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Abstract. In order to obtain the best-known guarantees, algorithms are traditionally
tailored to the particular problem we want to solve. Two recent developments, the Unique
Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest
that this tailoring is not necessary and that a single efficient algorithm could achieve best
possible guarantees for a wide range of different problems.

The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational
complexity, which, if true, will shed light on the complexity of a great many problems.
In particular this conjecture predicts that a single concrete algorithm provides optimal
guarantees among all efficient algorithms for a large class of computational problems.

The Sum-of-Squares (SOS) method is a general approach for solving systems of poly-
nomial constraints. This approach is studied in several scientific disciplines, including
real algebraic geometry, proof complexity, control theory, and mathematical program-
ming, and has found applications in fields as diverse as quantum information theory,
formal verification, game theory and many others.

We survey some connections that were recently uncovered between the Unique Games
Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigor-
ously bound the running time of the SOS method for obtaining approximate solutions to
hard optimization problems, and how these tools give the potential for the sum-of-squares
method to provide new guarantees for many problems of interest, and possibly to even
refute the UGC.
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1. Introduction

A central mission of theoretical computer science is to understand which computa-
tional problems can be solved efficiently, which ones cannot, and what it is about
a problem that makes it easy or hard. To illustrate these kind of questions, let us
consider the following parameters of an undirected d-regular graph1 G = (V,E):

1An undirected d-regular graph G = (V,E) consists of a set of vertices V , which we sometimes
identify with the set [n] = {1, . . . , n} for some integer n, and a set of edges E, which are 2-element
subsets of V , such that every vertex is part of exactly d edges. The assumption that G is regular
is not important and made chiefly for notational simplicity. For vertex sets S, T ⊆ V , we let
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• The smallest connected component of G is the size of the smallest non-empty
set S ⊆ V such that E(S, V \ S) = ∅.

• The independent-set number of G is the size of the largest set S ⊆ V such
that E(S, S) = ∅.

• The (edge) expansion2 of G, denoted φG, is the minimum expansion φG(S)
of a vertex set S ⊆ V with size 1 ≤ |S| ≤ |V |/2, where

φG(S) =
|E(S, V \ S)|

d|S|
.

The expansion φG(S) measures the probability that a step of the random
walk on G leaves S conditioned on starting in S.

All these parameters capture different notions of well-connectedness of the
graph G. Computing these can be very useful in many of the settings in which we
use graphs to model data, whether it is communication links between servers, social
connections between people, genes that are co-expressed together, or transitions
between states of a system.

The computational complexity of the first two parameters is fairly well under-
stood. The smallest connected component is easy to compute in time linear in
the number n = |V | of vertices by using, for example, breadth-first search from
every vertex in the graph. The independent-set number is NP-hard to compute,
which means that, assuming the widely believed conjecture that P 6= NP, it can-
not be computed in time polynomial in n. In fact, under stronger (but still widely
believed) quantitative versions of the P 6= NP conjecture, for every k it is in-
feasible to decide whether or not the maximum independent set is larger than k
in time no(k) [DF95, CHKX06] and hence we cannot significantly beat the trivial
O(nk)-time algorithm for this problem. Similarly, while we can approximate the
independent-set number trivially within a factor of n, assuming such conjectures,
there is no polynomial-time algorithm to approximate it within a factor of n1−ε(n)

where ε(n) is some function tending to zero as n grows [H̊as96, Kho01].
So, connectivity is an easy problem and independent set a hard one, but what

about expansion? Here the situation is more complicated. We know that we
can’t efficiently compute φG exactly, and we can’t even get an arbitrarily good
approximation [AMS11], but we actually do have efficient algorithms with non-
trivial approximation guarantees for φG. Discrete versions of Cheeger’s inequal-
ity [Che70, Dod84, AM85, Alo86] yield such an estimate, namely

d−λ2

2d ≤ φG ≤ 2
√

d−λ2

2d , (1)

E(S, T ) denote the set of edges {s, t} ∈ E with s ∈ S and t ∈ T .
2The expansion of a graph is closely related to other quantities, known as isoperimetric con-

stant, conductance or sparsest cut. These quantities are not identical but are the same up to
scaling and a multiplicative factor of at most 2. Hence, they are computationally equivalent for
our purposes. We also remark that expansion is often not normalized by the degree. However for
our purposes this normalization is useful.
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where λ2(G) denotes the (efficiently computable) second largest eigenvalue of the
G’s adjacency matrix.3 In particular, we can use (1) to efficiently distinguish
between graphs with φG close to 0 and graphs with φG bounded away from 0. But
can we do better? For example, could we efficiently compute a quantity cG such
that cG ≤ φG ≤ O(c0.51

G )? We simply don’t know.4

This is not an isolated example, but a pattern that keeps repeating. Over the
years, computer scientists have developed sophisticated tools to come up with algo-
rithms on one hand, and hardness proofs showing the limits of efficient algorithms
on the other hand. But those two rarely match up. Moreover, the cases where we
do have tight hardness results are typically in settings, such as the independent
set problem, where there is no way to significantly beat the trivial algorithm. In
contrast, for problems such as computing expansion, where we already know of
an algorithm giving non-trivial guarantees, we typically have no proof that this
algorithm is optimal. In other words, the following is a common theme:

If you already know an algorithm with non-trivial approximation guar-
antees for a problem, it’s very hard to rule out that cleverer algorithms
couldn’t get even better guarantees.

In 2002, Subhash Khot formulated a conjecture, known as the Unique Games Con-
jecture (UGC) [Kho02]. A large body of follow up works has shown that this con-
jecture (whose description is deferred to Section 1.1 below) implies many hardness
results that overcome the above challenge and match the best-known algorithms
even in cases when they achieve non-trivial guarantees. In fact, beyond just resolv-
ing particular questions, this line of works obtained far-reaching complementary
meta algorithmic and meta hardness results. By this we mean results that give
an efficient meta algorithm A (i.e., an algorithm that can be applied to a family
of problems, and not just a single one) that is optimal within a broad domain
C, in the sense that (assuming the UGC) there is no polynomial-time algorithm
that performs better than A on any problem in C. It is this aspect of the Unique
Games Conjecture result that we find most exciting, and that shows promise of
going beyond the current state where the individual algorithmic and hardness re-
sults form “isolated islands of knowledge surrounded by a sea of ignorance”5 into
a more unified theory of complexity.

The meta-algorithm that the UGC predicts to be optimal is based on semidefi-
nite programming and it uses this technique in a very particular and quite restricted
way. (In many settings, this meta-algorithm can be implemented in near-linear
time [Ste10].) We will refer to this algorithm as the UGC meta-algorithm. It can
be viewed as a common generalization of several well known algorithms, includ-
ing those that underlie Cheeger’s Inequality, Grothendieck’s Inequality [Gro53],

3The adjacency matrix of a graph G is the |V | × |V | matrix A with 0/1 entries such that
Au,v = 1 iff {u, v} ∈ E.

4As we will mention later, there are algorithms to approximate φG up to factors depending on
the number n of vertices, which give better guarantees than (1) for graphs where φG is sufficiently
small as a function of n.

5Paraphrasing John Wheeler.
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the Goemans–Williamson Max Cut algorithm [GW95], and the Lovász ϑ func-
tion [Lov79]. As we’ve seen for the example of Cheeger’s Inequality, in many
of those settings this meta-algorithm gives non-trivial approximation guarantees
which are the best known, but there are no hardness results ruling out the exis-
tence of better algorithms. The works on the UGC has shown that this conjecture
(and related ones) imply that this meta-algorithm is optimal for a vast number of
problems, including all those examples above. For example, a beautiful result of
Raghavendra [Rag08] showed that for every constraint-satisfaction problem (a large
class of problems that includes many problems of interest such as Max k-SAT,
k-Coloring, and Max-Cut), the UGC meta-algorithm gives the best estimate
on the maximum possible fraction of constraints one can satisfy. Similarly, the
UGC (or closely related variants) imply there are no efficient algorithms that give
a better estimate for the sparsest cut of a graph than the one implied by Cheeger’s
Inequality [RST12] and no better efficient estimate for the maximum correlation of
a matrix with ±1-valued vectors than the one given by Grothendieck’s Inequality.6

To summarize:

If true, the Unique Games Conjecture tells us not only which prob-
lems in a large class are easy and which are hard, but also why this
is the case. There is a single unifying reason, captured by a concrete
meta-algorithm, that explains all the easy problem in this class. More-
over, in many cases where this meta-algorithm already gives non-trivial
guarantees, the UGC implies that no further efficient improvements are
possible.

