0,∞). An s-gale is a function d : Σ∗ → [0,∞) such that d(λ) =
1 and d(w) = 2−s[d(w0) + d(w1)],∀w ∈ Σ∗. A martingale is a 1-gale.

In this paper, we consider probabilistic polynomial martingales (and s-gales). These are mar-
tingales (or s-gale) that have access to random coin tosses, and can be computed in polynomial
time.

In order to adapt the notion of an s-gale to the study of pseudorandomness, we first relate it
to the notion of predictors, which have been extensively used in the literature [1]. Given an initial
finite segment of a string, a predictor specifies a probability distribution over Σ for the next symbol
in the string.

Definition 2.4. A function π : Σ∗×Σ→ [0, 1] is a predictor if for all w ∈ Σ∗, π(w, 0)+π(w, 1) = 1.

2.3 Conversion Between s-Gale & Predictor

There is an equivalence between gales and predictors. An early reference to this is [6]. We follow
the construction in [10].

A predictor π induces an s-gale dπ for each s ∈ [0,∞) and is defined as follows: dπ(λ) = 1,

dπ(wa) = 2sdπ(w)π(w, a) for all w ∈ Σ∗ and a ∈ Σ; equivalently dπ(w) = 2s|w|
∏|w|
i=1 π(w[1 · · · i −
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1], w[i]) for all w ∈ Σ∗. Conversely, an s-gale d with d(λ) = 1 induces a predictor πd is defined as:

πd(w, a) =

{
2−s d(wa)

d(w) if d(w) 6= 0
1
2 otherwise

for all w ∈ Σ∗ and a ∈ Σ.
Hitherto, s-gales have been used to study the dimension of sets of infinite sequences - for an

extensive bibliography, see [8] and [9]. In this paper, we consider distributions on finite length
strings. The conversion procedure between s-gale and predictor will be exactly same as described
above except for this minor difference.

2.4 Defining Nonpseudorandomness

Definition 2.5. A martingale d : Σ∗ → [0,∞) is said to succeed over a distribution D on Σn if
Prw∈RD,randomness of d[d(w) ≥ 2] > 1

2 + 1
nc , for all constants c.

Let s ∈ [0,∞). An s-gale d : Σ∗ → [0,∞) is said to succeed over a distribution D on Σn if

Prw∈RD,randomness of d[d(w) ≥ 2] > 1
22−n(1−s)(1+ 1

s
) + 1

nc , for all constants c if s > 0, and if

Prw∈RD,randomness of d[d(w) ≥ 2] > 1
nc otherwise.

In the above definition, observe that when s = 1, the winning criteria for the 1-gale and that of a
martingale coincide. Using the above definition of success, we prove an equivalent characterization
of pseudorandomness. For notational convenience in the remainder of the paper, define f(s, n) =

2−n(1−s)(1+ 1
s

) for s > 0, and f(0, n) = 0. The following lemma states the equivalence between the
standard definition of pseudorandomness and the definition using martingale.

Lemma 2.6. Let n be a positive integer, S be a polynomial in n and ε be an inverse polynomial
in n. Then a distribution D over Σn is (S, ε)-pseudorandom if and only if there is no martingale
which succeeds on D.

Proof. Assume d : Σ∗ → [0,∞) is a randomized polynomial-time martinagale which succeeds on
D. i.e.,

Prw∈RD,randomness of d[d(w) ≥ 2] >
1

2
+

1

nc
, for all constants c

By the Markov Inequality, Prw∈RUn,randomness of d[d(w) ≥ 2] ≤ 1
2 .

Then by an averaging argument there exists a random string r of length polynomial inn such
that the deterministic polynomial-time martingale d′ : Σ∗ → [0,∞) obtained by hardcoding r into
d satisfies

D[d′(w) ≥ 2] >
1

2
+

1

nc
, for all constants c

Let Cd′ be a polynomial-size circuit obtained by instantiating d′ at length n. Now let C be a circuit
which outputs 1 if Cd′(w) ≥ 2. Then,

|D[C(w) = 1]− Un[C(w) = 1]| > 1

nc
, for all constants c

Thus D is not an (S, ε)-pseudorandom distribution.
Now for the converse direction, assume that D is not a (S, ε)-pseudorandom distribution. Then

there exists an bit position i ∈ [0, n− 1) and some circuit C of polynomial size for which

D[C(w1, · · · , wi−1) = wi] >
1

2
+
ε

n
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Now build a martingale d : Σ∗ → [0,∞) using this circuit C as follows. Let d(λ) = 1. Now,
∀j ∈ [n], j 6= i, d(w[0 . . . j − 1]0) = d(w[0 . . . j − 1]1) = d(w[0 . . . j − 1]), and d(w[0 . . . i − 1]b) =
2d(w[0 . . . i− 1]) if C(w[0 . . . i− 1]) = b and d(w[0 . . . i− 1]b) = 0.

Now it is clear that

D[d(w) ≥ 2] >
1

2
+

1

nc
, for all constants c.

Definition 2.7. (Dimension and Nonpseudorandomness) The dimension of a distribution D on
Σn is defined as dim(D) = inf{s ∈ [0, 1] | ∃s− gale d which succeeds on D}. If the dimension of a
distribution is s, we say that it is s-nonpseudorandom.

No martingale can succeed over a pseudorandom (and, a fortiori random) distribution. How-
ever, note that there are distributions over which some martingale can succeed, but no s-gale can,
for s ∈ [0, 1).

