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On Learning, Lower Bounds and (un)Keeping Promises

Ilya Volkovich *

Abstract

We extend the line of research initiated by Fortnow and Klivans [FKO09] that studies the
relationship between efficient learning algorithms and circuit lower bounds. In [FK09], it was
shown that if a Boolean circuit class C has an efficient deterministic exact learning algorithm,
(i.e. an algorithm that uses membership and equivalence queries) then EXPNP ¢ P/poly[C] .
Recently, in [KKO13] EXPVP was replaced by DTIME(n“(1)). Yet for the models of randomized
exact learning or Valiant’s PAC learning, the best result so far is a lower bound against BPEXP
(the exponential-time analogue of BPP). In this paper, we derive stronger lower bounds as
well as some other consequences from randomized exact learning and PAC learning algorithms,
answering an open question posed in [FK09] and [KKO13]. In particular, we show that

1. If a Boolean circuit class C has an efficient randomized exact learning algorithm or an
efficient PAC learning algorithm 2 then BPTIME(n~())/1 ¢ P/poly[C].

2. If a Boolean circuit class C has an efficient randomized exact learning algorithm then no
strong pseudo-random generators exist in P/poly[C].

We note that in both cases the learning algorithms need not be proper 3. The extra bit of
advice comes to accommodate the need to keep the promise of bounded away probabilities of
acceptance and rejection. The exact same problem arises when trying to prove lower bounds
for BPTIME or MA [Bar02, FS04, MP07, San09]. It has been an open problem to remove this
bit. We suggest an approach to settle this problem in our case. Finally, we slightly improve
the result of [BFT98] by showing a subclass of MAEXP that requires super-polynomial circuits.
Our results combine and extend some of the techniques previously used in [FK09, KKO13] and
[San09].
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P /poly[C] stands for the class of all languages that can be computed by polynomial-size circuits from the class C.

2In fact, our result hold even for a more general model of PAC learning with membership queries.

3 A learning algorithm is proper if it outputs a hypothesis from the class it learns.
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1 Introduction

Revealing a hidden function from a set of examples is a natural and basic problem. As in any
other problem, identifying the obstacles along your trail is a fundamental task in achieving your
goal. In this paper, we continue to identify the obstacles to efficient learnability following the line
of research initiated by Fortnow and Klivans [FK09]. Several results [Val84, KV94, KS09, GH11]
exhibit a two-way connection between learning and cryptography: basing the hardness of learning
on cryptography and constructing cryptographic primitives based on hardness of learning. In this
paper we identify the obstacles in the form of circuit lower bounds and relationships between
complexity classes.

Angluin’s model of Exact Learning [Ang88] consists of a (computationally bounded) learner and
a (all-powerful) teacher. The learner’s goal is to output a target function f from a given function
class C. To do so, the learner is allowed to query the value f(Z) on any input z (membership query).
In addition, the learner is also allowed to propose a hypothesis f and ask the teacher whether it
is equivalent to f (equivalence query). If this is indeed the case, the learner has achieved his goal.
Otherwise, the teacher presents the learner with a counterexample @ for which f(a) # f(a). We
say that a function class C is exactly learnable if there exists a learner which given any f € C, in
time polynomial in n and |f| (the size of f in the representation scheme) outputs a hypothesis f
such that f(z) = f (z) for all Z, using membership and equivalence queries. In the randomized
Exact Learning model the learner is allowed to toss coins and, given any f € C, it must output
a correct hypothesis, with high probability. We say that a class C is exactly learnable with high
probability (w.h.p) if there exists a learner which given any f € C, in time polynomial in n and | f|
w.h.p outputs a hypothesis f such that f(z) = f(z) for all Z, using membership and equivalence
queries.

In Valiants PAC learning model [Val84], we (again) have a (computationally bounded) learner
that is given a set of samples of the form (z, f(Z)) from some fixed function f € C, where 7 is
chosen according to some unknown distribution D. Given € > 0 and § > 0, the learner’s goal is
to output, with probability 1 — ¢ a hypothesis f such that f is a1l — 4§ close to f under D. We
say that a function class C is PAC learnable if there exists a learner which given any f € C, e > 0
and 0 > 0 in time polynomial in n,1/e,1/d,|f| outputs a hypothesis as required. In a more general
model, the learner is allowed membership queries (as in the exact learning model). In this case, we
say that C is PAC learnable with membership queries.