All this means that the Unique Games Conjecture is certainly a very attrac-
tive proposition, but the big question still remains unanswered—is this conjecture
actually true? While some initial results supported the UGC, more recent works,
although still falling short of disproving the conjecture, have called it into question.
In this survey we discuss the most promising current approach to refute the UGC,
which is based on the Sum of Squares (SOS) method [Sho87, Nes00, Par00, Las01].
The SOS method could potentially refute the Unique Games Conjecture by beating
the guarantees of the UGC meta-algorithm on problems on which the conjecture
implies the latter’s optimality. This of course is interesting beyond the UGC, as it
means we would be able to improve the known guarantees for many problems of
interest. Alas, analyzing the guarantees of the SOS method is a very challenging
problem, and we still have relatively few tools to do so. However, as we will see,
we already know that at least in some contexts, the SOS method can yield better
results than what was known before. The SOS method is itself a meta algorithm,
so even if it turns out to refute the UGC, this does not mean we need to give up
on the notion of explaining the complexity of wide swaths of problems via a single
algorithm; we may just need to consider a different algorithm. To summarize, re-
gardless of whether it refutes the UGC or not, understanding the power of the SOS

6See [RS09b] for the precise statement of Grothendieck’s Inequality and this result. Curiously,
the UGC implies that Grothendieck’s Inequality yields the best efficient approximation factor for
the correlation of a matrix with ±1-valued vectors even though we don’t actually know the
numerical value of this factor (known as Grothendieck’s constant).
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method is an exciting research direction that could advance us further towards the
goal of a unified understanding of computational complexity.

1.1. The UGC and SSEH conjectures. Instead of the Unique Games
Conjecture, in this survey we focus on a related conjecture known as the Small-Set
Expansion Hypothesis (SSEH) [RS10]. The SSEH implies the UGC [RS10], and
while there is no known implication in the other direction, there are several re-
sults suggesting that these two conjectures are probably equivalent [RS10, RST10,
RS09a, ABS10, BBH+12]. At any rate, most (though not all) of what we say in
this survey applies equally well to both conjectures, but the SSEH is, at least in
our minds, a somewhat more natural and simpler-to-state conjecture.

Recall that for a d-regular graph G = (V,E) and a vertex set S ⊆ V , we
defined its expansion as φG(S) = |E(S, V \ S)|/(d|S|). By Cheeger’s inequality
(1), the second largest eigenvalue yields a non-trivial approximation for the mini-
mum expansion φG = min1≤|S|≤|V |/2 φG(S), but it turns out that eigenvalues and
similar methods do not work well for the problem of approximating the minimum
expansion of smaller sets. The Small-Set Expansion Hypothesis conjectures that
this problem is inherently difficult.

Conjecture 1.1 (Small-Set Expansion Hypothesis [RS10]). For every ε > 0 there
exists δ > 0 such that given any graph G = (V,E), it is NP-hard to distinguish
between the case (i) that there exists a subset S ⊆ V with |S| = δ|V | such that
φG(S) ≤ ε and the case (ii) that φG(S) ≥ 1− ε for every S with |S| ≤ δ|V |.

As mentioned above, the SSEH implies that (1) yields an optimal approxima-
tion for φG. More formally, assuming the SSEH, there is some absolute constant
c > 0 such that for every φ ≥ 0, it is NP-hard to distinguish between the case that
a given graph G satisfies φG ≤ φ and the case that φG ≥ c

√
φ [RST12]. Given that

the SSEH conjectures the difficulty of approximating expansion, the reader might
not be so impressed that it also implies the optimality of Cheeger’s Inequality.
However, we should note that the SSEH merely conjectures that the problem be-
comes harder as δ becomes smaller, without postulating any quantitative relation
between δ and ε, and so it is actually surprising (and requires a highly non-trivial
proof) that it implies such quantitatively tight bounds. Even more surprising is
that (through its connection with the UGC) the SSEH implies tight hardness re-
sult for a host of other problems, including every constraint satisfaction problem,
Grothendieck’s problem, and many others, which a priori seem to have nothing to
do with graph expansion.

Remark 1.2. While we will stick to the SSEH in this survey, for completeness
we present here the definition of the Unique Games Conjecture. We will not use
this definition in the proceeding and so the reader can feel free to skip this remark.
The UGC can be thought of as a more structured variant of the SSEH where
we restrict to graphs and sets that satisfy some particular properties. Because
we restrict both the graphs and the sets, a priori it is not clear which of these
conjectures should be stronger. However it turns out that the SSEH implies the
UGC [RS10]. It is an open problem whether the two conjectures are equivalent,
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though the authors personally suspect that this is the case. We say that
an n-vertex graph G = (V,E) is δ-structured if there is a partition of V into δn
sets V1, . . . , Vδn each of size 1/δ, such that for every i 6= j, either E(Vi, Vj) = ∅ or
E(Vi, Vj) is a matching (namely for every u ∈ Vi there is exactly one v ∈ Vj such
that {u, v} ∈ E). We say a set S ⊆ V is δ-structured if |S∩Vi| = 1 for all i (and so
in particular, |S| = δn). The Unique Games Conjecture states that for every ε > 0
there exists a δ > 0 such that it is NP hard, given a δ-structured G, to distinguish
between the case (i) that there exists a δ-structured S such that φG(S) ≤ ε and
the case (ii) that every δ-structured S satisfies φG(S) ≥ 1− ε. The conjecture can
also be described in the form of so-called “two prover one round games” (hence its
name); see Khot’s surveys [Kho10a, Kho10b].

1.2. Organization of this survey and further reading. In the rest
of this survey we describe the Sum of squares algorithm, some of its applications,
and its relation to the Unique Games and Small-Set Expansion Conjectures. We
start by defining the Sum of Squares algorithm, and how it relates to classical ques-
tions such as Hilbert 17th problem. We will demonstrate how the SOS algorithm
is used, and its connection to the UGC/SSEH, by presenting Cheeger’s Inequality
(1) as an instance of this algorithm. The SSEH implies that the SOS algorithm
cannot yield better estimates to φG than those obtained by (1). While we do not
know yet whether this is true or false, we present two different applications where
the SOS does beat prior works— finding a planted sparse vector in a random sub-
space, and sparse coding— learning a set of vectors A given samples of random
sparse linear combinations of vectors in A. We then discuss some of the evidence
for the UGC/SSEH, how this evidence is challenged by the SOS algorithm and
the relation between the UGC/SSEH and the problem of (approximately) finding
sparse vectors in arbitrary (not necessarily random) subspaces. Much of our dis-
cussion is based on the papers [ABS10, BGH+12, BBH+12, BKS14b, BKS14a].
See also [Bar12, Bar14b, Bar14a] for informal overviews of some of these issues.

For the reader interested in learning more about the Unique Games Conjecture,
there are three excellent surveys on this topic. Khot’s CCC survey [Kho10b] gives
a fairly comprehensive overview of the state of knowledge on the UGC circa 2010,
while his ICM survey [Kho10a] focuses on some of the techniques and connections
that arose in the works around the UGC. Trevisan [Tre12] gives a wonderfully
accessible introduction to the UGC, using the Max-Cut problem as a running
example to explain in detail the UGC’s connection to semidefinite programming.
As a sign of how rapidly research in this area is progressing, this survey is almost
entirely disjoint from [Kho10a, Kho10b, Tre12]. While the former surveys mostly
described the implications of the UGC for obtaining very strong hardness and
“meta hardness” results, the current manuscript is focused on the question of
whether the UGC is actually true, and more generally understanding the power of
the SOS algorithm to go beyond the basic LP and SDP relaxations.

Our description of the SOS algorithm barely scratches the surface of this fas-
cinating topic, which has a great many applications that have nothing to do with
the UGC or even approximation algorithms at large. The volume [BPT13] and
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the monograph [Lau09] are good sources for some of these topics. The SOS al-
gorithm was developed in slightly different forms by several researchers, including
Shor [Sho87], Nesterov [Nes00], Parrilo [Par00], and Lasserre [Las01]. It can be
viewed as a strengthening of other “meta-algorithms” proposed by [SA90, LS91]
(also known as linear and semi-definite programming hierarchies).7 Our description
of the SOS meta algorithm follows Parrilo’s, while the description of the dual algo-
rithm follows Lasserre, although we use the pseudoexpectation notation introduced
in [BBH+12] instead of Lasserre’s notion of “moment matrices”. The Positivstel-
lensatz/SOS proof system was first studied by Grigoriev and Vorobjov [GV01] and
Grigoriev [Gri01] proved some degree lower bounds for it, that were later rediscov-
ered and expanded upon by [Sch08, Tul09]. All these are motivated by the works
in real geometry related to Hilbert’s 17th problem; see Reznick’s survey [Rez00]
for more on this research area. One difference between our focus here and much of
the other literature on the SOS algorithm is that we are content with proving that
the algorithm supplies an approximation to the true quantity, rather than exact
convergence, but on the other hand are much more stringent about using only very
low degree (preferably constant or polylogarithmic in the number of variables).

