
On the role of private oins in unbounded-roundInformation ComplexityAlexander Kozahinsky∗
∗Mosow State University, Faulty of Mehanis and Mathematiskozlah�mail.ru2014AbstratWe prove a version of "Reversed Newman Theorem" in ontext of in-formation omplexity: every private-oin ommuniation protool with in-formation omplexity I and ommuniation omplexity C an be replaedby publi-oin protool with the same behavior so that it's informationomplexity does not exeed O

(

√

IC

). This result holds for unbounded-round ommuniation whereas previous results in this area dealt withone-way protools. As an appliation it gives an undiret way to prove abest-known ompression theorem in Information Complexity.1 IntrodutionInformation omplexity of ommuniation protool π, denoted by ICµ(π), is theamount of information Alie and Bob reveal about their inputs while omputing
π in a assumption that input are distributed aording µ. Information omplex-ity is useful foremost in ontext of a Diret-Sum problem in Communiationomplexity. Let us �rstly desribe the substane of this problem. Fix a smallonstant ǫ. Suppose that you are given an arbitrary funtion f : X ×Y → {0, 1}and probability distribution µ on the set X × Y, (here X is orresponded toAlie and Y is orresponded to Bob). De�ne Dµ

ǫ (f) as follows:
Dµ

ǫ (f) = inf
π

CC(π),where in�mum ranges over all deterministi ommuniation protools π whihoutput 1 bit π(x, y), suh that µ {(x, y) |π(x, y) 6= f(x, y)} ≤ ǫ. Imagine then,that you task is to ompute n opies of f in parallel. Consider funtion fn :
(X × Y)n → {0, 1}n and probability distribution µn on the set (X × Y)n, whihare de�ned as follows:

fn ((x1, y1), . . . , (xn, yn)) = (f(x1, y1), . . . , f(xn, yn)) ,1
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µn ((x1, y1), . . . , (xn, yn)) = µ(x1, y1)× . . .× µ(xn, yn).Here we de�ne Dn,µn

ǫ (fn):
Dn,µn

ǫ (fn) = inf
π

CC(π),where in�mum ranges over all deterministi ommuniation protools π whihoutput n bits π1(x, y), . . . , πn(x, y) suh that for every i the following holds:
µn{(x, y) |πi(x, y) 6= (fn(x, y))i} ≤ ǫ.The Diret-Sum question is the question whether nDµ

ǫ (f) and Dn,µn

ǫ (fn)an onsiderably di�er or not. It is easy to prove that: nDµ
ǫ (f) ≥ Dn,µn

ǫ (fn).You an just get the optimal protool in the sense of de�nition for Dµ
ǫ (f) andapply it n times. Unfortunately, the opposite inequality is not that trivial.What strategy an we design in attempt to prove the opposite inequality?Consider the optimal protool π for fn in the sense of de�nition for Dn,µn

ǫ (fn),so that CC(π) = Dn,µn

ǫ (fn). Using information-theoreti tehnique, desribedin [2℄, you an onvert π into the randomized protool τ omputing f , whihsatisfy following inequalities: ICµ(τ) ≤ CC(π)
n , CC(τ) ≤ CC(π) and:

Pr[τ(x, y) 6= f(x, y)] ≤ ǫ,where probability in the last inequality is taken from distribution µ and theinner randomness of the protool. Suppose that you are given some numerialfuntion φ(I, C). Consider the following statement:For every protool α whih omputes funtion g over the distribution µ witherror probability ǫ there exists protool α′ whih omputes g over distribution
µ with error probability 2ǫ suh that CC(α′) = O (φ(ICµ(α), CC(α))Figure 1.1: Comression statement for φIt is not hard to see that ompression statement for φ implies followinginequality for Diret-Sum Problem:1

Dµ
2ǫ(f) = O

(

φ

(

Dn,µn

ǫ (fn)

n
,Dn,µn

ǫ (fn)

))

.In order to reah this result you have just to onvert τ into the protool with theproperties stated in ompression statement for φ and then make it deterministiby �xing an optimal hoie of random bits.The following theorem was proved in [1℄:Theorem 1.1. Compression statement holds for φ(I, C) =
√
IC log(C).1It is not evident how to derease error from 2ǫ to ǫ. Instead you may onsider thesimilar inequality stated for Rǫ(f), whih an be derived using mini-max argument; sine

