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Abstract. For a Boolean function f, let D(f) denote its deterministic
decision tree complexity, i.e., minimum number of (adaptive) queries
required in worst case in order to determine f. In a classic paper, Rivest
and Vuillemin [19] show that any non-constant monotone property P :

{0, 1}(
n
2) → {0, 1} of n-vertex graphs has D(P) = Ω(n2).

We extend their result to 3-uniform hypergraphs. In particular, we show

that any non-constant monotone property P : {0, 1}(
n
3) → {0, 1} of n-

vertex 3-uniform hypergraphs has D(P) = Ω(n3).

Our proof combines the combinatorial approach of Rivest and Vuillemin
with the topological approach of Kahn, Saks, and Sturtevant. Interest-
ingly, our proof makes use of Vinogradov’s Theorem (weak Goldbach
Conjecture), inspired by its recent use by Babai et. al. [1] in the con-
text of the topological approach. Our work leaves the generalization to
k-uniform hypergraphs as an intriguing open question.
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query complexity; group actions

1 Introduction

The decision tree model aka query model [3], perhaps due to its simplicity and
fundamental nature, has been extensively studied over decades; yet there remain
some outstanding open questions about it.

Fix a Boolean function f : {0, 1}n → {0, 1}. A deterministic decision tree Df

for f takes x = (x1, . . . , xn) as an input and determines the value of f(x1, . . . , xn)
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using queries of the form “ is xi = 1? ”. Let C(Df , x) denote the cost of the com-
putation, that is the number of queries made byDf on input x. The deterministic
decision tree complexity of f is defined as D(f) = minDf

maxx C(Df , x).
The function f is called evasive if D(f) = n, i.e., one must query all the

variables in worst case in order to determine the value of the function.

1.1 The Anderaa-Rosenberg-Karp Conjecture

A Boolean fuction f is said to be monotone (increasing) if for any x ≤ y we
have f(x) ≤ f(y), where x ≤ y iff for all i : xi ≤ yi. A property of n-vertex

graphs is a Boolean function P : {0, 1}(
n
2) → {0, 1} whose variables are identified

with the
(
n
2

)
potential edges of n-vertex graphs and the function P is invariant

under relabeling of the vertices. P(G) = 0 means that the graph G satisfies the
property. A natural theme in the study of decision tree complexity is to exploit
the structure within f to prove strong lower bounds on its query complexity.
A classic example is the following conjecture attributed to Anderaa, Rosenberg,
and Karp, asserting the evasiveness of monotone graph properties:

Conjecture 1 (ARK Conjecture). (cf. [8]) Every non-trivial monotone graph prop-
erty is evasive.

Some natural examples of monotone graph properties are: connectedness, pla-
narity, 3-colorability, containment of a fixed subgraph etc.

Since its origin around 1975, the ARK Conjecture has caught the imagination
of generations of researchers resulting in beautiful mathematical ideas; yet - to
this date - remains unsolved. A major breakthrough on ARK Conjecture was
obtained by Kahn, Saks, and Sturvevant [8] via their novel topological approach.
They settled the conjecture when the number of vertices of the graphs is a power
of prime number. The topological approach subsequently turned out useful for
solving some other variants and special cases of the conjecture. For example:
Yao confirms the variant of the conjecture for monotone properties of bipartite
graphs [25]. More recently, building on Chakraborty, Khot, and Shi’s work [4],
Babai et. al. [1] show that under some well-known conjectures in number theory,
forbidden subgraph property - containment of a fixed subgraph in the graph - is
evasive. We refer the readers to the lecture notes [12] by Lovász and Young for
a nice exposition of the works around this topic.

1.2 The Evasiveness Conjecture

The key feature of monotone graph properties is that they are sufficiently sym-
metric. In particular, they are transitive Boolean functions, i.e., there is a group
acting transitively on the set of variables under which the function remains
invariant. A natural question was raised: how much symmetry is necessary in or-
der to guarantee the evasiveness? The following generalization (cf. [13]) of ARK
Conjecture asserts that only transitivity suffices.



Conjecture 2 (Evasiveness Conjecture (EC)). If f is a non-trivial monotone
transitive Boolean function, then f is evasive.

Rivest and Vuillemin [19] confirm the above conjecture when the number of
variables is a power of prime number. The general case remains widely open.