2. Sums of Squares Proofs and Algorithms

One of the most common ways of proving that a quantity is non-negative is by
expressing it as a Sum of Squares (SOS). For example, we can prove the Arithmetic-
Mean Geometric-Mean inequality ab ≤ a2/2 + b2/2 by the identity a2 + b2− 2ab =
(a− b)2. Thus a natural question, raised in the late 19th century, was whether any
non-negative (possibly multivariate) polynomial can be written as a sum of squares
of polynomials. This was answered negatively by Hilbert in 1888, who went on to
ask as his 17th problem whether any such polynomial can be written as a sum of
squares of rational functions. A positive answer was given by Artin [Art27], and
considerably strengthened by Krivine and Stengle. In particular, the following
theorem is a corollary of their results, which captures much of the general case.

Theorem 2.1 (Corollary of the Positivstellensatz [Kri64, Ste74]). Let P1, . . . , Pm ∈
R[x] = R[x1, . . . , xn] be multivariate polynomials. Then, the system of polynomials
equations E = {P1 = 0, . . . , Pm = 0} has no solution over Rn if and only if, there
exists polynomials Q1, . . . , Qm ∈ R[x] such that S ∈ R[x] is a sum of squares of
polynomials and

−1 = S +
∑

Qi · Pi . (2)

We say that the polynomials S,Q1, . . . , Qm in the conclusion of the theorem
form an SOS proof refuting the system of polynomial equations8 E . Clearly the

7See [Lau03] for a comparison.
8In this survey we restrict attention to polynomial equalities as opposed to inequalities, which

turns out to be without loss of generality for our purposes. If we have a system of polynomial
inequalities {P1 ≥ 0, . . . , Pm ≥ 0} for Pi ∈ R[x], the Positivstellensatz certificates of infeasibility
take the form −1 =

∑
α⊆[n]QαPα, where each Qα ∈ R[X] is a sum of squares and Pα =

∏
i∈α Pi.
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existence of such polynomials implies that E is unsatisfiable—the interesting part
of Theorem 2.1 is the other direction. We say that a SOS refutation S1, Q1, ..., Qm
has degree ` if the maximum degree of the polynomials QiPi involved in the proof
is at most ` [GV01]. By writing down the coefficients of these polynomials, we see
that a degree-` SOS proof can be written using mnO(`) numbers.9

In the following lemma, we will prove a special case of Theorem 2.1, where the
solution set of E is a subset of the hypercube {±1}n. Here, the degree of SOS
refutations is bounded by 2n. (This bound is not meaningful computationally
because the size of degree-Ω(n) refutations is comparable to the number of points
in {±1}n.)

Lemma 2.2. Let E = {P0 = 0, x2
1 − 1 = 0, . . . , x2

n − 1 = 0} for some P0 ∈ R[x].
Then, either the system E is satisfiable or it has a degree-2n SOS refutation.

Proof. Suppose the system is not satisfiable, which means that P0(x) 6= 0 for all
x ∈ {±1}n. Since {±1}n is a finite set, we may assume P 2

0 ≥ 1 over {±1}n. Now
interpolate the real-valued function

√
P 2

0 − 1 on {±1}n as a multilinear (and hence
degree at most n) polynomial in R ∈ R[x]. Then, P 2

0 − 1 − R2 is a polynomial
of degree at most 2n that vanishes over {±1}n. (Since we can replace x2

i by 1 in
any monomial, we can assume without loss of generality that P0 is multilinear and
hence has degree at most n.) This means that we can write P 2

0 −1−R2 in the form∑n
i=1Qi·(x2

i−1) for polynomials Qi with Qi ≤ deg 2n−2. (This fact can be verified
either directly or by using that x2

1 − 1, . . . , x2
n − 1 is a Gröbner basis for {±1}n.)

Putting things together, we see that −1 = R2 + (−P0) · P0 +
∑n
i=1Qi · (x2

i − 1),
which is a SOS refutation for E of the form in Theorem 2.1.

2.1. From proofs to algorithms. The Sum of Squares algorithm is based
on the following theorem, which was discovered in different forms by several re-
searchers:

Theorem 2.3 (SOS Theorem [Sho87, Nes00, Par00, Las01], informally stated). If
there is a degree-` SOS proof refuting E = {P1 = 0, . . . , Pm = 0}, then such a proof
can be found in mnO(`) time.

Proof sketch. We can view a degree-` SOS refutation −1 = S +
∑
iQiPi for E as

a system of linear equations in mnO(`) variables corresponding to the coefficients
of the unknown polynomials S,Q1, . . . , Qm. We only need to incorporate the non-
linear constraint that S is a sum of squares. But it is not hard to see that a
degree-` polynomial S is a sum of squares if and only if there exists a positive-
semidefinite matrix M such that S =

∑
α,α′Mα,α′x

αxα
′
, where α and α′ range

over all monomials xα and xα
′

of degree at most `/2. Thus, the task of finding a

However, we can transform inequalities {Pi ≥ 0} to equivalent equalities {P ′i = Pi − y2i = 0},
where y1, . . . , ym are fresh variables. This transformation makes it only easier to find certificates,
because

∑
α⊆[n]QαPα = S′ +

∑
iQ
′
iP
′
i for S′ =

∑
α⊆[n]Qαy

2
α, where yα =

∏
i∈α yi. It also

follows that the transformation can only reduce the degree of SOS refutations.
9It can be shown that the decomposition of S into sums of squares will not require more than

n` terms; also in all the settings we consider, there are no issues of accuracy in representing real
numbers, and so a degree `-proof can be written down using mnO(`) bits.
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degree-` SOS refutation reduces to the task of solving linear systems of equations
with the additional constraint that matrix formed by some of the variables is
positive-semidefinite. Semidefinite programming solves precisely this task and is
computationally efficient.10

Remark 2.4 (What does “efficient” mean? ). In the applications we are interested
in, the number of variables n corresponds to our “input size”. The equation sys-
tems E we consider can always be solved via a “brute force” algorithm running in
exp(O(n)) time, and so degree-` SOS proofs become interesting when ` is much
smaller than n. Ideally we would want ` = O(1), though ` = polylog(n) or even,
say, ` =

√
n, is still interesting.

Theorem 2.3 yields the following meta algorithm that can be applied on any
problem of the form

min
x∈Rn : P1(x)=···=Pm(x)=0

P0(x) (3)

where P0, P1, . . . , Pm ∈ R[x] are polynomials. The algorithm is parameterized by
a number ` called its degree and operates as follows:

The degree-` Sum-of-Squares Algorithm

Input: Polynomials P0, . . . , Pm ∈ R[x]
Goal: Estimate minP0(x) over all x ∈ Rn such that P1(x) = . . . = Pm(x) = 0
Operation: Output the smallest value ϕ(`) such that there does not exist a
degree-` SOS proof refuting the system,

{P0 = ϕ(`), P1 = 0, . . . , Pm(x) = 0} .11

We call ϕ(`) the degree-` SOS estimate for (3), and by Theorem 2.3 it can be
computed in nO(`) time. For the actual minimum value ϕ of (3), the corresponding
system of equations {P0 = ϕ, P1 = 0, . . . , Pm = 0} is satisfiable, and hence in
particular cannot be refuted by an SOS proof. Thus, ϕ(`) ≤ ϕ for any `. Since
higher degree proofs are more powerful (in the sense that they can refute more
equations), it holds that

ϕ(2) ≤ ϕ(4) ≤ ϕ(6) ≤ · · · ≤ min
x∈Rn : P1(x)=···=Pm(x)=0

P0(x) .

(We can assume degrees of SOS proofs to be even.) As we’ve seen in Lemma 2.2,
for the typical domains we are interested in Computer Science, such as when the

10In this survey we ignore issues of numerical accuracy which turn out to be easily handled in
our setting.

11As in other cases, we are ignoring here issues of numerical accuracy. Also, we note that
when actually executing this algorithm, we will not need to check all the (uncountably many)
values ϕ(`) ∈ R, but it suffices to enumerate over a sufficiently fine discretization of the interval
[−M,+M ] for some number M depending on the polynomials P0, . . . , Pm. This step can be
carried out in polynomial time in all the settings we consider.
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set of solutions of {P1 = 0, . . . , Pm = 0} is equal to {±1}n, this sequence is finite
in the sense that ϕ(2n) = minx∈{±1}n P0(x).

The SOS algorithm uses semidefinite programming in a much more general
way than many previous algorithms such as [Lov79, GW95]. In fact, the UGC
meta-algorithm is the same as the base case (i.e., ` = 2) of the SOS algorithm.

Recall that the UGC and SSEH imply that in many settings, one cannot im-
prove on the approximation guarantees of the UGC meta-algorithm without us-
ing exp(nΩ(1)) time. Thus in particular, if those conjectures are true then in
those settings, using the SOS meta algorithm with degree, say, ` = 10 (or even
` = polylog(n) or ` = no(1)) will not yield significantly better guarantees than
` = 2.