R2ǫ(f) = Ω (Rǫ(f)) it is not a problem. 2



Automatially it implies that Dn,µn

ǫ (fn) = Ω (
√
nDµ

2ǫ(f))(up to logarith-mi fator). Next result, proved in [4℄, gives an improvement of the previoustheorem, but with some restrition:Theorem 1.2. Compression statement holds for publi-oin protools with
φ(I, C) = I log(C).Unfortunately protool τ is reahed using publi oins as well as privateoins. We an try to irumvent this onfuse onsidering the problem of simu-lation private-oin protool using publi-oin protools.As marked in [4℄, this problem is reverse in some sense to the Newmantheorem, whih states that every publi-oin ommuniation protool an be ef-fetively simulated by private-oin protool(for the details look in the [6℄). Notethat in the ase of Communiation Complexity publi oins are more powerfultool than private oins. With respet to Information Complexity it is not true.For example, suppose that Alie reeives binary string of length n and privately�ips n oins; then she sends to Bob the bit-wise XOR of her input and oins.Information that Bob reeives about Alie's input from the message is equal tozero unless Alie's oins are available to Bob; otherwise, Bob an reestablishAlie's input from the message.We say that two protools are distributional-equivalent if they are de�nedon the same input spae X × Y and for every (x, y) ∈ X × Y their transripts,onditioned on (x, y), are same distributed. For every private-oin protool πwith information omplexity I out task is to �nd publi-oin protool with in-formation omplexity lose to I, whih is distributional equivalent to π. Firstresults in this setting were proved in [4℄ and [3℄ for the bounded-round protools.The following estimate, proven in [3℄, is tight for one-way ommuniation:Theorem 1.3. For every one-way private-oin ommuniation protool π andevery distribution µ there exists publi-oin ommuniation protool τ whih isdistributional-equivalent to π, satisfying following inequality:

ICµ(τ) ≤ ICµ(π) + log(ICµ(π)) + O(1).Constant in right-hand side is ruial when you try to generalize last theoremfor unbounded-round ase. Our ontribution is the estimate, whih holds for allprotools:Theorem 1.4. There exists universal onstant C > 0 suh that for everyprivate-oin protool π there exists publi-oin protool τ whih is distributional-equivalent to π suh that for every distribution µ the following holds:
ICµ(τ) ≤ C

√

ICµ(π)CC(π).This theorem gives also new, undiret way to prove ompression result,stated in theorem 1.1 ; use our result to remove private oins from the pro-tool and then apply theorem 1.2.Tehnique, that we use to bound information omplexity of the protool after3



removing private-oins, is not new. The key onsidiration is a fat that on eahstep of the protool total variation between Alie's a priori distribution of thenext bit in protool and Bob's one an be bounded, using Pinsker's inequality,by the term related with information omplexity of this step. It is worth notingthat proof of the theorem 1.1, whih ontains in [1℄, uses this fat to bound anumber of mistakes in simulating of an original protool.2 PreliminariesWe denote logarithms in base 2 by log and natural logarithms by ln.2.1 Information theoryWe use standart notion of a Shannon Entropy; if X is a random variable, takingvalues in the set X , then:
H(X) =

∑

x∈X
Pr[X = x] log

(

1

Pr[X = x]

)

.Conditional entropy an be de�ned as follows:
H(X |Y ) = H(X,Y )−H(Y ).Also it an be de�ned as expetation valueH(X |Y ) = EY=yH(X |Y = y), where

X |Y = y denote a random variable whih distribution is equal to distributionof X , ondition on the event Y = y. Mutual information between two randomvariables de�ned as follows:
I(X : Y ) = H(X)−H(X |Y ).Mutual information is symmetri: I(X : Y ) = I(Y : X); it follows from the well-known fat that H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y ). Conditionalmutual information is de�ned in the same way:

I(X : Y |Z) = H(X |Z)−H(X |Y, Z).Entropy and the mutual information satisfy the hain rule:Proposition 2.1 (Chain Rule).
H(X1 . . .Xn) = H(X1) +

n
∑

i=2

H(Xi|X1 . . . Xi−1),

I(X1 . . . Xn : Y ) = I(X1 : Y ) +
n
∑

i=2

I(Xi : Y |X1 . . . Xi−1).4



Chain rule holds also for onditional entropy and onditional mutual infor-mation.Let P , Q denote two probability distributions on the set W . We onsidertwo quantities that measure dissimilarity between P and Q: total variation:
δ(P,Q) = sup