A learning algorithm is said to be proper if it outputs a hypothesis from the class it learns.

It is known [Ang87] that both randomized and exact learners can be used to obtain a PAC learner
with membership queries. Thus, hardness results for the PAC learning model entail hardness results
for the randomized exact learning model.

In [FKO09], Fortnow and Klivans have shown that if a Boolean circuit class C has an efficient
deterministic exact learning algorithm, then EXPNP & P/poly[C]. Subsequently, Harkins and Hitch-
cock [HH11] removed the NP oracle replacing EXPNP by EXP, using techniques from resource
bounded measure. Further improvement was shown in [KKO13] where EXPNP was replaced by
DTIME(n“(l)) using simpler, diagonalization type of techniques. However, given an efficient ran-
domized exact learning algorithm or a PAC learner, the above techniques fail to produce a hard
function. Indeed, the best known result so far [FK09, KKO13] is a lower bound against BPEXP
(the exponential-time analogue of BPP), therefore leaving an open question for improvement. In
this paper we derive stronger (matching) lower bounds as well as some other consequences from
randomized exact learning and PAC learning algorithms, answering the open question.



1.1 Our Results

In this section we go briefly over our results comparing them with the previous ones. We now
present the first result of the paper, which gives lower bounds against BPTIME(n‘”(l)) /1 and
PromiseBPTIME(n*(1)) assuming an efficient randomized exact learner or an efficient PAC learner
with queries. We note that the learning algorithm need not be proper.

Theorem 1. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC learnable with
membership queries, then BPTIME(n®()/1 € P/poly[C] and PromiseBPTIME(n~(1)) & P/poly[C].

This matches the recent result of [KKO13], where a lower bound against DTIME(n®()) was
produced assuming a deterministic efficient learner. In fact, the results of [KKO13] also imply
fixed polynomial-size circuit lower bounds against P. That is, for each k, P € SIZE(n*)[C], where
SIZE(n*)[C] stands for languages accepted by size O(n¥) circuits from the class C. We match this
result as well.

Theorem 2. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC learnable with
membership queries, then for any k > 1: BPP/1 € SIZE(n*)[C] and PromiseBPP Z SIZE(n*)[C].

Next, we show that efficient randomized exact learner for a circuit class C gives rise to a P/poly-
natural property useful against P/poly[C]. Following the celebrated result of Razborov & Rudich
[RRI7] (and its extensions) this implies that no strong pseudo-random generators exist in P/poly|C].
For the case of C = P/poly or even a smaller class of TC? of constant-depth threshold functions
such an outcome is very unlikely [NRO4]. Again, the learning algorithm need not be proper.

Theorem 3. Let C be a circuit class. If C is exactly learnable w.h.p then no strong pseudo-random
generators exist in P/poly[C].

In a similar fashion to the previous lower bounds and hierarchy theorems for the “bounded”
probabilistic classes [Bar02, FS04, MP07] and MA [San09] we require an extra bit of advice to keep
the promise of bounded away probabilities. It has been an open problem to remove this bit. We
suggest an approach to settle this problem by trying to “unkeep” the promise using fixed oracles.
More specifically, recall that BPP = pPromiseBPP — pCA 4 That is a language L is in BPP iff it can
be decided by a P machine with an oracle to CA. Note, thought, that for some queries the answer
of the CA oracle can be arbitrary (e.g. for balanced circuits). We eliminate the need of an advice
bit for the cases when oracle is fixed.

Theorem 4. Let O be an oracle consistent with CA. That is, O accepts circuit from CAygg
and rejects circuit from CAno. Let C be a circuit class. If C is exactly learnable w.h.p or is PAC
learnable with membership queries, then for any k > 1: PO ¢ SIZE(n*)[C].

In [San09], Santhanam proved lowers bounds for MA/1 unconditionally. In fact, our conditional
results use several techniques from this paper (partially described in Section 1.2.1). Applying the
same idea unconditionally and recalling that MA = NPPromiseBPP — NPCA (500 ¢.0. [GZ11]) we
obtain the following (unconditional) result:

Theorem 5. Let O be an oracle consistent with CA. That is, O accepts circuit from CAygg and
rejects circuit from CAyo. Then for any k > 1: NPO € SIZE(nF).