Remark 2.5 (Comparison with local-search based algorithms). Another approach
to optimize over non-linear problems such as (3) is to use local-search algorithms
such as gradient descent that make local improvement steps, e.g., in the direction of
the gradient, until a local optimum is reached. One difference between such local
search algorithms and the SOS algorithm is that the latter sometimes succeeds
in optimizing highly non-convex problems that have exponential number of local
optima. As an illustration, consider the polynomial P (x) = n4

∑n
i=1(x2

i − xi)2 +
(
∑n
i=1 xi)

2. Its unique global minimum is the point x = 0, but it is not hard
to see that it has an exponential number of local minima (for every x ∈ {0, 1}n,
P (x) < P (y) for every y with ‖y − x‖ ∈ [1/n, 2/n], and so there must be a local
minima in the ball of radius 1/n around x). Hence, gradient descent or other
such algorithms are extremely likely to get stuck in one of these suboptimal local
minima. However, since P is in fact a sum of squares with constant term 0, the
degree-4 SOS algorithm will output P ’s correct global minimum value.

2.2. Pseudodistributions and pseudoexpectations. Suppose we
want to show that the level-` SOS meta-algorithm achieves a good approximation
of the minimum value of P0 over the set Z = {x ∈ Rn | P1(x) = · · · = Pm(x) = 0}
for a particular kind of polynomials P0, P1, . . . , Pm ∈ R[x]. Since the estimate ϕ(`)

always lower bounds this quantity, we are to show that

min
Z

P0 ≤ f(ϕ(`)) (4)

for some particular function f (satisfying f(ϕ) ≥ ϕ) which captures our approx-
imation guarantee. (E.g., a factor c approximation corresponds to the function
f(ϕ) = cϕ.)

If we expand out the definition of ϕ(`), we see that to prove Equation (4)
we need to show that for every ϕ if there does not exists a degree-` proof that
P0(x) 6= ϕ for all x ∈ Z, then there exists an x ∈ Z such that P0(x) ≤ f(ϕ). So,
to prove a result of this form, we need to find ways to use the non-existence of a
proof. Here, duality is useful.

Pseudodistributions are the dual object to SOS refutations, and hence
the non-existence of a refutation implies the existence of a pseudodis-
tribution.
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We now elaborate on this, and explain both the definition and intuition behind
pseudodistributions. In Section 3 we will give a concrete example, by showing how
one can prove that degree-2 SOS proofs capture Cheeger’s Inequality using such an
argument. Results such as the analysis of the Goemans-Williamson Max Cut al-
gorithm [GW95], and the proof of Grothendieck’s Inequality [Gro53] can be derived
using similar methods.

Definition 2.6. Let R[x]` denote the set of polynomials in R[x] of degree at most
`. A degree-` pseudoexpectation operator for R[x] is a linear operator L that maps
polynomials in R[x]` into R and satisfies that L(1) = 1 and L(P 2) ≥ 0 for every
polynomial P of degree at most `/2.

The term pseudoexpectation stems from the fact that for every distribution
D over Rn, we can obtain such an operator by choosing L(P ) = ED P for all
P ∈ R[x]. Moreover, the properties L(1) = 1 and L(P 2) ≥ 0 turn out to capture
to a surprising extent the properties of distributions and their expectations that we
tend to use in proofs. Therefore, we will use a notation and terminology for such
pseudoexpectation operators that parallels the notation we use for distributions.
In fact, all of our notation can be understood by making the thought experiment
that there exists a distribution as above and expressing all quantities in terms
of low-degree moments of that distribution (so that they also make sense if we
only have a pseudoexpectation operator that doesn’t necessarily correspond to a
distribution).

In the following, we present the formal definition of our notation. We denote
pseudoexpectation operators as ẼD, where D acts as index to distinguish different
operators. If ẼD is a degree-` pseudoexpectation operator for R[x], we say that D
is a degree-` pseudodistribution for the indeterminates x. In order to emphasize or
change indeterminates, we use the notation Ẽy∼D P (y). In case we have only one
pseudodistribution D for indeterminates x, we denote it by {x}. In that case, we
also often drop the subscript for the pseudoexpectation and write ẼP for Ẽ{x} P .

We say that a degree-` pseudodistribution {x} satisfies a system of polynomial
equations {P1 = 0, . . . , Pm = 0} if ẼQ · Pi = 0 for all i ∈ [m] and all polynomials
Q ∈ R[x] with degQ · Pi ≤ `. We also say that {x} satisfies the constraint
{P (x) ≥ 0} if there exists some sum-of-squares polynomial S ∈ R[x] such that {x}
satisfies the polynomial equation {P = S}. It is not hard to see that if {x} was an
actual distribution, then these definitions imply that all points in the support of
the distribution satisfy the constraints. We write P < 0 to denote that P is a sum
of squares of polynomials, and similarly we write P < Q to denote P −Q < 0.

The duality between SOS proofs and pseudoexpectations is expressed in the
following theorem. We say that a system E of polynomial equations is explicitly
bounded if there exists a linear combination of the constraints in E that has the
form {

∑
i x

2
i + S = M} for M ∈ R and S ∈ R[x] a sum-of-squares polynomial.

(Note that in this case, every solution x ∈ Rn of the system E satisfies
∑
i x

2
i ≤M .)

Theorem 2.7. Let E = {P1 = 0, . . . , Pm = 0} be a set of polynomial equations with
Pi ∈ R[x]. Assume that E is explicitly bounded in the sense above. Then, exactly
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one of the following two statements holds: (a) there exists a degree-` SOS proof
refuting E, or (b) there exists a degree-` pseudodistribution {x} that satisfies E.

Proof. First, suppose there exists a degree-` refutation of the system E , i.e., there
exists polynomials Q1, . . . , Qm ∈ R[x] and a sum-of-squares polynomial R ∈ R[x]
so that −1 = R +

∑
iQiPi and degQiPi ≤ `. Let {x} be any pseudodistribution.

We are to show that {x} does not satisfy E . Indeed, Ẽ
∑
iQiPi = − Ẽ 1−ẼR ≤ −1,

which means that ẼQiPi 6= 0 for at least one i ∈ [m]. Therefore, {x} does not
satisfy E .

Next, suppose there does not exist a degree-` refutation of the system E . We are
to show that there exists a pseudodistribution that satisfies E . Let C be the cone
of all polynomials of the form R+

∑
iQiPi for sum-of-squares R and polynomials

Qi with degQiPi ≤ `. Since E does not have a degree-` refutation, the constant
polynomial −1 is not contained in C. We claim that from our assumption that the
system E is explicitly bounded it follows that −1 also cannot lie on the boundary
of C. Assuming this claim, the hyperplane separation theorem implies that there
exists a linear form L such that L(−1) < 0 but L(P ) ≥ 0 for all P ∈ C. By rescaling,
we may assume that L(1) = 1. Now this linear form satisfies all conditions of a
pseudoexpectation operator for the system E .

Proof of claim. We will show that if −1 lies on the boundary of C, then also
−1 ∈ C. If −1 is on the boundary of C, then there exists a polynomial P ∈
R[X]` such that −1 + εP ∈ C for all ε > 0 (using the convexity of C). Since
E is explicitly bounded, for every polynomial P ∈ R[X]`, the cone C contains a
polynomial of form N −P −R for a sum-of-square R and a number N . (Here, the
polynomial N − P − R ∈ C is a certificate that P ≤ N over the solution set of E .
Such a certificate is easy to obtain when E is explicitly bounded. We are omitting
the details.) At this point, we see that −1 is a nonnegative combination of the
polynomials −1 + εP , N − P − R, and R for ε < 1/N . Since these polynomials
are contained in C, their nonnegative combination −1 is also contained in the
cone C.

Recipe for using pseudoexpectations algorithmically. In many applica-
tions we will use the following dual form of the SOS algorithm:

The degree-` Sum-of-Squares Algorithm (dual form)

Input: Polynomials P0, . . . , Pm ∈ R[x]
Goal: Estimate minP0(x) over all x with P1(x) = . . . = Pm(x) = 0
Operation: Output the smallest value ϕ(`) such that there is a degree-` pseu-
dodistribution {x} satisfying the system,

{P0 = ϕ(`), P1 = 0, . . . , Pm(x) = 0} .

Theorem 2.7 shows that in the cases we are interested in, both variants of
the SOS algorithm will output the same answer. Regardless, a similar proof to
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that of Theorem 2.3 shows that the dual form of the SOS algorithm can also be
computed in time nO(`). Thus, when using the SOS meta-algorithm, instead of
trying to argue from the non-existence of a proof, we will use the existence of
a pseudodistribution. Specifically, to show that the algorithm provides an f(·)
approximation in the sense of (4), what we need to show is that given a degree-`
pseudodistribution {x} satisfying the system {P = ϕ, P1 = 0, . . . , Pm = 0}, we
can find some particular x∗ that satisfies P (x∗) ≤ f(ϕ). Our approach to doing so
(based on the authors’ paper with Kelner [BKS14b]) can be summarized as follows:

Solve the problem pretending that {x} is an actual distribution over
solutions, and if all the steps you used have low-degree SOS proofs, the
solution still works even when {x} is a low-degree pseudodistribution.