3 Unpredictability and Dimension

It is customary to measure the performance of a predictor utilizing a loss function [?]. The loss
function determines the penalty incurred by a predictor for erring in its prediction. Let pb be the
predicted probability that the next bit is b.

Commonly used loss functions include the absolute loss function which penalizes 1 for every bit
incorrectly predicted and 0 for every correct prediction, the square loss function which penalizes
the predictor the amount (b−pb)2 when the outcome is b, and the log loss function, which penalizes
− log(pb) when the outcome is b. The latter, which appears complicated at first glance, is intimately
related to the concepts of Shannon Entropy and dimension. In this section, adapting the result of
Hitchcock [10], we establish that there is an equivalence between the notion of dimension that we
define in the previous section, and the log loss function defined on a predictor.

Definition 3.1. The logarithmic loss function on a probability p ∈ [0, 1] is defined to be loss(p) =
− log p.

Using this, we define the running loss that a predictor incurs while it predicts successive bits of
a string in Σn, as the sum of the losses that the predictor makes on individual bits.

Definition 3.2. Let π : Σ∗ × Σ→ [0, 1] be a predictor.

1. The cumulative loss of π on w ∈ Σn, denoted Loss(π,w), is defined by Loss(π,w) =
∑n

i=1
loss(π(w[1 . . . i− 1]), w[i]).

2. The loss rate of π on w ∈ Σn is LossRate(π,w) = Loss(π,w)
n .

3. The loss rate of π over a distribution D on Σn is LossRate(π,D) = inf t+ 1
n , where t is any

number in [0, 1] such that D[w : LossRate(π,w) ≤ t] > 1
2f(t+ 1

n , n) + 1
nc , for all w ∈ Σn, and

all c > 0.

The unpredictability of a distribution is defined as the infimum of the loss rate that any
polynomial-time predictor has to incur on the distribution.

Definition 3.3. The unpredictability of a distribution D on Σn is
unpredictability(D) = inf{LossRate(π,D) | π is a polynomial-time predictor}.
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With this, we can prove that dimension can equivalently be defined using unpredictability and
the proof is motivated from the proof of the equivalence between log-loss unpredictability and
dimension [10].

Theorem 3.4. For any distribution D on Σn, unpredictability(D) = dim(D).

Proof. First, let D be a distribution on Σn with dimension s ∈ [0, 1) where n > 2
s . Assume that s′

is a number such that s < s′ − 1
n ≤ 1. Let πd : Σ∗ × Σ→ [0, 1] be defined by

πd(w, b) =

{
2−s d(wb)

d(w) , if d(w) 6= 0
1
2 otherwise.

For any w ∈ Σn with d(w) ≥ 2, we have

Lossπd(w) = −
n∑
i=1

log πd(w[1 . . . i− 1], w[i])

= log Πn
i=1πd(w[1 . . . i− 1], w[i])

= s′n− log d(w)

≤ s′n− 1.

So LossRate(πd, w) ≤ s′− 1
n . It is easy to see that D[d(w) ≥ 2] = D[w | Lossπd(w) ≤ s′− 1

n ], which
is greater than

2−1−n(1−s′)(1+ 1
s′ ) +

1

nc
,∀c > 0.

Conversely, assume that unpredictability(D)=t ∈ [0, 1). Assume that t′ is a number satisfying
t < t′ ≤ 1. Let π be a predictor such that

D[w ∈ Σn | LossRate(π,w) ≤ t′ − 1

n
] > 2−1−n(1−t′)(1+ 1

t′ ) +
1

nc
,∀c > 0.

If d′ is the t′-gale defined by dπ(w) = 2t
′|w|Π

|w|
i=1π(w[0 . . . i− 1], w[i]), then we have the following.

log dπ(w) = t′n+

n∑
i=1

log π(w[1 . . . i− 1], w[i])

= t′n− Lossπ(w)

≥ 1.

Hence, D[w ∈ Σn | dπ(w) ≥ 2] > 1
2f(t′, n) + 1

nc , for all constants c.

4 Properties of Dimension

We now establish a few basic properties of our notion of dimension. We begin by exhibiting a
distribution on Σn with dimension s, for any s ∈ [0, 1].

First, we observe that for any ε > 0, there is a 1 + ε gale which succeeds on a given distribution
D. Hence the dimension of D is the infimum of a non-empty subset of [0, 1+ε]. Thus the dimension
of a distribution is well-defined.
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Since it is clear that any distribution on Σn has a dimension, the following lemma establishes
the fact that our definition yields a nontrivial quantification of the set of distributions over Σn.
First, we recall that a pseudorandom distribution over Σn has dimension 1.

Lemma 4.1. Let s ∈ [0, 1]. Then there is a distribution D on Σn with dimension s, for large
enough n.

Proof. Consider a pseudorandom distribution D on Σn. If s = 1, then D is a distribution with the
required dimension.

Otherwise, assume that s ∈ (0, 1). To each string x ∈ Σn, we append bns c−n many zeroes, and

denote the resulting string as x′. Let D′(x′) = D(x). For strings y ∈ Σb
n
s
c which do not terminate

in a sequence of bns c − n many zeroes, we set D′(y) = 0.
Let π : Σ∗ × Σ → [0, 1] be the predictor which testifies that the unpredictability of D < 1 + ε.