The smallest complexity class for which an unconditional super-polynomial lower bound is
known is MAEXP [BFT98, MVW99]. We show that this is still true for a subclass of MAEXP °.

Theorem 6. There exists a language LA € PromiseBPP such that NEXPLA Z P/poly.

4 CA (Circuit Approximation) is the natural PromiseBPP-complete problem formally defined as: CAygs =
{C | Pracgo3n[C(a@) =1] > 3/4} and CAno = {C | Pracjo1yn[C(a) =1] < 1/4}
*Note that MAEXP = NEXPPromissBPP



1.2 Owur Techniques & Ideas

We now describe our main techniques and ideas.

1.2.1 Learning a “Conveniently Hard” Language

As in various previous papers dealing with conditional and unconditional lower bounds [TW98,
KI04, FK09, San09, KKO13], we require a “conveniently hard” language L. That is, a language
L that possesses some “nice” structural properies (downward self-reducibility, self-testability and
self-correctability) and yet can be used to compute a “hard” function (for a formal definition see
Definition 7). The “nice” properties of L make it easily learnable given an efficient learner. More
specifically, they allow answering the learner’s queries efficiently. We now describe the idea in a
nutshell. We combine several techniques from [IW98, FK09, San09, KKO13] and extend them.
Given an efficient learner for a circuit class C, the idea is to learn a non-uniform circuit C' € C for
L and then use C' to compute the hard function within L. This puts a hard function in BPP and,
obviously, can be carried out only if L is computable by a small-sized family of circuits in C. Similar
idea appeared in [IW98]. The other option is that L requires large circuits from C. At this point, the
approach taken in [FK09, KKO13] is to combine both hardness results into a single lower bound.
This results in a lower bound against BPEXP. We take the approach suggested in [San(09]: learn a
padded version of L. Intuitively, padding allows us to increase the input size and thus allowing more
learning time, without actually increasing the “real” size of the input. We try different amounts of
padding until the learner has “enough running time” to learn L. Note, that the learning algorithm
is guaranteed to succeed w.h.p only given enough running time/samples. Consequently, when
executed prior to reaching the “right” amount of padding the acceptance/rejection probabilities of
the algorithm can be arbitrarily close to half. Yet in order to remain within the framework of BPP,
the algorithm must keep the promise of bounded away acceptance and rejection probabilities. The
solution of [FS04, MP07, San09] was to add one bit of advice indicating whether or not we have
reached the necessarily amount of padding. To finish the argument, we show that small circuits for
a sufficiently padded version of L imply small circuits for L itself.

1.2.2 (un)Keeping the Promise

For the sake of simplicity, we describe here the intuition behind removing the advice from MA/1.
We follow along the lines of the previous section with one change: instead of using the learning
algorithm to a learn a non-uniform circuit C for L, we “guess” it. Next, we need to verify that
C indeed computes L via a probabilistic procedure referred to as “self-testability” (Property 2
Definition 7). This procedure can detect an error in C' only if C' if “far enough” from L. Thus, we
are dealing with an oracle call to PromiseBPP, which can replaced by an oracle call to CA. However,
the answer of the oracle is undefined for circuits that are “close” to L but not equal L. We suggest
to circumvent this problem by replacing an oracle call to CA with a fixed oracle O that is consistent
with CA. Given a fixed oracle O every call has a defined answer. Repeating the previous reasoning
we establish a hard language in NPC. Yet, for each O it might be a different language. Our glint
of hope comes come from the following relation, which follows from the definition of NPPromissBPP
(see e.g. [BF99]):
MA — NPPromiseBPP é ﬂ NPO

O is consistent with CA

If one could show that a hard language in each of the NP? terms on the RHS implies a hard
language in their intersection, we would be done. We formalize this approach in Section 5.



1.3 Organization

We start by some basic definitions and notation in Section 2. In Section 3 we give our main
result showing that efficient randomized learning algorithms entail circuit lower bounds, proving
Theorems 1 and 2. In Section 4 we prove Theorem 3 show that for several circuit classes the
very existence of efficient randomized exact learning algorithm “bumps” into the natural barier of
Razborov & Rudich. In Section 5 we propose an approach for removing the extra bit of advice and
prove Theorem 6. Finally, we discuss some open questions in Section 6.