It may seem that coming up with an algorithm for the actual distribution case is
trivial, as any element in the support of the distribution would be a good solution.
However note that even in the case of a real distribution, the algorithm does not
get sampling access to the distribution, but only access to its low-degree moments.
Depending on the reader’s temperament, the above description of the algorithm,
which “pretends” pseudodistributions are real ones, may sound tautological or just
wrong. Hopefully it will be clearer after the next two sections, where we use this
approach to show how the SOS algorithm can match the guarantee of Cheeger’s
Inequality for computing the expansion, to find planted sparse vectors in random
subspaces, and to approximately recover sparsely used dictionaries.

3. Approximating expansion via sums of squares

Recall that the expansion, φG, of a d-regular graph G = (V,E) is the minimum of
φG(S) = |E(S, V \S)||/(d|S|) over all sets S of size at most |V |/2. Letting x = 1S
be the characteristic vector12 of the set S the expression |E(S, V \S)| can be written
as
∑
{i,j}∈E(xi − xj)2 which is a quadratic polynomial in x. Therefore, for every

k, computing the value φG(k) = min|S|=k |E(S, V \S)|/(dk) can be phrased as the
question of minimizing a polynomial P0 over the set of x’s satisfying the equations
{x2

i − xi = 0}ni=1 and {
∑n
i=1 xi = k}. Let φ(`(k))

G be the degree-` SOS estimate for
φG(k). We call φ(`)

G = mink≤n/2 φG(k) the degree-` SOS estimate for φG. Note
that φ(`)

G can be computed in nO(`) time. For the case ` = 2, the following theorem
describes the approximation guarantee of the estimate φ(`)

G .

Theorem 3.1. There exists an absolute constant c such that for every graph G

φG ≤ c
√
φ

(2)
G (5)

Before we prove Theorem 3.1, let us discuss its significance. Theorem 3.1 is
essentially a restatement of Cheeger’s Inequality in the SOS language—the degree
2-SOS algorithm is the UGC meta algorithm which is essentially the same as the

12The i-th coordinate of vector 1S is equal 1 if i ∈ S and equal 0 otherwise.
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algorithm based on the second-largest eigenvalue.13 There are examples showing
that (5) is tight, and so we cannot get better approximation using degree 2 proofs.
But can we get a better estimate using degree 4 proofs? Or degree log n proofs?
We don’t know the answer, but if the Small-Set Expansion Hypothesis is true, then
beating the estimate (5) is NP-hard, which means (under standard assumptions)
that to do so we will need to use proofs of degree at least nΩ(1).

This phenomenon repeats itself in other problems as well. For example, for
both the Grothendieck Inequality and the Max Cut problems, the SSEH (via the
UGC) predicts that beating the estimate obtained by degree-2 proofs will require
degree ` = nΩ(1). As in the case of expansion, we have not been able to confirm or
refute these predictions. However, we will see some examples where using higher
degree proofs does help, some of them suspiciously close in nature to the expansion
problem.

One such example comes from the beautiful work of Arora, Rao and Vazi-
rani [ARV09] who showed that

φG ≤ O(
√

log n) · φ(6)
G ,

which is better than the guarantee of Theorem 3.1 for φG � 1/ log n. However,
this is not known to contradict the SSEH or UGC, which apply to the case when
φG is a small constant.

As we will see in Section 5, for the small set expansion problem of approx-
imating φG(S) for small sets S, we can beat the degree 2 bounds with degree
` = nτ proofs where τ is a parameter tending to zero with the parameter ε of
the SSEH [ABS10]. This yields a sub-exponential algorithm for the small-set ex-
pansion problem (which can be extended to the Unique Games problem as well)
that “barely misses” refuting the SSEH and UGC. We will also see that degree
O(1) proofs have surprising power in other settings that are closely related to the
SSEH/UGC, but again at the moment still fall short of refuting those conjectures.

3.1. Proof of Theorem 3.1. This proof is largely a reformulation of the
standard proof of a discrete variant of Cheeger’s Inequality, phrased in the SOS
language of pseudodistributions, and hence is included here mainly to help clarify
these notions, and to introduce a tool— sampling from a distribution matching
first two moments of a pseudodistribution— that will be useful for us later on.
By the dual formulation, to prove Theorem 3.1 we need to show that given a
pseudodistribution {x} over characteristic vectors of size-k sets S of size k ≤ n/2
with |E(S, V \ S)| = ϕdk, we can find a particular set S∗ of size at most n/2 such
that E(S∗, V \S∗) ≤ O(

√
ϕ)d|S∗|. For simplicity, we consider the case k = n/2 (the

other cases can be proven in a very similar way). The distribution {x} satisfies
the constraints {

∑
xi = n/2}, {x2

i = xi} for all i, and {
∑
{i,j}∈E(xi − xj)

2 =

ϕd
∑
i xi}. The algorithm to find S∗ is quite simple:

13The second-largest eigenvalue is directly related to the minimum value of ϕ such that there
exists a degree-2 pseudodistribution satisfying the more relaxed system {

∑
{ij}∈E(xi − xj)2 =

ϕ · dn/2,
∑
i xi = n/2,

∑
i x

2
i = n/2}.



Sum-of-squares proofs and the quest toward optimal algorithms 15

1. Choose (y1, . . . , yn) from a random Gaussian distribution with the same
quadratic moments as {x} so that E yi = Ẽxi and E yiyj = Ẽxixj for
all i, j ∈ [n]. (See details below.)

2. Output the set S∗ = {i | yi ≥ 1/2} (which corresponds to the 0/1 vector
closest to y).

We remark that the set produces by the algorithm might have cardinality larger
than n/2, in which case we will take the complement of S∗.

Sampling from a distribution matching two moments. We will first give
a constructive proof the well-known fact that for every distribution over Rn, there
exists an n-dimensional Gaussian distribution with the same quadratic moments.
Given the moments of a distribution {x} over Rn, we can sample a Gaussian dis-
tribution {y} matching the first two moments of {x} as follows. First, we can
assume Exi = 0 for all i by shifting variables if necessary. Next, let v1, . . . , vn and
λ1, . . . , λn be the eigenvectors and eigenvalues of the matrix Mi,j = Exixj . (Note
that M is positive semidefinite and so λ1, . . . , λn ≥ 0.) Choose i.i.d random stan-
dard Gaussian variables w1, . . . , wn and define y =

∑
k

√
λkwkv

k. Since Ewkwk′

equals 1 if k = k′ and equals 0 otherwise,

E yiyj =
∑
k

λk(vk)i(v
k)j = Mi,j .

One can verify that if {x} is a degree-2 pseudodistribution then the second mo-
ment matrix M of the shifted version of x (such that Ẽxi = 0 for all i) is positive-
semidefinite, and hence the above can be carried for pseudodistributions of degree
at least 2 as well. Concretely, if we let x̄ = Ẽx be the mean of the pseudodistri-
bution, then M = Ẽ(x− x̄)(x− x̄)>. This matrix is positive semidefinite because

every test vector z ∈ Rn satisfies z>Mz = Ẽ
(
z>(x− x̄)

)2 ≥ 0.

Analyzing the algorithm. The analysis is based on the following two claims:
(i) the set S∗ satisfies n/3 ≤ |S∗| ≤ 2n/3 with constant probability and (ii) in
expectation |E(S∗, V \ S∗)| ≤ O(

√
ϕdn).

We will focus on two extreme cases that capture the heart of the arguments
for the claims. In the first case, all variables yi have very small variance so that
E y2

i ≈ (E yi)
2. In this case, because our constraints imply that E y2

i = E yi, every
variable satisfies either E y2

i ≈ 0 or E y2
i ≈ 1, which means that the distribution

of the set S∗ produced by the algorithm is concentrated around a particular set,
and it is easy to verify that this set satisfies the two claims. In the second, more
interesting case, all variables yi have large variance, which means E y2

i = 1/2 in
our setting.

In this case, each event {yi ≥ 1/2} has probability 1/2 and therefore E|S∗| =
n/2. Using that the quadratic moments of {y} satisfy E

∑
i yi = n/2 and E(

∑
i yi)

2 =
(n/2)2, one can show that these events cannot be completely correlated, which
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allows us to control the probability of the event n/3 ≤ |S∗| ≤ 2n/3 and es-
tablishes (i). For the second claim, it turns out that by convexity considera-
tions it suffices to analyze the case that all edges contribute equally to the term

1
|E|
∑
{i,j}∈E Ẽ(xi−xj)2 = ϕ , so that Ẽ(xi−xj)2 = ϕ for all {i, j} ∈ E. So we see

that {yi, yj} is a 2-dimensional Gaussian distribution with mean ( 1
2 ,

1
2 ) and covari-

ance 1
4

( 1 1−2ϕ
1−2ϕ 1

)
Thus, in order to bound the expected value of |E(S∗, V \S∗)| ,

we need to bound the probability of the event “yi ≥ 1/2 and yj < 1/2” for this
particular Gaussian distribution, which amounts to a not-too-difficult calculation
that indeed yields an upper bound of O(

√
ϕ) on this probability.