Define the new predictor π′ : Σ∗ × Σ→ [0, 1] by

π′(x, b) =


π(x, b) if|x| < n, b = 0, 1

1 if|x| ≥ n, b = 0

0 otherwise.

For every w ∈ Σb
n
s
c, we have that

LossRate(π′, w) =
LossRate(π,w[1 . . . n])

bns c
≤ LossRate(π,w[1 . . . n])

n−s
s

=
(1 + ε)s

1− s
n

when s/n is small enough, testifying that the unpredictability (hence the dimension) of the distri-
bution is at most s.

Now, assume that γ : Σ∗ × Σ→ [0, 1] is a predictor which testifies that the unpredictability of

D′ is s− ε. We show that this would imply that dim(D) < 1. Let w ∈ Σb
n
s
c be a string such that

Loss(γ,w) ≤ bns c(s− ε) < (n− εn
s ).

Since Loss(γ,w[n . . . bns c) ≥ 0, we have that Loss(γ,w[1 . . . n]) ≤ (n− εn
s ).

Construct a predictor γ′ : Σ∗×Σ→ [0, 1] such that γ′(x, b) = γ(x, b) for all strings x with length
at most n and b = 0, 1. Then, Loss(γ′, w[1 . . . n]) < (n− εn

s ), implying that LossRate(γ,w[1 . . . n]) <
1− ε

s < 1.

Since this happens for every string w ∈ Σb
n
s
c with LossRate(γ,w) < s − ε, we have that

unpredictability(D) < 1− ε/s, which completes the proof.

In subsequent sections, we will see how to extract pseudorandom parts from a convex combi-
nation of distributions. We will need the following lemma which establishes a relationship between
the dimension of a convex combination of distributions in terms of the dimensions of its constituent
distributions.

Lemma 4.2. Let D1 and D2 be the distributions on Σn and δ ∈ [0, 1]. Suppose D is the convex
combination of D1 defined by D = δD1 + (1− δ)D2. Then dim(D) ≥ min{dimD1, dimD2}.

Proof. The claim clearly holds when δ is either 0 or 1, so assume that 0 < δ < 1. Let dim(D1) = s1,
and dim(D2) = s2.

For the contrary, lets assume that, dim(D) < min{s1, s2} and assume s = min{s1, s2} −
ε, for all ε, 0 < ε < 1. Then there exists an s-gale such that

Prw∈RD,randomness of d[d(w) ≥ 2] >
1

2
f(s, n) +

1

nc
, for all constants c.
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Now define the polynomial sized circuit Cd obtained from d by hard wiring “good” random bits.

We can write D[Cd(w) ≥ 2] > 1
2f(s, n) +

1

nc
, for all constants c.

Let the string w for which Cd(w) ≥ 2 holds be wi, 1 ≤ i ≤ k and the corresponding probabilities
in D be p(wi), 1 ≤ i ≤ k. Let q(wi) and r(wi), 1 ≤ i ≤ k, be the corresponding probabilities in D1

and D2 respectively. So,

k∑
i=1

p(wi) >
1

2
f(s, n) +

1

nc
, for all constants c

where p(wi) = δq(wi) + (1− δ)r(wi), 1 ≤ i ≤ k.
Now, since dim(D2) ≥ s2, we have that

r(w1) + · · ·+ r(wk) ≤
1

2
f(s, n) +

1

nc
, for some constant c

Thus

q(w1) + · · ·+ q(wk) >
1

2
f(s, n) +

1

nc
, for all constants c

and thus dim(D1) < s1.

However, it is easy to see that convex combinations of distributions may have larger dimension
than any of its constituents. For example, let us take a pseudorandom distribution P on Σn and
then take two distributions on Σn+1, namely, D1 produced by the 0-dilution (padding each string
with a 0 at the end) of P and D2 produced by the 1-dilution (padding each string with a 1 at the
end) of P . Then D = 0.5D1 + 0.5D2 has dimension which exceeds the dimensions of D1 and D2

by 1
n .

Lemma 4.3. Let D, D1 and D2 be the distributions on Σn, and let δ = 1
nk

for some k > 0. Suppose
further that dim(D1) = s1. If D = (1− δ)D1 + δD2, then dim(D) ≥ s1.

Proof. For the contrary, lets assume that, dim(D) < s1 and assume s = s1−ε, for some ε, 0 < ε < 1.
So there exists an s-gale that wins over D.

Prw∈RD,randomness of d[d(w) ≥ 2] >
1

2
f(s, n) +

1

nc
, for all constants c.

Now we view this s-gale as a polynomial sized circuit Cd and by hard wiring “good” random
bits, we can write

D[Cd(w) ≥ 2] >
1

2
f(s, n) +

1

nc
, for all constants c

Let the string w for which Cd(w) ≥ 2 holds be wi, 1 ≤ i ≤ k and the corresponding probabilities
in D be p(wi), 1 ≤ i ≤ k. Let q(wi) and r(wi), 1 ≤ i ≤ k, be the corresponding probabilities in D1

and D2 respectively. So,

p(w1) + · · ·+ p(wk) >
1

2
f(s, n) +

1

nc
, for all constants c,

where p(wi) = δq(wi) + (1− δ)r(wi), 1 ≤ i ≤ k.
Now, as δ = 1

nk
, for some constant k and r(w1) + · · ·+ r(wk) ≤ 1,

q(w1) + · · ·+ q(wk) >
1

2
f(s, n) +

1

nc
, for all constants c
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and thus dim(D1) < s1 which is a contradiction.