2 Preliminaries

Definition 1 (Functions, Circuits, Languages). In this paper we deal with Boolean functions, that
is f : {0,1}" — {0,1}. Let f,g : {0,1}" — {0,1}. We define the relative distance A(f,g) 2
Pracioyn[f(@) # g(a)]. For e > 0, we say that f is e-close to g if A(f,g) < ¢, otherwise we say
that f is e-far from g. Let L C {0,1}" be a language. We denote by L|, the set of the strings
of length n in L. We say that L has circuits of size a(n) and denote it by L € SIZE(a(n)) if for
every n > 1 L, can be computed by a Boolean circuit of size O(a(n)). A circuit class C is a subset
of all Boolean circuits (e.g. circuits with AND,OR and NOT gates, AC?, ACC, TCO NC? etc.). We
assume that the representation in C is chosen in way that a size s circuit can be described using
poly(s) bits. In addition, given a circuit C € C of size s the circuit C|z,—p is also in C and of size
at most s, when C|,,—p is the circuit resulting from C by fizing the variable x; to the bit b € {0,1}.
We denote by SIZE(a(n))[C] the set of languages having circuits of size O(a(n)) from the class C.

A Promise Problem is a relaxation of a language. Formally:

Definition 2 (Promise Problems). IT = (Ilygg, o) is a promise problem if Iy gs NIyo = 0.
We say that a language O is consistent with Il iff x € llypg = € O andz € lIlyo = = € O.
The containment of O outside of lly psWllyo can be arbitrary.

Let II be a promise problem and let M be a deterministic (resp. nondeterministic) polynomial-
time Turing machine with an oracle access to II. Consider a (oracle) language O consistent with IT.
By definition (see e.g. [BF99]), M’s language should not depend on the answers of the oracle when
a query ¢ & Iy psWUllyo is made. Consequently, P C PO (resp. NPT C NP9). It turns out that
the following holds as well, and in fact can be considered as an alternative definition for classes of
languages computed by Turing machines with oracles to promise problems.

Definition 3 (Promise Problems as Oracles). P (resp. NP = N PO (resp. NPO)

O 1is consistent with 11

For more details and discussion see e.g. [BF99].

Definition 4 (Lower Bounds for Promise Problems). Let C be a circuit class and f(n) be a function.
Then 11 € SIZE(f(n)) <= YO consistent with I1: O & SIZE(f(n)).

We now formally define the natural PromiseBPP-complete problem of Circuit Approximation.
Definition 5. CA 2 (CAygs, CAno), where

CAyps ={C | A(C,0) = 3/4},CAno = {C | A(C,0) < 1/4}.



Definition 6 (Complexity Classes). A language L is in MA if there ezists a polynomial-time ma-
r€e€L = 3y:Pr.[M(z,y,r)=1]>3/4 (can be replaced by 1)
r¢L = Yy:Pr,[M(z,y,r)=1]<1/4.
A language L is in BPP if there exists a polynomial-time machine M (z,r) such that:

re€l = Pr,[M(z,r)=1]>3/4

r¢L = Pr,[M(z,r)=1]<1/4.
A language L € BPP/1 if in addition the machine requires an auziliary advice bit by, for each input
of length n. We note that given the complement advice bit b, the machine is not guaranteed to
preform correctly. In particular, given by, as the advice bit there is no promise for bounded away ac-
ceptance and rejection probabilities. Other standard complexity classes include: P, PSPACE, RP, NP.

chine M (z,y,r) such that:

For the core of our proofs we require a conveniently hard language. Intuitively, it is language
that has “nice” structural properies and yet can be used to compute functions that require “large”
circuits. It is not hard to see that every conveniently hard language is computable in PSPACE. In
[TVO7] a conveniently hard PSPACE-complete language was constructed via arithmezation of the
proof that PSPACE = IP [Sha90]. In their construction, all the “nice” structural properties follow
from the properties of low-degree polynomials and of TQBF. The Embedded Hardness (Part 4) is
due to the fact that given a circuit class C, in DSPACE(poly(s)) one can diagonalize against all the
circuits of size s from C, thus obtaining a language that can not be computed by any size s circuit.
Formally:

Definition 7. We say that a language L is conveniently hard if it satisfies:

1. Downward Self-Reducibility: we say that a language L is downward-self-reducible if
there is a deterministic polynomial-time algorithm COMPUTE such that for all n > 1:
COMPUTEL-1 = |,,.