A⊂W
|P{A} −Q{A}|,and the information divergene

D(P ||Q) =
∑

w∈W
P (w) log

(

P (w)

Q(w)

)

.We will use the following well-known inequality:Proposition 2.2 (Pinkser's inequality).
δ(P,Q) ≤

√

D(P ||Q)

2
.When α is a number we use letter H also to denote the following funtion:

H(α) = α log

(

1

α

)

+ (1− α) log

(

1

1− α

)

H(α) is equal to entropy of a random variable ξ with two possible values
{w1, w2} suh that Pr[ξ = w1] = α. We will use the following fat:Fat 2.1. If α ≤ 1

2 , then H(α) ≤ 2α log
(

1
α

)Proof. It is su�ient to show that (1 − α) log
(

1
1−α

)

≤ α log
(

1
α

) when α ≤ 1
2 .Consider funtion f(α) = α log

(

1
α

)

− (1− α) log
(

1
1−α

). We have:
f ′(α) =

1

ln(2)

(

ln

(

1

α(1− α)

)

− 2

)

.It means that f grows on [0, α0], (α0 is a left root of equation α(1 − α) = 1
e2 );respetively f derease on [α0,

1
2 ]. Sine f(0) = f(12 ) = 0 it means that f(α) ≥ 0for any α ∈ [0, 1

2 ].2.2 Communiation ProtoolsIn order to prove our result we have to give a formal de�nition of private-oin ommuniation protool. Let Z be the set of the possible outputs andlet δ : {0, 1}∗ → {A,B} ∪ Z be the funtion whih deides who's turn toommuniate unless it's time to produe output. This funtion determines threesets A = {s ∈ {0, 1}∗ | δ(s) = A}, B = {s ∈ {0, 1}∗ | δ(s) = B}, O = {s ∈
{0, 1}∗ | δ(s) ∈ Z}. Finally let p : X × A → [0, 1] and q : Y × B → [0, 1] be the5



1. Alie reeives x ∈ X , Bob reeives y ∈ Y; they add some bits to the string
s, starting with empty string s = λ;2. If s ∈ A, Alie uses her private randomness to produe one bit b withprobability for b to be 0 equal to p(x, s); then Alie and Bob add b to s;3. If s ∈ B, Bob ats similarly to Alie;4. If s ∈ O, Alie and Bob output δ(s) and terminate.Figure 2.2: Private-oin protool run-timefuntions whih instrut Alie and Bob how to ommuniate. In the �gure 2.2we desribe how private-oin ommuniation protool proeed.We say that protool is deterministi, if values of funtions p and q lie in

{0, 1}. We de�ne publi-oin protool as a random variable R taking values inset of deterministi protools. Conatenation of all bits Alie and Bob send toeah other is alled transript of the protool π; the maximum length of thetransript in protool π is alled ommuniation omplexity of the protool π,denoted by CC(π).For the formal de�nition of ommuniation omplexity of funtions and forlassi results in this area, see the book [5℄.2.3 Information ComplexitySuppose that you are given a ommuniation protool π and suppose that it'sinput spae X × Y is distributed aording µ. Transript of the protool πfrom this point beomes a random variable whih distribution depends on µand inner randomness of the protool. Denote this random variable by Π. Wede�ne information omplexity of the protool π as follows:
ICµ(π) = I(X : Π, R|Y ) + I(Y : Π, R|X).The following fat proved in [2℄Proposition 2.3. ICµ(π) ≤ CC(π).If π is publi-oin, ICµ(π) an be represented in a shorter form:Proposition 2.4. If π is a publi-oin protool, then:

ICµ(π) = H(Π|R, Y ) +H(Π|R,X).Proof. We have:
I(X : Π, R|Y ) = H(Π, R|Y )−H(Π, R|X,Y )

= H(Π|R, Y ) +H(R|Y )−H(Π|R,X, Y )−H(R|X,Y ).6



H(Π|R,X, Y ) = 0, sine Π is determined by R,X, Y ; H(R|Y ) = H(R|X,Y ) =
H(R) sine R and X,Y are independent. Hene I(X : Π, R|Y ) = H(Π|R, Y ).Similarly we proof that I(Y : Π, R|X) = H(Π|R,X).3 Simulation for one-bit protoolsIn this setion we prove theorem 1.4 for one-way protools of depth 1. It meansthat Alie reeives her input and sends just 1 bit to Bob, using random bits,after what protool terminates.Proposition 3.1. There exists a universal onstant C > 0, suh that for everyone-bit private-oin protool π there exists one-bit publi-oin protool τ whihis distributional-equivalent to π, suh that for every distribution µ the followingholds:

ICµ(τ) ≤ C
√

ICµ(π).Proof. Suppose that we are given private-oin protool π of depth 1; it meansthat there is some set X of Alie's inputs and there is a funtion p : X → [0, 1]suh that on input x ∈ X Alie send 0 to Bob with probability p(x). Also weare given probability distribution µ on the set X whih de�nes random variable
X . Let B denote the Alie's message in protool π. LetQ denote the distributionof B and let Px denote the distribution of B|X = x. It is easy to to see that:

Q =
∑

x∈X
µ(x)Px.We de�ne publi-oin protool τ as follows:1. Alie reeives value x of a random variable X ;2. Alie and Bob publily sample R uniformly at random from [0, 1];3. If R ≤ p(x), then Alie sends B = 0 to Bob; otherwise, Alie sends B = 1to Bob.Note that τ does not depends on µ. It is lear that Alie's message B, on-ditioned on X = x, is distributed aording to Px. Hene τ is distributional-equivalent to π. Let B(x, t) denote Alie's message in protool τ onditionedon X = x and R = t. The only thing we have to do from now is to estimateInformation Complexity of τ . By proposition 2.4 we have ICµ(τ) = H(B|R).By de�nition we have:

H(B|R) =

1
∫

0

H(B|R = t)dt.Set I = ICµ(π). We will use the following fat:7



Fat 3.1. I = Ex←µD(Px||Q).Proof.
I = I(X : B) = H(B)−H(B|X)

=
∑

b∈{0,1}
Q(b) log

(

1

Q(b)

)

−
∑

x∈X
µ(x)

∑

b∈{0,1}
Px(b) log

(

1

Px(b)

)

=
∑

b∈{0,1}

(

∑

x∈X
µ(x)Px(b)

)

log

(

1

Q(b)

)

−
∑

x∈X
µ(x)

∑

b∈{0,1}
Px(b) log

(

1

Px(b)

)

=
∑

x∈X
µ(x)

∑

b∈{0,1}
Px(b) log

(

Px(b)

Q(b)

)

= Ex←µD(Px||Q)By Pinsker's inequality (proposition 2.2) we have: δ(Px, Q) ≤
√

D(Px||Q)/2.Using this inequality and fat 3.1 we get:
Ex←µδ

2(Px, Q) ≤ I/2. (1)Consider set Ω, whih is de�ned as follows:
Ω = {t ∈ [0, 1] | |t−Q(0)| >

√
I}.It is lear that Pr[R ∈ [0, 1]/Ω] ≤ 2

√
I. Trivially we onlude that:

∫

[0,1]/Ω

H(B|R = t)dt ≤ 2
√
I. (2)WLOG we assume that X ontains some speial element a with the followingproperties: µ(a) = 0 and p(a) = Q(0). Fix t ∈ Ω. The following statementholds:

H(B|R = t) = H (µ{x |B(x, t) 6= B(a, t)}) .Let us show that if B(x, t) 6= B(a, t), then δ(Px, Q) ≥ |t−Q(0)|. Suppose that
B(x, t) 6= B(a, t); by de�nition of τ it implies that t lies on the segment between
Px(0) and Q(0); hene δ(Px, Q) ≥ |Px(0) −Q(0)| ≥ |t − Q(0)|.By that and byMarkov's inequality applied to 1 we get:

µ{x |B(x, t) 6= B(a, t)} ≤ µ{x | δ(Px, Q) ≥ |t−Q(0)|}

≤ I

2(t−Q(0))2
≤ 1

2
.

8



Using an estimate from fat 2.1, we derive:
∫

Ω

H(B|R = t)dt ≤
∫

Ω

H

(

I

2(t−Q(0))2

)

dt

≤ 2

∫

Ω

I

2(t−Q(0))2
log

(

2(t−Q(0))2

I

)

dt

≤
√
2
√
I

∫

Ω

I

2(t−Q(0))2
log

(

2(t−Q(0))2

I

)

d

√
2(t−Q(0))√

I

≤
√
2

∫

|y|>
√
2

log(y2)

y2
dy

√
I.We showed that

∫

Ω

H(B|R = t)dt ≤ D
√
I, (3)where D =

√
2

∫

|y|>
√
2

log(y2)
y2 dy (it is orret to de�ne D this way sine integralis onvergent). Fixing C = 2 +D we onlude from 2 and 3:

ICµ(τ) = H(B|R) =

1
∫

0

H(B|R = t)dt

=

∫

[0,1]/Ω

H(B|R = t)dt+

∫

Ω

H(B|R = t)dt

≤ (2 +D)
√
I = C

√
I,

.