4. Machine learning with Sum of Squares

In this section, we illustrate the computational power of the sum-of-squares method
with applications to two basic problems in unsupervised learning. In these prob-
lems, we are given samples of an unknown distribution from a fixed, parametrized
family of distributions and the goal is to recover the unknown parameters from
these samples. Despite the average-case nature of these problems, most of the
analysis in these applications will be for deterministic problems about polynomials
that are interesting in their own right.

The first problem is sparse vector recovery. Here, we are given a random
basis of a d-dimensional linear subspace U ⊆ Rn of the form

U = Span{x(0), x(1), . . . , x(d)} ,

where x(0) is a sparse vector and x(1), . . . , x(d) are independent standard Gaussian
vectors. The goal is to reconstruct the vector x(0). This is a natural problem
in its own right, and is also a useful subroutine in various settings; see [DH13].
Demanet and Hand [DH13] gave an algorithm (based on [SWW12]) that recovers
x(0) by searching for the vector x in U that maximizes ‖x‖∞/‖x‖1 (which can be
done efficiently by n linear programs). It is not hard to show that x(0) has to
have less than |n|/

√
d coordinates for it to be maximize this ratio,14 and hence

this was a limitation of prior techniques. In contrast, as long as d is not too large
(namely, d = O(

√
n)), the SOS method can recover x(0) as long as it has less than

εn coordinates for some constant ε > 0 [BKS14b].
The second problem we consider is sparse dictionary learning, also known

as sparse coding. Here, we are given independent samples y(1), . . . , y(R) ∈ Rn
from an unknown distribution of the form {y = Ax}, where A ∈ Rn×m is a matrix
and x is a random m-dimensional vector from a distribution over sparse vectors.
This problem, initiated by the work Olshausen and Field [OF96] in computational
neuroscience, has found a variety of uses in machine learning, computer vision, and
image processing (see, e.g. [AAJ+13] and the references therein). The appeal of
this problem is that intuitively data should be sparse in the “right” representation

14See Lemma 5.2 below for a related statement.
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(where every coordinate corresponds to a meaningful feature), and finding this
representation can be a useful first step for further processing, just as representing
sound or image data in the Fourier or Wavelet bases is often a very useful primitive.
While there are many heuristics use to solve this problem, prior works giving
rigorous recovery guarantees such as [SWW12, AAJ+13, AGM13] all required the
vector x to be very sparse, namely less than

√
n nonzero entries.15 In contrast,

the SOS method can be used to approximately recover the dictionary matrix A as
long as x has o(n) nonzero (or more generally, significant) entries [BKS14a].

4.1. Sparse vector recovery. We say a vector x is µ-sparse if the 0/1
indicator 1supp x of the support of x has norm-squared µ = ‖1supp x‖22. The ratio
µ/‖1‖22 is the fraction of non-zero coordinates in x.

Theorem 4.1. There exists a polynomial-time approximation algorithm for sparse
vector recovery with the following guarantees: Suppose the input of the algo-
rithm is an arbitrary basis of a d + 1-dimensional linear subspace U ⊆ Rn of the
form U = Span{x(0), x(1) . . . , x(d)} such that x(0) is a µ-sparse unit vector with
µ ≤ ε · ‖1‖22 and x(1), . . . , x(d) are standard Gaussian vectors orthogonal to x(0) with
d �

√
n. Then, with probability close to 1, the algorithm outputs a unit vector x

that has correlation 〈x, x(0)〉2 ≥ 1−O(ε) with x(0).

Our algorithm will follow the general recipe we described in Section 2.2:

Find a system of polynomial equations E that captures the intended so-
lution x(0), then pretend you are given a distribution {u} over solutions
of E and show how you could recover a single solution u∗ from the low
order moments of {u}.

Specifically, we come up with a system E so that desired vector x(0) satisfies
all equations, and it is essentially the only solution to E . Then, using the SOS
algorithm, we compute a degree-4 pseudodistribution {u} that satisfies E . Finally,
as in Section 3.1, we sample a vector u∗ from a Gaussian distribution that has the
same quadratic moments as the pseudodistribution {u}.

How to encode this problem as a system of polynomial equations? By
Cauchy–Schwarz, any µ-sparse vector x satisfies ‖x‖22 ≤ ‖x‖22p ·‖1supp x‖q = ‖x‖22p ·
µ1−1/p for all p, q ≥ 1 with 1/p + 1/q = 1. In particular, for p = 2, such vectors
satisfy ‖x‖44 ≥ ‖x‖42/µ. This fact motivates our encoding of sparse vector
recovery as a system of polynomial equations. If the input specifies subspace U ⊆
Rn, then we compute the projector P into the subspace U and choose the following
polynomial equations: ‖u‖22 = 1 and ‖Pu‖44 = 1/µ0, where µ0 = ‖x(0)‖42/‖x(0)‖44.
(We assume here the algorithm is given µ0 ≤ µ as input, as we can always guess a
sufficiently close approximation to it.)

15If the distribution x consists of m independent random variables then better guarantees can
be achieved using Independent Component Analysis (ICA) [Com94]. See [GVX14] for the current
state of art in this setting. However we are interested here in the more general case.



18 Boaz Barak and David Steurer

Why does the sum-of-squares method work? The analysis of algorithm has
two ingredients. The first ingredient is a structural property about projectors of
random subspaces.

Lemma 4.2. Let U ′ ⊆ Rn be a random d-dimensional subspace with d �
√
n

and let P ′ be the projector into U ′. Then, with high probability, the following
sum-of-squares relation over R[u] holds for µ′ ≥ Ω(1) · ‖1‖22,

‖P ′u‖44 4 ‖u‖42/µ′ .

Proof outline. We can write P ′ = B>B where B is a d × n matrix whose rows
are an orthogonal basis for the subspace U ′. Therefore, P ′u = B>x where
x = Bu, and so to prove Lemma 4.2 it suffices to show that under these con-
ditions, ‖B>x‖44 4 O(‖x‖42/‖1‖42). The matrix B> will be very close to having
random independent Gaussian entries, and hence, up to scaling, ‖B>x‖44 will be
(up to scaling), close to Q(x) = 1

n

∑
〈wi, x〉4 where w1, . . . , wd ∈ Rd are chosen in-

dependently at random from the standard Gaussian distribution. The expectation
of 〈w, x〉4 is equal 3

∑
i,j x

2
ix

2
j = 3‖x‖42. Therefore, to prove the lemma, we need

to show that for n� d2, the polynomial Q(x) is with high probability close to its
expectation, in the sense that the d2 × d2 matrix corresponding to Q’s coefficients
is close to its expectation in the spectral norm. This follows from standard matrix
concentration inequalities, see [BBH+12, Theorem 7.116]).

The following lemma is the second ingredient of the analysis of the algorithm.

Lemma 4.3. Let U ′ ⊆ Rn be a linear subspace and let P ′ be the projector into U ′.
Let x(0) ∈ Rn be a µ-sparse unit vector orthogonal to U ′ and let U = Span{x(0)}⊕U ′
and P the projector on U . Let {u} be a degree-4 pseudodistribution that satisfies
the constraints {‖u‖22 = 1} and {‖Pu‖44 = 1/µ0}, where µ0 = ‖x(0)‖42/‖x(0)‖44 ≤ µ.
Suppose ‖P ′u‖44 4 ‖u‖42/µ′ is a sum-of-squares relation in R[u]. Then, {u} satisfies

Ẽ‖P ′u‖22 ≤ 4
(
µ
µ′

)1/4
.

Note that the conclusion of Lemma 4.3 implies that a vector u∗ sampled
from a Gaussian distribution with the same quadratic moments as the computed
pseudodistribution also satisfies Eu∗‖P ′u∗‖22 ≤ 4(µ/µ′)1/4 and E‖u∗‖22 = 1. By
Markov inequality, ‖u∗ − x(0)‖22 ≤ 16(µ/µ′)1/4 holds with probability at least
3/4. Since u∗ is Gaussian, it satisfies ‖u∗‖22 ≥ 1/4 with probability at least
1/2. If both events occur, which happens with probability at least 1/4, then
〈u∗, x(0)〉2 ≥ (1−O(µ/µ′))‖u∗‖22, thus establishing Theorem 4.1.

Proof of Lemma 4.3 There are many ways in which pseudodistributions behave
like actual distributions, as far as low degree polynomials are concerned. To prove
Lemma 4.3, we need to establish the following two such results:

16The reference is for the arxiv version arXiv:1205.4484v2 of the paper.
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Lemma 4.4 (Hölder’s inequality for pseudoexpectation norms). Suppose a and
b are nonnegative integers that sum to a power of 2. Then, every degree-(a + b)
pseudodistribution {u, v} satisfies

Ẽ Ei u
a
i v
b
i ≤

(
Ẽ Ei u

a+b
i

)a/(a+b)

·
(
Ẽ Ei v

a+b
i

)b/(a+b)

.