2. Self-Testability: we say that a language L is self-testable if there is a probabilistic
polynomial-time algorithm TEST such that for any Boolean function f:{0,1}" — {0,1}:
o If f =L|, then Pr[TEST/ =1] = 1.
o If A(f,L|,) > 1/n then Pr[TEST/ =1] < 2710,
3. Self-Correctability: we say that a language L is self-correctable if there is a probabilistic

polynomial-time algorithm CORRECT such that, for any Boolean function f : {0,1}" — {0,1}
it holds that if A(f, L|,) < 1/n then for all T € {0,1}": Pr[CORRECT/(Z) # L|,(z)] < 270"

4. Embedded Hardness: we say that a language L has an Embedded Hardness if for every
circuit class C and k > 1: PL ¢ SIZE(n*)[C].

The following is immediate from the definition:

Observation 8. Let C be an n-variate circuit of size s such that A(C, L|,) < 1/n. Then there
exists an n-variate circuit C' of size poly(s,n) such that A(C,L|,) = 0. Moreover, C' can be
obtained from C in polynomial time w.h.p.



3 Lower Bounds from Randomized Learning Algorithms

In this section we prove Theorems 1 and 2. Let L be the conveniently hard PSPACE-complete
language of [TV07]. Following and extending definitions from [San09] we define padded versions
of L. For simplicity, throughout the section we fix a circuit class C. We will assume w.l.o.g that
P C P/poly[C] (otherwise there is nothing to prove). As L € PSPACE C EXP, by a translation
argument there exists d > 1 such that L € SIZE(Z”d).

Definition 9 (Padded Languages). Forr > 1 let s(r) denote the size of the smallest circuit from C
that computes L|,. By the preceding discussion s(r) is well-defined and in particular s(r) = O(2™).
Let t(w) : N — N be a constructible function. We define the padded version of L:

1) m is power of 2.
2)r 2 lz| < m.
3)z € L.

4) s(r) < t(m).

Remark: Condition 4 can be restated as: there exists a circuit of size t(m) that computes L|,. In
addition, observe that for LQ(_) each input has a unique interpretation.

The main property of the padded languages is that sufficiently small circuits for Lg(.) can be
used to construct small circuits for L.

Lemma 10. Let k > 1 and t(w) = Q(w?*). Suppose L;(.) € SIZE(n*). Then s(r) = O(r?F).
Proof. For n > 1 let C], be a circuit for LQ(_)|n. Let » > 1. We will now construct a circuit

that computes L|,. Take m to be a minimal power of 2 such that » < m and s(r) < t(m). As
t(w) = Q(w?), we have that t(m) > a - m?*, for some o > 0. Hence, it must be the case that
m < 2-a Y% . 5(r)/?k £ 21 Now, set n = r + m and consider the circuit C resulting from C,
when we hardwire the lower m bits of the input to 1™. By definition, C' computes L|, and there
exists 8 > 0 such that C is of size at most

il
.k —5. k . co—1/2k 1/2k\k ) .6k . E .
Bonb =B (r+m)f <B-(Br+2-a V. s(r) 2 < B Va-6F k. /s(r)

when ~ is a constant. By recalling the definition of s(r) we get that s(r) < v -7* . \/s(r) which
implies s(r) = O(r?F). O

We now give the main result of this section.

Proof of Theorem 2. Let A be a PAC learner for C and let k¥ > 1. We consider two cases.

Case 1: L € P/poly[C]. We will show that P C BPP and hence BPP ¢ SIZE(n*)[C]. For
this purpose will use A to learn circuits for L and then apply Property 4 of Definition 7 as follows:

e Begin with a lookup table C; = C; for L|;.
e For i > 2, invoke A with e = 1/4® and 6 = 1/i to learn a circuit C; of size s(i) for L|;.

e Given a membership query for L|; invoke COMPUTE with C;_;(z) as an oracle.

e Set C; 2 CORRECTC:



Analysis: We claim that C; computes L|; with probability at least 1 — 27%. By induction on i.
Basis ¢ = 1 is clear. Now assume that hypothesis holds for i. By definition, w.h.p A will output
C~’i+1 to be 1/i close to L|; using Property 1 of Definition 7 to answer membership queries. By
Property 3 C;y1 will compute L|;+1 with probability at least 1 — 2-10G+1) " The total number

of steps is poly(7) while each has an exponential probability error. Hence, for each i: C; = L|; w.h.p.