The following lemma shows that in order for a distribution to have dimension less than 1, it is
not sufficient to have a few positions where we can successfully predict - it is necessary that these
positions occur often.

Lemma 4.4. For all sufficiently large n, there is a non-pseudorandom distribution Dn on Σn such
that dim(Dn) = 1.

Proof. Let Dn on Σn be defined as follows. Let 0 < k < n− 1 be an integer.

Dn(x) =

{
1

2n−1 if x[k] = 0

0 otherwise.

Then Dn is not pseudorandom: consider a (deterministic) polynomial time predictor π : Σ∗×Σ→
[0, 1] defined as follows. For strings w of length i, i ∈ [0, n− 2] \ {k}, set π(w, b) = 0.5, b = 0, 1 and
π(w, 0) = 1, π(w, 1) = 0 otherwise. Then

Dn{x ∈ Σn | π(x[ 0 . . . k − 1 ], x[k]) = 1} = 1.

However, dim(Dn) = 1. To see this, let ε > 0 be arbitrary. It suffices to show that dim(Dn) >
1 − ε for all sufficiently large n. Let n be large enough that 1 − ε + 1

n < 1. Let s be such that

1− ε < s− 1
n < 1. We show that no (s− 1

n)-gale succeeds on Dn. Let d be an s-gale.

We define an extender algorithm Ed : Σ<n → Σ≤n, which given a string w ∈ Σ<n, outputs a
string w0 or w1 in such a way that d(w) ≤ 2−s|w|. The algorithm Ed is defined by

Ed(w) =

{
w0 if d(w1) > d(w) or |w| = k − 1

w1 otherwise.

Then, for every string x in the support of Dn on which d(x) > 2−sn+1 = 2−(s− 1
n

)n, we have a string
Ed(x) in the support of Dn such that d(Ed(x)) < 2−sn. It is also clear that Ed restricted to the set
of strings x on which d(x) > 2−sn is a 1-1 function. Thus

Dn{x ∈ Σn | d succeeds on x} ≤ 1

2
.

5 Non-pseudorandom Bit-fixing Sources and Deterministic Pseu-
dorandom Extractors

We now give an application of our quantification of nonpseudorandom distributions. In the last
section, in Lemma 4.1, we introduced a special type of nonpseudorandom distribution which looks
similar to the (n, k)-bit-fixing source defined as a distribution X over Σn such that there exists a
subset I = {i1, . . . , isn} ⊆ {1, . . . , n} where all the bits at the indices of I are independent and
uniformly chosen and rest of the bits are completely fixed. This distribution was introduced by
Chor et. al.[5]. Now we define an analogous notion for the class of nonpseudorandom distributions,
which we term nonpseudorandom bit-fixing sources.
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Definition 5.1 (Nonpseudorandom Bit-fixing Source). Let n ∈ N, s ∈ [0,∞) and ε be an inverse
polynomial in n. A distribution over Σn is an (n, s, ε)-nonpseudorandom bit-fixing source if there
exists a subset I = {i1, . . . , isn} ⊆ {1, . . . , n} such that all the bits at the indices of I come from
an (S, ε)-pseudorandom distribution( where S is polynomial in sn) and rest of the bits are fixed.

Randomness extractors extract out “almost random bits” from an input distribution. Our
objective now is to extract pseudorandom bits from a given nonpseudorandom bit-fixing source.
For this, we now define the notion of a pseudorandomness extractor.

Definition 5.2 (Pseudorandom Extractor). A function E : Σn → Σm is said to be a deterministic
pseudorandom extractor for a class of distributions C if for every distribution X ∈ C, dim(E(X)) =
1.
A function E : Σn × Σd → Σm is said to be a seeded pseudorandom extractor for a class of
distributions C if for every distribution X ∈ C, dim(E(X,Ud)) = 1.

6 Deterministic Pseudorandom Extractor for Non-pseudorandom
Bit-fixing Sources

We adapt the technique of Gabizon, Raz and Shaltiel [7]. The main result of this section is the
following theorem.

Theorem 6.1. Let n ∈ N and ε < 1√
n

. Then there exists a constant c > 0 such that for any

large enough n and any s satisfying sn ≥ log(c) n, there is an explicit deterministic pseudorandom
extractor E : Σn → Σm for all (n, s, ε)-nonpseudorandom bit-fixing sources having polynomial-size

support, where m = (sn)Ω(1).

IfG : ΣO(logn) → Σn is a polynomial time algorithm which outputs the (n, s, ε)-nonpseudorandom
bit-fixing source, say X, with ε < 1√

n
, then the size of the support of X is polynomial in n (The

support of a distribution is the set of strings with non-zero probability).

Corollary 6.2. Let n ∈ N and ε < 1√
n

. Suppose there is a polynomial time algorithm G :

ΣO(logn) → Σn which outputs an (n, s, ε)-nonpseudorandom bit-fixing source. Then there exits

a constant c > 0 such that, for any large enough n and any s satisfying sn ≥ log(c) n, there is a
deterministic pseudorandom extractor E : Σn → Σm, where m = (sn)Ω(1).

We first discuss the ingredients required in the proof of the above theorem.

6.1 Pseudorandom walk and extracting a few random bits

Kamp and Zuckerman [12] use a technique of random walk on odd-length cycles to extract al-
most random bits from a bit-fixing source. We adapt this to extract Ω(log sn) bits from (n, s, ε)-
nonpseudorandom bit-fixing sources. We first introduce the notion of a randomness extractor, and
then outline our construction.