Proof sketch. The proof of the general case follows from the case a = b = 2 by an
inductive argument. The proof for the case a = b = 1 follows from the fact that
the polynomial αEi u

2
i +βEi v

2
i −
√
αβEi uivi ∈ R[u, v] is a sum of squares for all

α, β ≥ 0 and choosing α = 1/ Ẽ Ei u
2
i and β = 1/ Ẽ Ei v

2
i

Lemma 4.5 (Triangle inequality for pseudodistribution `4 norm). Let {u, v} be a
degree-4 pseudodistribution. Then,(

Ẽ‖u+ v‖44
)1/4

≤
(
Ẽ‖u‖44

)1/4

+
(
Ẽ‖v‖44

)1/4

.

Proof. The inequality is invariant with respect to the measure used for the inner
norm ‖·‖4. For simplicity, suppose ‖x‖44 = Ex4

i . Then, ‖u + v‖44 = Ei u
4
i +

4Ei u
3
i vi + 6Ei uiv

3
i +Ei v

4
i . Let A = Ẽ Ei u

4
i and B = Ẽ Ei v

4
i . Then, Lemma 4.5

allows us to bound the pseudoexpectations of the terms Ei u
a
i v
b
i , so that as desired

Ẽ‖u+ v‖44 ≤ A+ 4A3/4B1/4 + 6A1/2B1/2 + 4A1/3B3/4 +B = (A1/4 +B1/4)4 .

We can now prove Lemma 4.1. Let α0 = 〈u, x(0)〉 ∈ R[u]. By construction,
the polynomial identity ‖Pu‖44 = ‖α0x(0) +P ′u‖44 holds over R[u]. By the triangle
inequality for pseudodistribution `4 norm, for A = Ẽα4

0‖x(0)‖44 and B = Ẽ‖P ′u‖44(
1
µ0

)1/4
=
(
Ẽ‖Pu‖44

)1/4 ≤ A1/4 +B1/4

By the premises of the lemma, A = Ẽα4
0/µ0 and B ≤ 1/µ′. Together with the

previous bound, it follows that (Ẽα4
0)1/4 ≥ 1 − (µ0/µ

′)1/4. Since α2
0 4 ‖u‖22 and

{u} satisfies ‖u‖22 = 1, we have Ẽα2
0 ≥ Ẽα4

0 ≥ 1 − 4(µ0/µ
′)1/4. Finally, using

‖u − x(0)‖22 = ‖u‖22 − α2
0, we derive the desired bound Ẽ‖u − x(0)‖22 = 1 − Ẽα2

0 ≤
4(µ0/µ

′)1/4 thus establishing Lemma 4.5 and Theorem 4.1.

4.2. Sparse dictionary learning. A κ-overcomplete dictionary is a ma-
trix A ∈ Rn×m with κ = m/n ≥ 1 and isotropic unit vectors as columns (so that
‖A>u‖22 = κ‖u‖22). We say a distribution {x} over Rm is (d, τ)-nice if it satisfies

Ei x
d
i = 1 and Ei x

d/2
i x

d/2
j ≤ τ for all i 6= j ∈ [m], and it satisfies that non-square

monomial degree-d moments vanish so that Exα = 0 for all non-square degree-d
monomials xα, where xα =

∏
xαi
i for α ∈ Zn. For d = O(1) and τ = o(1), a

nice distribution satisfies that E 1
m

∑
i x

4
i �

(
1
m

∑
i x

2
i

)2
which means that it is

approximately sparse in the sense that the square of the entries of x has large
variance (which means that few of the entries have very big magnitude compared
to the rest).
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Theorem 4.6. For every ε > 0 and κ ≥ 1, there exists d and τ and a quasipolynomial-
time algorithm algorithm for sparse dictionary learning with the following
guarantees: Suppose the input consists of nO(1) independent samples17 from a dis-
tribution {y = Ax} over Rn, where A ∈ Rn×m is a κ-overcomplete dictionary
and the distribution {x} over Rm is (d, τ)-nice. Then, with high probability, the
algorithm outputs a set of vectors with Hausdorff distance18 at most ε from the set
of columns of A.

Encoding as a system of polynomial equations. Let y(1), . . . , y(R) be inde-
pendent samples from the distribution {y = Ax}. Then, we consider the poly-
nomial P = 1

R

∑
i〈y(i), u〉d ∈ R[u]d. Using the properties of nice distributions, a

direct computation shows that with high probability P satisfies the relation

‖A>u‖dd − τ‖u‖d2 4 P 4 ‖A>u‖dd + τ‖u‖d2 .

(Here, we are omitting some constant factors, depending on d, that are not im-
portant for the following discussion.) It follows that P (a(i)) = 1 ± τ for every
column a(i) of A. It’s also not hard to show that every unit vector a∗ with
P (a∗) ≈ 1 is close to one of the columns of A. (Indeed, every unit vector
satisfies P (a∗) ≤ maxi〈a(i), a∗〉d−2κ + τ . Therefore, P (a∗) ≈ 1 implies that
〈a(i), a∗〉2 ≥ κ−Ω(1/d), which is close to 1 for d � log κ.) What we will show
is that pseudodistributions of degree O(log n) allow us to find all such vectors.

Why does the sum-of-squares method work? In the following, ε > 0 and
κ ≥ 1 are arbitrary constants that determine constants d = d(ε, κ) ≥ 1 and
τ = τ(ε, κ) > 0 (as in the theorem).

Lemma 4.7. Let P ∈ R[u] be a degree-d polynomial with ±(P −‖A>u‖dd) 4 τ‖u‖d2
for some κ-overcomplete dictionary A. Let D be a degree-O(log n) pseudodistribu-
tion that satisfies the constraints {‖u‖22 = 1} and {P (u) = 1 − τ}. Let W ∈ R[u]
be a product of O(log n) random linear forms19. Then, with probability at least
n−O(1) over the choice of W , there exists a column a(i) of A such that

1
ẼDW 2

ẼDW
2 ·
(
‖u‖2 − 〈a(i), u〉2

)
≤ ε .

If ẼD is a pseudoexpectation operator, then ẼD′ : P 7→ ẼW 2P/ ẼW 2 is also a
pseudoexpectation operator (as it satisfies linearity, normalization, and nonneg-
ativity). (This transformation corresponds to reweighing the pseudodistribution

17Here, we also make the mild assumption that the degree-2d moments of x are bounded by
nO(1).

18The Hausdorff distance between two sets of vectors upper bounds the maximum distance of
a point in one of the sets to its closest point in the other set. Due to the innate symmetry of
the sparse dictionary problem (replacing a column a(i) of A by −a(i) might not affect the input
distribution), we measure the Hausdorff distance after symmetrizing the sets, i.e., replacing the
set S by S ∪ −S.

19Here, a random linear form means a polynomial 〈u, v〉 ∈ R[u] where v is a random unit vector
in Rn.
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D by the polynomial W 2.) Hence, the conclusion of the lemma gives us a new
pseudodistribution D′ such that ẼD′‖u‖22 − 〈a(i), u〉2 ≤ ε. Therefore, if we sam-
ple a Gaussian vector a∗ with the same quadratic moments as D′, it satisfies
‖a∗‖22 − 〈a(i), a∗〉2 ≤ 4ε with probability at least 3/4. At the same time, it satis-
fies ‖a∗‖2 ≥ 1/4 with probability at least 1/2. Taking these bounds together, a∗

satisfies 〈a(i), a∗〉2 ≥ (1− 16ε)‖a∗‖2 with probability at least 1/4.
Lemma 4.7 allows us to reconstruct one of the columns of A. Using similar

ideas, we can iterate this argument and recover one-by-one all columns of A. We
omit the proof of Lemma 4.7, but the idea behind it is to first give an SOS proof
version of our argument above that maximizers of P must be close to one of the
a(i)’s. We then note that if a distribution D is supported (up to noise) on at
most m different vectors, then we can essentially isolate one of these vectors by
re-weighing D using the product of the squares of O(logm) random linear forms.
It turns out, this latter argument has a low degree SOS proof as well, which means
that in our case that given D satisfying the constraint {P (u) = 1 − τ}, we can
isolate one of the a(i)’s even when D is not an actual distribution but merely a
pseudodistribution.

5. Hypercontractive norms and small-set expan-
sion

So far we have discussed the Small-Set Expansion Hypothesis and the Sum of
Squares algorithm. We now discuss how these two notions are related. One con-
nection, mentioned before, is that the SSEH predicts that in many settings the
guarantees of the degree-2 SOS algorithm are best possible, and so in particular it
means that going from degree 2 to say degree 100 should not give any substantial
improvement in terms of guarantees. Another, perhaps more meaningful connec-
tion is that there is a candidate approach for refuting the SSEH using the SOS
algorithm. At the heart of this approach is the following observation:

The small-set expansion problem is a special case of the problem of
finding “sparse” vectors in a linear subspace.