Running time: Given an input of size n we learn the corresponding circuits of sizes s(1),..., s(n)
which is poly(n) by assumption. In addition, all the algorithms are polynomial-time.

Case 2: L ¢ P/poly[C]. Set t(w) = w?. We show that LQ(_) € BPP/1 and conclude that in this
case L;(.) ¢ SIZE(n*)[C]. We follow the learning scheme described in the previous case to learn
circuits for L with two changes: first, since each input of Lj , has a unique interpretation, we could

use the advice bit to determine whether s(r) < t(m). If the advice bit is 0, we reject. Otherwise,
we carry on with flow of the scheme barring a second change: invoke A to learn circuits C' of size
t(m) and use the resulting circuit C, to decide if z € L. Now, suppose that LQ(.) € SIZE(n*). By

Lemma 10 we get that s(r) = O(r?"), which contradicts the fact that L ¢ P/poly[C]. O

The proof of Theorem 1 is essentially the same. We leave it as an exercise for the reader. To
complete the picture, recall that a randomized exact learner can be used to obtain a PAC learner
with membership queries [Ang87] and observe that BPTIME (t(n)) /1 ¢ SIZE (f(n)) implies that
PromiseBPTIME (t(n)) ¢ SIZE (f(n)) by adding the advice to the input.

4 Natural Property from Learning

We now describe the approach in more details. First, we recall some related definitions from [RR97].

Definition 11. Let P be a property of Boolean function. That is, a subset of all Boolean functions.
Let T', A be complexity classes. We say that P is I'-natural with density &, if there is a property
P* C P such that:

1. Constructivity: Given a function f by its truth table, f € P* can be decided in T'.

2. Largeness: For all n, P* contains at least a 0, fraction of all n-variate Boolean functions.

We say that P is useful against A if for every family of Boolean functions {fn},~; C P there are
infinitely many n-s such that f, & A.

The main results of [RR97] (and its extensions) states as follows:

Lemma 12 ([RR97] and extensions). Let C be a circuit class. If there exists a P/poly-natural prop-
erty with density 2-°") that is useful against P/poly[C] then no strong pseudo-random generators
exist in P/poly[C].



We show that we can turn an efficient randomized exact learner A for a circuit class C into a
P /poly-natural property useful against C. First, we amplify the error probability and get a P/poly
algorithm A, which succeeds in learning all the function computable by size s circuits from C.
Next, we define the property P as the set of all functions on which A/ fails. For an appropriate
choice of s the property is useful against P/poly[C]. Moreover, observe that if A/ succeeds learning
a function f then f must have a small circuit. A simple counting argument shows that the majority
of Boolean function require large circuits, thus A, succeeds only a small fraction of functions. Note
that since the counting argument is valid for any circuit class, the learning algorithm A need not
be proper. We now prove Theorem 3.

Proof of Theorem 3. Let A be a randomized exact learner for C. Suppose that the running time of
Ais s’ for learning circuits of size s. Given a truth table tt (as a 2"-bit string), set s, = 2/4 and
define A as follows:

e Invoke A poly(s,) times, to reduce the error probability below 2P (sn),

e Each time the algorithm outputs a hypothesis f , check if it agrees with ¢t.
That is, if ¢t is the truth table of f.

e Output 0 iff there exists at least one hypothesis that agrees with tt, 1 otherwise.

Now, since the total number of circuits of size s is at most 2P°V(%)  there exists a random string ry,
such that for any circuit C' € C of size at most s,, the execution of A poly(s,) times on 7, will
succeeded in learning learning C. We define

P2 { f ‘ A’sn outputs 1 when executed on the truth table of f and the random string r, }

We claim that P is a P/poly-natural property with density 2~ that is useful against P/poly[C].
We now prove each part:

e Constructivity: By the definition of P, f € P can be decided in P/poly. Given the truth
table tt of f, the algorithm can answer membership and equivalence queries by going over tt.

e Largeness: Let f be a Boolean function and suppose f ¢ P. From the definitions of P
there exists a hypothesis f that A} outputs such that f = f Note that since f is an
output of the original learner A, its sme is upperbounded by the running time of A which is

= /4t — 9n/4 A gimple counting argument shows that the vast majority of Boolean
functlon require much larger circuit size (of any circuit class).

e Usefulness: Let {f,},~; C P be a family of Boolean functions and assume for a contradic-
tion that for each n > ng it holds that f, € P/poly[C]. By definition, there exists n( such
that for all n > n{, we get that |f,| < on/4t — g Consequently, Al on r, will succeed in
learning f,, thus outputting 0 and contradicting the definition of P.