1.3 The Weak Evasiveness Conjecture

Recently Kulkarni [7] proposes to investigate the following:

Conjecture 3 (Weak Evasiveness Conjecture). If {fn} is a sequence of non-trivial
monotone transitive Boolean functions then for every ϵ > 0

D(fn) ≥ n1−ϵ.

The best known lower bound in this context is D(f) ≥ R(f) ≥ n2/3, which
follows from the work of O’Donnell et. al. [18]. It turns out that [7] the above
conjecture is equivalent to the EC! Furthermore: the Rivest and Vuillemin [19]
result, which settles the ARK conjecture up to a constant factor, in fact confirms
the Weak-EC for graph properties.

Theorem 1 (Rivest and Vuillemin). If P : {0, 1}(
n
2) → {0, 1} is a non-trivial

monotone property of graphs on n vertices then D(P) = Ω(n2).

It is interesting to note that the proof of equivalence in Kulkarni [7] does not
hold between ARK and Weak-ARK. Hence: even though Weak-ARK is settled,
the ARK is still wide open.

1.4 Our results on the Weak EC

In this paper we prove an analogue of Rivest and Vuillemin’s result (Theorem 1)
for 3-uniform hypergraphs. A property of 3-uniform hypergraphs on n vertices

is a Boolean function P : {0, 1}(
n
3) → {0, 1} whose variables are labeled by the(

n
3

)
potential edges of n-vertex 3-uniform hypergraphs and P is invariant under

relabeling of the vertices.

Theorem 2. If P : {0, 1}(
n
3) → {0, 1} is a non-trivial monotone property of

3-uniform hypergraphs on n vertices, then

D(P) = Ω(n3).

Our proof technique can be briefly described as follows: First we combine the
combinatorial approach of Rivest and Vuillemin with the topological approach
of Kahn, Saks, and Sturtevant to prove the result when n = 3k. Then we use
the 3k case to prove the result for arbitrary n via an interesting application of



the famous Vinogradov’s Theorem that asserts that every odd integer can be
expressed as sum of three prime numbers.

Interestingly, we do not yet know how to generalize our proof technique to
k-uniform hypergraphs. But in this context we are able to prove a partial result
on 4-uniform hypergraphs.

Theorem 3. Let P : {0, 1}n×n×n×n → {0, 1} be a 4-uniform 4-partite hyper-
graph property of 4n-vertex hypergraphs. If P is non-trivial and monotone, then

D(P) = Ω(n4).

The organisation of this paper is as follows. Section 2 contains the prelim-
inaries. Section 3 contains the proof of n = 3k case. Section 4 uses 3k case to
prove the general case, in particular it contains the proof of Theorem 2. Section 5
contains some partial results for 4-uniform hypergraphs. Section 6 contains con-
clusion and open ends.

2 Preliminaries

In this paper [n] denotes the set {1, . . . , n}.

2.1 Rivest-Vuillemin: combinatorial approach

In a beautiful paper, Rivest and Vuillemin show that the ARK Conjecture holds
up to a constant factor, i.e., any non-trivial monotone graph property is weakly
evasive. As an intermediate step [19] show the following:

Theorem 4 (Rivest-Vuillemin). If n is a power of a prime number and f :
{0, 1}n → {0, 1} is any function invariant under a transitive permutation group
such that f(0, . . . , 0) ̸= f(1, . . . , 1), then D(f) = n.

In this paper we prove the weak-evasiveness of monotone properties of 3-
uniform hyper-graphs, which extends the result of Rivest and Vuillemin for graph
properties. Our proof is inspired by the one by Rivest and Vuillemin. Interest-
ingly we use, in addition to the combinatorial approach of Rivest and Vuillemin,
the powerful topological approach of Kahn, Saks, and Sturtevant combined with
a deep theorem in number theory.

2.2 Kahn-Saks-Sturtevant: topological approach

In a seminal paper, Kahn, Saks, and Sturtevant [8] introduce a novel topological
approach to settle the ARK Conjecture when the number of vertices of graphs is
a power of a prime number. Their crucial observation was that non-evasiveness
of monotone properties has a strong topological consequence, namely the corre-
sponding simplicial complex is contractible to a point. Further they exploit this
topological consequence via Oliver’s Fixed Point Theorem [17] under the actions
of certain special type of groups.



We say that a group Γ satisfies Olivers Condition if there exist (not nec-
essarily distinct) primes p, q such that Γ has a (not necessarily proper) chain of
subgroups Γ2 ◁ Γ1 ◁ Γ such that Γ2 is a p-group, Γ1/Γ2 is cyclic, and Γ/Γ1 is
a q-group, where p-group means a group whose order is a power of a prime p.