Intuitively, a randomness extractor is a function that outputs almost random (statistically close
to uniform) bits from weakly random sources, which need not be close to the uniformly random
source. Two distributions X and Y on a set Ω are said to be ε − close (statistically close) if
maxS⊆Ω{|Pr[X ∈ S]− Pr[Y ∈ S]|} ≤ ε or equivalently 1

2

∑
x∈Ω

|Pr[X = x]− Pr[Y = x]| ≤ ε.

9



Definition 6.3 (Deterministic Extractor). A function E : Σn → Σm is said to be a deterministic
ε-extractor for a class of distribution C if for every distribution X of n-bit strings in C, the
distribution E(X) is ε-close to the uniform distribution on m-bit strings.

Theorem 6.4. Let s ∈ [0, 1] be arbitrary, n be a natural number such that sn > 100, and let

0 < ε < 1√
n

. Then there is a deterministic 1
4√sn -extractor E : Σn → Σ

log sn
4 .

Before proving the above theorem, we state two lemmas required for the proof. The first is a
special case of Lemma 3.3 [12] which was restated as Lemma 4.2 in [7].

Lemma 6.5 (Lemma 4.2 of [7]). Let G be an odd length cycle having M vertices and having second
largest eigenvalue λ. If we take a walk on G according to the bits from (n, sn)-bit-fixing source,
starting from any fixed vertex, then at the end of the n step of the walk, the distribution D on the
vertices will be 1

2λ
sn
√
M -close to UM .

Now we prove a similar result for (n, s, ε)-nonpseudorandom bit-fixing source where ε < 1√
n

using

the property of pseudorandom walk. The idea of pseudorandom walk was also used previously in
the domain of Space Bounded Computation by Reingold et. al. [18].

Lemma 6.6. Let G be an odd length cycle having M vertices and having second largest eigenvalue
λ. If we take a walk on G according to the bits from (n, s, ε)-nonpseudorandom bit-fixing source
starting from any fixed vertex, then at the end of the n step of the walk, the distribution D on the
vertices will be 1

2(λsn +
√
Mε)
√
M -close to UM , where M is polynomial in n.

Proof. Let ε be a number which satisfies the hypothesis. Suppose we take a n step walk on the graph
G starting from any vertex according to the bits from (n, sn)-bit-fixing source and the probability
vector on the vertices after the walk is say p =

(
p1 p2 . . . pM

)
.

Now we take a n step walk on the graph G starting from the same vertex according to the bits
from (n, s, ε)-nonpseudorandom bit-fixing source and the probability vector on the vertices after
the walk is say D =

(
q1 q2 . . . qM

)
where ∀i, qi ≤ pi + ε. This can be justified as follows.

If the bound is not true then we can use this walk on G as the polynomial time algorithm to
distinguish between uniform distribution on Σsn and ε-pseudorandom distribution on Σsn. The
above bound on qi is true because the only difference between (n, s, ε)-nonpseudorandom bit-fixing
source and (n, sn)-bit-fixing source is that on the set I, in (n, sn)-bit-fixing source we have uniform
bits instead of ε-pseudorandom bits.

Let π be the stationary distribution on the vertices and since we consider an odd length cycle
(a 2-regular graph), the stationary distribution is the uniform distribution on M vertices. Thus,

||q − π||2 =
M∑
i=1

(qi −
1

M
)2

≤
M∑
i=1

(pi + ε− 1

M
)2

=
M∑
i=1

(pi −
1

M
)2 +Mε2

= ||p− π||2 +Mε2

≤ λ2sn +Mε2 from Lemma 6.5

≤ (λsn +
√
Mε)2

10



Now using the above lemma, we prove Theorem 6.4.

Proof of Theorem 6.4. Let us take an odd cycle with M = 4
√
sn vertices as the graph G. The

second largest eigenvalue of G is cos( π
4√sn). Now take a walk starting from a fixed vertex of

G according to the bits from (n, k, ε)-nonpseudorandom bit-fixing source and finally output the

vertex number of the graph G. Thus we get log sn
4 bits. From Lemma 6.6, we reach distance

1
2((cos( π

4√sn))sn + 8
√
snε) 8
√
sn from uniform.

By the Taylor expansion of the cosine function, for 0 < x < 1, cos(x) < 1− x2

2 + x4

24 .

Therefore,
(

cos
(

π
4√sn

))sn
< (1 − π2

4
√
sn

)sn < (exp−
π2

4 )
√
sn < 4−

√
sn. Hence, 1

2((cos( π
4√sn))sn +

8
√
snε) 8
√
sn < 1

4√sn . Thus we get distribution of log sn
4 bit strings which is 1

4√sn -close to uniform in

statistical distance.

Note that from the above technique we have an explicit construction of an deterministic extrac-

tor E : Σn → Σ
logn
4 for any (S, ε)-pseudorandom distribution on n-length strings where ε ≤ n−0.5

and S is polynomial in n and the output distribution is n−0.25-close to uniform.

6.2 Generating an Independent Seed

In this subsection, we see how to obtain a short seed from a nonpseudorandom bit-fixing source
so that we can use them in a seeded pseudorandom extractor to extract pseudorandom part from
the source. The main problem of using this short seed in a seeded pseudorandom extractor is
that the already obtained seed is dependent on the main distribution. Now we describe that this
problem can be removed in the case of nonpseudorandom bit-fixing source. Even though the result
is analogous to [7], the proofs differ in essential details.