Here we give an example from [3℄, whih shows that our bound for one-bitprotools is tight. Suppose that Alie reeives 0 or 1 with the same probabilityand then sends one bit to Bob, whih is equal to her input with probability
1
2 + ǫ and di�ers with probability 1

2 − ǫ. The proportion of those random bits,on whih Alie always sends her input to Bob, is at least 1 − 2(12 − ǫ) = 2ǫ.Hene information omplexity of every publi-oin protool for this task is atleast 2ǫ. At the same time simple alulations show that if random bits areprivate, then information omplexity drops to Θ(ǫ2).4 Generalizaton for all protoolsIn this setion we extend the result of the previous setion to all protools.9



Proof of theorem 1.4. Suppose that π is arbitrary private-oin ommuniationprotool de�ned in �gure 2.2. Set N = CC(π) and let Π = Π1 . . .ΠN denotetransript of π. Set Π<k = Π1 . . .Πk−1. Also we are given some probabilitydistribution µ on X × Y whih de�nes two random variables X an Y . Here wede�ne publi-oin protool τ :1. Alie reeives value x of random variable X , Bob reeives value y of arandom variable Y ; they add some bits to the string s, starting withempty string s = λ;2. Alie and Bob publily sample R = (R1, . . . , RN ) uniformly at randomfrom [0, 1]N ;3. If s ∈ A, Alie produes one bit b: if R|s|+1 ≤ p(x, s) then b = 0, otherwise
b = 1; after that Alie and Bob add b to s;4. If s ∈ B, Bob ats similarly to Alie;5. If s ∈ O, Alie and Bob output δ(s) and terminate.Note that τ does not depend on µ. By de�nition τ is distributional-equivalentto π. By hain rule(proposition 2.1), applied to protool π we have:

ICµ(π) = I(X : Π|Y ) + I(Y : Π|X)

=

N
∑

i=1

I(X : Πk|Y,Π<k) + I(Y : Πk|X,Π<k)

=

N
∑

i=1

Ik,where Ik = I(X : Πk|Y,Π<k) + I(Y : Πk|X,Π<k). By proposition 2.4 we have
ICµ(τ) = H(Π|R, Y ) +H(Π|R,X). By hain rule we get:

ICµ(τ) = H(Π|R, Y ) +H(Π|R,X)

=

N
∑

i=1

H(Πk|R, Y,Π<k) +H(Πk|R,X,Π<k)

=
N
∑

i=1

I ′k,where I ′k = H(Πk|R, Y,Π<k) +H(Πk|R,X,Π<k).Fix arbitrary k ∈ {1, . . . , N}, s ∈ {0, 1}k−1. WLOG it is Alie turn toommuniate, that is δ(s) = A. Hene for arbitrary x ∈ X we have
H(Πk|R,X = x,Π<k = s) = 0,

I(Y : Πk|X = x,Π<k = s) = 0.10



Fix then arbitrary y ∈ Y. s and y de�ne private-oin protool π′ of depth 1:aording to π′ Alie ats as though she were running protool π from the pointwhen message story is equal to s. Similarly publi-oin protool τ ′ of depth1 an be de�ned from protool τ . Note that protool τ ′ with respet to π′ isexatly the same to one that was onstruted in proof of proposition 3.1. Wederive
H (Πk|Rk, Y = y,Π<k = s) = ICµ(τ

′)

≤ C
√

ICµ(π′)

= C
√

I (X : Πk|Y = y,Π<k = s).After averaging over all s ∈ {0, 1}k−1, x ∈ X , y ∈ Y by onavity of root weget:
I ′k = H (Πk|R, Y,Π<k) +H (Πk|R,X,Π<k)

≤ H (Πk|Rk, Y,Π<k) +H (Πk|Rk, X,Π<k)

≤ C
√

I (X : Πk|Y,Π<k) + I (Y : Πk|X,Π<k) = C
√

Ik.Using Cauhy�Shwarz inequality we onlude
ICµ(τ) = I ′1 + . . .+ I ′N

≤ C
(

√

I1 + . . .+
√

IN

)

≤ C
√

(I1 + . . .+ IN )N = C
√
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