Theorem 5 (Kahn-Saks-Sturtevant). If Γ satisfies Oliver’s Condition and
acts transitively on the set S of variables, then for any non-trivial monotone
Γ -invariant function f : {0, 1}S → {0, 1}, we have: D(f) = |S|.

Kahn, Saks, and Sturtevant made the assumption that the number of vertices
of the graph - n is a prime power and used the following group that satisfies
Oliver’s Condition:

AFF (n) := AGL(1, n),

the group of affine transformations x 7→ ax + b over the field Fn of order n;
a ∈ Fn − {0}, b ∈ Fn. The two key properties of this group are that it is a
cyclic extension of a p-group, i.e., it satisfies Oliver’s Condition; moreover it acts
doubly transitively on [n], i.e., any (i, j) can be mapped to any (i′, j′) for i ̸= j
and i′ ̸= j′.

In this paper, we make use of the AFF (n), as well as another group-theoretic
construction called wreath product. We recall the definition, and refer the readers
to [20, Section 1.6] detailed discussion. For a finite set S, let Sym(S) be the
symmetric group on S. Let G ≤ Sym(S) and H ≤ Sym(T ). The wreath product
G ≀H is a permutation group acting on S×T , defined as follows. The base group
of the wreath product is the direct product GT , that is |T | copies of G. For t ∈ T ,
the Gt independently acts on the corresponding copy S × {t}. Specifically, for
(ω, δ) ∈ S × T , and f ∈ GT , (s, t)f = (sf(t), t). G ≀H also contains a subgroup
H∗ isomorphic to H, acting only on the second component of S×T . That is for
h ∈ H, (s, t)h = (s, th). G ≀H is the group generated by GS and H∗.

2.3 Prime-partition via Vinogradov’s Theorem

The Goldbach Conjecture asserts that every even integer can be written as the
sum of two primes. Vinogradov’s Theorem [24] says that every sufficiently large
odd integer m is the sum of three primes m = p1 + p2 + p3. We use here Hasel-
groves version [5] of Vinogradov’s theorem which states that we can require the
primes to be roughly equal: pi ∼ m/3. This can be combined with the Prime
Number Theorem to conclude that every sufficiently large even integer m is a
sum of four roughly equal primes.

This fact was first used by Babai et. al. [1] to construct the group actions
satisfying Oliver’s Condition in order to show that any monotone property of
sparse graphs is evasive.

3 3-uniform Hypergraphs: n = 3k

We prove the following theorem in this section.



Theorem 6. Let n = 3k, and P be 3-uniform hypergraph property of n-vertex
hypergraphs. If P is non-trivial and monotone, then D(P) = Ω(n3).

Proof. Our proof strategy is inspired by the one by Rivest and Vuillemin’s proof
that non-trivial and monotone graph properties of graphs with n = 2k vertices
are weakly evasive. The basic strategy is to set up a family of graphs G0 ⊂
G1 ⊂ . . . ⊂ Gk, among which there are two adjacent graphs Gℓ and Gℓ+1

such that Gℓ satisfies P whereas Gℓ+1 does not. Now we start with the smaller
graph Gℓ and gradually add edges to it under the assumption that D(P) is
not Ω(n3) and conclude that even after adding these edges the property P is
satisfied. Eventually, after adding sufficiently many edges this would lead to a
contradiction as we would be able to conclude that Gℓ+1 satisfies the property.

Rivest and Vuillemin choose Gℓ to be the disjoint union of 2n−ℓ cliques on
2ℓ vertices. Further they use Theorem 4 to add the edges to finally lead to
a contradiction. Similar to Rivest and Vuillemin, we start our proof by using
Theorem 4 to add certain type of edges. However, while handling the 3-uniform
hypergraph properties, we face more complications. The natural choice of Gi to
be disjoint union of hyper-cliques seems to fail and Theorem 4 seems inadequate
in dealing with all types of edges. We overcome this obstacle by suitably changing
the family of graphs and by making use of the topological approach of Kahn,
Saks, and Sturtevant (Theorem 5) to deal with the other type of edges.

3.1 Our choice of the graph family: cliques with spikes

To prove the theorem we consider the following family of hypergraphs on n
vertices. For j ∈ {0, 1, . . . , k}, let Gj be the hypergraph defined as follows: firstly
Gj contains a disjoint union of 3k−j copies of cliques on 3j vertices. Then if an
edge {u, v, w} satisfies that u, v are in the one clique while w is in another one,
it is also included in Gj . We call such edges spikes.