Definition 6.7 (Seed Obtainer). A function F : Σn → Σn×Σd is said to be a (s, s′, ρ)-seed obtainer
(s′ ≤ s) if for every (n, s, ε)-nonpseudorandom bit-fixing source X, the distribution R = F (X) can
be written as R = ηQ+

∑
a αaRa (η, αa > 0 and η +

∑
a αa = 1 ) such that η ≤ ρ and for every a,

there exists a (n, s′, ε)-nonpseudorandom bit-fixing source Za such that Ra is ρ-close to Za ⊗ Ud.

From the above definition it is clear that given a seed obtainer and a seeded pseudorandom
extractor for nonpseudorandom bit-fixing sources we can easily construct a deterministic pseudo-
random extractor.

Theorem 6.8. Suppose F : Σn → Σn×Σd is a (s, s′, ρ)-seed obtainer, where ρ ≤ 1
(sn)c for some con-

stant c and E′ : Σn ×Σd → Σm is a seeded pseudorandom extractor for (n, s′, ε)-nonpseudorandom
bit-fixing sources, where m = s′n. Then the function E : Σn → Σm defined as E(x) = E′(F (x)) is
a deterministic pseudorandom extractor for (n, s, ε)-nonpseudorandom bit-fixing sources.

Proof. By the definition of the seed obtainer, we can write E(X) = ηE′(Q) +
∑

a αaE
′(Ra) =

ηE′(Q)+(1−η)Y , for some distribution Y . Now as dim(E′(Ra)) = 1, so by Lemma 4.2, dim(Y ) = 1
and then by Lemma 4.3, dim(E(X)) = 1 as η ≤ 1

(sn)c , for some constant c.

Now we give an explicit construction of (s, s′, ρ)-seed obtainer, which is crucial in the later part
of this paper.
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Theorem 6.9. For every n, let Samp : Σt → P ([n]) be a (n, sn, s1n, s2n, δ)-sampler and E :
Σn → Σm with m > t be a deterministic ε′-extractor for (n, s1, ε)-nonpseudorandom bit-fixing
sources, where

√
ε ≤ ε′. Then there is an explicit (s, s′, ρ)-seed obtainer F : Σn → Σn × Σd, where

d = m− t, s′ = s− s2, and ρ = max{ε′ + δ,
√
ε′2t+1}.

Proof. The construction of F mentioned in the theorem is as follows: (1) Given x ∈ Σn, compute
E(x). Denote the first t bits of E(x) by E1(x) and the last (m − t) bits by E2(x), (2) Compute
Samp(E1(X)) and denote it as T , (3) Let x′ = x[n]\T and y = E2(x). If |x′| < n, pad it with zeros
to get n-bit long string. Now output x′, y.
Let X be the (n, s, ε)-nonpseudorandom bit-fixing source and I be the set of indices at which bits
are not fixed. For a string a ∈ Σt, Ta denotes Samp(a) and T ′a denotes [n] \ Samp(a). Given a
string x ∈ Σn, xa denotes xTa and x′a denotes n-bit string obtained by padding xT ′a with zeros. Let

X ′ = X ′E1(X) and Y = E2(X). A string a ∈ Σt is said to correctly split X if s1n ≤ |I ∩ Ta| ≤ s2n.

Claim 6.10. For every a ∈ Σt which correctly splits X, (X ′a, E(X)) is
√
ε′-close to (X ′a ⊗ Um).

Proof. Let |Samp(a)| = l. Given a string σ ∈ Σl and a string σ′ ∈ Σn−l, we define [σ;σ′] as follows:
Suppose l indices of Ta are i1 < · · · < il and the (n− l) indices of T ′a are i′1 < · · · < i′n−l. The string
[σ;σ′] ∈ Σn is defined as:

[σ;σ′]i =

{
σj i ∈ Ta and ij = i

σ′j i ∈ T ′a and i′j = i

In this notation, we denoteX = [Xa;X
′
a]. Now consider the distribution (X ′a, E(X)) = (X ′a, E([Xa;X

′
a])).

For every b ∈ Σn−l, we consider the event {X ′a = b}. As a correctly splits X, there are at least s1n
“good” indices in Ta. Now fix some b ∈ Σn−l such that X[X ′a = b] > 0.

Now we claim that for all subsets B ⊆ Σn−l where ∀b ∈ B X[X ′a = b] > 0, there exists a b′ ∈ B
such that the distribution ([Xa;X

′
a]|X ′a = b′) is (n, s1,

√
ε)-nonpseudorandom bit-fixing source if∑

b∈B
X[X ′a = b] >

√
ε.

Suppose the above claim is not true, that means there exists a subset J ⊆ Σn−l, where
∀b∈JX[X ′a = b] > 0, such that

∑
b∈J

X[X ′a = b] >
√
ε and for all b ∈ J , the distributions ([Xa;X

′
a]|X ′a =

b) are not (n, s1,
√
ε)-nonpseudorandom bit-fixing sources. Now lets consider only the “good” posi-

tions which are sn in X and at least s1n in ([Xa;X
′
a]|X ′a = b). So the above assumption implies that

the distribution on those s1n bits (this part of the string b is denoted as bs1n) in ([Xa;X
′
a]|X ′a = b)

are not
√
ε-pseudorandom, i.e., they have corresponding distinguishing circuits Cb. If this is the case,

then the circuit C (by hard-wiring the good random bits) corresponding to the following algorithm
A will act as a distinguishing circuit for sn bit ε-pseudorandom distribution P which is a contradic-
tion. The algorithm A is as follows: on input y ∈ {0, 1}sn, if ys1n = bs1n for any b ∈ S, then return
Cb(ys1n); otherwise return 0 or 1 randomly. And thus clearly, |P [A[y] = 1]− Usn[A[y] = 1]| > ε.