The conclusion follows from Lemma 12. O



5 Towards Better Lower Bounds by Unkeeping Promises

The extra bit of advice in Theorems 1 and 2 as well as in the result of [San09] (lower bounds
for MA/1) comes to accommodate the need to keep the promise of bounded away probabilities
of acceptance and rejection required for the “bounded” probabilistic classes. As in other cases,
removing this bit is an open problem. In this section we suggest an approach how to settle this
problem in the case of conditional and unconditional lower bounds. As previously, we will use the
conveniently hard PSPACE-complete language L of [TV07].

We raise the question whether lower bounds are preserved under consistency. More specifically,
given a promise problem II our hope is that one could show that the existence of hard language in
each PO (or NPO) implies an existence hard language in their intersection, when O runs over all
the consistent with II languages. We now give a formal treatment to this intuition.

Definition 13. Let C be a circuit class. We say that o promise problem 11 is deterministically
(resp. nondeterministically) compact w.r.t. C if:

P (resp. NP) C SIZE(f(n))[C] = 30 consistent with 1 s.t. PO (resp. NP?) C SIZE(f(n)°M)[C].

Note that the promise problems that are languages are trivially compact for all circuit classes in
both settings. We can extend the definition to classes of promise problems requiring compactness
for each problem in the class. We now give the proofs starting with the conditional case. Recall
Definition 5.

Lemma 14. Let C be a circuit class. Suppose that PromiseBPP is deterministically compact w.r.t.
C. If C is PAC learnable with membership queries, then for any k > 1: BPP € SIZE(n*)[C].

Proof. Fix k > 1 and assume for a contradiction that BPP C SIZE(n*)[C]. As P®* C BPP, from
compactness there exists & > 1 and a language O consistent with CA such that P9 C SIZE(n*")[C].
By Theorem 2 there exists IT € PromiseBPP such that IT ¢ SIZE(n*')[C]. Since CA is a PromiseBPP-
complete language there exists a polynomial-time function g : I — CA such that:

r € llyps = g(x) € CAygs
xz € llyo = g(x) € CAno.

Let us define O/ 2 {z | g(x) € O}. First, observe that O’ € PY. Next, we claim that O’ is
consistent with II. That is:

z €llyps — g(x) € CAygg giO = €0
x ellyo = g(x)eCANOQO — :L‘€0/

Recalling Definition 4, O" ¢ SIZE(n*")[C] thus leading to a contradiction. O

The unconditional case is slightly more involved. For the sake of simplicity we give the proof for
the case of C = P/poly. To this end, we define a promise problem related to L: L-approximation.

Definition 15. LA = (LAygs, LAno) where

B 1)q= “test” and A(C, L) =
LAyps = {(C’,aj,q) ‘ 2) ¢ = “corr” and A(C, L) < i and x € L.

|z

and
1)g= “test” and A(C, Ljy) > ﬁ
< L

LAyo = {(C,waQ) ‘ 2) ¢ = “corr” and A(C, L‘\Il)

|z

and x € L. }



By the Self-Testability and Self-Correctability of L (Properties 2 and 3 of Definition 7) LA €
PromiseBPP invoking TEST and CORRECT, respectively, depending on the value of q. Analogously
to Definition 9 we define “oracle-padded” (simplified) versions of L.

Definition 16. Let k > 1 and O be a language consistent with LA.

1) m is power of 2.
2)r 2 |z| < m.
/ — lm

k,0 x| 3)ze€ L.

4) There exists a circuit C' on r variables,

of size at most m** such that (C,x, “test”) € O.

We now prove the claim for every O consistent with LA, thus establishing the unconditional
lower bound.

Lemma 17. Let k > 1 and O consistent with LA. Then NP© & SIZE(nF).
The proof goes along the lines of the proof of Theorem 2.

Proof. Let x be an input to L. We consider two cases.

Case 1: L € P/poly. We show that in this case PSPACE = NP4,
1. Guess a circuit C' of polynomial size.
2. Check that (C,z, “test”) € LA.
3. Accept iff (C,z, “corr”) € LA.