As G0 is the empty hypergraph, and Gk is the complete hypergraph, we see
that G0 satisfies P while Gk does not as P is non-trivial. This suggests that
there exists ℓ ∈ {0, 1, . . . , k − 1} such that Gℓ satisfies the property while Gℓ+1

does not as P is monotone.
Now collect the cliques in Gℓ into three groups V1 ∪ V2 ∪ V3, each group

containing 3k−ℓ−1 cliques. We then consider the property P1 induced by P after
fixing the values at the edges {{u, v, w} | u, v, w ∈ Vi, or {u, v, w} ∈ Gℓ} as in
Gℓ. Note that P1 is a non-trivial property, because P is monotone and the graph
Gℓ+1 is contained in the graph Gℓ

∪
E where E denotes the edges corresponding

to the domain of P1.

3.2 Two types of edges

The edges not fixed in P1 are of two types:

Type 1 T1 = {{v1, v2, v3} | vi ∈ Vi, i ∈ [3]}.
Type 2 T2 = {{u, v, w} | u, v ∈ Vi, w ∈ Vj , i ̸= j}. Note that v, w cannot come

from the same clique otherwise it would have been fixed.



V1 V2 V3

Type 1

Type 2

spike

Fig. 1. An illustration of the spike (green), and Type 1 (red) and Type 2 (blue) edges.

Before going on we define two group actions on V1. Firstly, H1 = Z3ℓ ≀Z3k−1−ℓ

acts on V1, where 3k−1−ℓ copies of Z3ℓ act independently on the 3k−1−ℓ cliques,
and Z3k−1−ℓ permutes among the cliques. Secondly, we define the group action
of H2 = Z3ℓ ≀ AFF (3k−1−ℓ) on V1 similarly to H1. That is, 3k−1−ℓ copies of
Z3ℓ act independently on the 3k−1−ℓ cliques, and AFF (3k−1−ℓ) acts on the
cliques in doubly-transitive way. Recall that for a vector space V , AFF (V ) is
the affine group on V . H1 and H2 are both subgroups of the automorphism
group of induced subgraph of Gℓ on V1. Then note that H1 is a 3-group, and
H2 is transitive on {{u, v} | u and v are from different cliques}. Finally, it can
be verified that H2 belongs to the group class as in Theorem 5.

Table 1. Groups used to handle Type 1 and Type 2 edges

Type 1 (Z3ℓ ≀ Z3k−1−ℓ)× (Z3ℓ ≀ Z3k−1−ℓ)× (Z3ℓ ≀ Z3k−1−ℓ)

Type 2 (Z3ℓ ≀AFF (3k−1−ℓ))× (Z3ℓ ≀ Z3k−1−ℓ)

3.3 Adding Type 1 edges

Now we consider the property P2 induced by P1 by setting Type 2 edges to be
absent. Note that the number of Type 1 edges is 33(k−1), thus a prime power.
Let H1 ×H1 ×H1 act on V1 × V2 × V3 in a natural way: each copy of H1 acts
on vertices of Vi independently. It is seen that this action preserves the fixed
subgraph, and P2 is invariant under this action. If after adding all Type 1 edges
P2 would not be satisfied, then by the Rivest-Vuillemin theorem, P2 is evasive.
That is D(P) ≥ D(P2) = 33(k−1) = Ω(n3) and we would be done.



3.4 Adding Type 2 edges

Let P3 be the property induced by P1 by setting Type 1 edges to be present.
The discussion from last paragraph suggests that P3 is a non-trivial property,
and note that P3 only has Type 2 edges left unfixed. For i, j ∈ [3], i ̸= j, let
T2(i, j) = {{u, v, w} | u, v ∈ Vi, w ∈ Vj}. Let P4 be the property induced by P3

by setting edges in T2 \ T2(1, 2) to be absent. Note that |T2(1, 2)| = Ω(n3).

(Oliver’s Condition Holds) Consider the group H = H2 ×H1 acting on V1 × V2

in a natural way. It is verified that H preserves the structure of the fixed graph,
and P3 is invariant under H. It is easy to check that H belongs to the group
class described in Theorem 5. This allows us to apply Theorem 5 (the Kahn,
Saks and Sturtevant Theorem) to conclude that either P4 is trivial; if not then
its query complexity is Ω(n3) and we would be done.