The circuit C is of polynomial size as the support of J is at most polynomial. (Note that this
is the only place where we use the fact that the distribution under consideration is of polynomial
support.)

So, we can write,

1

2

∑
b,c

|Pr[(X ′a, E(X)) = (b, c)]− Pr(X′a⊗Um)[b, c]|

=
1

2

∑
b,c

|Pr[X ′a = b]Pr[E(X) = c|X ′a = b]− Pr[X ′a = b]PrUm [c]| ≤
√
ε+ ε′ ≤

√
ε′
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where
√
ε ≤ ε′. The first inequality follows from the fact that we can split the sum in two parts one

in which ([Xa;X
′
a]|X ′a = b)’s are not (n, s1,

√
ε)-nonpseudorandom bit-fixing sources and another

in which ([Xa;X
′
a]|X ′a = b)’s are at least (n, s1,

√
ε)-nonpseudorandom bit-fixing sources.

Claim 6.11 (Lemma 3.6 of [7]). For every fixed a ∈ Σt that correctly splits X, the distribution

((X ′a, E2(X))|E1(X) = a) is
√
ε′2t+1-close to (X ′a ⊗ Um−t).

Note that as a correctly splits X, so X ′a is a (n, s− s2, ε)-nonpseudorandom bit-fixing source.
The rest of the proof of correctness for the construction of F follows directly from the proof of

Theorem 3.3 of [7] with the following parameters k = sn, kmin = s1n, kmax = s2n and ε =
√
ε′.

6.3 Sampling and Partitioning with a short seed

Here we restate some of the results on sampling and partitioning used in construction of determin-
istic extractor for bit-fixing sources from [7]. Let S ⊆ [n] be some subset of size k. Now we consider
a process of generating a subset T ⊆ [n] such that kmin ≤ |S ∩T | ≤ kmax and this process is known
as Sampling.

Definition 6.12. A function Samp : Σt → P ([n]) is called a (n, k, kmin, kmax, δ)-sampler if for any
subset S ⊆ [n], where |S| = k, Prw∈RUt [kmin ≤ |Samp(w) ∩ S| ≤ kmax] ≥ 1− δ

Now consider a similar process known as Partitioning, the task of which is to partition [n] into
m distinct subsets T1, T2, · · · , Tm such that for every 1 ≤ i ≤ m, kmin ≤ |S ∩ Ti| ≤ kmax.
According to [7], the above two processes can be performed using only a few random bits.

Lemma 6.13 (Lemma 5.2 of [7]). For any constant 0 < α < 1, there exist constants c > 0, 0 < b < 1
and 1

2 < e < 1 such that for any n ≥ 16 and k ≥ logc n, there is an explicit construction of a function

Samp : Σt → P ([n]) which is a (n, k, k
e

2 , 3k
e, O(k−b))-sampler, where t = α log k.

Lemma 6.14 (Lemma 5.3 of [7]). For any constant 0 < α < 1, there exist constants c > 0, 0 < b < 1
and 1

2 < e < 1 such that for any n ≥ 16 and k ≥ logc n, there is an explicit construction that uses

only α log k random bits and partition [n] into m = O(k−b) many subsets T1, T2, · · · , Tm such that
for any subset S ⊆ [n], where |S| = k, Pr[∀1 ≤ i ≤ m, ke2 ≤ |Ti ∩ S| ≤ 3ke] ≥ 1−O(k−b).

6.4 A Seeded Pseudorandom Extractor

In this subsection, we discuss about how we can extract (sn)Ω(1) bits of dimension 1 using O(log sn)
random bits. In the next subsection, we will use this seeded pseudorandom extractor and the
techniques discussed in the previous subsections, to construct deterministic extractor.

Theorem 6.15. For any constant 0 < α < 1, there exist constants c > 0, 0 < b < 1 such that
for any n ≥ 16 and sn ≥ logc n, there is an explicit function E : Σn × Σd → Σm which acts as
a seeded pseudorandom extractor for (n, s, ε)-nonpseudorandom bit-fixing sources with d = α log sn
and m = Ω((sn)b).

Proof. Let X be a (n, s, ε)-nonpseudorandom bit-fixing source and x = x1x2 · · ·xn be a string
sampled by X. The description of the extractor E(x, y) is as follows: (1) According to Lemma
6.14, using the seed y, we obtain a partition of [n] into m = Ω((sn)b) many sets T1, T2, · · · , Tm with
the parameter α, (2) For 1 ≤ i ≤ m, compute zi = ⊕j∈Tixj , (3) Output z = z1z2 · · · zm.
Let I ⊆ [n] be the set of indices at which bits are not fixed and let Z be the distribution of the
output strings. We need to show that dim(Z) = 1.
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Let A be the event {∀i, |Ti ∩ I| 6= 0} and Ac = {∃i, |Ti ∩ I| = 0} be the complement event.
According to Lemma 6.14, Pr[A] ≥ 1−O((sn)−b). Now we can write the output distribution Z as
Z = Pr[A](Z|A) + Pr[Ac](Z|Ac). Now due to Lemma 4.3, dim(Z) = 1.