Hence, PSPACE = NP4 C NP and consequently NPY ¢ SIZE(nF).
Case 2: L ¢ P/poly. The following shows that Lj ,, € NPO.

1. Guess a circuit C' of size at most m?2~.

2. Check that (C,z, “test”) € O.
3. Accept iff (C,z, “corr”) € O.

By the definition, (C,z, “test”) € LA (or € O) implies that C is ‘—i'—close to L[|, and hence
(C, z, “corr”) decides L||z| correctly. In Case 1, a desired circuit always exists, so if x € L then
there is always a correct guess. In Case 2, by an argument similar to Lemma 10 we get that L?c,O €

SIZE(n¥) implies that there exists a language L € SIZE(n?*) such that for all n: A(L|,, L|,) < 1/n.
By Observation 8 L ¢ P/poly, thus leading to a contradiction. O

Combining and repeating the previous ideas wet get the following corollaries:
Corollary 18. Let k > 1 and O consistent with CA. Then NP© ¢ SIZE(n*).

Corollary 19. Suppose that PromiseBPP is nondeterministically compact w.r.t. C. Then for any
k> 1: MA = NpPromiseBPP _ NPCA 7 §1ZE(nF)[C].

A close look at the analysis of the above Case 1 gives rise to a super-polynomial lower bound
for NEXP™, thus proving Theorem 6.
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Proof of Theorem 6. Suppose NEXPY* C P/poly. Then L € P/poly since L € PSPACE C NEXP.
From the above analysis we get that PSPACE = NP™*. By a translation argument EXPSPACE =
NEXPYA. Hence, NEXP™* contains a language of super-polynomial complexity, contradicting the
assumption. ]

We remark that MAEXP = NEXPPromiseBPP ig the smallest complexity class for which an un-
conditional super-polynomial lower bound is known [BFT98, MVW99]. In [KIO4] a conditional
“arithmetic” lower bound was shown for a smaller class: either (i) NEXPR? & P/poly or (ii) the
Permanent requires super-polynomial arithmetic circuits.

Similarly to [BFT98], our proof actually shows lower bound against NEXPYA N CONEXPYA. In ad-
dition, as in [MVW99] we can replace the “super-polynomial” by “half-exponential”. In conclusion,
the class NEXPLA () CoN EXP™A requires half-exponential circuits.

6 Discussion & Open Questions

In this paper we show that efficient randomized learning algorithms imply circuit lower bounds
against BPTIME(n®(1))/1, and some other hardness results. This (almost) solves the main open
problem posed in [FK09] and [KKO13], and matches the corresponding result of [KKO13] that
deterministic learning algorithms imply circuit lower bounds against DTIME(nW(l)). We would
like to point out that those conditional lower bounds are nearly-optimal if we treat the learning
algorithms as black-boxes. More specifically, all the above results only assume an existence of
an efficient learning algorithm, which is invoked as a black-box regardless of the class C it learns.
Consequently, the obtained lowers bounds are of form “C is learnable = I" Z P/poly[C]” for every
circuit class C and some complexity class I'. Given that, we cannot expect to obtain conditional
lower bounds of the form: “P or BPP/1 € P/poly[C]” since P C BPP/1 C P/poly (i.e. when C is
the class of all Boolean circuits with AND,OR and NOT gates). We refer to this as the “black-
box barrier”. This barrier can be seen as an analog of the relativization barrier for proving lower
bounds. So, one open question is to derive lower bounds of the form “P or BPP ¢ P/poly[C]” from
efficient learning algorithms for some specific families of circuit classes. In the light of the above,
such a conditional lower bound will have to exercise a non black-box technique.

The other open question is, naturally, to remove the extra bit of advice appearing in both
conditional and the unconditional bounds. We hope that the approach described in Section 5 is a
step in the right direction.

A related question, in light of Theorem 6, is to investigate the true complexity of LA (see
Definition 15) and the relationship among NEXP™“* and MAEXP. More specifically, we know that
LA € PromiseBPP. However, if LA € PromiseP or even LA € PromiseZPP then NEXP™* = NEXP
and hence NEXP ¢ P/poly. On the other hand, LA does not appear to be a PromiseBPP-complete
or even a PromiseRP-hard language.
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