This may seem strange, as a priori, the following two problem seem completely
unrelated: (i) Given a graph G = (V,E), find a “small” subset S ⊆ V with low
expansion φG(S), and (ii) Given a subspace W ⊆ Rn, find a “sparse” vector in
W . The former is a combinatorial problem on graphs, and the latter a geometric
problem on subspaces. However, for the right notions of “small” and “sparse”,
these turn out to be essentially the same problem. Intuitively, the reason is the
following: the expansion of a set S is proportional to the quantity x>Lx where x is
the characteristic vector of S (i.e. xi equals 1 if i ∈ S and equals 0 otherwise), and
L is the Laplacian matrix of G (defined as L = I − d−1A where I is the identity,
d is the degree, and A is G’s adjacency matrix). Let v1, . . . , vn be the eigenvectors
of L and λ1, . . . , λn the corresponding eigenvalues. Then x>Lx =

∑n
i=1 λi〈vi, x〉2.
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Therefore if x>Lx is smaller than ϕ‖x‖2 and c is a large enough constant, then
most of the mass of x is contained in the subspace W = Span{vi : λi ≤ cϕ}.
Since S is small, x is sparse, and so we see that there is a sparse vector that is
“almost” contained in W . Moreover, by projecting x into W we can also find a
“sparse” vector that is actually contained in W , if we allow a slightly softer notion
of “sparseness”, that instead of stipulating that most coordinates are zero, only
requires that the distribution of coordinates is very “spiky” in the sense that most
of its mass is dominated by the few “heavy hitters”.

Concretely, for p > 1 and δ ∈ (0, 1), we say that a vector x ∈ Rn is (δ, p)-sparse
if Ei x

2p
i ≥ δ1−p(Ei x

2
i )
p. Note that a characteristic vector of a set of measure δ

is (δ, p)-sparse for any p. The relation between small-set-expansion and finding
sparse vectors in a subspace is captured by the following theorem:

Theorem 5.1 (Hypercontractivity and small-set expansion [BBH+12], informal
statement). Let G = (V,E) be a d-regular graph with Laplacian L. Then for every
p ≥ 2 and ϕ ∈ (0, 1),

1. (Non-expanding small sets imply sparse vectors.) If there exists S ⊆ V
with |S| = o(|V |) and φG(S) ≤ ϕ then there exists an (o(1), p)-sparse vector
x ∈ W≤ϕ+o(1) where for every λ, W≤λ denotes the span of the eigenvectors
of L with eigenvalue smaller than λ.

2. (Sparse vectors imply non-expanding small sets.) If there exists a (o(1), p)-
sparse vector x ∈ W≤ϕ, then there exists S ⊆ V with |S| = o(|V |) and
φG(S) ≤ ρ for some constant ρ < 1 depending on ϕ.

The first direction of Theorem 5.1 follows from the above reasoning, and was
known before the work of [BBH+12]. The second direction is harder, and we
omit the proof here. The theorem reduces the question of determining whether
there for small sets S, the minimum of φG(S) is close to one or close to zero, into
the question of bounding the maximum of Ei x

2p
i over all unit vectors in some

subspace. The latter question is a polynomial optimization problem of the type
the SOS algorithm is designed for! Thus, we see that we could potentially resolve
the SSEH if we could answer the following question:

What is the degree of SOS proofs needed to certify that the 2p-norm is
bounded for all (Euclidean norm) unit vectors in some subspace W?

We still don’t know the answer to this question in full generality, but we do
have some interesting special cases. Lemma 4.2 of Section 4.1 implies that if W is
a random subspace of dimension�

√
n then we can certify that Ei x

4
i ≤ O(Ei x

2
i )

2

for all x ∈ W via a degree-4 SOS proof. This is optimal, as the 4-norm simply
won’t be bounded for dimensions larger than

√
n:

Lemma 5.2. Let W ⊆ Rn have dimension d and p ≥ 2, then there exists a unit
vector x ∈W such that

Ei x
2p
i ≥ dp

n (Ei x
2
i )
p
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Hence in particular any subspace of dimension d � n1/p contains a (o(1), p)-
sparse vector.

Proof of Lemma 5.2. Let P be the matrix corresponding to the projection operator
to the subspace W . Note that P has d eigenvalues equalling 1 and the rest equal
0, and hence Tr(P ) = d and the Frobenius norm squared of P , defined as

∑
P 2
i,j ,

also equals d. Let xi = Pei where ei is the ith standard basis vector. Then
∑
xii

is the trace of P which equals d and hence using Cauchy-Schwarz∑
(xii)

2 ≥ 1

n

(∑
xi

)2

=
Tr(P )2

n
=
d2

n
.

On the other hand, ∑
i

∑
j

(xi)2
j =

∑
i,j

(Pei)2
j =

∑
P 2
i,j = d .

Therefore, by the inequality (
∑
ai)/(

∑
bi) ≤ max ai/bi, there exists an i such that

if we let x = xi then x2
i ≥ d

n

∑
j x

2
j = dEx2

j . Hence, just the contribution of the

ith coordinate to the expectation achieves Ej x
2p
j ≥ dp

n

(
Ej x

2
j

)p
.

Lemma 5.2 implies the following corollary:

Corollary 5.3. Let p, n ∈ N, and W be subspace of Rn. If Ei x
2p
i ≤ O(Ei x

2
i )
p),

then there is an O(n1/p)-degree SOS proof for this fact. (The constants in the O(·)
notation can depend on p but not on n.)

Proof sketch. By Lemma 5.2, the condition implies that d = dimW ≤ O(n1/p),
and it is known that approximately bounding a degree-O(1) polynomial on the d-
dimensional sphere requires an SOS proof of at most O(d) degree (e.g., see [DW12]
and the references therein).

Combining Corollary 5.3 with Theorem 5.1 implies that for every ε, δ there
exists some τ (tending to zero with ε), such that if we want to distinguish between
the case that an n-vertex graph G satisfies φG(S) ≤ ε for every |S| ≤ δn, and
the case that there exists some S of size at most δn with φG(S) ≥ 1 − ε, then
we can do so using a degree nτ SOS proofs, and hence in exp(O(nτ )) time. This
is much better than the trivial

(
n
δn

)
time algorithm that enumerates all possible

sets. Similar ideas can be used to achieve an algorithm with a similar running
time for the problem underlying the Unique Games Conjecture [ABS10]. If these
algorithms could be improved so the exponent τ tends to zero with n for a fixed
ε, this would essentially refute the SSEH and UGC.

Thus, the question is whether Corollary 5.3 is the best we could do. As we’ve
seen, Lemma 4.2 shows that for random subspaces we can do much better, namely
certify the bound with a constant degree proof. Two other results are known of
that flavor. Barak, Kelner and Steurer [BKS14b] showed that if a d-dimensional
subspace W does not contain a (δ, 2)-sparse vector, then there is an O(1)-degree
SOS proof that it does not contain (or even almost contains) a vector with O( δn

d1/3
)
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nonzero coordinates. If the dependence on d could be eliminated (even at a signif-
icant cost to the degree), then this would also refute the SSEH. Barak, Brandão,
Harrow, Kelner, Steurer and Zhou [BBH+12] gave anO(1)-degree SOS proof for the
so-called “Bonami-Beckner-Gross (2, 4) hypercontractivity theorem“ (see [O’D14,

Chap. 9]). This is the statement that for every constant k, the subspace Wk ⊆ R2t

containing the evaluations of all degree ≤ k polynomials on the points {±1}t does
not contain an (o(1), 2)-sparse vector, and specifically satisfies for all x ∈Wk,

Ex4
i ≤ 9k(Ex2

i )
2 . (6)

On its own this might not seem so impressive, as this is just one particular subspace.
However, this particular subspace underlies much of the evidence that has been
offered so far in support of both the UGC and SSEH conjectures. The main evi-
dence for the UGC/SSEH consists of several papers such as [KV05, KS09, RS09a,
BGH+12] that verified the predictions of these conjectures by proving that various
natural algorithms indeed fail to solve some of the computational problems that
are hard if the conjectures are true. These results all have the form of coming up
with a “hard instance” G on which some algorithm A fails, and so to prove such
a result one needs to do two things: (i) compute (or bound) the true value of the
parameter on G, and (ii) show that the value that A outputs on G is (sufficiently)
different than this true value. It turns out that all of these papers, the proof of (i)
can be formulated as low degree SOS proof, and in fact the heart of these proofs is
the bound (6). Therefore, the results of [BBH+12] showed that all these “hard in-
stances” can in fact be solved by the SOS algorithm using a constant degree. This
means that at the moment, we don’t even have any example of an instance for the
problems underlying the SSEH and UGC that can be reasonably conjectured (let
alone proved) hard for the constant degree SOS algorithm. This does not mean
that such instances do not exist, but is suggestive that we have not yet seen the
last algorithmic word on this question.

Acknowledgments. We thank Amir Ali Ahmadi for providing us with refer-
ences on the diverse applications of the SOS method.
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