(Orbits are large) Here we use a key property of the action of H, namely that
the orbit of any edge is of large size: Ω(n3). Thus we can add edges in T2(1, 2)
to get another restriction P5. Then we use the same group as above for V2 × V3

to add edges in T2(2, 3).

3.5 Deriving a contradiction

Continuing this way we can keep adding T2(i, j) edges while maintaining that
the hyper-graph still satisfies the property. But then we would get Gℓ+1 as a
subgraph which by our choice of ℓ, does not satisfy the property. Contradiction!

4 3-uniform Hypergraphs: General n

In this section we prove the main theorem. Theorem 1.5, restated. If P :

{0, 1}(
n
3) → {0, 1} is a non-trivial monotone property of 3-uniform hypergraphs

on n vertices, then D(P) = Ω(n3).

Proof. The natural way of extending Rivest and Vuillemin’s argument for 3-
uniform hyper graphs for arbitrary n leads to analysis of several types of edges.
We do not know an easy way to handle this via combinatorial approach. We
can use the topological approach together with an interesting theorem about
partitioning an integer into prime numbers to patch up the 3k case to arbitrary
n.

4.1 Prime-partition of n via Vinogradov’s Theorem

We distinguish two cases: (Case 1) n is even and (Case 2) n is odd. Let us
consider Case 1: n is even. The other case can be handled in a similar fashion.
Let k be the largest power of 3 that does not exceed n. Since n is odd, we can
write (using the above mentioned Hasegrove’s Version of Vinogradov’s Theorem)
n = p1 + p2 + p3 + 3k−1, where pis are prime numbers and pi ∼ pj . Moreoever:
note that by our choice of k we can assume: pi ≤ 3k.



4.2 Patching up 3k case to general n

We partition [n] into parts of size p1, p2, p3 and 3k−1 as described in the previous
section. Let P be a non-trivial monotone property of 3-uniform hyper-graphs on
n vertices. Theorem 6 allows us to conclude that either (a) D(P) = Ω(n3) or
(b) any 3k vertex (hyper) clique satisfies P. In Case (a) we are done. So let
us assume that we are in Case (b). Since p1 ≤ 3k and since P is monotone,
we may assume that the clique on p1 vertices satisfies the property. Now we
assume that the clique on p1 vertices is present and restrict our attention to the
induced property P2 of 3-uniform hypergraphs on p2+ p3+3k−1 vertices. Again
using the fact that p2 ≤ 3k we can assume that the clique on p2 vertices is also
present in addition to the clique on p1 vertices. Now we move our attention to
the induced property P2 on p3 + 3k−1 vertex graphs. In one more step, we can
move our attention to the induced property P3 on 3k−1 graphs which assumes
that the cliques on the p1, p2, and p3 vertices are present. Finally, with the use of
Theorem 6, we can conclude that the clique on the 3k−1 vertices is also present;
if not then we could already conclude D(P) = Ω(n3).

4.3 Two types of edges

Now we have a restriction P ′ of our original property P in which the cliques on
p1, p2, p3 and 3k−1 vertices are present. We partition the absent edges into two
types:

Type A the three endpoints of the edges belong to different cliques;
Type B two of the three endpoints belong to one clique and the remaining

endpoint belongs to a different clique.

p1 p2 p3 3k−1

Type A

Type B

Type A

Type B

Fig. 2. An illustration of Type A (red) and Type B (blue) edges.



Table 2. Groups used to handle Type A and Type B edges

Type A Zp1 × Zp2 × Zp3 , and Zpi × Zpj × Z3k−1

Type B AFF (pi)× Zpj , and AFF (pi)× Z3k−1 , and AFF (3k−1)× Zpi

4.4 Adding Type A edges

Firstly: we conclude that all Type A edges must also be present; if not then
D(P) = Ω(n3). For this we use the following two types of groups: Zp1×Zp2×Zp3

and Zpi × Zpj × Z3k−1 .

4.5 Adding Type B edges

Secondly: after adding all Type A edges we can conclude that all Type B edges
must also be present; if not then D(P) = Ω(n3). For this we use the following
three types of groups: AFF (pi)×Zpj and AFF (pi)×Z3k−1 and AFF (3k−1)×Zpi .

(Oliver’s Condition Holds) It is easy to check that all the groups that we use
are the right ones for using the topological approach, i.e., they are “q-group
extension of cyclic extension of p-groups,” i.e., they satisfy Oliver’s Condition.