6.5 Deterministic Pseudorandom Extractor

Now we are ready to prove the Theorem 6.1.

Proof of Theorem 6.1. Due to Lemma 6.13, we have a (n, sn, (sn)e

2 , 3(sn)e, (sn)−Ω(1))-sampler Samp :

Σt → P ([n]), where t = log sn
32 and e > 1

2 . From Theorem 6.4, we have a deterministic 1
4√
s′n

-extractor

E∗ : Σn → Σm′ for (n, s′, ε)-nonpseudorandom bit-fixing sources where s′ = (sn)e

2n and m′ = log s′n
4 .

Now we use Theorem 6.9 to get (s, s′′, ρ)-seed obtainer F : Σn → Σn × Σm′−t where s′′ = 3(sn)e

n

and ρ = 1
(sn)p , for some constant p. According to Theorem 6.15, we have a seeded pseudoran-

dom extractor E′ : Σn × Σd → Σm with d = log sn
32 and m = (sn − s′′n)Ω(1) for (n, s − s′′, ε)-

nonpseudorandom bit-fixing sources. Since m′ = log s′n
4 ≥ log sn

16 = t + d, we use F and E′ in
Theorem 6.8 to construct deterministic pseudorandom extractor E : Σn → Σm. For large enough
n, m = (sn− s′′n)Ω(1) = (sn)Ω(1) and this completes the proof.

7 Approaching Towards P=BPP

We now show that if there is a polynomial time algorithm G : ΣO(logn) → Σn where the output
distribution has dimension s (s > 0), then this will imply P=BPP. We refer to this algorithm G
as optimal nonpseudorandom generator. The proof of this is similar to the proof of Theorem 7.4
[15]. Before discussing the theorem and its proof, we first mention some required terminologies and
theorems.

7.1 Hard Sets & Optimal Pseudorandom Generators

The definitions and theorems discussed in this section are relevant for the Section 7. A pseudo-
random generator against a class of circuits is a function which takes a random seed as input and
outputs a sequence of bits which is a pseudorandom distribution.

Definition 7.1 (Pseudorandom Generators). A function G is said to be a l(n)-pseudorandom
generator against a class of circuits C if

1. G = {Gn}n>0 with Gn : Σl(n) → Σn

2. Gn is computable in 2O(l(n)) time

3. For all n and for all circuits C ∈ C having n input bits,

|Un[C(x) = 1]− Ul(n)[C(G(y)) = 1]| ≤ 1

n

Here we consider the class of circuits C which are of size polynomial in n and according to the
definition given in [4], we can also write the expression in the property (3) of the above definition
as follows

|Un[C(x) = 1]− Ul(n)[C(G(y)) = 1]| ≤ 1

nc
for some constant c
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Definition 7.2 (Optimal Pseudorandom Generators). A function G is said to be an optimal
pseudorandom generator against a class of circuits C if it is an O(log(n))-pseudorandom generator.

Nisan and Wigderson [15] showed that there is a connection between pseudorandom generators
and hard-to-approximate sets (or simply hard sets) in EXP:

Definition 7.3. For a set A and a circuit C having n input bits,

advC(A) = |Un[C(x) = A(x)]− Un[C(x) 6= A(x)]|

Here we identify A with its characteristic function. For all circuits of size at most s(n), let
advs(n)(A) be the maximum of advC(A) where C varies over all circuits of size at most s(n). A

set A ∈ EXP is said to be hard-to-approximate by circuits of size s(n) if advs(n)(A) ≤ 1
s(n) . The

following theorem was shown by Nisan and Wigderson [15].

Theorem 7.4 ([15]). There exist optimal pseudorandom generators against class of circuits of size
2δl for some constant 0 < δ < 1 if and only if there exist sets in EXP that are hard-to-approximate
by circuits of size 2εl for some constant 0 < ε < 1.

The proof of the above theorem is constructive and thus we can explicitly convert optimal
pseudorandom generators to the hard-to-approximate sets and conversely. However this is still a
very strong requirement and later Impagliazzo and Wigderson weakened the above requirements.

Theorem 7.5 ([11]). Suppose there is a language L in EXP and ∃δ > 0 such that L on inputs
of length n cannot be solved by circuits of size at most 2δn, then there exists a set in EXP that is
hard-to-approximate by circuits of size 2δ

′n for some constant 0 < δ′ < 1.

7.2 Derandomization with Optimal Nonpseudorandom Generator

Theorem 7.6. If there exists a polynomial time algorithm G : ΣO(logn) → Σn where the output
distribution is X and dim(X) = s (s > 0), then P=BPP.

Proof. If dim(X) = s (s > 0), then there must be some bit position i such that for all polynomial
circuits C, X[C(x1, · · · , xi−1) = xi] < 1; otherwise according to Theorem 3.4, dim(X) = 0, for
large enough n. Now we define a language L as follows: L = {y ∈ Σn| y = y1y2 such that |y1| =
i− 1 and ∃z such that |z| = (n− i) and y11z is in the range of G}.
Now clearly L is the language that satisfies all the conditions of Theorem 7.5 and thus it can be
used to construct an optimal pseudorandom generator and which eventually implies P=BPP.
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