(Orbits are large) A crucial property that we used in our proof is that the orbit
of any edge under any of our group actions is large: Ω(n3).

4.6 Deriving a contradiction

After adding both Type A and Type B edges to the cliques on the p1, p2, p3 and
3k−1 vertices, we can conclude that the clique on n vertices must satisfy P; this
contradicts with our initial assumption that P is non-trivial.

This completes the proof of Theorem 2.

5 4-uniform 4-partite Hypergraphs

In this section we prove the weak evasiveness for properties of 4-uniform 4-partite
hypergraphs. Theorem 1.6, restated. Let P : {0, 1}n×n×n×n → {0, 1} be a
4-uniform 4-partite hypergraph property of 4n-vertex hypergraphs. If P is non-
trivial and monotone, then D(P) = Ω(n4).
Proof: If n is prime, the result directly follows from Theorem 4.

In the case when n is not prime, let p be a prime number such that p < n < 2p.
Let V = V1 ∪ V2 ∪ V3 ∪ V4, |Vi| = n be the vertex set. The strategy is again by
contrapositive: assume D(P) is not of Ω(n4). Then we shall start from the empty
graph, and then add the edges with different types while keeping the value of
the property not change. Finally we will get that the complete graph satisfies
the property, which contradicts to the condition of being a non-trivial property.

Let G0 be the empty graph; thus f(G0) = 0. Let Vi = Ai ∪ Bi, where Ai is
a vertex set of size p (i = 1, 2, 3, 4), and Bi = Vi \Ai.



5.1 Adding edges in A1 × A2 × A3 × A4

Consider a restriction P1 of P where all the variables outside A1×A2×A3×A4

are set to be 0. P1 is a monotone transitive invariant function with p4 variables,
by Theorem 4 P1 is trivial, otherwise D(P1) = p4 = Ω(n4). Let G1 be the graph
with edges A1 ×A2 ×A3 ×A4, thus f(G1) = 0.

5.2 Adding edges in B1 × A2 × A3 × A4

We will add all the edges in B1 × A2 × A3 × A4 to G1, resulting in a graph G2

with edges V1 × A2 × A3 × A4. Before doing that we consider a graph G′
1 with

edges B1 × A2 × A3 × A4. Since p > n − p, from the monotone and symmetry
condition, we have f(G′

1) ≤ f(G1) = 0. Consider a restriction P2 of P where all
the edges in G′

1 are set to 1 and all the edges outside V1 × A2 × A3 × A4 are
set to 0. It is clear that P2 is a monotone transitive invariant function with p4

variables, thus from Theorem 4 P2 is a constant, otherwise D(P2) = p4 = Ω(n4).
Hence we get f(G2) = 0.

5.3 Adding edges in V1 × B2 × A3 × A4

Similar to the previous step, we first use the monotone and symmetry condition
to “delete” some edges fromG2. LetG

′
2 be the graph with edges V1×B2×A3×A4.

From the monotone and symmetry condition, f(G′
2) ≤ f(G2) = 0. Consider the

restriction P3 of P where all the edges in G′
2 are set to 1 and all the edges outside

V1×V2×A3×A4 are set to 0. It is easy to see that P3 can be further partitioned
into two properties isomorphism to P1 and P2, respectively. By repeating the
steps in Section 5.1 and 5.2 we conclude that P3 is trivial, otherwise D(P3) =
Ω(n4). Hence f(G3) = 0, where G3 is the graph with edges V1 × V2 ×A3 ×A4.

Adding edges in V1 × V2 × B3 × A4 and V1 × V2 × V3 × B4

These two steps are similar to the previous step, and we omit them here. After
doing these steps, we get that the value of the complete graph is also 0, which
contradicts the non-trivial condition. □
Remark 1. We note that the proof strategy for Theorem 1.6 can be extended to
show that any k-uniform k-partite hypergraph property is weakly evasive, when
k is a constant. On the other hand, we do not know how to prove the weak
evasiveness for 4-uniform hypergraph properties.

6 Conclusion

In this paper we are able to confirm a special case of the Weak-EC. In particular,
we have shown that any non-trivial monotone property of 3-uniform hypergraphs
is weakly evasive. It is interesting to see how far can one generalize our results.

Question 1. Is any non-trivial monotone property of k-uniform hypergraphs
weakly evasive?
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